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tion help in forecasting but no model uniformly dominates the other.
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1 Introduction

Yields of maturities longer than one period are risk-adjusted averages of ex-
pected future short-rates. Short term rates are monetary policy instruments,
controlled by central banks. Modeling and forecasting the term structure
therefore requires modeling and forecasting risk as perceived by the mar-
ket and modeling and forecasting future monetary policy rates. This paper
provides a unified framework encompassing the many different approaches
employed in the literature to model the term structure and provides empiri-
cal evidence on their forecasting performance for U.S. data.
The amount of information relevant to modeling and forecasting expected

monetary policy and risk is potentially enormous, therefore the choice of a
"parsimonious" specification capable of capturing all relevant information is
the crucial step in the modeling strategy. Following this intuition, all the
relevant information for pricing bonds at any given point in time is often
summarized by a small number of factors. As a consequence, the task of
forecasting the term structure is simplified to that of forecasting a small
number of factors. Different modeling strategies are defined by the restric-
tions used to shrink the information available in a few factors (Litterman
and Scheinkman, 1991). The traditional finance literature limits the infor-
mation set to a number of observable yields and uses two alternative methods:
extraction of latent factors via cross-sectional interpolation methods and ex-
traction of latent factors by exploiting no-arbitrage restrictions.
Among the cross-sectional interpolation methods, the Nelson and Siegel

(1987) approach is the most popular. The Nelson and Siegel three factor
model explains the variance of yields at different maturities with a very good
in-sample fit. Diebold and Li (2006) have successfully considered the out-
of-sample forecasting performance of this model by assuming that the three
factors follow AR(1) processes.
Among no-arbitrage models, the common approach is to assume a linear

model for the latent factors and to restrict the factor loadings so as to rule out
arbitrage strategies on bonds of different maturities. No-arbitrage restrictions
serve not only the purpose of reducing the dimension of the parameter space,
but they also contribute to the theoretical consistency of the model. Dai
and Singleton (2000) and Piazzesi (2003) have surveyed the specification
issues of affine term structure models in continuous time and discrete time,
respectively. Duffee (2002) has shown the usefulness of essentially affine term
structure models (A0(3)1) in forecasting.

1The symbol A0(n), used to denote essentially affine term structure models, refers to
the fact that in the affine ("A") model, there are "n" state variables, but none of the states
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These two approaches have been recently merged in an affine arbitrage-
free Nelson-Siegel (AFNS) model, see Christensen, Diebold and Rudebusch
(2007) or Le Grand (2007), where the traditional Nelson and Siegel structure
is modified to rule out arbitrage opportunities.
Models mentioned above are traditionally based only on the information

contained in the term structure. Financial markets are clearly not insulated
from the rest of the economy. The feedback from the state of the economy
to the short term interest rate is explicitly considered in the monetary policy
reaction function introduced by Taylor (1993) and by now widely adopted to
explain the behaviour of central banks.
Several papers indicate that macroeconomic variables have strong effects

on future movements of the yield curve (among others, Ang and Piazzesi
(2003), Diebold, Rudebusch, and Aruoba (2006) and Rudebusch and Wu
(2008)). In particular, Ang and Piazzesi (2003) use an A0(3) model, and
show that a mixed model (with three latent financial factors plus output
and inflation) performs better than a yields-only model in terms of one step
ahead forecast at monthly frequency.
One question that naturally arises in this context is how to efficiently

summarize the large amount of macroeconomic information available. Fac-
tor models suited to deal with large cross-sections have therefore become
increasingly popular in the forecasting literature. As shown in Stock and
Watson (2002) and Forni, Hallin, Lippi, and Reichlin (2005), by decompos-
ing large panels of time series in common and idiosyncratic components,
information can be used efficiently, dimensionality greatly reduced and fore-
casting efficiency improved. Giannone, Reichlin and Sala (2004) show that
a two dynamic factors model produces forecasting accuracy of the federal
funds rate similar to that of the market.
We will set up an encompassing framework in which we will assess the

relative importance of no-arbitrage restrictions versus large information sets
in forecasting the yield curve.
We choose to evaluate alternative term structure models on the basis of

their out-of-sample forecasting performance for different yields. In this way,
we will have a uniform ground to compare models with very different features,
settings and number of parameters.
We are not the first to provide evidence on the forecasting performance

of alternative term structure models: recently Moench (2008) proposed a no-
arbitrage factor-augmented VAR (FAVAR, see Bernanke, Boivin and Eliasz,
2005), in which financial factors are augmented with macroeconomic factors,
and compared its forecasting performance with a number of alternatives and

drives the conditional variance of the state innovation, hence denoted by subscript "0".
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showed that a no-arbitrage FAVAR delivers almost uniformly better forecasts
at horizons from 6 to 12 months ahead. Our exercise differs fromMoench’s in
many aspects. First, we propose a more general framework to evaluate sys-
tematically a larger set of models; second, we base our forecasting comparison
exercise on a rolling window estimation with fixed size, in which parameters
are re-estimated at each stage, while Moench considered a recursive estima-
tion strategy and expanded the estimation window as new observations are
included in the sample; third, our empirical results are different in that our
evidence is not overwhelmingly in favor of the FAVAR model.
We shall also discuss the reverse issue of forecasting macroeconomic vari-

ables with term structure models.
The paper is organized as follows. In Section 2 we propose a unified state-

space framework to evaluate the effects of incorporating factor information
and/or no-arbitrage restrictions on the forecasting performance of empirical
models of the yield curve. In Section 3 we describe the data. In Section
4 we discuss model specification and evaluate the forecasting performance
of various models. Section 5 is devoted to the discussion of our empirical
results. Section 6 discusses robustness issues and Section 7 concludes.

2 The general state-space representation

We study the dynamics of the term structure in the state-space model pre-
sented in equations (1) and (2). yt,t+n is the yield-to-maturity at time t of
a zero-coupon bond maturing at time t+ n. Yields with different maturities
are collected in a vector yt = [yt,t+1 , yt,t+2 , . . . , yt,t+N ]

0. Equation (1) is the
measurement equation, in which different yields yt,t+n are assumed to be de-
termined by a set of state variables, collected in the vector Xt. Equation (2)
is the state equation in which the states Xt are assumed to follow a VAR(1)
process.

yt,t+n =
−1
n
(An +B0

nXt) + εt,t+n εt,t+n ∼ i.i.d.N(0, σ2n) (1)

Xt = μ+ ΦXt−1 + vt vt ∼ i.i.d.N(0,Ω) (2)

The variables in Xt can be either endogenous (that is, some of the ele-
ments of yt could also be included in Xt) or exogenous, observable or latent.
The system composed of (1) and (2) is very general and can accommodate

different specifications. Equation (1) illustrates how the yield curve is fitted.
This can be done by pure interpolation methods or by imposing no-arbitrage
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restrictions. When no-arbitrage restrictions are imposed, the entries of ma-
trices An and Bn are constrained by cross-equation restrictions derived from
economic theory. In equation (2) different specifications of the information
set are defined by the specification of the vector of variables in in Xt. As we
shall see below, some models will include only factors extracted from yield
curve data, while others will include a combination of factors from the yield
curve and factors from macroeconomic data.
We take the forecasting performance as the metric to evaluate alternative

models. We shall classify models along two dimensions: first, the nature of
the restrictions imposed on the measurement equation (1) - interpolation (or
reduced form) versus no-arbitrage restrictions; second, the information set
for the state dynamics - small versus large information set.

