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SUMMARY

Bayesian inference is attractive for its coherence and good frequentist properties. However,
eliciting a honest prior may be difficult and a common practice is to take an empirical Bayes ap-
proach using some estimate of the prior hyperparameters. Although not rigorous, the underlying
idea is that, for sufficiently large sample size, empirical Bayes should lead to similar inferen- 15

tial answers as a proper Bayesian inference. However, precise mathematical results seem to be
missing. In this work, we give rigorous results in terms of merging of Bayesian and empirical
Bayes posterior distributions. We study two notions of merging: Bayesian weak merging and
frequentist merging in total variation. We also show that, under regularity conditions, empirical
Bayes asymptotically gives an oracle selection of the prior hyperparameters. Examples include 20

empirical Bayes density estimation with Dirichlet process mixtures.

Some key words: Bayesian model selection; Bayesian weak merging; Dirichlet process mixtures; Frequentist strong
merging; Maximum marginal likelihood estimation; Posterior consistency; Regression with g-priors.

1. INTRODUCTION AND MOTIVATION

The Bayesian approach to inference is appealing in treating uncertainty probabilistically 25

through conditional distributions. If (X1, . . . , Xn), conditionally on θ, have joint density p(n)
θ

and θ has prior density π(θ | λ), then the information on θ, given the data, is expressed
through the conditional, or posterior, density π(θ | λ, x1, . . . , xn) ∝ p(n)

θ (x1, . . . , xn)π(θ | λ).
Although Bayesian procedures are increasingly popular, it is common experience that express-
ing honest prior information can be difficult and, in practice, one is tempted to use some 30

estimate λ̂n ≡ λ̂n(x1, . . . , xn) of the prior hyperparameter λ and a posterior density π(· |
λ̂n, x1, . . . , xn). This mixed approach is usually referred to as empirical Bayes in the litera-
ture, see Lehmann & Casella (1998). The underlying idea is that, when the sample size is large,
empirical Bayes should lead to inferential results similar to those of any Bayesian procedure. An
empirical Bayesian would then achieve the goal of inference without completely specifying a 35

prior distribution.
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An empirical Bayes approach is not justified from a Bayesian point of view, it is, however,
attractive as a computationally simpler alternative to a more rigorous, but usually analytically
more complex, hierarchical specification of the prior of the kind

∫
π(· | λ)h(λ) dλ. Thus, for

a Bayesian statistician, empirical Bayes is of interest for two reasons: when it is difficult to40

honestly fix λ, it is expected that a data-driven choice of λ may lead to better inferential results;
also, the empirical Bayes posterior could be a simple approximation of a hierarchical posterior
distribution. These are possibly the reasons for the wide use of empirical Bayes in practical
applications. However, to be rigorously justified, it is necessary (a) to prove whether it is true
that empirical Bayes and (hierarchical) Bayes will asymptotically agree and (b) to investigate45

whether empirical Bayes procedures have some optimality property (versus a fixed choice of λ).
To our knowledge, general results on such asymptotic agreement and on optimality properties
are missing. The aim of this paper is to provide results in both directions. First, we will give
conditions for the asymptotic agreement, or merging, of empirical Bayes and Bayesian solutions,
but we will also single out situations wherein empirical Bayes and Bayes diverge and, thus, from50

a Bayesian viewpoint, require special care. Then, we will show that, in regular parametric cases,
the maximum marginal likelihood selection of λ converges to a limit that is optimal, in the sense
that it corresponds to an oracle choice of the prior that mostly favors the true model. Thus, for
sufficiently large sample size, empirical Bayes would give a solution that is close to the Bayesian
oracle and, in this sense, can be expected to exploit information more efficiently than a fixed55

choice of λ.
Although not rigorously justified, empirical Bayes is used quite often by practitioners and in

the literature, see, for instance, George & Foster (2000) in the context of variable selection in re-
gression; Clyde & George (2000) for wavelets shrinkage estimation; Liu (1996) and McAuliffe et
al. (2006) in Bayesian nonparametric mixture models; Favaro et al. (2009) in Bayesian nonpara-60

metric inference for species diversity. A systematic comparison of empirical Bayes and Bayesian
procedures appears to be less explored. A careful comparison of empirical Bayes and Bayesian
variable selection criteria in regression is developed by Cui & George (2008). In this context, a
surprising result has been recently highlighted by Scott & Berger (2010) who show an asymptotic
discrepancy between empirical Bayes and Bayesian inferences. Empirical Bayes and hierarchical65

Bayesian procedures for nonparametric curve estimation are studied in Belitser & Levit (2003),
Belitser & Enikeeva (2008) and in the recent work by Knapik et al. (2012). In these problems,
the hyperparameter λ can be endowed with an interpretation as a model index and a direct re-
lationship to the true parameter exists a priori. However, in general, the hyperparameter merely
characterizes some aspects of the prior so that there exists no notion of true value of λ; thus, it70

is not clear which could be a desirable limit for the sequence of λ̂n. We will propose a notion of
oracle value instead of true value for λ in § 4.

The term empirical Bayes is used with different meanings in the literature. Another common
use refers to problems where a prior distribution is introduced but a frequentist interpretation
of it is possible, typically in hierarchical models where Xi, conditionally on θi, has density75

pθi and the θi are a sample from a latent distribution G(· | λ). Integrating out the θi, the Xi

are independent and identically distributed according to
∫
pθ(·) dG(θ | λ). In these problems,

maximum likelihood estimation of λ, i.e., of the latent distribution G, is often referred to as
empirical Bayes. A Bayesian approach would assign a prior distribution to λ. In these cases, a
comparison between Bayes and empirical Bayes reduces to the interesting, but more standard,80

comparison between Bayes and maximum likelihood procedures, which, however, is not the
primary object of this work.

The first question we address is whether empirical Bayes and Bayesian posterior distributions
will asymptotically be close. A relevant counterexample has been recently exhibited by Scott &
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Berger (2010) in the case of variable selection in regression models. They consider a Bayesian 85

approach where variable selection is based on an inclusion vector γ = (γ1, . . . , γk) ∈ {0, 1}k
which selects among k potential regressors and the prior on γ assumes that γj are independent
Bernoulli random variables with parameter λ, π(γ1, . . . , γk | λ) = λkγ (1− λ)k−kγ , where kγ =∑k

j=1 γj is the selected number of covariates. In this framework, George & Foster (2000) have
shown that an empirical Bayes procedure that estimates the inclusion probability λ from the data 90

by, for example, the maximum marginal likelihood estimator, may be preferable to a Bayesian
procedure that uses a fixed value of λ. Scott & Berger (2010) compare this empirical Bayes
approach with a hierarchical Bayesian procedure that assigns a prior to λ. Surprisingly, they
prove an asymptotic discrepancy between the two procedures. They show that the empirical
Bayes posterior distribution on the set of models can be degenerate on the null model (γ = 95

(0, . . . , 0)) or on the full model (γ = (1, . . . , 1)). This might still lead to interesting pointwise
estimates of the model or of the whole parameter, but it is far from being satisfactory in terms
of the posterior distribution. We shed light on these phenomena by describing when and why
maximum marginal likelihood empirical Bayes procedures will be pathological or, conversely,
when and why they will have some oracle property. These results have therefore the practical 100

interest of characterizing, at least in the parametric case, those families of priors which can
be jointly used with empirical Bayes procedures and those which instead should be avoided,
especially if interest does not merely lie in point estimation, but in more general features of the
posterior distribution.

We formalize the asymptotic comparison in terms of merging of empirical Bayes and Bayesian 105

procedures. We consider two notions of merging. First, we study Bayesian weak merging in the
sense of Diaconis & Freedman (1986). Then, we study frequentist strong merging in the sense of
Ghosh & Ramamoorthi (2003) which compares posterior distributions in terms of total variation
distance in the frequentist sense, that is, almost surely with respect to the true probability law
P

(∞)
0 of (Xi)i>1. Note that when strong merging holds, if the Bernstein von-Mises theorem holds 110

in the L1-sense for the Bayesian posterior, then it also holds for the empirical Bayes posterior.
Weak merging of Bayes and empirical Bayes means that any Bayesian is sure that his posterior

distribution and the empirical Bayes posterior distribution will eventually be close, in the sense
of weak convergence. It is thus a minimal requirement. However, it is not guaranteed and it holds
if and only if the empirical Bayes posterior distribution is consistent at the true value θ0 of the 115

parameter in the frequentist sense. Therefore, it is of interest to provide conditions under which
the empirical Bayes posterior is consistent in a general context covering both parametric and
nonparametric problems, see § 3.

Simple examples show that, even when consistency and weak merging hold, the empirical
Bayes posterior may have unexpected and counterintuitive behaviors. Frequentist strong merging 120

is a way to refine the analysis. Obtaining strong merging of Bayesian posteriors in nonparamet-
ric contexts is often impossible since pairs of priors are typically singular. Thus, in tackling this
issue, we concentrate on parametric models and on the specific, but important, case of the max-
imum marginal likelihood estimator λ̂n. We find that the behavior of the empirical Bayes poste-
rior is essentially driven by the behavior of the prior at θ0. Roughly speaking, if supλ π(θ0 | λ) 125

is achieved at a value λ∗ (here unique for simplicity) in the boundary of Λ such that π(· | λ∗)
is degenerate at θ0, then the empirical Bayes posterior will not merge with any Bayesian poste-
rior distribution. We illustrate this behavior in Bayesian regression with g-priors and in model
selection. Conversely, if supλ π(θ0 | λ) <∞, which is the case if λ∗ is in the interior of Λ, then
λ̂n converges to λ∗ and frequentist strong merging holds. The value λ∗ can be understood as the130
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prior oracle since it is the value of the hyperparameters for which the prior mostly favors the
truth θ0. Under this respect, the empirical Bayes posterior achieves some kind of optimality.

2. GENERAL CONTEXT AND NOTATION

Let X and Θ denote the observational space and the parameter space, respectively. In order to
cover both parametric and nonparametric problems, we only require that they are complete and135

separable metric spaces, equipped with their Borel σ-fields B(X ) and B(Θ), respectively. Let
(Xi)i>1 be a sequence of random elements, withXi taking values inX . Suppose that, given θ, the
probability measure of the process (Xi)i>1 is P (∞)

θ and, for every n = 1, 2, . . . , denote by P (n)
θ

the joint probability law of (X1, . . . , Xn). We consider a dominated collection of probability
measures P (n)

θ with respect to some σ-finite measure µ(n) and denote the densities by p
(n)
θ .140

In the sequel, we use the short notations (Xi) = (Xi)i>1, X1:n = (X1, . . . , Xn) and x∞ =
(x1, x2, . . . ).

