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a b s t r a c t

We define a class of reinforced urn processes, based on Hoppe’s urn scheme, that
are Markov exchangeable, with a countable and possibly unknown state space. This
construction extends the reinforced urn processes developed by Muliere et al. (2000) and
widely used in Bayesian nonparametric inference and survival analysis. We also shed light
on the connections with apparently unrelated constructions, recently proposed in the
machine learning literature, such as the infinite hidden Markov model, offering a general
framework for a deeper study of their theoretical properties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we define a class of reinforced urn schemes, which generate Markov exchangeable processes and have
applications in Bayesian nonparametric inference. Our first aim is to extend the reinforced urn processes (RUPs) developed
byMuliere et al. (2000) and widely used in Bayesian nonparametric survival analysis, to cover the case of infinite colors and
unknown urn composition.

RUPs are informally defined as random walks on a space of Pólya urns. They rely on Diaconis and Freedman’s (1980)
results for Markov exchangeable sequences and their representation as mixtures of Markov chains, and can be regarded
as a simple version of edge reinforced random walks (Coppersmith and Diaconis, 1987); the first results are contained
in Pemantle (1988); see also Diaconis and Rolles (2006) for developments for reversible Markov chains, using undirected
edges. A graph theoretic and an urn interpretation of the extreme points of Markov exchangeable measures, as a convex set,
was given by Zaman (1984). RUPs have been fruitfully applied for Bayesian nonparametric inference in several areas, from
survival analysis (Bulla et al., 2007b, 2009) and clinical trials (Bulla et al., 2007a) to credit risk analysis (Cirillo et al., 2010),
and in the construction of dependent randommeasures (Paganoni and Secchi, 2004;Muliere et al., 2005; Trippa et al., 2011).
Themain property of RUPs is that they are partially exchangeable in the sense of Diaconis and Freedman (1980) or, following
the terminology of Zaman (1984) and Zabell (1995), Markov exchangeable. Thus, when recurrent, a RUP can be represented
as a mixture of Markov chains. The urn scheme characterizes the probability law of the process and therefore the mixing,
or prior, distribution. Furthermore, it provides a generating algorithm that can be exploited for computations in Bayesian
nonparametric inference.

However, one limitation is that RUPs assume a finite number of colors, which implies a rigid structure of zeros in the
random transition matrix, and a known urn composition. Allowing more flexible transitions, and accounting for possible
uncertainty on the states (colors) is in fact needed in many applications. We propose an extension of RUPs to the case
of countably many colors and unknown initial urn composition. The basic step of our proposal is using Hoppe urns
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(Hoppe, 1984, 1987) rather than Pólya urns; more precisely, we suggest a slight variant of Hoppe urn, which generates
Pólya sequences (Blackwell andMacQueen, 1973), and is therefore a natural extension of Pólya urns to the case of countably
many colors. The proposed class of reinforced Hoppe urn processes includes RUPs as a special case, preserving their main
property of being Markov exchangeable.

As a further generalization, we consider hierarchical RUPs, to account for uncertainty on the initial urn composition and
on the state space. This is crucial in many applications, specifically to Bayesian inference for hiddenMarkov models (HMM).
In fact, another underlying motivation of our work is to shed light on theoretical connections between RUPs and other,
apparently unrelated, urn processes that have been recently proposed in the machine learning literature. In particular, we
clarify the theoretical connectionswith the infinite hiddenMarkovmodel (iHMM; Beal et al., 2002), which has been developed
for Bayesian inference in hidden Markov models, to allow for an unbounded number of states. Van Gael and Ghahramani
(2011) discuss the equivalence between the iHMM urn process and the hierarchical Dirichlet process of Teh et al. (2006). We
aim at giving a more complete picture, underlying theoretical relations with RUPs and Markov exchangeability and proving
theoretical properties.

We remind basic results for Markov exchangeable sequences and RUPs in Section 2. Our generalization of RUPs is
presented in Section 3, and extended to a hierarchial reinforced urn process in Section 4. Section 5 concludes the paper.

2. Brief review of reinforced urn processes

A RUP (Muliere et al., 2000) is defined by four elements: a countable state space I , a finite set of colors E = {c1, . . . , ck},
and a law of motion q : (I × E) → I; finally, to each x ∈ I it is associated an urn Ux, with known initial composition
α(x) = (αx(c1), . . . , αx(ck)), where αx(c) ≥ 0 is the number of balls of color c initially contained in urn Ux, and we let
αx =

k
j=1 αx(cj). It is assumed that the law of motion q has the property that, for every x, y ∈ I , there is at most one color

c(x, y) ∈ E such that q(x, c(x, y)) = y.
Given these ingredients, a RUP is defined as follows. Fix X0 = x0 and go to urn Ux0 . Pick a ball from Ux0 and return it,

along with another ball of the same color. If c ∈ E is the color of the sampled ball, set X1 = q(x0, c), and move to urn Uq(x0,c),
as determined by the law of motion; and so on. Thus, balls are drawn from each urn according to a Pólya scheme, and one
moves across urns according to the given law of motion. The process of colors (Xn) so defined is called RUP, with the four
given elements.