2.1 Interpolation versus no-arbitrage models

The number of models of the term structure available in the literatue is vast.
We select a limited number of models, each of which is to be considered as a
representative of a class of models.
1. Diebold-Li model. In Diebold-Li (2006), three factors, extracted à

la Nelson and Siegel (NS henceforth), are assumed to follow an unrestricted
VAR. In this case we have:

B0
n =

∙
−n ,−

µ
1− e−λn

λ

¶
,−
µ
1− e−λn

λ
− ne−λn

¶¸
and An = 0

We denote the three yield factors as NSt = [NS1,t NS2,t NS3,t]
0 and

define Xt = NSt. Equation (1) then takes the form:

yt,t+n = NS1,t +NS2,t

µ
1− e−λn

λn

¶
+NS3,t

µ
1− e−λn

λn
− e−λn

¶
+ εt,t+n (3)

The dynamics of NSt is assumed to follow an unrestricted VAR(1):

NSt = μ+ ΦNSt−1 + vt (4)

NS1,t, NS2,t, and NS3,t are estimated as parameters in a cross-section
of yields, letting n, the maturity date, vary. In the time series dimension,
NS1,t, NS2,t, and NS3,t have an immediate interpretation as latent factors.
The loading on NS1,t is the only element in B0

n that does not decay to zero
as n tends to infinity; NS1,t can therefore be interpreted as the long-term
factor, the level of the term structure. The loading on NS2,t is a monotone
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function that starts at 1 and decays to zero; NS2,t can be viewed as a short-
term factor, the slope of the term structure. NS3,t is a medium term factor:
its loading starts at zero, increases and then decays to zero, with the speed
of decay determined by the parameter λ. This factor is usually interpreted
as the curvature of the yield curve. Empirically, the first NS factor closely
represents the 10 year yield; the second NS factor correlates well with the
spread between long and short yields: (10year − 1month); the third NS
factor is close to: (2×2year−(10year+3month)), a measure of curvature of
the yield curve.
This model will be considered as the benchmark in the class of unre-

stricted models.

2. No-arbitrage affine models, in which long yields are risk-adjusted ex-
pectations of average future short-rates and the coefficients of the state-space
model are restricted so as to rule out arbitrage opportunities (see Appendix
1 for details). In this case, we follow the general discrete-time framework
popularized after Ang and Piazzesi (2003). Defining the market price for
risk associated with the state variables Xt as Λt = λ0 + λ1Xt and given the
measurement equation of the short rate, yt,t+1 = − (A1 +B0

1Xt) + εt,t+1, it
is possible to show that no-arbitrage imposes the following structure on the
coefficients of the measurement equation (for n ≥ 1):

An+1 = An +B0
n (μ−Ωλ0) +

1
2
B0
nΩBn +A1

B0
n+1 = B0

n (Φ−Ωλ1) +B0
1

The restrictions imply that once the coefficients on the short rate equation
(A1, B

0
1) are fixed, all the other coefficients for longer maturity yields are

determined by the following equations:

Bn+1 =

∙
nP
i=0

(Φ0 − λ01Ω)
i

¸
B1

An+1 = (n+ 1)A1 +
nP
i=0

B(i), where B(i) = B0
i (μ−Ωλ0) +

1
2
B0
iΩBi.

In this setup the state vector is assumed to be of dimension 3. Following
Chen and Scott (1993), the states are extracted by inverting the measurement
equation, assuming that exactly 3 yields are observed without error (see
details of this method and the corresponding likelihood function in Appendix
2). The Chen-Scott factors are denoted by CSt = [CS1,t CS2,t CS3,t]

0 . We
define Xt = CSt.

3. Affine arbitrage-free Nelson-Siegel (AFNS) model as in Christensen,
Diebold and Rudebusch (2007) and Le Grand (2007). This model imposes
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the Nelson-Siegel structure on the canonical representation of affine models,
so that

B0
n =

∙
−n ,−

µ
1− e−λn

λ

¶
,−
µ
1− e−λn

λ
− ne−λn

¶¸
.

Under the risk-neutral measure, it can be shown that the autoregressive
coefficient matrix of the VAR(1) for the states is:

ΦQ =

⎛⎝ 1 0 0
0 1− λ λ
0 0 1− λ

⎞⎠ .
In order to exclude arbitrage opportunities, the measurement equation for
the yields has to be adjusted by a constant term. Hence, differently from the
original Nelson-Siegel model, An 6= 0.
Although the no-arbitrage Nelson-Siegel (NANS) model is appealing as

a unifying framework that links the traditional Nelson-Siegel model to the
affine no-arbitrage term structure model, it is significantly restrictive, as it is
only consistent with the presence of exactly three state variables and does not
allow for the inclusion of combinations of state variables of different nature,
such as observable macro variables. For this reason, we decided to consider
this model only in Section 5.3, where we address robustness issues.

2.2 State information set: small versus large

A second taxonomy considers small versus large information sets. We will
add to the factors extracted from the yields additional variables and we will
compare their effectiveness in forecasting yields.
We define an information set as small if it contains only the yield factors

and/or a small set of observed macroeconomic variables. The huge litera-
ture on Taylor rules has shown that a nominal and a real variable are both
important in driving the dynamics of nominal interest rates. We select the
annual CPI inflation rate (πt) as the measure of inflation, and the annual
growth rate of the Index of Industrial Production (IPgt) as the measure of
real activity.2

1. In the class of small information set models we consider the following
specifications.

2We have also considered the unemployment rate as an alternative indicator of real ac-
tivity. Unemployment is outperfomed by the index of industrial production for forecasting
purposes.
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1a) Unrestricted case. In addition to the NSt factors, we add [πt IPgt]
as observable factors. The state dynamics is described by a five-variables
VAR.
1b) Restricted case. In addition to the CSt factors, we consider [πt IPgt]

as observable factors; as in case 1a), the state dynamics is described by a
five-variables VAR.

2. In the class of large information set models, we extract common factors
from a large panel of macroeconomic variables (N = 162). We estimate fac-
tors by static principal components, as in Stock and Watson (2002) and we
call themmft = [mf1,t mf2,t . . .mfk,t]

0. We evaluate the forecasting perfor-
mance of "large N" macroeconomic factors in the following specifications:
2a) Unrestricted case. The macro factors are added to the NS factors:

Xt = [NS0t mf 0t ]
0.