Let {Π(· | λ) : λ ∈ Λ} be a family of prior probability measures on Θ, with Λ ⊆ R`, for finite
`, endowed with the Borel σ-field induced by the Euclidean distance ‖λ− λ′‖ = {

∑`
j=1(λj −

λ′j)
2}1/2 whenever, in a hierarchical Bayesian approach, a prior distribution for λ is considered.145

For a prior Π(· | λ), we denote by Π(· | λ, X1:n) the corresponding posterior distribution of θ,
given X1:n, which can be computed by the Bayes’ rule because the model is dominated. The
empirical Bayes approach consists in estimating the hyperparameter λ by λ̂n ≡ λ̂n(X1:n) and
plugging the estimate into the posterior distribution. In general, λ̂n asymptotically takes values
in the closure Λ̄ of Λ. If Λ is open and λ0 is in the boundary ∂Λ of Λ, we define Π(· | λ0) as the150

σ-additive weak limit of Π(· | λ) as λ→ λ0, if it exists.
Throughout the paper, we assume that, for each θ, P (∞)

θ -almost surely, for all large n, the
estimator λ̂n takes values in Λ or in its boundary ∂Λ, in the latter case assuming that the prior
exists as a weak limit (thus ruling out improper priors), and 0 <

∫
Θ p

(n)
θ (X1:n) dΠ(θ | λ̂n) <∞.

Then, we say that the empirical Bayes posterior is well defined and it is obtained by plugging λ̂n
into the Bayesian posterior, that is, for every Borel set B,

Π(B | λ̂n, X1:n) =

∫
B p

(n)
θ (X1:n) dΠ(θ | λ̂n)∫

Θ p
(n)
θ (X1:n) dΠ(θ | λ̂n)

.

Many types of estimators λ̂n can be considered: the maximum marginal likelihood estima-
tor, defined as λ̂n ∈ argmaxλ∈Λ̄ m(X1:n | λ), where m(X1:n | λ) =

∫
Θ p

(n)
θ (X1:n) dΠ(θ | λ),

is the most popular. This tacitly assumes that, for every θ, P (∞)
θ -almost surely, m(X1:n | λ) has

a maximum over Λ̄ and we will write m̂(X1:n) = m(X1:n | λ̂n). We will present general results155

for the empirical Bayes posterior distribution with any type of estimator λ̂n as well as specific
results for the empirical Bayes posterior with the maximum marginal likelihood estimator.

3. BAYESIAN WEAK MERGING AND CONSISTENCY

3·1. General results
Bayesian merging is a natural way to formalize the idea that the empirical Bayes posterior160

and the Bayesian posterior will asymptotically be close. Blackwell & Dubins (1962) give fun-
damental results on Bayesian strong merging, which, however, cannot be applied to empirical
Bayes since they are based on properties of the probability law of the process (Xi), whereas the
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empirical Bayes approach only gives a sequence of posterior distributions, without a properly
defined probability law of (Xi). Diaconis & Freedman (1986) give a notion of weak merging 165

that applies even when strong merging does not. Two sequences of probability measures pn and
qn are said to merge weakly if and only if |

∫
f dpn −

∫
f dqn|goes to 0, for all continuous

and bounded functions f . They show that two Bayesian statisticians with different priors merge
weakly if and only if one of them has a consistent posterior, in the frequentist sense, at θ, for
every θ in Θ. An analogous result holds in the present context: the empirical Bayesian merges 170

weakly with any Bayesian if and only if the empirical Bayes posterior is consistent at θ, for every
θ in Θ. The result is herein restricted to the case of exchangeable sequences, thus, given θ, the
Xi are independent and identically distributed according to Pθ. Given a prior Π on Θ, we use Πn

to denote the posterior distribution and PΠ for the exchangeable probability law of the process
(Xi) defined through Π. Recall that a posterior distribution Πn is said to be consistent at θ if Πn 175

converges weakly to a point mass at θ with P∞θ -probability one, where P∞θ denotes the infinite
product measure on X∞. A posterior distribution Πn is said to be consistent if it is consistent
at every θ ∈ Θ. The following result is a consequence of Theorem A.1 in Diaconis & Freedman
(1986).

PROPOSITION 1. Let θ 7→ Pθ be one-to-one and such that, for everyB ∈ B(X ), the map θ 7→ 180

Pθ(B) is B(Θ)-measurable. Let Π(· | λ̂n, X1:n) be the empirical Bayes posterior obtained from
a family of priors {Π(· | λ) : λ ∈ Λ} and an estimator λ̂n of λ. Then, for any prior probability
measure q on Θ, the empirical Bayes posterior and the Bayesian posterior qn merge weakly with
Pq-probability one if and only if the empirical Bayes posterior is consistent.

The proof is straightforward since it suffices to note that the proof for the equivalences (i)–(iv) 185

in Theorem A.1 of Diaconis & Freedman (1986) goes through to the present case: in fact, it is
based on the properties of the Bayesian posterior qn, whereas for the empirical Bayes posterior
Π(· | λ̂n, X1:n) only consistency is required.

Proposition 1 shows that any Bayesian, in particular, any Bayesian with a hierarchical prior∫
Λ π(· | λ)h(λ) dλ, can be sure that her estimate with respect to the quadratic loss of any contin- 190

uous and bounded function f will asymptotically agree with the empirical Bayes estimate if and
only if the empirical Bayes posterior is consistent. Thus, even a minimal requirement as weak
merging is not guaranteed. It is worth highlighting that consistency refers to the posterior distri-
bution of θ and cannot be referred to the estimator λ̂n since, in our context, there is generally no
notion of true value of λ. 195

Besides its Bayesian motivation in terms of merging, consistency is a fundamental property of
autonomous interest from the frequentist point of view. Therefore, we study consistency of em-
pirical Bayes posterior distributions for dependent sequences, beyond the case of exchangeabil-
ity, covering both parametric and nonparametric cases. Clearly, consistency of empirical Bayes
posterior distributions requires more care than consistency of Bayesian posteriors because the 200

prior is data-dependent through λ̂n and one has to control the behavior of the sequence λ̂n. We
give two results: one for procedures where λ̂n is the maximum marginal likelihood estimator and
the other one for procedures where λ̂n is a convenient estimator.

To be more specific, let (Θ, d) be a complete and separable metric space. For paramet-
ric models with θ ∈ Rk, where k is finite, d(θ, θ′) can be the Euclidean distance ‖θ − θ′‖ = 205

{
∑k

j=1(θj − θ′j)2}1/2. In nonparametric problems, for example in density estimation, Θ can
be some collection of dominated probability measures on X and one could identify θ with the
density p(n)

θ itself so that natural metrics can be the metric of weak topology or the Hellinger
metric which, for independent and identically distributed observations, writes as d(θ, θ0) =
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{
∫

(p
1/2
θ − p1/2

θ0
)2 dµ}1/2. For any ε > 0, let Uε = {θ ∈ Θ : d(θ, θ0) < ε} denote the open ball210

centered at θ0 with radius ε. Since (Θ, d) is separable, the definition of consistency can be
restated in terms of neighborhoods of θ0, see, e.g., Ghosh & Ramamoorthi (2003), page 17.
Therefore, the empirical Bayes posterior is consistent at θ0, in the sense of the metric d, if, for
any ε > 0, Π(U cε | λ̂n, X1:n)→ 0 with P (∞)

0 -probability one, where P (∞)
0 denotes the proba-

bility measure of (Xi) under θ0. For θ ∈ Θ, let R(p
(n)
θ ) = p

(n)
θ (X1:n)/p

(n)
θ0

(X1:n) denote the215

likelihood ratio. We will use the following assumptions.

Assumption A1. There exists λ ∈ Λ such that, for all η > 0, there is a measurable set
BKL(θ0; η) ⊂ {θ ∈ Θ : lim infn{nη + logR(p

(n)
θ )} = +∞} with Π{BKL(θ0; η) | λ} > 0.

Assumption A2. There exists a sequence Θn ⊂ Θ such that

(i) the model p(n)
θ is strongly regular in the sense that there exist constants c1, c2 > 0 such that,220

for every ε > 0,

P
(n)
0

{
sup

θ∈Ucε∩Θn

R(p
(n)
θ ) > e−c1nε

2

}
6 c2(nε2)−(1+t)

for some t > 0. The supremum may not be measurable: in this case, the preceding probability
statement is understood in terms of the outer measure, see, e.g., van der Vaart (1998);

(ii) the empirical Bayes posterior probability Π(Θc
n | λ̂n, X1:n)→ 0 with P (∞)

0 -probability one.225

Assumption A1 is the usual Kullback-Leibler prior support condition considered in most re-
sults on posterior consistency. It is written in its generic form. In the case where for all θ ∈ Θ

− log{R(p
(n)
θ )}/n converges almost surely to a deterministic constant, typically the limit of

its expectation under P (n)
θ0

, say KL∞(θ), then the set {θ ∈ Θ : lim infn{nη + logR(p
(n)
θ )} =

+∞} is given by {θ;KL∞(θ) < η}. It can also be proved following Lemma 10 in Ghosal & van230

der Vaart (2007a) with ε2n = ε2 and k > 2. In the parametric case, for independent and identi-
cally distributed observations, if the model pθ is regular, see Johnson (1970), pages 852–853, it is
satisfied if θ0 is in the support of the prior for some λ ∈ Λ. In the nonparametric case, it has been
shown to hold for various families of priors. In the present context, Assumption A1 is used when
λ̂n is the maximum marginal likelihood estimator to bound from below m̂(X1:n)/p

(n)
θ0

(X1:n).235

For other types of estimators λ̂n, a variant of Assumption A1 is considered, see condition (iii) in
Proposition 3.

When compared to the assumptions usually considered for posterior consistency, condition
(i) of Assumption A2 is quite strong; it is, however, a common assumption in the maximum
likelihood estimation literature. It is verified for most parametric models, see, e.g., Lemma 2.3 in240

Johnson (1970), and for nonparametric models, for instance, Wong & Shen (1995) proved that,
for independent and identically distributed observations with density pθ, if d is the Hellinger
metric, then a sufficient condition for (i) of Assumption A2 to hold is that there exist constants
c3, c4 > 0 such that, for every ε > 0,∫ √2ε

ε2/28
H

1/2
[ ] (u/c3, Θn, d) du 6 c4n

1/2ε2 (3.1)

for n large enough, where the function H[ ](·, Θn, d) denotes the Hellinger bracketing metric 245

entropy of Θn. Recall that if F is a set of non-negative, µ-integrable functions and d a metric
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on this set, then an ε-bracketing (with respect to d) is a set of pairs of µ-integrable functions
(l1, u1), . . . , (lm, um) such that (i) for each f ∈ F there exists (lj , uj) so that lj 6 f 6 uj
µ-almost everywhere and (ii) d(lj , uj) 6 ε for every j = 1, . . . , m. The smallest number of
such brackets to cover F is called the bracketing number and is denoted by N[ ](ε, F , d). The 250

bracketing entropy is defined as H[ ](ε, F , d) = logN[ ](ε, F , d).