Themain property of RUPs is that they areMarkov exchangeable. Let us briefly remind some basic results. Two sequences
x = (x0, . . . , xn) and y = (y0, . . . , yn) in In+1 are equivalent, x ∼ y, if they start from the same state and have the same
transitions counts. The sequence (Xn) is Markov exchangeable if x ∼ y implies P(X0 = x0, . . . , Xn = xn) = P(X0 =

y0, . . . , Xn = yn). The sequence (Xn) is recurrent if P(Xn = X0 for infinitely many n) = 1.
Diaconis and Freedman (1980, Theorem 7) show that a recurrent sequence (Xn) is Markov exchangeable if and only if it

is a mixture of Markov chains. That is, given the initial state x0, there exists a unique probability measure µ(· | x0) on the
space of transition matrices on I , such that

P(X1 = x1, . . . , Xn = xn | X0 = x0) =

 n
i=1

πxi−1(xi)dµ(π | x0),

where πi(j) := πi,j (that is, πi is the ith row of π , considered as a probability measure). In other words, there exists a random
transition matrix Π such that, conditionally on Π and x0, (Xn) is a Markov chain with transition matrix Π and initial state
x0. The prior distribution of Π is the probability measure µ in the above equation. The proof of the above result is based on
the fact that Markov exchangeability and recurrence imply exchangeability of the sequence (B1, B2, . . .) of the successive
x0-blocks (a x0-block for the sequence (Xn) is a finite sequence of states that begins at x0 and contains no further x0).

Muliere et al. (2000) compute the finite-dimensional laws of a RUP (Xn), and show that the process is Markov
exchangeable. Therefore, a recurrent RUP (Xn) is a mixture of Markov chains. The reinforced urn scheme characterizes the
probability law of the sequence (Xn) and therefore the prior µ. Muliere et al. (2000, Theorem 2.16) show that µ is such that
the rows of Π are independent, and the xth row Πx is a random probability measure on (y1 = q(x, c1), . . . , yk = q(x, ck)),
with probability masses (Πx(y1), . . . , Πx(yk)) having a Dirichlet distribution with parameters (αx(c1), . . . , αx(ck)).

An interesting example of RUP gives a characterization of the beta-Stacy process (Walker and Muliere, 1997), that has
many applications in Bayesian nonparametric survival analysis. Suppose that: I = {0, 1, 2, . . .}, the set of colors contains
only two colors, white and black say, E = {w, b}, and the law of motion is such that q(x, b) = x + 1 and q(x, w) = 0, for all
x ∈ S. From the previous results, when the resulting RUP is recurrent, it is a mixture of Markov chains. Furthermore, letting
Tn be the length on the nth x0-block, the sequence (Tn, n ≥ 1) is exchangeable. Muliere et al. (2000) show that its de Finetti
measure is a beta-Stacy process on I with parameters {αj(w), αj(b), i, j ∈ I}. Thus Tn can be interpreted as the survival time
for the n-individual and, assuming that individuals are exchangeable, this construction gives a characterization of the beta-
Stacy process as a prior on the survival times. These results can be extended to characterize neutral to the right processes
(Doksum, 1974).

Thus, recurrent RUPs provide a general class of mixtures of Markov chains, for which one can explicitly characterize the
priormeasure. However, a RUP has the restrictions that the initial urn compositionmust be known and the number of colors
has to be finite. The latter assumptions implies that, in each step, the chain can only reach a finite number of states; in other
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words, each row of the transition matrix has at most k non-zero entries; and the states that are reachable in one step from
x have to be fixed a priori. In the next section, we extend the construction to allow for a countable set of colors.

3. Generalization: reinforced Hoppe urns

As said, RUPs are informally defined as randomwalks on a space of Pólya urns. Informally as well, our idea for extending
RUPs to infinite colors is to define a random walk on a space of Hoppe urns. More precisely, we consider the process of
colors that can be associated to a Hoppe urn, which is a Pólya sequence (Blackwell andMacQueen, 1973), therefore a natural
extension of the finite-color Pólya urn scheme.

3.1. Pólya sequences and colored Hoppe urns

Blackwell and MacQueen (1973) define a Pólya sequence with parameter α q(·) as a sequence of random variables (Xn)
satisfying the following predictive scheme: X1 has distribution q and for any n ≥ 1,

Xn+1 | (X1, . . . , Xn) ∼
α

α + n
q +

1
α + n

n
i=1

δXi , (1)

where δx denotes ameasure degenerate on x. They proved that the sequence (Xn) is exchangeable, and its de Finetti measure
is a Dirichlet process with parameter αq,DP(αq). The predictive rule (1) extends the one associated to the finite color Pólya
urn sampling, therefore it is usually referred as Blackwell and McQueen’s urn scheme. However, strictly speaking (1) define
a Pólya sequence, not an urn scheme, since the latter would require physically meaningless urns with infinite colors. In our
context, having a naturally interpretable urn scheme is crucial for defining the reinforced process, and in particular for
the developments in Section 4. We obtain such urn representation as a colored version of the urn scheme proposed by
Hoppe (1984).