2b) Restricted case. The macro factors are added to the CS factors:
Xt = [CS

0
t mf 0t]

0.
2c) The macro factors are used as explanatory variables in a "generalized"

Taylor rule (see Bernanke and Boivin, 2003): Xt = [yt,1 mf 0t ]
0, both in the

unrestricted and restricted models.
2d) The states are the macro factors: Xt = mft

We will employ two to four macro factors in our analysis.

Before discussing the empirical results some remarks are in order. The
state space representation is so general and flexible that it can accomodate
very different specifications not mentioned within our limited context. The
advantage of using such an encompassing framework will be immediate when
reporting results along the two dimensions discussed.
For example, by going from reduced form to no-arbitrage model, given

the information set and a similar number of parameters, we will see the role
of no-arbitrage restrictions on the forecasting performance; by changing the
specification of the price of risk, given the information set, we will be able to
study how sensitive the results are to the specification of risk price; by adding
different set of macro factors, while holding constant the number of yield
factors, we will see how the macro factors affect the forecasting performance.

3 Data and macroeconomic factors

Our yields data are extracted from the Bliss data set of zero-coupon equiv-
alent US yields for the sample 1974:2-2003:9 at the following 11 maturities:
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1-month, 3-month, 6-month, 9-month, 1-year, 2-year, 3-year, 4-year, 5-year,
7-year, and 10-year.
We extract macroeconomic factors from a panel of 162 US macro monthly

time series for the sample 1974:2-2003:9. The data set is the same used in
Giannone, Reichlin and Sala (2004). We have excluded nine interest rates
from the original 171 series.

# of series Categories Transformation
21 IP indices lnXt− lnXt−12
39 Labor market lnXt− lnXt−12
17 Sales, consumption spending lnXt− lnXt−12
12 Inventory and orders lnXt− lnXt−12
22 Financial markets, money and loans lnXt− lnXt−12
25 Price indices lnXt− lnXt−12
3 Import & export lnXt− lnXt−12
23 Capacity utilization and inventory indices, etc. Xt

The common factors have been extracted from the macro panel as follows.
First, the data are transformed to obtain stationarity. We take annual log-
difference for the series that contain trends (production indices, price indices
including asset prices, money stock, etc.) while series stationary by their
nature (capacity utilization, sentiment indicators, etc.) are considered in
levels.
Second, we estimate factors by principal components (Stock and Watson

(2002)). We rank the factors according to their explanatory power3 and
consider up to the fourth in our analysis.
As reported in Table 1, the first four factors explain up to 68% of the total

variance in the panel. In Figures 1 and 2 the two macro variables and the
first four macro factors extracted are plotted. As can be seen, the dynamics
of the first two factors are closely related to IP growth rate and CPI inflation
rate respectively. The first factor highly correlates with output growth. The
R-squares of a regression of various industrial production indices on the first
factors are higher than 0.9 as shown in Table 1. The second factor closely
follows inflation: it explains around 80% of variations in annual growth rates
of PPI crude materials, CPI housing and CPI services as shown in Table 1.
The third and fourth factors may be related to financial variables and to the
effective exchange rate.

3This is different from Ng and Ludvigson (2006). They construct a composite factor by
combining several common factors according to their in sample significance in explaining
the bond risk premia. We have tried to rank the factors according to their contribution
to R-squares of yields, but we did not find clear evidence suggesting that such a strategy
improves out-of-sample forecasting of yields.
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4 Specification, estimation and forecast eval-
uation

4.1 Specification and estimation

In all models considered, we assume that the state dynamics follow a VAR(1).
In the unrestricted models, we do not make restrictions on the parameters

and use a two-step OLS to estimate the state and measurement equations.

In no-arbitrage restricted models with only latent yield factors, we as-
sume that the factors have zero mean μ = 0, and that the VAR coefficient
matrix Φ is lower triangular, with Ω = I. This is the most general identified
representation for the class of essentially A0(3) models (Dai and Singleton
(2000)). In addition, in the short rate equation, yt,t+1 = −A1−B1Xt+εt,t+1,
we set −A1 = r̄+B1X̄, where r̄ is the historical mean of the short rate. We
use the Chen-Scott method (see Appendix 2 for details) and estimate the
model with maximum likelihood.

In restricted models in which the state vector is assumed to be composed
by CSt yield factors and observable macro variables or factors, we use the
specification proposed by Pericoli and Taboga (2008), where the VAR coef-
ficient matrix Φ is left unrestricted and the following conditions need to be
met:
1) the covariance matrix Ω is block diagonal with the block corresponding

to the unobservable yield factor being identity, and the block corresponding
to the observable factors being unrestricted, i.e.

Ω =

∙
I 0
0 Ωo

¸
;

2) the loadings on the factors in the short rate equation are positive,
−A1 ≥ 0;
3) Xu

0 = 0.
Early specifications of this model often impose zero restrictions on the

VAR coefficient matrix Φ (in Ang and Piazzesi (2003), Φ is block diago-
nal). These assumptions impose strong restrictions on the interaction be-
tween yield factors and macro factors. We have tried various specifications
in our forecasting exercise. It turns out is that the least restricted specifi-
cation, despite its heavier paramerization, does not have inferior forecasting
performance4. We hold to the general specification below. We use the Chen-
Scott method and estimate the model with maximum likelihood.

4Additional empirical evidence is available upon request.
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In the restricted model with only observable states, we follow a two step
procedure. We first estimate the VAR for the states, then, given

³
μ̂, Φ̂, Ω̂

´
,

we estimate the prices of risk, λ0 and λ1.

For all no-arbitrage models, we estimate three specifications for risk prices.

• Constant prices of risk: λ0 6= 0 and λ1 = 0.

• Time-varying prices of risk, λ0 6= 0, λ1 diagonal. This assumption,
employed in Ang, Bekaert and Wei (2007), together with a diagonal Ω
implies that prices of risk are independent.

• Nonzero factor correlations through the matrix, Φ, and state-dependent
market prices of risk, λ1, with λ1 being a fullK×K matrix, K denoting
the number of state variables, ss discussed in Dai and Singleton (2002).