Condition (i) of Assumption A2 is used to prove that, P
(∞)
0 -almost surely,∫

Ucε∩Θn
R(p

(n)
θ ) dΠ(θ | λ̂n) is eventually exponentially small. In fact, by the first Borel-

Cantelli lemma, condition (i) of Assumption A2 implies that, P
(∞)
0 -almost surely,

supθ∈Ucε∩Θn R(p
(n)
θ ) < e−c1nε

2
for all large n, whence 255∫

Ucε∩Θn

R(p
(n)
θ ) dΠ(θ | λ̂n) 6 sup

θ∈Ucε∩Θn

R(p
(n)
θ ) < e−c1nε

2
. (3.2)

Note that the bound in (3.2) is valid for any type of estimator λ̂n.
While condition (ii) of Assumption A2 trivially holds for parametric models where Θn = Θ,

for nonparametric models, typically, it has to be checked case by case.
We begin to study consistency of the empirical Bayes posterior when λ̂n is the maximum

marginal likelihood estimator as defined in § 2. 260

PROPOSITION 2. Under Assumptions A1 and A2, the empirical Bayes posterior Π(· |
λ̂n, X1:n), where λ̂n is the maximum marginal likelihood estimator, is consistent at θ0.

Proof. It suffices to show that, for every ε > 0, the posterior probability Π(U cε | λ̂n, X1:n)

converges to zero with P
(∞)
0 -probability one. We write Π(U cε | λ̂n, X1:n) = Π(U cε ∩Θn |

λ̂n, X1:n) + Π(U cε ∩Θc
n | λ̂n, X1:n), where the second addendum converges to zero P

(∞)
0 -

almost surely by condition (ii) of Assumption A2. As for the first term, we can write

Π(U cε ∩Θn | λ̂n, X1:n) =

∫
Ucε∩Θn

R(p
(n)
θ ) dΠ(θ | λ̂n)∫

ΘR(p
(n)
θ ) dΠ(θ | λ̂n)

=
Nn

Dn
.

All the following probability statements are understood to hold P (∞)
0 -almost surely. By definition

of m̂(X1:n), we have Dn > m(X1:n | λ)/p
(n)
θ0

(X1:n) ≡ Dn(λ) for all large n, where λ is as
required in Assumption A1. Thus, Π(U cε ∩Θn | λ̂n, X1:n) 6 Nn/Dn(λ). Under condition (i) 265

of Assumption A2, by (3.2), Nn < e−c1nε
2

for all large n. Reasoning as in Lemma 10 of Barron
(1988), for any η > 0, Dn(λ) > e−nη for all large n. Choosing 0 < η < c1ε

2, for δ = (c1ε
2 −

η) > 0, we have Π(U cε ∩Θn | λ̂n, X1:n) = Nn/Dn 6 Nn/Dn(λ) < e−nδ for all large n and
the assertion follows. �

In some applications, λ̂n is chosen to be a convenient statistics rather than the maximum 270

marginal likelihood estimator. As shown in Proposition 3 below, knowledge of the behaviour of
λ̂n allows to establish consistency for the empirical Bayes posterior without Assumption A2.

PROPOSITION 3. Assume that

(i) there exists a compact set K ⊆ Λ ⊆ R` such that, with P (∞)
0 -probability one, λ̂n ∈ K when n

is large enough;275

(ii) for all λ, λ′ ∈ K, there exists a measurable transformation ψλ, λ′ : Θ→ Θ such that if θ ∼
Π(· | λ) then ψλ, λ′(θ) ∼ Π(· | λ′);
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(iii) for every δ > 0 and λ ∈ K, there exists a sequence un such that u−`n > e−cn for some constant
c > 0 and a set S ∈ B(Θ) such that infλ∈KΠ(S|λ) > 0 and

∞∑
n=1

u−`n sup
θ∈S

P
(n)
0

{
inf

‖λ−λ′‖6un
logR(p

(n)
ψλ, λ′ (θ)

) < −nδ
}
<∞;

(iv) for every ε > 0, there exist η0 > c and tests φn : X n → [0, 1] such that, for all λ ∈ K,∑∞
n=1E

(n)
0 {φn(X1:n)} <∞, where E(n)

0 denotes expectation under P (n)
0 , and∫

Ucε

∫
Xn
{1− φn(x1:n)} sup

‖λ−λ′‖6un
p

(n)
ψλ, λ′ (θ)

(x1:n) dµ(n)(x1:n)dΠ(θ | λ) 6 e−nη0 .

Then, for any ε > 0, Π(U cε | λ̂n, X1:n)→ 0 with P (∞)
0 -probability one.

The proof of Proposition 3 is reported in the Supplementary Material. Condition (i) is a natural
requirement when λ̂n is an explicit estimator as opposed to the maximum marginal likelihood280

estimator, since λ̂n typically converges to some λ0 ∈ Λ so that K is a neighborhood of λ0. Con-
dition (ii) characterizes the action of λ̂n on the prior. By expressing a change from λ to λ′ in the
prior as a change from θ to ψλ, λ′(θ) in the likelihood, the dependence on the data is transferred
from the prior to the likelihood. Conditions (ii)–(iv) are illustrated in Example 3 of § 3·2. Note
that the same sequence un is considered in conditions (iii) and (iv), but this is not necessary. The285

general idea to show that conditions (iii) and (iv) are satisfied is to bound, for all λ, λ′ such that
‖λ′ − λ‖ 6 un, the density p(n)

ψλ, λ′ (θ)
by a density gθ times a term of the form eo(n).

As previously mentioned, the term empirical Bayes is also used in the literature with a dif-
ferent meaning from the one considered here; yet, the above results could be extended to cover
these cases. The term empirical Bayes is often used in hierarchical models where X1, . . . , Xp290

have joint density
∏p
i=1 pθi(xi), conditionally on θ1, . . . , θp, and θi are a random sample from

a latent distribution G(· | γ) or, in a nonparametric setting, G. Usually, Xi is a sufficient statis-
tics for the ni observationsXi, 1, . . . , Xi, ni , with

∑p
i=1 ni = n. Since the latent distribution can

be regarded as a prior on θi, maximum likelihood estimation of γ has been referred to as para-
metric empirical Bayes (Morris (1983)) or, as nonparametric empirical Bayes (Robbins (1956))295

when based on nonparametric maximum likelihood estimation of G. This meaning of empiri-
cal Bayes differs from the one we consider in this work because it presumes the existence of
a true γ0 or a true mixing distribution G0, whereas, in our context, there is generally no true
value of the hyperparameter. However, our results apply to Bayesian inference for these prob-
lems where a (possibly nonparametric) prior Π(G | λ) is assigned to the latent distribution and300

one wants an empirical Bayes selection of λ. We illustrate this in Examples 2 and 3 of § 3·2,
where interest lies in estimating a mixture density. If, instead, interest lies in a specific param-
eter θi, our results could be extended to study the asymptotic behavior of the empirical Bayes
posterior G(θi | γ̂n, p, X1, . . . , Xp) obtained by plugging the maximum marginal likelihood es-
timate γ̂n, p = argmaxγm(x1, . . . , xp | γ), where m(x1, . . . , xp | γ) =

∏p
i=1

∫
pθ(xi) dG(θ |305

γ). Since this estimator exploits information from all experiments, it would not fit into the
setting of Proposition 2, but Proposition 3 could be used to study the asymptotic behavior of
G(θi | γ̂n, p, X1, . . . , Xp), as ni, p→∞, based on consistency results for the maximum likeli-
hood estimator γ̂n, p.

3·2. Examples 310

Example 1. Consistency of the Bayesian posterior does not imply consistency of the empir-
ical Bayes posterior, as shown by the following counterexample. Consider Bahadur (1958)’s
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example, see also Lehmann & Casella (1998), pages 445–447, Ghosh & Ramamoorthi (2003),
pages 29–31. Let Xi be independent and identically distributed random variables with values
in (0, 1] and density pθ indexed by θ = 1, 2, . . . . For each θ, the density pθ is constant on 315

(0, 1], except on the interval (aθ, aθ−1] wherein is equal to ex
−2

. Define a0 = 1 and aθ by∫ aθ−1

aθ
(ex
−2 − C) dx = 1− C, where 0 < C < 1 is a given constant. Since

∫ 1
0 e

x−2
dx =∞,

the aθ are uniquely determined and aθ tends to zero as θ →∞. For each θ = 1, 2, . . ., define

pθ(x) =

{
ex
−2

(x ∈ (aθ, aθ−1]),

C (x ∈ (0, 1] ∩ (aθ, aθ−1]c),

and pθ = 0 otherwise. The maximum likelihood estimator θ̂n exists and tends to∞ in probability,
regardless of the true value θ0 of θ. It is, therefore, inconsistent. On the other hand, Θ being 320

countable, by Doob’s theorem, any proper prior on Θ leads to a consistent posterior at all θ ∈ Θ.
However, an empirical Bayes posterior for θ can be degenerate at θ̂n, hence inconsistent. This
may happen if, for some λ ∈ ∂Λ, the prior Π(· | λ) is degenerate at θ̂n. Such a family of priors
can be constructed, for example, by discretizing a Gaussian distribution with parameters µ and
τ2. For λ = (µ, τ2), 325

Π({1} | λ) = Φ((−5/2, 1/2] | λ),

Π({k} | λ) = Φ((k − 3/2, k − 1/2] | λ) + Φ((−k − 1/2, −k − 3/2] | λ) (k = 2, 3, . . .),

where Φ(· | µ, τ2) denotes the probability law of a Gaussian distribution with parameters µ and
τ2. For any fixed µ = 0, 1, . . ., letting τ → 0, we have as a limit the Dirac mass at µ+ 1 because
Π({µ+ 1} | λ) converges to one, while, for any other k 6= µ+ 1, the probability Π({k} | λ) 330

converges to zero.
If there exists λ ∈ Λ̄ such that Π(· | λ) is degenerate at θ̂n, such a λ is the maximum marginal

likelihood estimator becausem(X1:n | λ) 6
∏n
i=1 pθ̂n(Xi). For the above defined prior, such a λ

exists and it is given by λ̂n = (θ̂n − 1, 0), for which Π(· | λ̂n) is degenerate at θ̂n. Consequently,
also the empirical Bayes posterior is degenerate at θ̂n, hence inconsistent. 335