Hoppe’s urn is defined as follows. Consider sampling from an urn that initially contains α > 0 black balls. At time n a
ball is picked at random from the urn. If it is black, it is returned together with an additional ball of a previously unobserved
color; if it is colored, it is returned together with an additional ball of the same color. Natural numbers are used to label
the colors and they are chosen sequentially as the need arises. The sampling generates a process (Sn, n ≥ 1), where the
random variable Sn is the label of the additional ball returned after the nth drawing. Initially there are only black balls, thus
S1 = 1; then S2 = 1 or 2, S3 = 1, 2 or 3, etc. For any n ≥ 1, the random vector (S1, . . . , Sn) defines a random partition ρn
of {1, 2, . . . , n}; Hoppe (1984) shows that the sequence (ρn) is Markov, with marginal distribution given by the celebrated
Ewens sampling formula (Ewens, 1972).

Clearly, the sequence (Sn, n ≥ 1) generated by the Hoppe urn is not exchangeable. However, we can associate another
process to the urn sampling, the process of colors, which is exchangeable. If one ‘paints’ the sequence (Sn), generating the
colors at random from a diffuse color distribution q (i.e., as independent and identically distributed (i.i.d.) draws ξj from
q, where q({x}) = 0 for any x), then the resulting sequence of colors (Xn) has predictive rule (1), so it is a Pólya sequence
with parameter α q. The colored Hoppe’s urn provides a natural way of decomposing the joint distribution of (X1, . . . , Xn)
in terms of the random partition, generated by (S1, . . . , Sn), and the density of the distinct colors (see Antoniak, 1974).
That is,

p(x1, . . . , xn) = p(s1, . . . , sn)

j

q(ξj) (2)

where the ξj are the distinct values in (x1, . . . , xn) and the labels (s1, . . . , sn) identify the random partition generated by
(x1, . . . , xn). In terms of the well known Chinese restaurant metaphor, the labels (S1, . . . , Sn) generated by the Hoppe urn
give the allocation of customers at tables, then tables are painted at random from the color distribution q.

The above scheme assumes that the color distribution is diffuse. To deal with a discrete color distribution, it is simpler
to define the process of colors (Xn) more directly, through the following Hoppe-like urn scheme, that we call the colored
Hoppe urn. As in Hoppe sampling, we draw from an urn that initially contains only α black balls. At time n, a ball is picked
at random from the urn and if it is black, it is returned together with an additional ball of a color drawn at random from a
color distribution q; if it is colored, it is returned together with an additional ball of the same color. We set Xn as the color of
the additional ball returned in the urn. If the color distribution q is diffuse, the process (Xn) is the same as described above.
However, we also allow a discrete color distribution, say q =

k
j=1 q(aj)δaj , for k ≤ ∞. This means that the set of colors

is known a priori, and coincides with the support {a1, a2, . . . , ak} of q. In this case, it is easy to show that X1 ∼ q and for
n ≥ 1, P(Xn+1 = aj | X1 = x1, . . . , Xn = xn) = (αq(aj) +

n
i=1 δxi(aj))/(α + n). Therefore, (Xn) is still a Pólya sequence,

thus it is exchangeable, and its de Finetti measure is a DP(αq). Notice that, if p ∼ DP(αq), then a.s. p =


∞

j=1 wjδaj , where
the weights (w1, w2, . . .) define a random probability measure w on the positive integers, such that w ∼ DP(αq∗), with
q∗

=
k

j=1 q0(aj)δj.
For brevity, in the sequel, unless differently specified, we will refer to the colored Hoppe urns simply as Hoppe urns.
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3.2. Generalized RUPs

We now define a stochastic process (Xn) through a reinforced colored Hoppe urn scheme. Let I denote the finite or
countable state space (or color space), which, without loss of generality, we identify with the integers I = {1, . . . , k}, where
k ≤ ∞. To each i ∈ I , we associate a Hoppe urn Ui, with αi black balls and discrete color distribution p0,i on I (we will
denote by the same symbol the probability measure and the corresponding probability mass function). Balls are extracted
from each urn by Hoppe sampling, but we move across urns as follows. Fix X0 = x0 according to an initial distribution p0,
go to urn Ux0 and pick a ball from it. Since initially it only contains black balls, a color x1 is sampled from p0,x0 and a ball of
color x1 is added in the urn, together with the black ball. We set X1 = x1 and move to Hoppe urn Ux1 , and so on. We call
the process of colors (Xn) so defined a generalized RUP with the defined elements, or a reinforced Hoppe urn process (Hoppe
RUP), to underline its construction via colored Hoppe’s urns.

If for each i ∈ I , the color distribution p0,i has a finite support, then the process (Xn) reduces to a RUP, that with no loss
of generality is described by a set of colors that coincides with the state space I and a law of motion that, for each i, is given
by q(i, y) = y and is defined only on those colors ywhich are in the support of p0,i.

Example. Suppose that I = E = {0, 1, 2, . . .} and that for each i ∈ I , the color distribution p0,i of urn Ui has positive masses
only on i+ 1 and x0 = 0. The resulting process corresponds to a RUP where the set of colors contains only two colors, white
and black say, E = {w, b}, and the law of motion is such that q(i, b) = i + 1 and q(i, w) = 0, for all i ∈ I . As discussed in
Section 2, this urn scheme gives a characterization of the beta-Stacy process.

A Hoppe RUP maintains the main property of RUPs of being Markov exchangeable.

Proposition 1. A reinforced Hoppe urn process is Markov exchangeable.