In the restricted model with Nelson-Siegel factors, we estimate a correlated-
factor AFNS model as in Christensen, Diebold and Rudebusch (2007). For
parsimony we assume a diagonal variance-covariance matrix Ω, as in Le
Grand (2007). In this case, the constant term in the measurement equa-
tion of yield takes the following form

An = σ211
n3

6
+ σ222

∙
n

2λ2
− 1− e−λn

λ3
+
1− e−2λn

4λ3

¸
+σ233

"
n

2λ2
+

ne−λn

λ2
− n2e−2λn

4λ
− 3ne

−2λn

4λ2
−
2
¡
1− e−λn

¢
λ3

+
5
¡
1− e−2λn

¢
8λ3

#

4.2 Forecast procedure

We obtain h−steps ahead forecasts for the states by iterating the one-step
model forward5:

X̂t+h|t =
hX
i=0

Φ̂iμ̂+ Φ̂hXt (5)

Forecasts based on different specifications are computed as follows:

5The alternative would be to obtain forecasts by projecting h-step ahead: X̂t+h|t = μ̂h+

ÂhXt. Given the nature of no-arbitrage models, only iterated forecast can be computed
for them. For this reason, we employ iterated forecasts for all models. In Section 5.3 we
check the robustness of our results to this choice.
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4.2.1 Unrestricted models

1. Diebold and Li (2006). We obtain the Nelson and Siegel factors from
equation (3). We fix λ, the parameter governing the speed of decay in the
exponential function, at 0.0609, as calibrated in Diebold and Li (2006)6.
After having extracted the factors and estimated the unrestricted VAR(1),

we obtain forecasts by iterated projections:

N̂St+h|t =
hX
i=0

Φ̂iμ̂+ Φ̂hN̂St (6)

by using the NS parameterization:

ŷt+h|t = N̂S1,t+h|t + N̂S2,t+h|t

µ
1− e−λn

λn

¶
+ N̂S3,t+h|t

µ
1− e−λn

λn
− e−λn

¶

2. Diebold-Li plus macro variables/factors. The Nelson-Siegel factors are
extracted from yields as before. The state vector becomes: Xt = [NSt zt]

0,
where zt contains the macro information and is modeled as a VAR(1). In
this case, following Diebold, Rudebusch and Arouba (2006), we assume that
the factor loadings of the yields on zt in the measurement equations are zero.
This specification is in line with the view that only three factors are needed
to model the yield curve.

3. Interest rate rule-type VAR in which the state equation is unrestricted.
In this setting, the yields are directly projected onto the states. Both the
measurement and the state equations are estimated by OLS.

Unrestricted models are estimated with a two step OLS estimator, as in
Diebold and Li (2006). Since these models are written in state space form,
a one-step maximum likelihood (ML) estimation can be derived using the
Kalman filter, as in Diebold, Rudebusch and Arouba (2006). As a robustness
check, we estimated unrestricted Nelson and Siegel models with MLE. The
results are discussed in Section 5.3.

4.2.2 No-arbitrage models

Forecasts in no-arbitrage models are obtained by using equation (5) in which
the parameters are subject to the no-arbitrage restrictions.

6The factors extracted are insensitive to the choice of λ. A robustness check, in which
λ is estimated, is presented in Section 5.3.
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4.3 Forecast comparison

We set the sample size fixed at 180 periods. We use rolling estimation by
moving the sample forward by one observation at a time and re-estimating
the model at every step, starting from the sample period 1978:1-1992:12.
We consider four forecasting horizons (denoted by h): 1 month, 6 months,
12 months, and 24 months. For the 1-month ahead forecasting horizon, we
conduct our exercise for all dates in the period 1993:1 - 2003:9, a total of
129 periods; for the 6 month ahead forecast, we end up with a total of 124
forecasts, and so on, up to the 24 month ahead forecast, for which we end
up with 106 forecasts.

We choose two measures of forecasting performance. One is the ratio of
the forecast root mean squared error (FRMSE) of each model to the FRMSE
of a random walk forecast. We show the comparison of forecasting results
from different models in Table 2A. The table shows better forecasts with
respect to the random walk with bold characters for the range of [0.9, 1),
with added shading background for the range of [0.8, 0.9), and with added
underline for ratios smaller than 0.8.
FRMSE ratio tells the relative accuracy of each model for each maturity-

horizon forecast compared to the random walk. Forecast errors originate
from two sources: errors in forecasting yield levels, and errors in forecast-
ing changes in yields. The FRMSE does not distinguish between these two
types of errors. When models are subject to structural change and/or in-
stability in the mean, even if they can forecast changes in yields relatively
well, the forecasted levels might deviate from the realised data persistently
so that the FRMSE is large. To take care of this problem, we complement
the information in the FRMSE with a Bayesian probability indicator which
rewards models that better predict yield changes and controls for biases in
the forecasts.
We construct this indicator by taking observed yields as the dependent

variable in a regression. We use as regressors forecasts from two competing
models at a time: one from one of the k̄ models discussed above and one
from the random walk model. We assess the posterior probability of being
included in the regression for each of the two forecasts. We then calculate
the ratio of the posterior probabilities of the selected model forecast to be
included in the general regression to that of the random walk forecast. We
repeat the above procedure for all the models discussed above. Let us go
into the details of the procedure (a more general discussion can be found in
Koop, 2003).
Define y = (y1, ..., yt, ..., yT )

0 the realised yield at a specific maturity,
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where T is the total number of forecast.
We similarly define ŷk = (ŷk,1, ..., ŷk,t..., ŷk,T )0 as the vector collecting the

forecasts from model k.
We consider two forecasts at a time, the random walk forecast, ŷRW , and

the forecast from model k, ŷk and define Xk = [ŷRW ŷk] as a T × 2 matrix
which contains the two forecasts of y at a specific forecast horizon h7. Given
Xk, we can define three nested modelsMr (r = 1, 2, 3) whereM3 is the most
general one8:

M1: y = α+ ŷRWβ1 + ε (7)

M2: y = α+ ŷkβ2 + ε (8)

M3: y = α+ ŷRWβ1 + ŷkβ2 + ε (9)

α is the intercept and ε is a T × 1 vector of errors, which is assumed to
be a priori distributed as N(0T , h−1IT ). We assume all nested models have
the same prior probability p(Mr) = 1/3.
This also implies that the prior for each regressor being included in the

general model is equal. For each model with k̃ regressors, we impose a rela-
tively non-informative Normal-Gamma conjugate prior on the coefficients:

γ ∼ N(γ, h−1V )

h ∼ Γ(s−2, v)

where γ = (α, β), by assigning:

α = 0, βi = 1/k̃

V diagonal, V (1, 1) = 25 and V (j, j) = 1 (j > 1);

and
s−2 = 0.5 and v = 4

These priors are chosen as such so that the implied prior variance of α is
100, and the implied prior variance of βi is 4. The prior means of α and βi
imply that in each nested model the coefficients of different forecasts sum up
to one and there is no persistent bias.

7We do not explicitely write the index h to save on notation.
8There are in principle 22 possible subsets of Xk. We exclude the empty set and focus

on those subsets which contains at least one yield model forecast. For our comparison,
whether or not to include the empty set will not affect the results. Excluding it speeds up
the computations.
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For each of the three nested models we calculate the posterior probability:

p(Mr|y) =
p(y|Mr)p(Mr)P3
r=1 p(y|Mr)p(Mr)

.