Example 2. Popular Bayesian kernel methods for density estimation assume that Xi, given G,
are independently distributed according to pG(·) =

∫
ΨKψ(·) dG(ψ), with G having a nonpara-

metric prior. Note that this model can be written asXi | ψi ∼ Kψi independently andψi | G ∼ G
independently, with pG obtained by integrating out the ψi, as discussed at the end of § 3·1. Most
popular models for univariate density estimation use a Gaussian kernel Kψ(·) = φ(· | µ, σ2), 340

where φ(· | µ, σ2) denotes the Gaussian density with parameters µ and σ2, and a Dirichlet pro-
cess prior for G with base measure λᾱ, that is, G ∼ DP(λᾱ), where λ is a positive scalar and
ᾱ is a probability measure on (−∞, ∞)× (0, ∞). The choice of the scale parameter λ has a
crucial impact on inference and this has suggested either to treat it as random by assigning to it
a hyperprior in a hierarchical Bayesian approach or to select it by empirical Bayes (Liu (1996), 345

McAuliffe et al. (2006)), which has computational advantages. In particular, Liu (1996) consid-
ers the maximum marginal likelihood estimator of λ for Dirichlet process mixtures of Binomial
distributions, but his argument remains valid for more general kernels, see Petrone & Raftery
(1997). Liu (1996) shows that the maximum marginal likelihood estimator λ̂n is the solution of

n∑
i=1

λ

λ+ i− 1
= E(Cn | λ, X1:n), (3.3)
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where E(Cn | λ, X1:n) is the expected number of occupied clusters under the posterior distribu-350

tion, given λ. Even if the model is parameterized in the mixing distribution G, Dirichlet process
mixtures of Gaussians are usually thought of as priors on spaces of densities over X . If we as-
sume that G and ᾱ belong to the collection of probability measures G = {G : support(G) ⊆
A× [σ, σ̄]}, with A ⊂ R a compact interval and 0 < σ < σ̄ <∞, then, for d the Hellinger dis-
tance between any pair of densities pG, pG′ , from Theorem 3.2 of Ghosal & van der Vaart (2001),355

the set of densities Θ = {pG : G ∈ G} has bracketing Hellinger metric entropy satisfying (3.1),
so that condition (i) of Assumption A2 is verified for Θn = Θ. Furthermore, if the true den-
sity is itself a mixture of Gaussians pG0 , with G0 ∈ G, then the Kullback-Leibler prior support
condition, Assumption A1, is satisfied. The existence of a solution for (3.3) implies that the em-
pirical Bayes posterior distribution for the density is well defined and, by Proposition 2, we get360

Hellinger consistency of the empirical Bayes posterior for the density.

Example 3. Consider again Bayesian density estimation based on Dirichlet process mix-
tures, where empirical Bayes is now used to choose a hyperparameter of the base measure
of the Dirichlet process. We focus on location mixtures of Gaussians, with Xi independently
distributed according to pF, σ(·) =

∫∞
−∞ φ(· | µ, σ2) dF (µ), conditionally on (F, σ), and F ∼

DP{αRN(λ, τ2)}, where αR is a positive constant, N(λ, τ2) denotes the Gaussian distribution
with parameters λ, τ2, and σ2 has an inverse-gamma prior IG(a, b), with a, b > 0. The choice
of an inverse-gamma distribution is only for the sake of simplicity, indeed, any prior on σ whose
tails ensure posterior consistency of fully Bayes Dirichlet process mixtures would lead to the
same result. We consider empirical Bayes selection of λ and a natural candidate is the sample
mean λ̂n = X̄n. The empirical Bayes prior for F is DP{αRN(X̄n, τ

2)}. We prove Hellinger
consistency of the empirical Bayes posterior for the unknown density of the data using Proposi-
tion 3. As in Wu & Ghosal (2008), we assume that the sampling density p0 is positive, continuous
and bounded on R and satisfies

−
∫ ∞
−∞

p0(x) log

{
inf
|t−x|<δ

p0(t)

}
dx <∞,

∫ ∞
−∞

x2+2ηp0(x) dx <∞

for η, δ > 0. Let m0 = E0(X1) be the mean of X1 under p0. Consider the compact K =
[m0 − 1, m0 + 1]. Then, with probability one, X̄n ∈ K for all large n and assumption (i) of
Proposition 3 is satisfied. Here, Θ is the space of Lebesgue densities on the real line and the prior
Π(· | λ) on Θ is induced by DP{αRN(λ, τ2)} × IG(a, b) via the mapping (F, σ) 7→ pF, σ. To365

construct the transformation required by (ii) of Proposition 3 note that, by the stick-breaking
representation of the Dirichlet process, F =

∑∞
j=1 pjξj almost surely, with ξj ∼ N(λ, τ2) in-

dependently. So, for any λ, λ′ ∈ R, we can let ψλ, λ′(pF, σ) = pF ′, σ, where F ′ =
∑∞

j=1 pjξ
′
j ,

with ξ′j = ξj − λ+ λ′ ∼ N(λ′, τ2) independently, so that F ′ ∼ DP{αRN(λ′, τ2)}. With
abuse of notation, we write ψλ, λ′(F, σ) = (F ′, σ) in place of ψλ, λ′(pF, σ) = pF ′, σ. Note370

that p(n)
ψλ, λ′ (F, σ)(X1:n) = p

(n)
F ′, σ(X1:n) = p

(n)
F, σ(X1:n − λ′ + λ), where (X1:n − λ′ + λ) stands

for (X1 − λ′ + λ, . . . , Xn − λ′ + λ). Conditions (iii) and (iv) of Proposition 3 can be shown
to hold by bounding p(n)

ψλ, λ′ (F, σ)(X1:n), or equivalently p(n)
F, σ(X1:n − λ′ + λ), from below and

above for all λ, λ′ such that |λ′ − λ| 6 un and then using results in Wu & Ghosal (2008) to-
gether with the construction of tests as in Ghosal et al. (1999). Details are provided in the Sup-375

plementary Material.
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While being very simple, the following parametric example is illuminating in showing that,
even when consistency and weak merging hold, the empirical Bayes posterior may have different
behaviours: it may diverge from any Bayesian posterior and underestimate the uncertainty on θ.

Example 4. Consider Xi | θ ∼ N(θ, σ2) independently, with σ2 known. This model satisfies 380

Assumption A2 with Θn = Θ. Let θ ∼ N(µ, τ2).

Case 1. If τ2 is fixed and λ = µ is estimated by the maximum marginal likelihood estimator,
then λ̂n = X̄n and the resulting empirical Bayes posterior is N{X̄n, (1/τ2 + n/σ2)−1}, which
has a completely regular density. This sequence of posterior distributions can be seen to be
consistent by direct computations. Thus, it merges weakly with any Bayesian posterior. 385

Case 2. Let us now consider empirical Bayes inference when the prior variance λ = τ2 is es-
timated by the maximum marginal likelihood estimator, the prior mean µ being fixed. Then,
see, e.g., Lehmann & Casella (1998), page 263, σ2 + nτ̂2

n = max{σ2, n(X̄n − µ)2} so that
τ̂2
n = (σ2/n) max{n(X̄n − µ)2/σ2 − 1, 0}. The resulting posterior Π(· | τ̂2

n, X1:n) is Gaussian
with mean µn = (σ2/n)/(τ̂2

n + σ2/n)µ+ τ̂2
n/(τ̂

2
n + σ2/n)X̄n and variance (1/τ̂2

n + n/σ2)−1. 390

A hierarchical Bayesian approach would assign a prior to τ2 like 1/τ2 ∼ Gamma(a, b). This
would lead to a Student’s-t prior distribution for θ with flatter tails which may give better fre-
quentist properties, see, e.g., Berger & Robert (1990), Berger & Strawderman (1996). However,
the Student’s-t prior is no longer conjugate and the empirical Bayes posterior is simpler to com-
pute. Yet, the empirical Bayes posterior is only partially regular, in the sense that τ̂2

n can be equal 395

to zero so that Π(· | τ̂2
n, X1:n) can be degenerate at µ. Simple computations show that the prob-

ability that τ̂n = 0 converges to zero when θ0 6= µ, but it remains strictly positive when θ0 = µ.
This suggests that, if θ0 6= µ, the hierarchical and the empirical Bayes posterior densities can
asymptotically be close; however, if θ0 = µ, there is a positive probability that the empirical
Bayes and the Bayesian posterior distributions are singular. From a Bayesian perspective, the 400

possible degeneracy of the empirical Bayes posterior is a pathological behaviour.

Case 3. One may object that, although unsatisfactory from a Bayesian viewpoint, the empirical
Bayes posterior would be degenerate at the true value θ0 of θ. However, the case where λ =
(µ, τ2) shows that empirical Bayes may dramatically underestimate the posterior uncertainty.
In this case, the maximum marginal likelihood estimator for λ is λ̂n = (X̄n, 0). The posterior 405

is then completely irregular, in the sense that it is always degenerate at X̄n. This is clearly an
extreme example, but it is more general than the Gaussian case and applies, in particular, to
location-scale family of priors. In fact, if the model p(n)

θ admits a maximum likelihood estimator
θ̂n and π(· | λ) is of the form τ−1g{(· − µ)/τ}, with λ = (µ, τ), for some unimodal density g
which is maximum at zero, then λ̂n = (θ̂n, 0) and the empirical Bayes posterior is a point mass 410

at θ̂n. This shows that such families of priors should not be jointly used with maximum marginal
likelihood empirical Bayes procedures.