Proof. For brevity, we will write x = (x0, . . . , xn), p(x) := P(X0 = x0, . . . , Xn = xn) and P(Xk = xk | x0, . . . , xk−1) :=

P(Xk = xk | X0 = x0, . . . , Xk−1 = xk−1).
If two sequences x and y are equivalent, they have the same number of transitions t(i, j) from state i to state j, for all

i, j, and start with the same value. By construction, a transition from state i to state j in one step is not possible (we say not
admissible) if color j is not contained in urnUi, that is, p0,i(j) = 0. If the sequence x contains a transition that is not admissible,
then p(x) = 0. Since x ∼ y, the same transition is also present in y, and being p0,i(j) = 0, it is also not admissible; it follows
that p(y) = p(x) = 0.

Now suppose that all the transitions in x, and therefore in y, are admissible. Then

P(X1 = x1, . . . , Xn = xn | x0) = P(X1 = x1 | x0)P(X2 = x2 | x0, x1) · · · P(Xn = xn | x0, . . . , xn−1).

Let x∗

1, . . . , x
∗

d (d ≤ n) denote the distinct values in the sequence (x0, . . . , xn−1); in other words, x∗

1, . . . , x
∗

d denote the
urns visited along the sequence. Let ti =


j t(i, j) be the number of draws from urn Ui in (x0, . . . , xn), and denote by

(xj,1, . . . , xj,ti) the ordered successors of state x∗

j in (x0, . . . , xn), that is, the draws from urn Ux∗j
.

We can then reorder the factors P(Xi = xi | x0, . . . , xi−1) in the right hand side above, according to the value of xi−1,
obtaining

P(X1 = x1, . . . , Xn = xn | x0) =

d
j=1

p0,x∗j (xj,1)
αx∗j

p0,x∗j (xj,2) + δxj,1(xj,2)

αx∗j
+ 1

· · ·

αx∗j
p0,x∗j (xj,tj) +

tj−1
i=1

δxj,i(xj,tj)

αx∗j
+ tj − 1

.

If y ∼ x, it follows that xn = yn and the set of distinct values is the same in x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), as
well as the number of draws tx∗j from urn Ux∗j

. Furthermore, the sequence of successors of x∗

j (draws from urn Ux∗j
) in x and

y are the same, up to permutations. Since the above expression is invariant to permutations of the values (xj,1, . . . , xj,tj), it
follows that P(X0 = x0, . . . , Xn = xn) = P(X0 = y0, . . . , Xn = yn) and therefore the result. �

FromProposition 1 and the results inDiaconis and Freedman (1980), a recurrentHoppeRUP is amixture ofMarkov chains.
In fact, as shown by Zabell (1995), and further developed by Fortini et al. (2002), mixtures of Markov chains can be also
characterized in terms of exchangeability properties of the successors states. Let’s associate to the process (Xn) its successors
matrix, whose (i,m) element Xi,m is themth successor of state i. That is, Xi,m is the value of the process immediately after the
mth visit to state i. Informally, a process (Xn) is recurrent and Markov exchangeable if and only if the rows of the successors
matrix are infinite, exchangeable sequences. In the reinforced urn scheme, the successors of i are the drawings from urn
Ui; thus, being sampled according to an exchangeable scheme, Markov exchangeability is expected to hold, if recurrence
properties guarantee that infinite draws are taken from each urn.

More formally, in order to properly define the successors matrix, avoiding having rows of finite length, let us introduce a
‘dummy state’, ∂ , and, if a state is visited only a finite number of timesm, let Xi,k be equal to ∂ for k > m. Thus, the sequence
of the successors of state i is well defined, as an infinite sequence of random variables with values in I∗ = I ∪ {∂}. In our
reinforced urn scheme, Xi,m is the color obtained at themth draw from urn i, or it is ∂ if urn i is visited less thanm times; and
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(Xi,m,m ≥ 1) represents the sequence of draws from urn i, in this extended sense. We say that the process (Xn) is strongly
recurrent if, for any state i ∈ I, P(Xn = i infinitely often | i is visited) = 1, which implies that any state is either never
visited or visited infinitely often a.s. In this case, the sequence of successors of any state i is either (∂, ∂, . . .), if state i is
never visited, or it is an infinite I-valued sequence, if state i is visited infinitely often. It can be shown that, if a process (Xn)
is recurrent and Markov exchangeable, then it is also strongly recurrent (Fortini et al., 2002).

On this basis, it can be proved that a process (Xn) is recurrent andMarkov exchangeable if and only if the successorsmatrix
is partially exchangeable in the sense of de Finetti; that is, if and only if its distribution is invariant under permutationswithin
rows (see Fortini et al., 2002, Theorem 1). Then, the process is a mixture of Markov chains, that is, there exists a stochastic
transition matrix Π on I∗, such that, conditionally on Π, (Xn) is a Markov chain with transition matrix Π ; furthermore,
the prior distribution on Π is uniquely determined (provided the class of transition matrices is suitably defined; see Fortini
et al., 2002). The marginal prior distribution of the ith row Πi of Π is the de Finetti measure of the exchangeable sequence
of successors of state i.