By integrating out the model posteriors, we can obtain the posterior proba-
bility that regressor ŷk is contained in the forecast regression model:

p(Ik = 1) =
3X

r=1

Ik,rp(Mr|y).

Our measure, the Bayesian Model Averaging Indicator (BMAI), will be the
ratio:

BMAIk,RW =
p(Ik = 1)

p(IRW = 1)

which can be written as:

BMAIk,RW =
p(M2|y) + p(M3|y)
p(M1|y) + p(M3|y)

If the ratio is bigger than 1, it means that regressor ŷk has a higher probability
than ŷRW to be included in the forecasting regression. In Table 2B we report
results. We highlight the ratio with bold number when it is bigger than
2, and add shaded background color when it is bigger than 59, i.e. the
selected model forecast is twice or five times more likely to be included in
the regression than random walk. We report the number in italic if the ratio
is less than 0.5, i.e. the random walk forecast it is twice more likely to be
included in the regression than the selected model.

When α is set to 0 and βi is assumed to sum to 1, the priors of the model
in equation (9) is similar to a standard forecast comparison regression, as in
Stock and Watson (1999):

y = λŷ1 + (1− λ)ŷ2 + ε. (10)

The regression in equation (10) is too restrictive if the forecasts are biased,
which may be the case for some yield models. In such occasion, the indicator
penalizes the forecast with higher systematic bias, attributing little weight
to it, even if the model can forecast well the changes of the variables. By
allowing α to be different from zero, we take into account the biases in the
forecasts and identify models with persistent bias but produce high correla-
tion between forecasts and actual yields.

9We have checked the robustness of these results to a range of different parameteriza-
tions for the relevant prior distributions.
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5 Empirical Results

We present our empirical results by discussing first our main evidence on
yield curve forecasting. We identify the trade-offs of no-arbitrage restric-
tions between forecasting short versus longer maturity yields, and of macro
factors between forecasting short versus longer horizons. We then use our
framework to investigate whether yield curve models are useful to forecasting
macroeconomic variables.

5.1 Yield curve forecast: no-arbitrage and/or large
information set?

We report our main results on the forecasting performance in Table 2A for
the FRMSE ratio and in Table 2B for the BMAI, respectively. In each table,
we select 16 representative models and put them into 6 rows and 3 columns
according to their characteristics. We report each model’s forecasting perfor-
mance in one sub-table along yield maturities (3, 12, 36, 60 and 120 months)
and forecast horizons (1, 6, 12 and 24 months). Above each sub-table, we
indicate the state vector.
The models are compiled along two dimensions.
Horizontally, we compare reduced form versus no-arbitrage models. Among

no-arbitrage models we present the results of two specifications: constant risk
price and time-varying risk price with λ1 being a diagonal matrix. We do
not list the results of time-varying risk price with full λ1, because the results
of this specification are the worst performing among the three10. Vertically,
we compare small information set models with large information set ones.
For the class of small information models, we present the three-yield factors
model and the three-yield factor model augmented with macro variables. For
the class of large information set, we present a model with three yield factors
and macro factors, a model with one yield factor (the short rate) and macro
factors and a model with macro factors only. We can therefore compare how
macro factors fare compared with macro variables, and what is the relative
role of yield curve versus macroeconomic information.
Among these models, some are existing in the literature, others are similar

to existing models with minor differences in their specifications. If we denote
the model in rowm and column n by (m,n), then model (1,1) is the Diebold-
Li model with VAR(1) states; models (1,2) and (1,3) are A0(3) models with
constant risk price and time-varying risk price respectively; model (2,1) is

10Interested readers can refer to our appendix file, available upon request, for related
results.
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similar to the yield-macro model of Diebold, Rudebusch and Aruoba (2006)
but with a different set of macro variables; models (2,2) and (2,3) are similar
to Ang and Piazzesi (2003), with inflation and IP growth as explicit macro
variables, allowing for the interaction between the dynamics of yield and
macro variables. Models in the third and fourth rows have three yield factors
plus macro factors extracted from large macro panel. Models relative to
entries (4,2) and (4,3) are not reported; they have many parameters and
their forecasting performance in not satisfactory. Models (5,2) and (5,3) are
Moench (2008) type models; model (5,1) is a reduced form version of it. We
put in the sixth and last row models with macro factors only, to complement
the information in the first row, in which models with only yield factors
are presented. This gives us an interesting comparison on the information
content in yield curve prediction.
Let us now proceed to examine our results through several routes. We

will start from the Diebold-Li model and move along the two dimensions
aforementioned.

5.1.1 Reduced form versus no-arbitrage restrictions.

Moving from left to right in the first row of Table 2A, we find that in fore-
casting the short rate all three models have similar performance and they all
beat the random walk model at all horizons. Compared with the Diebold-Li
model, the no-arbitrage models with constant risk price has better forecast
for medium and long term yields at all forecast horizons.
The forecasting performance of the no-arbitrage model with time-varying

risk prices deteriorates, the more so, the longer the maturity: no-arbitrage
restrictions help to reduce the FRMSE as long as the risk price is constant.
When we look at the second row of Table 2A where macro variables are

added to the three yield factors, the same pattern remains.
Does this findings dismiss the usefulness of time-varying risk price in

forecasting yields? Not necessarily. We will go back to this issue when
discussing the forecasting performance as measured by the BMAI criterion
below.

5.1.2 Small versus large information set.

Moving downwards the first column of Table 2A, we observe that the model
in entry (2,1), in which the inflation rate and the IP growth rate are added to
the three Nelson-Siegel factors, does not improve upon Diebold-Li in terms
of FRMSE.
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When two latent macro factors are introduced (as in model (3,1)), there
is not much improvement with respect to Diebold-Li. If compared with
model (2,1), however, there is a clear tendency of improvement toward yields
with longer maturities at longer forecast horizons. When three Nelson-Siegel
factors are augmented with four macro factors as in model (4,1), in spite
of the larger number of parameters, forecasts at 6 to 24 month horizons of
all yields improve when compared with model (2,1), and forecast for short
and medium term yields at 12 to 24 month horizons are better than both
the Diebold-Li model and the random walk. This indicates that factors
extracted from the large macro panel seem to better capture the real and
nominal dimensions of the economy than the observable macro variables (as
in Giannone, Reichlin and Sala, 2004).
Moving to model (5,1) and (6,1) where macro factors are predominant

with respect to yield curve factors, the advantage in forecasting short and
medium term yields at 12 to 24 month horizons remains, while the FRMSE
ratios increase substantially at short horizons across the yield curve as the
number of yield factors decreases. Kim (2007) discusses a similar finding
when yield factors are replaced with observable macroeconomic variables.