Example 5. The counterintuitive behavior of the empirical Bayes posterior shown in Ex-
ample 4 extends to the regression setting. Consider the canonical Gaussian regression model
Y = 1α+Xβ + ε, with ε ∼ N(0, σ2In), where Y = (Y1, . . . , Yn)T is the response vector, X 415

is the (n× k)-fixed design matrix of full rank k and In is the n-dimensional identity matrix. With
abuse of notation, we also denote by X the design matrix whose columns have been re-centered
so that 1TX = 0T. Assume that n−1(XTX) converges to a positive definite matrix V as n→∞.
A popular prior for θ = (α, β, σ2), especially in the variable selection literature, see, e.g., Clyde
& George (2000), George & Foster (2000), is420

π(α, σ2) ∝ σ−2, β | σ2 ∼ N{0, gσ2(XTX)−1}, g > 0,
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which is a modified version of the original Zellner (1986)’s g-prior. Since the choice of g has a
crucial impact on the shrinking effect in estimation, data-driven choices of g have been suggested.
An empirical Bayes selection of g based on the maximum marginal likelihood gives (see equation
(9) in Liang et al. (2008)) ĝn = max{Fn − 1, 0}, where Fn = R2(n− 1− k)/{(1−R2)k},
R2 being the coefficient of determination. Thus, ĝn = 0 if and only if Fn 6 1. Suppose that Y is425

generated by the model with parameter values α0, β0, σ
2
0 . It turns out that lim inf

n→∞
P (ĝn = 0) = lim inf

n→∞
P (Fn 6 1) > 0 (β0 = 0),

lim
n→∞

P (ĝn > 0) = lim
n→∞

P (Fn > 1) = 1 (β0 6= 0).
(3.4)

Detailed computations to prove (3.4) are provided in the Supplementary Material. When β0 6= 0,
the probability that the empirical Bayes posterior is non-degenerate tends to one. However, when
β0 = 0, the probability that ĝn = 0 does not asymptotically vanish. In this case, with positive
probability, the empirical Bayes posterior Π(· | ĝn, Y ) for β is degenerate at β0, hence singular430

with respect to the Bayesian posterior Π(· | g, Y ) or any hierarchical Bayesian posterior.

4. FREQUENTIST STRONG MERGING AND ASYMPTOTIC BEHAVIOR OF λ̂n

4·1. Heuristics
As illustrated in Examples 4 and 5, stronger forms of merging are needed to explain divergent

behaviors between the empirical Bayes posterior, with the maximum marginal likelihood estima-
tor, and Bayesian posterior distributions. In this section, we study frequentist strong merging, in
the sense of Ghosh & Ramamoorthi (2003), of empirical Bayes and Bayesian posterior distribu-
tions. Two sequences Πn and qn of posterior distributions are said to merge strongly if their total
variation distance converges to zero P (∞)

0 -almost surely. We confine ourselves to the case where
Θ ⊆ Rk, for finite k, and assume that, for every λ ∈ Λ ⊆ R`, with finite `, the prior distribution
Π(· | λ) has density π(· | λ) with respect to some σ-finite measure ν. Before stating a general
result which describes the asymptotic behaviour of the empirical Bayes posterior, we present an
informal argument to explain the heuristics behind it. Under usual regularity conditions on the
model, the marginal likelihood can be thus approximated:

m(X1:n | λ) = π(θ0 | λ)×
p

(n)

θ̂n
(X1:n)

nk/2
{1 + op(1)}.

If we could interchange the maximization and the limit, we would have

argmax
λ

m(X1:n | λ) = argmax
λ

π(θ0 | λ) + op(1).

An interesting phenomenon occurs: the maximum marginal likelihood estimate asymptotically
maximizes the prior density π(θ0 | λ) of the true value θ0 of the parameter θ. In other words, it435

selects the most interesting values of the prior hyperparameter λ. We call the set of values of λ
maximizing π(θ0 | λ) the prior oracle set of hyperparameters and denote it by Λ∗. In terms of
strong merging, Λ∗ may correspond to unpleasant values if the supremum is achieved for values
of λ in the boundary ∂Λ for which the prior is a point mass at θ0. Then, the empirical Bayes
posterior is degenerate. This is what happens in Cases 2 and 3 of Example 4 and in Example 5440

and, more generally, when π(· | λ) is a location-scale family and λ contains the scale parameter.
In such cases, the limit and the maximization cannot be interchanged. We now present these
ideas more rigorously.
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The map g : θ 7→ supλ∈Λ π(θ | λ) from Θ to R+ induces a partition {Θ0, Θc
0} of Θ, with

Θ0 = {θ ∈ Θ : g(θ) <∞} and Θc
0 = {θ ∈ Θ : g(θ) =∞}. As illustrated in the above heuris- 445

tic discussion and proved in § 4·2 and § 4·3 below, if θ0 ∈ Θ0, then the empirical Bayes posterior
is regular, a case which we will refer to as the non-degenerate case; if, instead, θ0 ∈ Θc

0, the
empirical Bayes posterior is degenerate and fails to merge strongly with any regular Bayesian
posterior, a case which we will refer to as the degenerate case.

4·2. Non-degenerate case 450

In the non-degenerate case, we provide sufficient conditions for the empirical Bayes posterior
Π(· | λ̂n, X1:n), where λ̂n is the maximum marginal likelihood estimator, to merge strongly with
any oracle posterior Π(· | λ∗, X1:n). A consequence of Theorem 1 below is that the empirical
Bayes posterior merges strongly with the Bayesian posterior corresponding to any hierarchical
prior

∫
Λ π(· | λ)h(λ) dλ that is positive and continuous at θ0; indeed, it merges strongly with the 455

Bayesian posterior corresponding to any prior whose ν-density is positive and continuous at θ0.
We need to introduce some more notation. For θ0 ∈ Θ0, we define the prior oracle set of

hyperparameters Λ∗ = {λ∗ ∈ Λ : π(θ0 | λ∗) = g(θ0)}. For any pair of ν-densities π, π′ on Θ,
let ‖π − π′‖1 denote the L1-distance

∫
Θ |π(θ)− π′(θ)|dν(θ).

THEOREM 1. Suppose that θ0 ∈ Θ0. If Assumption A2 is satisfied for Θn = Θ and 460

(i) the map g : θ 7→ supλ∈Λ π(θ | λ) is positive and continuous at θ0;
(ii) there exists a non-empty subset Λ̃∗ of Λ∗ such that, for every λ∗ ∈ Λ̃∗, the map θ 7→ π(θ | λ∗)

is continuous at θ0 and, for any ε, η > 0, Π{Uε ∩BKL(θ0; η) | λ∗} > 0;

then, for every λ∗ ∈ Λ̃∗,

m̂(X1:n)

m(X1:n | λ∗)
→ 1 (4.1)

with P (∞)
0 -probability one. If, in addition to the preceding assumptions, 465

(iii) Λ̃∗ = Λ∗ is included in the interior of Λ and, for any δ > 0, there exist ε, η > 0 so that

sup
θ∈Uε

sup
d(λ,Λ∗)>δ

π(θ | λ)

g(θ)
6 1− η,

where d(λ, Λ∗) = infλ∗∈Λ∗ ‖λ− λ∗‖;

then, P (∞)
0 -almost surely,

d(λ̂n, Λ∗)→ 0 (4.2)

and, for every λ∗ ∈ Λ∗,

‖π(· | λ̂n, X1:n)− π(· | λ∗, X1:n)‖1 → 0. (4.3)

The proof of Theorem 1 is reported in the Supplementary Material. Convergence in (4.2) 470

asserts that, if θ0 ∈ Θ0, then, with P (∞)
0 -probability one, the maximum marginal likelihood es-

timator λ̂n converges to the oracle set of hyperparameters Λ∗, thus, asymptotically giving the
best selection of λ. Furthermore, by (4.3), strong merging between the empirical Bayes posterior
and any oracle posterior Π(· | λ∗, X1:n) holds. By an adaptation to dependent data of Theorem
1.3.1 in Ghosh & Ramamoorthi (2003), pages 18–20, if π(· | λ∗) and any other ν-density q on 475
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Θ are positive and continuous at θ0, then the corresponding Bayesian posterior densities merge
strongly. Then, under the assumptions of Theorem 1, by the triangular inequality, the empirical
Bayes posterior merges strongly with the Bayesian posterior corresponding to any prior with the
above properties.

As noted in § 3·1, Assumption A2 is satisfied for any regular parametric model, including480

any regular exponential family. Apart from Assumption A2, the conditions of Theorem 1 only
concern the family of priors. For example, assume that Θ = R and π(· | λ) = τ−1g{(· − µ)/τ},
where g is a continuously differentiable, positive, unimodal density, with mode at zero, such
that there exists x∗ 6= 0 so that x∗{d log g(x)/dx}|x=x∗ = −1, which, for instance, holds for a
Gaussian or a Student’s-t density. If λ = µ and τ is fixed as in Case 1 of Example 4, λ∗ = θ0 and485

g(θ0) = τ−1g(0). Hence, (i) and (ii) are satisfied. Similarly, if θ0 6= µ, for λ = τ as in Case 2 of
Example 4, then τx∗ = θ0 − µ and conditions (i) and (ii) are met. Example 5 is another example
where, if β0 6= 0, the conditions of Theorem 1 are satisfied.

It is worth noting that Theorem 1 also applies to the semi-parametric framework where the
model is parameterized by (θ, ζ), with θ ∈ Θ ⊆ Rk, for finite k, and ζ an infinite-dimensional
component taking values in a separable metric space Z, and the prior for (θ, ζ) is of the form

Π(dθ, dζ | λ) = π(θ | λ) dν(θ)×Π(dζ | θ).

Letting Uε = {θ ∈ Θ : ‖θ − θ0‖ < ε} and p(n)
θ (X1:n) =

∫
Z p

(n)
θ, ζ(X1:n) dΠ(ζ | θ), if condition

(ii) of Theorem 1 is satisfied for Kullback-Leibler neighbourhoods of the whole parameter490

(θ0, ζ0) and p(n)
θ satisfies Assumption A2, then (4.1)–(4.3) hold under conditions (i) and (iii)

on the marginal prior density π(· | λ) for θ. This is of interest because if the marginal Bayesian
posterior distribution for θ, given λ∗, satisfies the Bernstein-von Mises theorem, then also the
marginal empirical Bayes posterior for θ satisfies the Bernstein-von Mises theorem. Assumption
A2 on the model p(n)

θ can be verified following the techniques developed in Bickel & Kleijn495

(2012) and Castillo (2012).

4·3. Degenerate case and extension to the model choice framework
Examples 4 and 5 in § 3·2 suggest that strong merging may fail when g(θ0) =∞. We general-

ize this finding and show that such pathological behavior is not so much related to the sampling
model p(n)

θ but rather to the family of priors {Π(· | λ) : λ ∈ Λ}. In the following theorem, we500

assume the dominating measure ν to be Lebesgue measure on Θ.