These results suggest that, for a Hoppe RUP (Xn), the prior on Πi is a Dirichlet process, being the successors of i given
by the sequence of draws from the Hoppe urn Ui. However, this holds if state i is visited infinitely often. Note that strong
recurrence of (Xn) only guarantees that, if Ai is the event ‘urn i is visited infinitely many times’ and Bi = ‘urn i is never
visited’, then P(Ai ∪ Bi) = 1. In fact, the next lemma shows that an even stronger recurrence condition holds, namely the
state space can be decomposed into accessible states that are visited infinitely often and non-accessible states that are never
visited (a.s.).

For a sequence starting from x0, let I
(0)
x0 = {x0} and I(n)x0 = {i ∈ I : p0,x(i) > 0 for some x ∈ I(n−1)

x0 }, for n ≥ 1. Since a
transition from i to j is possible iff p0,i(j) > 0, I(n)x0 is the set of states that are accessible inn steps from x0. Then, Ix0 =


∞

n=0 I
(n)
x0

is the set of accessible states from x0. The next lemma shows that each state i ∈ Ix0 is visited infinitely often a.s.

Lemma 1. Suppose that (Xn) is a recurrent Hoppe RUP. For every x0 ∈ I , P(i is visited infinitely often | X0 = x0) = 1 if i ∈ Ix0 ,
while P(i is never visited |X0 = x0) = 1 if i ∉ Ix0 .

Proof. Without loss of generality, we can fix X0 = x0. We show by induction on n that P(Ai) = 1 if i ∈ I(n)x0 , where Ai is
the event ‘urn i is visited infinitely many times’, as defined above. It is true for n = 0 by hypothesis. Suppose now that
for every j ∈ I(n)x0 , P(Xn = j i.o.) = 1 and fix i ∈ I(n+1)

x0 . Let j0 ∈ I(n)x0 be such that p0,j0(i) > 0. Since Xn = j0 infinitely
often (with probability one), urn Uj0 is visited infinitely often (with probability one). At the kth draw, the probability of a
black ball is α/(α + k − 1), independently of the previous draws. Hence the events Dj0,k = ‘black ball at the kth draw from
urn Uj0 ’ are independent, and


∞

k=1 P(Dj0,k) =


∞

k=1 α/(α + k − 1) = ∞. By Borel–Cantelli second Lemma, black balls
are drawn from urn Uj0 an infinite number of times. Let Zj0,k be the color extracted from p0,j0 when the kth black ball is
observed. The random variables Zj0,k, k ≥ 1, are i.i.d. and P(Zj0,k = i) = p0,j0(i) > 0. Hence again by Borel Cantelli Lemma,
P(Zj0,k = i i.o.) = 1. Since the Zj0,k are some of the Xn’s, P(Xk = i i.o.) = 1. This completes the induction proof. It follows
that for every i ∈ Ix0 , P(Ai = 1).

The second part of the statement is obvious, since the states outside Ix0 are not accessible. �

Lemma 2. For a recurrent Hoppe RUP starting at x0, the sequences of successors (X1,n), (X2,n), . . . are independent. Furthermore,
for every state i, the sequence (Xi,n) is exchangeable, with de Finetti measure DP(αp0,i) if i ∈ Ix0 , or degenerate on δ∂ if
i ∉ Ix0 .

Proof. Let Ai = ‘urn i is visited infinitely many times’. By Lemma 1, given the starting value x0, P(Ai) = 1 if i ∈ Ix0 . The
conditional distribution of (Xi,n) given Ai and (Xj,n)’s, (j ≠ i, n ≥ 1), coincides with the probability law of a sequence
of colors generated from a Hoppe urn, which are exchangeable, with de Finetti measure DP(αp0,i). Since P(Ai) = 1, the
probability law of (Xi,n, n ≥ 1) coincides with its conditional law given Ai.

If i ∉ Ix0 , then by Lemma 1 it is never visited (with probability one), therefore Xi,n = ∂ for every n, a.s. The sequence (Xi,n)
is exchangeable, with de Finetti measure degenerate on ∂ . �

From the above results we can characterize the mixing measure of a Hoppe RUP.

Proposition 2. A recurrent Hoppe RUP (Xn) starting at x0 is a mixture of Markov chains with state space Ix0 . That is, there exists
a stochastic matrixΠ on Ix0 such that, conditionally onΠ, (Xn) is a Markov chain with transition matrixΠ . The prior distribution
of Π is such that the rows of Π are independent, with Πi ∼ DP(αip0,i).

3.3. A Hoppe RUP for categorical variables

When the Xi are categorical variables, so that the colors are thought as unordered labels, it is natural to assume the same
α and the same distribution of colors, say p0 =

k
j=1 p0(i)δi, for each Hoppe urn. The process starts with a random draw x0

from p0, then moves to urn Ux0 and proceeds as in previous subsection. We prove that the resulting Hoppe RUP is recurrent,
therefore the results in Proposition 2 apply.
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Lemma 3. For a Hoppe RUP (Xn), with common urn composition α and color distribution p0, we have
(a) P(E) = 1, where E is the event ‘‘infinitely many black balls are drawn from Hoppe urns’’.
(b) The draws from the color distribution along the Hoppe RUP are an infinite sequence of I-valued r.v.’s (ξn), i.i.d. from p0.
(c) The process (Xn) is recurrent.

Proof. (a) For everym ≥ 1 let Em be the event ‘‘black ball at themth draw from Hoppe urns’’. We want to prove that

P(E) = P(∩∞

n=1 ∪
∞

m=n Em) = 1.