We detect a clear pattern: macro information tends to improve yield
forecasts at longer horizons; the macro factors extracted from the large macro
panel have robust forecasting power at 12 to 24 months ahead, and this is
true even in a VAR without yield curve factors. While previous research such
as Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006) find
evidence for the importance of macroeconomic information in forecasting
the yield curve, our results are even clearer, thanks to the design of our
experiments, in which the modification of one element at a time allows to
identify the specific role of additional information .

5.1.3 No-arbitrage restrictions versus large information set.

Moving from the Diebold-Li model to either direction on Table 2A, both the
no-arbitrage restrictions and large information set have some value added in
forecasting the yield curve. Can we explore both at the same time? The
block of "no-arbitrage restricted" and "large N" models in Tables 2A and
2B gives us some hints.
Model (3,2) is a no-arbitrage restricted model with constant risk price,

with 3 latent yield factors and 2 macro factors. The restrictions reduce the
FRMSE ratios for medium and long term yields compared to model (3,1)
which has the same information set. For medium and long term yields at
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12 and 24 month ahead forecast horizons, the large information set improves
upon the no-arbitrage models (1,2) and (2,2) with small information set.
This model enjoys the benefits of both imposing no-arbitrage restrictions
and expanding the information set.
As we introduce time-varying risk price in model (3,3), although the short

rate forecast in term of FRMSE ratios tends to improve for all horizons, the
forecast of medium and long term yields deteriorates.

Moench (2008) takes a different approach to combine no-arbitrage with
macro factors; he substitutes latent factors extracted from the yield curve
with latent macro factors and keeps the short rate as the single yield factor.
The VAR for the states can then be interpreted as a "generalised Taylor
rule". Models (5,2) and (5,3) are simplified versions of Moench models, with
less parameters in the risk price equations and less lags in the VAR. The
pattern of the forecast performance of these models is similar, i.e. the long
end of the yield curve is poorly predicted, but at longer forecast horizons the
FRMSE ratio is low.

Comparing the three models in the fifth row, the no-arbitrage models
fare worse than the unrestricted one; among the no-arbitrage models, time-
varying risk price tends to improve the FRMSE compared to the constant risk
price model. While the model in Moench (2008) did a better job at the long
end of the yield curve, with a specification of more lags in the VAR, different
time-varying risk specification and different period chosen, our experiment
shows that this type of no-arbitrage models does not improve upon their
corresponding reduced form model.
Models (6,2) and (6,3) with pure macro factors under no-arbitrage re-

strictions strengthen the above findings with further evidence.

Let us now turn to discuss the evidence on the BMAI indices in Table
2B. Models are collected in the same order as of Table 2A.
In the first row of Table 2B, the BMAI ratios are mostly around 1 for

all three models compared with random walk. However, among the two no-
arbitrage models, the time-varying risk price specification does better than
the constant risk price model at 2 year horizon for short to medium maturity
yields but not for the long end of the curve where the BMAI ratio falls below
0.5. In the second row of Table 2B, the constant risk price no-arbitrage model
does not outperform neither the random walk nor the reduced form model,
but the time-varying risk price model does better than the random walk at 1
to 2 year horizons again for the short to medium maturity yields, and better
than the reduced form model at these horizons. The evidence of a better

19



performance of time-varying risk price models is still present for the short
to medium term yields when we move down to the third row when macro
factors are added to the state vector. But the inferior forecast at the long
maturity of the 10 year yield is also clear.
Moving downward the first column of Table 2B, when the three Nelson-

Siegel factors are augmented with the inflation rate and IP growth rate, there
is improvement in the BMAI ratios in the 24 month ahead forecasts for short
to medium term yields, with respect to the Diebold-Li model. When two
macro factors are added to the model (3,1), there is general improvement
in the 12 month ahead forecasts. When four macro factors are augmented
with three Nelson-Siegel factors, the forecasts at 12 to 24 month horizons
of short and medium yields improve when compared to the model (2,1),
although this improvement does not extend to long term yields. Moving to
models (5,1) and (6,1) where four macro factors dominate the state vector,
the improvement in forecasting short and medium term yields at 12 to 24
month horizons remains. The advantage of macro factors in these forecast
horizons are also evident from the corresponding no-arbitrage models in the
second and third column of these two rows. But the noisy forecast that had
a high FRMSE ratios are not punished by the BMAI ratio at short horizons.

Overall, our results can be summarized as follows:
(a) no-arbitrage restrictions with constant risk price in a three yield factor

model generate low FRMSE;
(b) macroeconomic factors extracted from large dataset are useful at pre-

dicting the yield curve at longer horizons of one to two years;
(c) among no-arbitrage models, the FRMSE is systematically high for the

longer maturities. Time-varying risk price is useful in capturing movements
of the yield curve at short to medium maturities;
(d) in models in which the state vector is composed of observable macro

factors with no or little information on the yield curve, yields of longer ma-
turities are poorly predicted; the forecasts worsen when no-arbitrage restric-
tions are imposed.

5.2 Forecasting macroeconomic variables with yield curve
information

Our framework not only allows to investigate the issue of yield curve forecast,
but provides a laboratory to study whether models of the yield curve are use-
ful to forecasting macroeconomic variables. Within this framework, we can
examine: 1) whether the information on the term structure can contribute
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to the forecast of macro variables compared to a simple AR(1) time series
model; 2) how sensitive are the results to different specifications for risk prices
in no-arbitrage models; 3) the relative performance of no-arbitrage models
and reduced form models; 4) the relative performance of Nelson-Siegel yield
factors models and models with one observable yield factor (1-month rate).
Tables 3A and 3B report FRMSE ratios and BMAIs for macro variables.

Column one contains results from the unrestricted models with three Nelson-
Siegel yield factors. Column two shows forecasts from unrestricted models
with the short rate as the single yield factor. Column three contains results
from no-arbitrage models with 3 latent yield factors under three specifications
of risk prices, i.e. "trp = 0" denotes constant risk price, "trp = 1" time-
varying risk price with λ1 being a diagonal matrix and "trp = 2" time-varying
risk price with λ1 a full matrix.
1) The FRMSE ratios in Table 3A show that when compared to a fore-

cast from a simple time series AR(1), term structure information does not
contribute to the predictability of inflation, but does increase the forecasta-
bility of real activity such as the IP growth. This is largely consistent with
Ang, Bekaert and Wei (2007) for inflation forecast, and the findings of Ang,
Piazzesi and Wei (2006) for GDP forecast. The BMAIs in Table 3B show
that the inflation forecast 24 month ahead from no-arbitrage models might
contain more useful information than the AR(1) model.
2) Within the no-arbitrage models, the results are sensitive to the risk

price settings. We compare three risk price specifications in the third column.
A parsimonious modeling is more favorable in terms of lower FRMSE ratios
and higher BMAIs, especially for inflation, and the more so when forecast
horizon increases. Fully time-varying risk prices are in general worse than
the other two cases, except for the FRMSE of IP growth as in the model
of entry (3,3) in Table 3A where IP growth is augmented with three yield
factors. Although time-varying risk price is likely to capture patterns of time-
varying risk premia of yields, it is more important for yield dynamics than
for macro variables. On the other hand, parameter uncertainty increases
when λ1 is time-varying and the forecast of macroeconomic variables quickly
deteriorates.
3) By comparing the first and third columns we can compare the perfor-

mance of reduced form Nelson-Siegel factor models to that of no-arbitrage
latent factors models. The results show that the no-arbitrage models have
better forecasting performance for inflation, especially for medium to long
horizons, as long as the risk price setting is parsimonious. For IP growth,
the reduced form models do a better job in FRMSE ratios while the BMAIs
are not conclusive.
4) Models in the second column has one yield factor - the short rate
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(1-month yield). Compared with the first column, results indicate that the
information contained in the slope and curvature factors contributes to the
forecast of IP growth - the measure of real activity. The evidence from BMAI
ratios is mixed.