THEOREM 2. Suppose that θ0 ∈ Θc
0. If Assumption A2 is satisfied for Θn = Θ and

(i) there exists λ∗ ∈ ∂Λ such that Π(· | λ∗) = δθ0;
(ii) with P (n)

0 -probability tending to one, m̂(X1:n) > p(n)
θ0

(X1:n);
(iii) the model admits a local asymptotic normality expansion in the following form: for every

ε > 0, there exists a set, with P (n)
0 -probability tending to one, wherein, uniformly in θ ∈ Uε,

ln(θ)− ln(θ̂n) ∈ −n(θ − θ̂n)TI(θ0)(θ − θ̂n)

2
(1± ε),

where θ̂n denotes the maximum likelihood estimator, ln(θ) = log p
(n)
θ and I(θ0) is the Fisher505

information matrix at θ0;
(iv) ln(θ̂n)− ln(θ0) converges in distribution to a χ2-distribution with k degrees of freedom;
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then the empirical Bayes posterior Π(· | λ̂n, X1:n), with the maximum marginal likelihood esti-
mator, cannot merge strongly with the Bayesian posterior Π(· | λ, X1:n), λ ∈ Λ, corresponding
to any prior Lebesgue density π(· | λ) which is positive and continuous at θ0. 510

Theorem 2 asserts that, under regularity conditions, if θ0 ∈ Θc
0 and there exists λ∗ ∈ ∂Λ so

that Π(· | λ∗) = δθ0 , then the empirical Bayes posterior cannot merge strongly neither with the
Bayesian posterior Π(· | λ∗, X1:n) nor with the Bayesian posterior corresponding to any prior
with density that is positive and continuous at θ0, in particular, with any smooth hierarchical
prior. 515

Assumption A2 and conditions (iii) and (iv) are verified by regular models. When Θ = R,
priors verifying (i) and (ii) are, for instance, those of the form τ−1g{(· − µ)/τ}, with λ = (µ, τ)
or λ = τ , for g satisfying the same conditions as stated in § 4·2. Consider the case where θ0 = µ
and λ = τ , then λ∗ = 0 and (i) is satisfied. Moreover, for any sequence (λp)p>1 converging to
zero, P (∞)

0 -almost surely, m̂(X1:n) > m(X1:n | λp) and m(X1:n | λp) converges to p(n)
θ0

(X1:n) 520

so that (ii) is satisfied if, for all x1:n, p(n)
θ (x1:n) is a continuous and bounded function of θ. This

has been illustrated in Cases 2 and 3 of Example 4 and in Example 5.
Theorem 2 is restricted to priors that are absolutely continuous with respect to Lebesgue mea-

sure, however, as stated in Proposition 4 below, a similar result holds for a model selection
procedure. Consider a general model choice framework with competing models having densities 525

p
(n)
j, θj

, with θj ∈ Θj , with respect to some dominating σ-finite measure µ(n), for j = 1, . . . , J .
Let Πθ|j denote a probability measure on Θj and consider a family of prior probability mea-
sures {ΠJ(· | λ) : λ ∈ Λ} on {1, . . . , J}, each one having probability mass function πJ(· | λ).
Denote the marginal likelihood in the model j by mj(X1:n) =

∫
Θj
p

(n)
j, θj

(X1:n) dΠθ|j(θj). We

assume that there exists a true parameter θ0 ∈ ∪Jj=1Θj and denote by j0 ≡ j(θ0) the index of the 530

model containing θ0; in case of nested models, j0 denotes the index of the smallest model con-
taining θ0. Denote by P (∞)

0 the probability law of (Xn) corresponding to (j0, θ0). Let λ̂n be the
maximum marginal likelihood estimator of λ, defined as λ̂n = argmaxλ∈Λ̄m(X1:n | λ), where
m(X1:n | λ) =

∑J
j=1mj(X1:n)πJ(j | λ). Let λ∗ = argmaxλ∈Λ̄ πJ(j0 | λ), where, for simplic-

ity, we assume a unique point of maximum. The following result holds. 535

PROPOSITION 4. In the above framework, assume that

(i) for every j 6= j0, we have mj(X1:n)/mj0(X1:n)→ 0 with P (∞)
0 -probability one;

(ii) the prior on the model index is such that, if, P (∞)
0 -almost surely, for every sequence λn,

πJ(j0 | λn)→ πJ(j0 | λ∗), then λn → λ∗ with P (∞)
0 -probability one;

then λ̂n → λ∗ with P (∞)
0 -probability one.540

Proof. By definition of λ̂n,

0 6
m(X1:n | λ̂n)−m(X1:n | λ∗)

mj0(X1:n)
=

J∑
j=1

mj(X1:n)

mj0(X1:n)
{πJ(j | λ̂n)− πJ(j | λ∗)}

6 πJ(j0 | λ̂n)− πJ(j0 | λ∗) + 2
∑
j 6=j0

mj(X1:n)

mj0(X1:n)
,
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whence

0 6
m(X1:n | λ̂n)−m(X1:n | λ∗)

mj0(X1:n)
+ πJ(j0 | λ∗)− πJ(j0 | λ̂n) 6 2

∑
j 6=j0

mj(X1:n)

mj0(X1:n)
,

where the last sum converges to zero P (∞)
0 -almost surely by assumption (i). Hence, with P (∞)

0 -
probability one, πJ(j0 | λ̂n)→ πJ(j0 | λ∗) and, by assumption (ii), λ̂n → λ∗. �

We tacitly assumed that the prior ΠJ(· | λ) is non-degenerate for every λ in the interior of Λ;
however, it may be degenerate for λ in the boundary ∂Λ. If λ∗ ∈ ∂Λ and ΠJ(· | λ∗) is degen-545

erate, it is degenerate at the true model index j0. By Proposition 4, if follows that the empirical
Bayes prior distribution ΠJ(· | λ̂n) is asymptotically a point mass at j0. It follows that the cor-
responding empirical Bayes posterior is degenerate at j0 and cannot merge strongly with any
regular Bayesian posterior.

Scott & Berger (2010)’s finding is a special case of this result. We briefly recall their setup.
Consider a regression model Xi = zT

i β + εi, where εi ∼ N(0, φ−1) independently and zi is the
(k × 1)-vector of possible regressors. The aim is to select the best set of covariates among the
k candidates. Variable selection is based on an inclusion vector γ = (γ1, . . . , γk) ∈ {0, 1}k,
where γj = 1 if the jth covariate is included. The prior on θ = (β, φ, γ) is defined as π(θ |
λ) = π(β, φ | γ)π(γ | λ), where π(β, φ | γ) is degenerate on a space determined by γ, say
of values (βγ , φ), where βγ has dimension kγ =

∑k
j=1 γj . Given λ, the γj are independent

Bernoulli random variables with π(γ | λ) = λkγ (1− λ)k−kγ . Here γ characterizes the model.
We let (β0, φ0) be the true parameter values, β0 denoting the true k-dimensional vector of re-
gression coefficients with some elements possibly equal to zero, which also gives the vector of
indicators γ0 ≡ γ0(β0, φ0) associated to the true model. Denote by β0, γ the restriction of β0 to
the coefficients present in the model γ. Since each model is regular, P (∞)

0 -almost surely,

mγ(X1:n)

p
(n)
θ0

=
cγπ(β0, γ , φ0 | γ)

n(kγ+1)/2
×

p
(n)

β̂γ , φ̂
(X1:n)

p
(n)
β0, γ , φ0

(X1:n)
(1 + o(1)) ,

where β̂γ , φ̂ are the maximum likelihood estimators in the model γ and cγ is bounded. This550

implies that, for every γ 6= γ0, we have mγ(X1:n)/mγ0(X1:n) converging to zero P (∞)
0 -almost

surely, thus condition (i) of Proposition 4 holds. It can be easily seen that also (ii) of Proposition 4
is satisfied. Hence, by Proposition 4, the maximum marginal likelihood estimator λ̂n converges
almost surely to λ∗ = argmaxλ π(γ0 | λ) = kγ0/k. If γ0 = (0, . . . , 0) then λ∗ = 0; if, instead,
γ0 = (1, . . . , 1), then λ∗ = 1. Both values correspond to degenerate distributions on γ. Thus, in555

model selection, the discrete nature of the problem does not prevent failing of strong merging
between the empirical Bayes posterior and the posterior corresponding to either a hierarchical
prior or a prior with a fixed λ.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Proposition 3565

and of Theorems 1 and 2 together with technical derivations on Examples 3 and 5.
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5. Supplementary Material 625

5·1. Proof of Proposition 3

By assumption (i), on a set with P (∞)
0 -probability one, λ̂n ∈ K ⊆ Λ ⊆ R`, which we cover

with balls of radius un, the number Kn of such balls being of order O(u−`n ). We denote by λj ,
j = 1, . . . , Kn, the centers of these balls. For all ε, δ > 0, 630

P
(n)
0 {Π(U cε | λ̂n, X1:n) > ε, λ̂n ∈ K}

6 E(n)
0 {φn(X1:n)}+

1

ε

Kn∑
j=1

E
(n)
0

[
sup

‖λ−λj‖6un
{1− φn(X1:n)}Π(U cε | λ, X1:n)

]

6 E(n)
0 {φn(X1:n)}+

1

ε

Kn∑
j=1

P
(n)
0

{
inf

‖λ−λj‖6un
Dn(λ) < e−nδΠ(S|λj)/2

}

+
2

ε

Kn∑
j=1

enδ

Π(S|λj)
E

(n)
0

[
sup

‖λ−λj‖6un
{1− φn(X1:n)}Nn(λ)

]
,

where

Dn(λ) =

∫
Θ
R(p

(n)
θ ) dΠ(θ | λ), Nn(λ) =

∫
Ucε

R(p
(n)
θ ) dΠ(θ | λ).

We now study the second and third terms of the above inequality. For all j = 1, . . . , Kn and
‖λ− λj‖ 6 un,

Dn(λ) >
∫
S
R(p

(n)
θ ) dΠ(θ | λ)

>
∫
S

inf
‖λ−λj‖6un

R(p
(n)
ψλ, λj (θ)) dΠ(θ | λj)

> e−nδ
∫
S

1l

{
inf

‖λ−λj‖6un
R(p

(n)
ψλ, λj (θ)) > e

−nδ
}

dΠ(θ | λj),

so that

P
(n)
0

{
inf

‖λ−λ′‖6un
Dn(λ) < e−nδΠ(S|λ′)/2

}
6

2

Π(S|λ′)

∫
S
P

(n)
0

{
inf

‖λ−λ′‖6un
R(p

(n)
ψλ, λ′ (θ)

) < e−nδ
}

dΠ(θ | λ′).