It is sufficient to show that for anym,


∞

n=m+1 P(En | Ec
m ∩ Ec

m+1 ∩ · · · ∩ Ec
n−1) = ∞ (cfr. Billingsley, 1995, Problem 4.11). In

our case,
∞

n=m+1

P(En | Ec
m ∩ Ec

m+1 ∩ · · · ∩ Ec
n−1) ≥

∞
n=m+1

α

α + n − 1
= ∞.

(b) By the above results, we can properly define an infinite sequence of I-valued r.v.’s (ξn), representing the draws from
the color distribution along the Hoppe RUP. The ξn are then clearly i.i.d., with common distribution p0.

(c) Without loss of generality, we can suppose that p0(x0) > 0. By the second Borel–Cantelli Lemma, P(ξn = x0 i.o.) = 1.
Then P(Xn = x0 i.o. ) ≥ P(ξn = x0 i.o.) = 1. It follows that P(Xn = x0 i.o. | X0 = x0) = 1. �

In the sequel, with no real loss of generality, we assume that p0(i) > 0 for every i ∈ I . In this case Ix0 = I , whatever the
initial state x0. By Proposition 2, we have

Proposition 3. A Hoppe RUP (Xn), with common urn composition α and color distribution p0, is a mixture of recurrent Markov
chains. More specifically, there exists a random transition matrix Π on I such that

(Xn) | Π is a Markov chain, with transition matrix Π and initial distribution p0;
(Πi, i ∈ I)

i.i.d
∼ DP(αp0).

4. Hierarchical RUP

In this section we extend the Hoppe RUP with common parameters α and p0 to the case when the color distribution p0
is not fixed a priori. We consider two cases: when the set of colors is known, and when the set of colors is unknown a priori.

4.1. Hierarchical Hoppe RUP, known colors

Consider the reinforced urn scheme described in Section 3.3, with color space I = {1, 2, . . .}, but suppose that the color
distribution is not known. In this case, we can assume that the colors are drawn from an auxiliary oracle urn, that is a Hoppe
urn with γ black balls and discrete color distribution q =


∞

i=1 qiδi. We start with a draw from the oracle urn; being black,
a color x0 is generated from q and the black ball is returned in the oracle urn, together with an additional ball of color x0.
Then we move to the Hoppe urn Ux0 , pick a ball, and if it is black we interrogate the oracle urn. In this case, both the oracle
urn and the urn Ux0 are reinforced with a ball of the observed color. We then proceed analogously and generate a sequence
of colors (Xn, n ≥ 0), that we call hierarchical Hoppe RUP with urn compositions α and γ and color distribution q.

Let E be the event ‘‘infinitely many black balls are drawn from Hoppe urns’’. Reasoning as in the proof of Lemma 3, it
can be proved that P(E) = 1. Therefore, the sequence of random variables (ξi) describing the draws from the oracle urn is
an infinite sequence of draws from a (colored) Hoppe urn with parameters γ and q; thus, it is exchangeable. Let p0 be the

random probability measure on I such that ξi | p0
i.i.d
∼ p0; it comes from the urn scheme that p0 ∼ DP(γ q). Note that this

implies that the support of p0 coincides with the support I of q, so p0(i) > 0 a.s. for any i ∈ I .
It follows that, conditionally on p0, the process (Xn) is a Hoppe RUP with urn composition α and color distribution p0,

as described in Section 3.3. Therefore, by the results obtained there, we have that, conditionally on p0, (Xn) is a mixture of
Markov chains, with a mixing distribution depending on p0. Integrating out p0 we get again a mixture of Markov chains.
Thus, we have the following

Proposition 4. The hierarchical Hoppe RUP (Xn), with urn compositionsα and γ and discrete color distribution q on I, is amixture
of Markov chains with state space I. More specifically, there exist a random probability measure p0 and a random transitionmatrix
Π such that

(Xn) | Π, p0 is a Markov chain with state space I, transition matrix Π and initial distribution p0;
(Πi, i ∈ I) | p0

i.i.d
∼ DP(αp0);

p0 ∼ DP(γ q).

4.2. Hierarchical RUP with unknown colors

In many applications, specifically in Bayesian inference for hidden Markov models, it is of interest to consider a Markov
chain with unknown state space, that is, a finite or countable set {ξ ∗

1 , ξ ∗

2 , . . . , ξ ∗

k }, with k ≤ ∞, where the ξ ∗

j ’s are unknown
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real numbers. The hierarchical Hoppe RUP defined in the previous subsection can be extended to cover this case, by sampling
from an oracle urn with a diffuse color distribution on R.

Suppose that, in the hierarchical Hoppe RUP described in Section 4.1, the colors of the oracle Hoppe urn are chosen from
a non-atomic distribution q on R. The process (Xn) is defined as above, but here, being q diffuse, a new color is generated a.s.
when a black ball is drawn from the oracle urn, and a corresponding Hoppe urn is introduced; that is, urns are created as
the need occurs. Note that each Xn takes values in R.