6 Robustness checks on model specification
and forecasting procedure

In this Section, we discuss several issues related to the specification and use
of Nelson-Siegel models.

6.1 Two-step OLS versus one-stepMLE for unrestricted
NS models

In previous Sections, we have estimated reduced form NS models with two-
step OLS, calibrating the parameter λ. Here we check the robustness of
results when the models are estimated with ML and when λ is estimated.
In the first row, first column of Table 4A, we show FMRSE for the

Diebold-Li model estimated with ML with λ fixed at 0.0609. In the sec-
ond row, first column of Table 4A, we show results when the model and λ
are estimated with ML. The results are fairly similiar to those in Table 2A;
while the two-step OLS produces slightly lower FRMSE ratio with respect to
the random walk for a majority of the yield-horizon combinations, the one-
step MLE delivers somewhat better results towards the long end of yields for
long forecast horizons.
Therefore, the two-step OLS procedure with fixed λ is robust to the esti-

mation procedure and the choice of λ.
In the second column, we report results for the arbitrage free Nelson-Siegel

(AFNS) model proposed in Christensen, Diebold and Rudebusch (2007). Our
implementation follows Le Grand, 2007 and assumes a diagonal variance-
covariance matrix Ω. In the first row we calibrate λ, in the second row, we
estimate it. Compared to the counterpart reduced form models in the first
column, the no-arbitrage Nelson-Siegel has some advantage for the long yields
at 24 month horizon, but in the rest of the combinations, the differences are
minor.
Table 4B displays forecast results for the Nelson-Siegel model augmented

with macro variables/factors, estimated with one-step ML . Results are sim-
ilar to to the corresponding two-step OLS forecast reported in Table 2A.
Although in the Nelson-Siegel factor model with inflation and IP growth, the
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FRMSE ratios are slightly reduced for 12 to 24 month forecast horizons, in
the rest of the cases ML produces slightly worse results than the two-step
OLS.

6.2 Nelson-Siegel model performance and forecast pe-
riods

The results in Diebold and Li (2006) favored a specification in which each
Nelson-Siegel factor was modelled as an AR(1) process. In our exercises, the
VAR(1) specification does generally better than the AR(1). This subsection
investigates the causes of this discrepancy.

Our exercise differs from that of Diebold and Li (2006) in several aspects:
1) we use iterated forecast for all models, while they use dynamic forecast,
i.e. a regression of factors at t + h on factors at t; 2) we use a fixed-length
rolling sample of 180 points, while they do a recursive forecast adding one
observation at a time from the sample 1985:1-1994:1, through the end of
2000; 3) our data set is composed by 11 Fama-Bliss yields, Diebold and Li
(2006) use 17 Fama-Bliss yields; 4) we have a longer sample. We compute
129 1-month ahead forecasts, from 1993:1 to 2003:9, 124 6-months ahead
forecasts from 1993:6 to 2003:9, and 112 and 106 forecasts for 12 and 24
months ahead respectively. Diebold and Li (2006) compute 83 forecasts for
the period 1994:2 - 2000:12.
It turns out that the sample is responsible for the differences between the

VAR(1) and the AR(1) specification. We first replicate the forecast of the
three models (random walk, Nelson-Siegel AR(1) and Nelson-Siegel VAR(1))
considered in Diebold and Li (2006) on their sample, using dynamic forecast
on a recursive window as they do. We then extend the forecast period from
2000:12 to 2003:9 where our dataset and forecasts end. Table 5 reports the
FRMSE results of the replications and extensions11. The first column shows
selected results from Tables 4 to 6 in Diebold and Li (2006) for the three
models12. The second column reports our replication on their sample; the
third column shows results on our sample and column 4 reports results from
Table 2A. In each column we denote in bold the best forecast among the
three models for each yield-horizon combination. We underline the number
in the VAR(1) forecast if it is lower than the AR(1) forecast.
The first column shows that the Nelson-Siegel three factor AR(1) model

outperforms random walk most of the cases, especially at the 6 and 12 month
11In Table 5, we show the FRMSE and not the ratio with respect to the random walk.
121 and 6 months ahead forecasts for Nelson-Siegel VAR(1) model are not reported in

Diebold-Li (2006).
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horizons, and does better than VAR(1) for 12 month horizon. In column 2,
we use our 11 yields dataset and replicate their experiment. The random
walk forecast replication matches the Diebold-Li results. The Nelson-Siegel
AR(1) model matches well for 1 and 6 month horizons with differences up
to a few percentage points, the 12-months forecast produce higher RMSE
for both the AR(1) and the VAR(1). The conclusion that the AR(1) setting
outperforms the random walk in most cases for 6 and 12 month horizons
and the VAR(1) forecasts remains valid. We notice that the VAR(1) delivers
lower FRMSE for the 3 and 12 month yields at the 1-step ahead horizon.
Moving to column 3 where we extend the forecast horizon to 2003:9,

the picture changes dramatically. The AR(1) setting deteriorates, and the
random walk forecast dominates for most cases (exceptions are the 3 month
short rate at 1 and 6 month horizons where the VAR(1) does the best).
The VAR(1) outperforms the AR(1) for the 12 month yields at 1 and 6
months horizons and for 10 year yield at 1 month horizon. Although for the
12 months ahead forecast the VAR(1) still delivers worse forecast than the
AR(1), the difference is not as large as in the previous forecast period.
What drives this shift of performance among the three models? We plot

three yields (3 month, 3 year and 10 year yields) for the forecast period
1994:2 - 2003:9 in Figure 3. We can see that up to 2000:12, which is the
end of the forecast period in Diebold and Li (2006), the yield curve is quite
stable. When we look at the extended period from 2001:1 to 2003:9, the yield
curve shows a large downward shift, in which the 3 month yield declines from
4.973% to 0.931%. The slope of the yield curve also changes: the difference
between the short to long term yields widens from nearly zero to about 300
basis points.
In a relatively tranquil period, the argument in Diebold and Li (2006) fa-

voring the AR specification applies: "unrestricted VARs tend to produce poor
forecast due to the large number of included parameters and the resulting
potential for in-sample overfitting". The richness of the VAR(1) specification
becomes useful in the presence of substantial shifts in the term structure.