Similarly,

E
(n)
0

[
sup

‖λ−λj‖6un
{1− φn(X1:n)}Nn(λ)

]

6
∫
Ucε

∫
Xn
{1− φn(x1:n)} sup

‖λ−λj‖6un
p

(n)
ψλ, λj (θ)(x1:n) dµ(n)(x1:n) dΠ(θ | λj) 6 e−nη0

by assumption (iv). The proof is completed by combining partial results and using condition (iii). 635



20

5·2. Details for the study of Example 3
Recall that we consider Bayesian density estimation based on Dirichlet process mixtures,

where empirical Bayes is used to choose a hyperparameter of the base measure of the
Dirichlet process. We focus on location mixtures of Gaussians, with Xi independently dis-
tributed according to pF, σ(·) =

∫∞
−∞ φ(· | µ, σ2) dF (µ), conditionally on (F, σ), and F ∼ 640

DP{αRN(λ, τ2)}, σ2 ∼ IG(a, b), with a, b > 0. We consider empirical Bayes selection of
λ based on λ̂n = X̄n. It is shown in § 3·2 that condition (i) of Proposition 3 is satisfied and
that the transformation required in condition (ii) can be defined by exploiting the stick-breaking
representation of the Dirichlet process as ψλ, λ′(F, σ) = (F ′, σ), where F =

∑∞
j=1 pjξj ∼

DP{αRN(λ, τ2)} and F ′ =
∑∞

j=1 pjξ
′
j ∼ DP{αRN(λ′, τ2)}. As φ(· | ξ′j , σ2) = φ(· − λ′ + 645

λ | ξj , σ2), we have p
(n)
ψλ, λ′ (F, σ)(X1:n) = p

(n)
F, σ(X1:n − λ′ + λ), where (X1:n − λ′ + λ) =

(X1 − λ′ + λ, . . . , Xn − λ′ + λ). Thus, in order to bound p(n)
ψλ, λ′ (F, σ)(X1:n) from above and

below so to meet conditions (iii) and (iv) of Proposition 3, we can bound p(n)
F, σ(X1:n − λ′ + λ).

For every un > 0,

sup
|λ−λ′|6un

p
(n)
F, σ(X1:n − λ′ + λ) 6

n∏
i=1

∫ ∞
−∞

φ(Xi | ξ, σ2)eun|Xi−ξ|/σ
2

dF (ξ)

= cnn, σ

n∏
i=1

∫ ∞
−∞

gσ(Xi − ξ) dF (ξ),

where gσ(·) is the probability density proportional to φ(y | 0, σ2)eun|y|/σ
2

and cn, σ =
∫∞
−∞ φ(y |650

0, σ2)eun|y|/σ
2

dy 6 eu
2
n/(2σ

2)(1 + 2un/σ). Also,

inf
|λ−λ′|6un

p
(n)
F, σ(X1:n − λ′ + λ) >

n∏
i=1

∫ ∞
−∞

φ(Xi | ξ, σ2)e−un|Xi−ξ|/σ
2

dF (ξ)

= c̃nn, σ

n∏
i=1

∫ ∞
−∞

g̃σ(Xi − ξ) dF (ξ),

(5.1)

where g̃σ(·) is the probability density proportional to φ(y | 0, σ2)e−un|y|/σ
2

and c̃n, σ =∫∞
−∞ φ(y | 0, σ2)e−un|y|/σ

2
dy > e−u

2
n/(2σ

2)(1− 2un/σ).
For fixed ε > 0, choose 0 < δ < ε2 small enough and an = n1/2. Consider the sieve setsFn =

{(F, σ) : F ([−an, an]) > 1− δ, σ ∈ [σn, σ̄n]} and Θn = {pF, σ : (F, σ) ∈ Fn}, with σn =655

σ0n
−1/2 and σ̄n = enσ̄0 , for constants σ0, σ̄0 > 0. Note that if n2un = o(1), cn, σ = 1 + o(1)

over Fn and over F̃n = {(F, σ) : F ([−an, an]) = 1, σ ∈ [σn, σ̄n]},

sup
|λ−λ′|6un

p
(n)
F, σ(X1:n + λ− λ′) 6 eo(n)+nun

∑n

i=1
|Xi|p

(n)
F, σ(X1:n) 6 eo(n)p

(n)
F, σ(X1:n)

on the event
∑n

i=1 |Xi| 6 nwn for any sequence wn going to infinity slowly enough so that
n2unwn = o(1). With probability one, this event occurs for n large enough. Then, using the
tests constructed in Ghosal et al. (1999), condition (iv) of Proposition 3 is satisfied. Condition660
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(iii) comes from Theorem 2 of Wu & Ghosal (2008), combined with (5.1) and∫ ∞
−∞

p0(x) log

{∫ ∞
−∞

g̃σ(x− ξ) dF (ξ)

}
dx >

∫ ∞
−∞

p0(x) log

{∫ ∞
−∞

φ(x | ξ, σ2) dF (ξ)

}
dx

− un
σ

[∫ ∞
−∞
|x|p0(x) dx+ sup{|ξ| : ξ ∈ supp(F )}

]
.

Consistency of the empirical Bayes posterior for the unknown density follows from Proposition
3.

5·3. Example 5: Regression with g-priors
We provide here more detailed computations for Example 5. Consider the canonical Gaussian665

regression model Y = 1α+Xβ + ε, with ε ∼ N(0, σ2In), where Y = (Y1, . . . , Yn)T is the
response vector, X is the (n× k)-fixed design matrix of full rank k and In is the n-dimensional
identity matrix. With abuse of notation, we also denote by X the design matrix whose columns
have been re-centered so that 1TX = 0T. Assume that n−1(XTX) converges to a positive definite
matrix V as n→∞. A popular prior for θ = (α, β, σ2), especially in the variable selection670

literature, see, e.g., Clyde & George (2000), George & Foster (2000), is

π(α, σ2) ∝ σ−2, β | σ2 ∼ N(0, gσ2(XTX)−1), g > 0,

which is a modified version of the original Zellner (1986)’s g-prior. Since the choice of g has a
crucial impact on the shrinking effect in estimation, data-driven choices of g have been suggested.
An empirical Bayes selection of g based on the maximum marginal likelihood gives (see equation
(9) in Liang et al. (2008)) ĝn = max{Fn − 1, 0}, where Fn = R2(n− 1− k)/{(1−R2)k}, 675

R2 being the coefficient of determination. Thus, ĝn = 0 if and only if Fn 6 1. Suppose that Y is
generated by the model with parameter values α0, β0, σ

2
0 . It turns out that lim inf

n→∞
P (ĝn = 0) = lim inf

n→∞
P (Fn 6 1) > 0 (β0 = 0),

lim
n→∞

P (ĝn > 0) = lim
n→∞

P (Fn > 1) = 1 (β0 6= 0).
(5.2)

Interestingly, when β0 = 0, the probability that ĝn takes the value zero which is in the bound-
ary does not asymptotically vanish. Conversely, when β0 6= 0, the probability that the empirical
Bayes posterior is non-degenerate tends to one. To prove (5.2), let β̂ be the ordinary least squares 680

estimator and

F̃n =
(β̂ − β0)T(XTX)(β̂ − β0)/k

SSE/(n− 1− k)
.

If β0 = 0, then Fn ≡ F̃n → χ2
k/k almost surely because SSE/(n− k − 1)→ σ2

0 almost
surely, and lim infn→∞ P (ĝn = 0) = P (χ2

k/k 6 1) > 0.
If β0 6= 0, from consistency of β̂,

Rn =
n−1{(β0 − 2β̂)T(XTX)β0}/k

SSE/(n− 1− k)
→ − (βT

0 V β0)/k

σ2
0

< 0

almost surely, which implies 1 + nRn → −∞. Consequently, 685

P (ĝn > 0) = P (Fn > 1) = P

[
F̃n > 1 +

{(β0 − 2β̂)T(XTX)β0}/k
SSE/(n− 1− k)

]
= P (F̃n > 1 + nRn)→ 1.
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The consequences of (5.2) on strong merging are analyzed. By direct computations, whatever
β0 ∈ Rk, for each g > 0, the Bayesian posterior Π(· | g, Y ) for β is consistent at β0, i.e.,
Π(· | g, Y ) converges weakly to a point mass at β0 with probability one. Let Ωn = {ĝn = 0}.
Clearly, Ωn ⊆ {Π(· | ĝn, Y ) = δ0}. If β0 = 0, then, for each g > 0, lim infn→∞ P (dTV(Π(· |
g, Y ), Π(· | ĝn, Y )) = 1) > 0, where dTV(·, ·) denotes the total variation distance. There- 690

fore, there exists a set with positive probability wherein strong merging cannot take place. If
β0 6= 0, for every g > 0, by direct computations, ‖π(· | g, Y )− π(· | ĝn, Y )‖1 =

∫
Rk |π(β |

g, Y )− π(β | ĝn, Y )| dβ → 0 in probability. Strong merging takes place on a set with prob-
ability tending to one.

5·4. Proof of Theorem 1 695

We begin by proving (4.1). From (ii), for each λ∗ ∈ Λ̃∗, P (∞)
0 -almost surely, for all large n,

m(X1:n | λ∗) > 0 and, by definition of λ̂n, 0 < m(X1:n | λ∗) 6 m̂(X1:n) <∞, whence

m̂(X1:n)

m(X1:n | λ∗)
> 1. (5.3)

We prove the reverse inequality. Using (i) of Assumption A2, (i) and (ii), for any δ > 0, there
exists ε > 0 (depending on δ, θ0 and g(θ0)) so that, with probability greater than or equal to
1− c2(nε2)−(1+t), for every λ ∈ Λ, 700

m(X1:n | λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
+

∫
Uε

R(p
(n)
θ )π(θ | λ) dν(θ)

6 e−c1nε
2

+

∫
Uε

R(p
(n)
θ )g(θ) dν(θ)

< e−c1nε
2

+ (1 + δ/3)

∫
Uε

R(p
(n)
θ )g(θ0) dν(θ)

< e−c1nε
2

+ (1 + 2δ/3)

∫
Uε

R(p
(n)
θ )π(θ | λ∗) dν(θ),

where the second inequality descends from the definition of g because π(θ | λ) 6 g(θ) for all
θ ∈ Uε, the third one from the positivity and continuity of g at θ0 and the last one from the
fact that g(θ0) = π(θ0 | λ∗), together with the continuity of π(θ | λ∗) at θ0. By the first Borel-
Cantelli lemma, for any δ > 0, there exists ε > 0 so that for all large n, for every λ ∈ Λ,m(X1:n |
λ)/p

(n)
θ0

(X1:n) < e−c1nε
2

+ (1 + 2δ/3)
∫
Uε
R(p

(n)
θ )π(θ | λ∗) dν(θ) for all large n, P (∞)