It can be proved, analogously to Lemma 3, that the oracle urn is inquired infinitely many times a.s. Therefore, being

sampled with the Hoppe scheme, the draws (ξn) from the oracle urn are exchangeable, and can be represented as ξn | p0
i.i.d
∼

p0 with p0 ∼ DP(γ q). From the properties of the Dirichlet process, p0 =


∞

j=1 wjδξ∗
j
a.s., where the atoms ξ ∗

j are i.i.d.
according to q, and the weights have a stick breaking, or GEM(γ ), distribution, independently on the ξ ∗

j . Note that the atoms
are thought as ordered in the order they would appear in a hypothetical sampling from p0; see e.g. Pitman (1996).

It follows that, conditionally on p0 =


∞

j=1 wjδξ∗
j
, the process (Xn) is again a Hoppe RUP, as described in Section 3.3, with

color distribution p0. Therefore, by Proposition 3, conditionally on p0 =


∞

j=1 wjδξ∗
j
, the process (Xn) is a mixture of Markov

chains, with state space I(p0) = {ξ ∗

1 , ξ ∗

2 , . . .} specified as the support of p0, and a random transition matrix whose rows are
conditionally i.i.d. according to a DP(αp0). More specifically, we have the following

Proposition 5. The sequence (Xn) defined by the hierarchical Hoppe RUP, with urn compositions α and γ , and diffuse color
distribution q, is a mixture of Markov chains. More specifically, there exist a random probability measure p0 and a family
Π = (Πξ,ξ ′ , ξ , ξ ′

∈ R) of random variables such that

p0 ∼ DP(γ q);
conditionally on p0, the restriction Π|I(p0)×I(p0) of Π on I(p0) × I(p0), where I(p0) is the support of p0, is a random transition
matrix whose rows are i.i.d. according to a DP(αp0);
conditionally on p0 and Π , the process (Xn) is a Markov chain with state space I(p0), initial distribution p0 and transition
matrix Π|I(p0)×I(p0).

Note that (Xn) is a mixture of Markov chains with countable state space conditionally on p0, where p0 specifies both
the state space and the distribution of the random transition matrix Π|I(p0)×I(p0). Integrating the conditional distribution of
(Xn) | p0 with respect to the probability law of p0, we have that the process (Xn) is a mixture of Markov chains, but notice
that Xn takes values in R. However it can be represented as a mixture of Markov chains, where the mixing distribution is
such that the random transition matrix has exchangeable rows, whose joint probability law is a hierarchical Dirichlet process
prior (Teh et al., 2006).

4.3. Hierarchical RUPs and infinite HMMs

The hierarchical Hoppe RUP described in Section 4.2 is strictly related to the urn scheme suggested by Beal et al. (2002)
for Bayesian inference in hiddenMarkovmodels with an unbounded number of states, referred as the infinite hiddenMarkov
model (iHMM). In fact, it can be regarded as a colored version of the iHMM urn process. Roughly speaking, as the colored
Hoppe urn of Section 3.1 gives rise to an exchangeable, Pólya urn sequence, for which the Hoppe’s urn describes the random
partition, similarly our hierarchical reinforced urn scheme generates a Markov exchangeable sequence, in fact a mixture of
Markov chains, for which the iHMM describes the color’s allocation.

The iHMM is defined as in our hierarchical scheme, but it keeps track of the labels of the colors that are successively
generated. More precisely, it defines two processes: (S(o)

i , i ≥ 1), that describes the labels of the colors drawn from the
oracle urn, in the order they appear; and (Sn, n ≥ 0), which denotes the label of the additional ball returned in the urn at
the nth draw. As before, we start with a draw from the oracle urn; since initially it contains only black balls, a new color
with label 1 is generated, and we let S(o)

1 = 1 and S0 = 1. Then, we create a Hoppe urn U1 and pick a ball from it; being
necessarily black, a new draw is done from the oracle urn, and if it gives a ball of color 1, we set S(o)

2 = 1 and S1 = 1; if
black, a new color with label 2 is generated from q, and we set S(o)

2 = 2 and S1 = 2; and so on. Thus after n draws, given
S1 = s1, . . . , Sn = sn,M = m, S(o)

1 = s(o)1 , . . . , S(o)
m = s(o)m , where M denotes the random number of draws from the oracle

urn, we generate Sn+1 as follows.

• With probability ti,j/(α + ti), Sn+1 = j, for j = 1, . . . , dm,
where ti,j are the transitions from i to j in (s1, . . . , sn), i.e., the number of balls of label j extracted from urn Ui; ti =


j ti,j

and dm = max(S(o)
1 , . . . , S(o)

m ) is the number of colors generated from the oracle urn;
• with probability α/(α + ti), a black ball is sampled from Ui, thus a new draw is generated from the oracle urn:

S(o)
m+1 | M = m, S(o)

1 = s(o)1 , . . . , S(o)
m = s(0)m ∼

γ

γ + m
δdm+1 +

dm
j=1

mj

γ + m
δj,

where mj is the number of balls of color j extracted from the oracle urn. Then we let Sn+1 = S(o)
m+1.
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Thus

Sn+1 | S1, . . . , Sn = i, M = m, S(o)
1 , . . . , S(o)

M ∼

dm
j=1


ti,j

α + ti
+

α

α + ti

mj

γ + m


δj +


α

α + ti

γ

γ + m


δdm+1.

The process (Sn) is notMarkov exchangeable. However, if we paint itwith colors ξ ∗

j
i.i.d
∼ q, with qnon-atomic, the resulting

process of colors (Xn) is a hierarchical Hoppe RUP as defined in Section 4.2, and it is a mixture of Markov chains, for which
the urn process characterizes the prior, as shown in Proposition 5.

The role of the labels Sn and S(o)
n is further clarified by a comparison with expression (2). In fact, similarly to (2), the joint

distribution of (X1, . . . , Xn) is obtained as
p(x1, . . . , xn) = p(s1, . . . , sn) p(ξ1, . . . , ξm);

but here, in turn, the distribution of colors (ξ1, . . . , ξm) (the draws from the oracle urn) is expressed by

p(ξ1, . . . , ξm) = p(s(o)1 , . . . , s(o)m )

dm
j=1

q(ξ ∗

j ).

Such joint distribution for the process of colors (Xn) is generated from the conditional distribution
Xn+1 | S1, . . . , Sn = i, M = m,

S(o)
1 , . . . , S(o)

m , ξ ∗

1 , . . . , ξ ∗

dm ∼

dm
j=1


ti,j

α + ti
+

α

α + ti

mj

γ + mj


δξ∗

j
+

α

α + ti

γ

γ + m
q.

Note that the predictive distribution of Xn+1 | X1, . . . , Xn is in factmore complex, requiring to averagewith respect to the
conditional distribution of the labels’ configurations. Efficient computational methods have been developed for applications
in Bayesian inference; see e.g. Van Gael and Ghahramani (2011).

4.4. Related processes

Several extensions of iHMM have been recently proposed (Teh and Jordan, 2010 offer a wide review), and could be
usefully reinterpreted in the framework of generalized RUPs. For example, the sticky iHMM (Fox et al., 2011 and references
therein), developed to better capture state persistence in hidden Markov models, could be framed as a hierarchical Hoppe
RUP where each Hoppe urn Ui initially contains α black balls and k balls of color i, so that infinite draws from Ui are
exchangeable, with a DP(α + k, (αq + kδi)/(α + k)) de Finetti measure.

It is of interest to discuss comparisons between generalizedRUPs and the Indian Buffet Process (IBP), recently proposed by
Griffiths andGhahramani (2006), andwidely used in problems involving randombinarymatrices and infinite latent features.
RUPs and IBP have in common the construction of the probability law of interest through a predictive scheme. However,
generalized RUPs define Markov exchangeable sequences, while the Indian Buffet process is used to define an exchangeable
probability law. Consider a process (Si, i ≥ 1), where Si is a binary sequence, Si = (Si,1, Si,2, . . .) with Si,j ∈ {0, 1}. Si
represents the choices of individual i among a countable vector of ‘features’. A sample of size n gives a binary matrix with
ith row Si, i = 1, . . . , n. Roughly speaking, the IBP is used to construct a probability law for the random binary matrix such
that the rows are exchangeable, and the probability law of the sequence Si reflects the idea that features are pure labels and
sparse. No temporal dependence is assumed in the IBP, differently from theMarkov exchangeability property of RUPs; there
is however an analogy that is worth underline. As discussed in Section 3, the Hoppe’s urn generates the labels that define
random partitions, and once colored generates an exchangeable sequence; analogously, the infinite HMM keeps track of the
labels sequences that, once colored, define the Markov exchangeable process described in Section 4.2. Analogously, the IBP
generates a sequence (Si) that is not exchangeable (to obtain exchangeability, one has to consider appropriate equivalence
classes of binary matrices; see Griffiths and Ghahramani, 2006, 2011); however, a colored version of the IBP can directly
generate an exchangeable sequence. Let us color the features with colors ξi i.i.d. from a diffuse color distribution q, and
describe the choices of individual i as ρi =


∞

j=1 Si,jδξj . Then the sequence (ρi) is exchangeable.
One could associate a two-colors Pólya urn to each dish in the Indian buffet metaphor, creating the urn when the dish

is chosen for the first time by some customer. Subsequent customers will decide whether taking a serving of the dish by
sampling from the associated Pólya urn, having a serving if they pick a white ball. Notice that, a sort of walk along the urns
is introduced, in some analogy with RUPs; however, moves from one urn to the next one, or enquiries of the ‘oracle’ Poisson
distribution, do not depend on the results of the drawings, neither they are governed by a random mechanism. Thus, no
temporal dependence is introduced, differently from what happens in generalized RUPs. However, an extension could be
to associate a simple two-colors RUP to each dish. This envisaged construction may have connections with the Markov IBP
(Van Gael et al., 2009), that we plan to investigate in future work.

5. Final remarks

We defined a class of reinforced urn processes that are Markov exchangeable, thus, when recurrent, can be represented
as mixtures of Markov chains. We have discussed how the class of Hoppe RUPs and hierarchical Hoppe RUPs proposed here
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includes important urn processes in the Bayesian nonparametric literature, specifically RUPs and iHMMs, offering a general
framework for their study. We believe that having clarified the relationship between apparently different urn schemes
proposed in the statistical and machine learning literature may offer a clearer understanding of their theoretical properties,
in the framework of Diaconis and Freedman (1980). In particular, the properties of the sequence of x0-blocks that follow from
Markov exchangeability and recurrence, could be explored more clearly for iHMMs and for more recent developments.
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