0 -almost705

surely. The Kullback-Leibler support condition on Π(· | λ∗) implies that, on a set of P (∞)
0 -

probability one, for any constant a > 0,∫
Uε

R(p
(n)
θ )π(θ | λ∗) dν(θ) > e−an (5.4)

for all large n. Therefore, for any δ > 0, on a set of P (∞)
0 -probability one, for every λ ∈ Λ,

m(X1:n | λ) 6 (1 + δ)m(X1:n | λ∗) for all large n, which, combined with (5.3), proves (4.1).
We now prove the convergence of λ̂n. Recall that, by (i) of Assumption A2, for any ε >710

0, on a set of P (∞)
0 -probability one, for every λ ∈ Λ, m(X1:n | λ)/p

(n)
θ0

(X1:n) < e−c1nε
2

+∫
Uε
R(p

(n)
θ )π(θ | λ) dν(θ) for all large n. For δ > 0, define Nδ = {λ ∈ Λ : d(λ, Λ∗) 6 δ}. For
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any fixed δ > 0, by (iii), there exist ε1, η > 0 so that, on a set of P (∞)
0 -probability one,

sup
λ∈Nc

δ

m(X1:n | λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
1 + (1− η)

∫
Uε1

R(p
(n)
θ )g(θ) dν(θ)

for all large n, whence, using (i) and (ii) on the continuity of g and π(· | λ∗), λ∗ ∈ Λ̃∗, at θ0,

sup
λ∈Nc

δ

m(X1:n | λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
1 + (1− η/2)

m(X1:n | λ∗)
p

(n)
θ0

(X1:n)

for all large n. Using (5.4), we finally get that supλ∈Nc
δ
m(X1:n | λ) < (1− η/4)m(X1:n | λ∗) 715

for all large n, P (∞)
0 -almost surely. The fact that η is fixed implies that, with P (∞)

0 -probability
one, λ̂n ∈ Nδ for n large enough. Since Λ∗ is included in the interior of Λ, with P (∞)

0 -probability
one, λ̂n belongs to the interior of Λ and Π(· | λ̂n)� ν for all large n. This fact, combined with
consistency of the empirical Bayes posterior and of every oracle posterior Π(· | λ∗, X1:n), and
the convergence in (4.1), yields that, P (∞)

0 -almost surely, for any ε > 0, 720

‖π(· | λ̂n, X1:n)− π(· | λ∗, X1:n)‖1 6 ε+

∫
Uε

p
(n)
θ (X1:n)

∣∣∣∣∣π(θ | λ̂n)

m̂(X1:n)
− π(θ | λ∗)
m(X1:n | λ∗)

∣∣∣∣∣ dν(θ)

6 ε+

∣∣∣∣ m̂(X1:n)

m(X1:n | λ∗)
− 1

∣∣∣∣
+

∫
Uε

p
(n)
θ (X1:n)

m̂(X1:n)
|π(θ | λ̂n)− π(θ | λ∗)|dν(θ)

6 2ε+

∫
Uε

p
(n)
θ (X1:n)

m̂(X1:n)
|π(θ | λ̂n)− π(θ | λ∗)|dν(θ)

for n large enough. We split Uε into Dε = {θ ∈ Uε : π(θ | λ̂n) > π(θ | λ∗)} and Dc
ε = {θ ∈

Uε : π(θ | λ̂n) < π(θ | λ∗)}. Since, for any δ > 0, if ε is small enough, π(θ | λ̂n) 6 π(θ |
λ∗)(1 + δ/3),∫

Dε

p
(n)
θ (X1:n){π(θ | λ̂n)− π(θ | λ∗)}dν(θ) 6

δ

3

∫
Dε

p
(n)
θ (X1:n)π(θ | λ∗) dν(θ)

6
δ

3
m̂(X1:n).

(5.5)

From consistency of the empirical Bayes posterior,∫
Uε

p
(n)
θ (X1:n)π(θ | λ∗) dν(θ) 6 m̂(X1:n) <

∫
Uε

p
(n)
θ (X1:n)π(θ | λ̂n) dν(θ)

+ (ε+ δ/3)m̂(X1:n),

whence 725∫
Dcε

p
(n)
θ (X1:n){π(θ | λ∗)− π(θ | λ̂n)} dν(θ) 6

∫
Dε

p
(n)
θ (X1:n){π(θ | λ̂n)− π(θ | λ∗)}dν(θ)

+ (ε+ δ/3)m̂(X1:n)



24

and, using (5.5),
∫
Dcε
p

(n)
θ (X1:n){π(θ | λ∗)− π(θ | λ̂n)} dν(θ) 6 (ε+ 2δ/3)m̂(X1:n), which

implies that, for all large n,

∫
Uε

p
(n)
θ (X1:n)

m̂(X1:n)
|π(θ | λ̂n)− π(θ | λ∗)|dν(θ) 6 (ε+ δ).

Thus, (4.3) is proved and the proof is complete.

5·5. Proof of Theorem 2

Define, for any δ > 0, the set Ωn, δ of x1:n such that eln(θ̂n)−ln(θ0) 6 1 + δ. From
assumption (iv), for every δ > 0, lim infn→∞ P

(n)
0 (Ωn, δ) > 0. From assumption (ii),

m̂(X1:n)/p
(n)
θ0

(X1:n) > 1. We now study the reverse inequality. Using condition (i) of

Assumption A2, for any ε > 0, on a set An with P
(n)
0 -probability converging to

one, m̂(X1:n)/p
(n)
θ0

(X1:n) =
∫
Uε
eln(θ)−ln(θ0) dΠ(θ | λ̂n) +O(e−nδ). Moreover, using condi-

tion (iii), for every θ ∈ Uε,

ln(θ)− ln(θ0) = ln(θ̂n)− ln(θ0) +
−n(θ − θ̂n)TI(θ0)(θ − θ̂n)

2
(1 + op(1)),

so that, if Mn = M{(log n)/n}1/2, with M > 0, on a set of P (n)
0 -probability going to one, for 730

all H > 0,
∫
‖θ−θ̂n‖>Mn

eln(θ)−ln(θ̂n) dΠ(θ | λ̂n) = O(n−H) provided M is large enough. This
leads to

m̂(X1:n)

p
(n)
θ0

(X1:n)
= eln(θ̂n)−ln(θ0)

∫
UMn

e−n(θ−θ̂n)TI(θ0)(θ−θ̂n)/2 dΠ(θ | λ̂n) +O(n−H),

where UMn = {θ : ‖θ − θ̂n‖ < Mn}. With abuse of notation, we still denote by An the set
having P

(n)
0 -probability going to one wherein the above computations are valid, so that, on

An ∩ Ωn, δ, for n large enough, m̂(X1:n)/p
(n)
θ0

(X1:n) 6 1 + 2δ. Let λ ∈ Λ be such that the prior735

Lebesgue density π(· | λ) is positive and continuous at θ0. Under (iii) and condition (i) of As-
sumption A2, usual Laplace expansion of the marginal distribution of X1:n yields

m(X1:n | λ)

p
(n)
θ0

(X1:n)
=
π(θ0 | λ)eln(θ̂n)−ln(θ0)(2π)k/2

nk/2|I(θ0)|1/2
{1 + op(1)},

so that m(X1:n | λ)/m̂(X1:n) = op(1). We now study the total variation distance between the
two posteriors. If Π(· | λ̂n) is degenerate, that is, it is not absolutely continuous with respect to
Lebesgue measure, then the total variation distance between the empirical Bayes posterior and740

the Bayesian posterior corresponding to the prior Π(· | λ) is equal to one. Thus, we only need
to consider the case where Π(· | λ̂n) is absolutely continuous with respect to Lebesgue measure.
On a set of P (n)

0 -probability going to one, which we still denote by An, intersected with Ωn, δ,
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for each θ ∈ UMn ,

π(θ | λ̂n, X1:n)− π(θ | λ, X1:n) = eln(θ)−ln(θ̂n)

×

{
eln(θ̂n)−ln(θ0)π(θ | λ̂n)− nk/2|I(θ0)|1/2

(2π)k/2
+ op(1)

}

= e−n(θ−θ̂n)TI(θ0)(θ−θ̂n)/2n
k/2|I(θ0)|1/2

(2π)k/2
(1 + op(1))

×

{
eln(θ̂n)−ln(θ0)π(θ | λ̂n)

(2π)k/2

nk/2|I(θ0)|1/2
− 1

}
.

Set u = n1/2I(θ0)1/2(θ − θ̂n) and define Vn = {u : gn(u) > 1− 2δ}, where gn(u) = 745

(2π)k/2n−k/2|I(θ0)|−1/2π(θ̂n + I(θ0)−1/2un−1/2 | λ̂n). To simplify the notation, we
also denote by Vn = {θ = θ̂n + I(θ0)−1/2un−1/2 : u ∈ Vn}. Then, for every c > 0,∫
Vn∩{‖u‖<cMnn1/2} gn(u) du = (2π)k/2

∫
Vn∩{‖θ−θ̂n‖<cMnn1/2} π(θ | λ̂n) dθ 6 (2π)k/2 and,

by definition of Vn,
∫
Vn∩{‖u‖<cMnn1/2} gn(u) du > (1− 2δ)

∫
Vn∩{‖u‖<cMnn1/2} du. Hence∫

Vn∩{‖u‖<cMnn1/2}
du 6 (2π)k/2(1− 2δ)−1. (5.6)

Note that on V c
n , π(θ | λ̂n)(2π)k/2n−k/2|I(θ0)|−1/2 < 1− 2δ, so that π(θ | λ̂n)(1 + 750

δ)(2π)k/2n−k/2|I(θ0)|−1/2 − 1 < −δ and we can bound from below the L1-distance between
the two posterior densities. On An ∩ Ωn, δ, since I(θ0) is positive definite,

‖π(· | λ̂n, X1:n)− π(· | λ, X1:n)‖1 >
∫
V cn∩UMn

|π(θ | λ̂n, X1:n)− π(θ | λ, X1:n)|dθ

> δ
∫
V cn∩UMn

e−n(θ−θ̂n)TI(θ0)(θ−θ̂n)/2n
k/2|I(θ0)|1/2

(2π)k/2
dθ

> δ
∫
V cn∩{‖u‖<cM(logn)1/2}

φ(u) du,

for some c > 0, where φ denotes the density of a standard Gaussian distribution on Rk. By
choosing L > 0 large enough and using (5.6),∫

V cn∩{‖u‖<cM(logn)1/2}
φ(u) du > φ(L)

∫
V cn∩{‖u‖<L}

du

> φ(L)

{
πk/2Lk

Γ(k/2 + 1)
−
∫
Vn∩{‖u‖<cM(logn)1/2}

du

}

> φ(L)
πk/2Lk

2Γ(k/2 + 1)
> 0,

which completes the proof. 755
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