In conclusion, the two-step OLS estimation procedure for unrestricted
Nelson-Siegel VAR(1) models with fixed λ seems to be robust to a series of
robustness checks.

7 Conclusions

We propose a general state-space modeling framework to accommodate a vast
number of existing yield curve models. Within this framework, we system-
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atically examine the relative importance of no-arbitrage restrictions versus
large information set in forecasting the yield curve. The way we conduct
our experiment and comparison helps us to reveal a number of interesting
aspects of yield curve forecasting.

Large information set models are useful in ofrecasting, especially at long
horizons for long maturities. No-arbitrage models with constant prices of
risk improve the overall forecast performance; more complex specifications
with time-varying risk prices or exogenous variables in the state vector are
associated with higher prediction errors, especially at longer maturities.
We find evidence of important effects of macroeconomic variables on the

future yield curve, in line with the findings of Ang and Piazzesi (2003),
Diebold, Rudebusch and Aruoba (2006). We find the predictive power of
macro information is high at relatively long forecast horizons (1 to 2 years)
and for yields with short-to-medium maturities. This effect remains even in
models with only macro factors and no yield factors.
We also find that the yield curve is more useful in forecasting real activity

than inflation; we also find that, in addition to the level factor of yield, the
slope and curvature factors contribute to the forecast of macro variables.
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9 Appendix

9.1 Appendix 1. No-Arbitrage Restrictions on Bond
Pricing Parameters

1. State variable dynamics.

Transition equation for Xt follows VAR(1):

Xt = μ+ ΦXt−1 + vt,

vt is i.i.d. N(0, Ω).

2. Short rate equation.

rt = δ0 + δ01Xt

δ0: a scalar.
δ1: K × 1 vector.

3. Time-varying prices of risk (associated with the sources of uncer-
tainty vt).

Λt = λ0 + λ1Xt

Λt: K × 1 vector.
λ0: K × 1 vector.
λ1: K ×K matrix.
If investors are risk-neutral, λ0 = 0 and λ1 = 0, hence Λt = 0, no risk

adjustment. If λ0 6= 0 and λ1 = 0, then price of risk is constant.

4. Pricing kernel.

No arbitrage opportunity between bonds with different maturities im-
plies that there is a discount factor m linking the price of yield of
maturity n this month with the yield of maturity n− 1 next month.

P
(n)
t = Et

h
mt+1P

(n−1)
t+1

i
The stochastic discount factor is related to the short rate and risk per-

ceived by the market,

mt+1 = exp
¡
−rt − 1

2
Λ0tΩΛt − Λ0tvt+1

¢
28



No-arbitrage recursive relation can be derived from the above equations
as:

P
(n)
t = Et

h
mt+1P

(n−1)
t+1

i
= Et

h
mt+1mt+2P

(n−2)
t+2

i
= Et

h
mt+1mt+2...mt+nP

(0)
t+n

i
= Et [mt+1mt+2...mt+n · 1]

= Et

∙
exp

µ
−

n−1P
i=0

¡
rt+i +

1
2
Λ0t+iΩΛt+i + Λ0t+ivt+1+i

¢¶¸
= Et [exp (An +B0

nXt)] = Et [exp (−nyt,n)]

= EQ
t

∙
exp

µ
−

n−1P
i=0

rt+i

¶¸
EQ
t denotes the expectation under the risk-neutral probability measure,

under which the dynamics of the state vector Xt are characterized by the
risk-neutral vector of constants μQ and by the autoregressive matrix ΦQ:

μQ = μ−Ωλ0
ΦQ = Φ−Ωλ1

Affine functions of the state variables for yields are:

pt,t+n ≡ lnP (n)
t = An +B0

nXt

yt,t+n = an + b0nXt =
−1
n
(An +B0

nXt)

where the coefficients follow the difference equations:

An+1 = An +B0
n (μ−Ωλ0) +

1
2
B0
nΩBn +A1

B0
n+1 = B0

n (Φ−Ωλ1) +B0
1

with a1 = δ0 = −A1 and b1 = δ1 = −B113.
These can be derived from the pricing kernel equation.

P
(n+1)
t = Et

h
mt+1P

(n)
t+1

i
= Et

£
exp

©
−rt − 1

2
Λ0tΩΛt − Λ0tvt+1

ª
exp {An +B0

nXt+1}
¤

= exp
©
−rt − 1

2
Λ0tΩΛt +An

ª
Et [exp {−Λ0tvt+1 +B0

nXt+1}]
= exp

©
−δ0 − δ01Xt − 1

2
Λ0tΩΛt +An

ª
·Et [exp {−Λ0tvt+1 +B0

n (μ+ ΦXt + vt+1)}]
13Differently from Ang and Piazzesi (2003) where they define ΣΣ0 = Ω in the difference

equations above, and identify the matrix Σ; we are only interested in Ω. Our λ0 and
λ1 have therefore different meaning and scale to theirs. The pricing kernel we specify
is: mt+1 = exp

¡
−rt − 1

2Λ
0
tΩΛt − Λ0tvt+1

¢
, where vt+1 ∼ N(0, Ω), while they assume

mt+1 = exp
¡
−rt − 1

2Λ
0
tΛt − Λ0tεt+1

¢
, where εt+1 ∼ N(0, I)
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= exp
©
−δ0 − δ01Xt − 1

2
Λ0tΩΛt +An +B0

n (μ+ ΦXt)
ª

·Et [exp {−Λ0tvt+1 +B0
nvt+1}]

= exp
©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt − 1

2
Λ0tΩΛt

ª
·Et [exp {(−Λ0t +B0

n) vt+1}]
= exp

©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt − 1

2
Λ0tΩΛt

ª
· exp

©
Et [(−Λ0t +B0

n) vt+1] +
1
2
var [(−Λ0t +B0

n) vt+1]
ª

= exp
©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt − 1

2
Λ0tΩΛt

ª
exp

©
1
2
var [(−Λ0t +B0

n) vt+1]
ª

= exp
©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt − 1

2
Λ0tΩΛt

ª
· exp

©
1
2
Et

£
(−Λ0t +B0

n) vt+1v
0
t+1 (−Λt +Bn)

¤ª
= exp

©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt − 1

2
Λ0tΩΛt

ª
· exp

©
1
2
[Λ0tΩΛt − 2B0

nΩΛt +B0
nΩBn]

ª
= exp

©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt −B0

nΩΛt +
1
2
B0
nΩBn

ª
= exp

©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt −B0

nΩΛt +
1
2
B0
nΩBn

ª
= exp

©
−δ0 +An +B0

nμ+ (B
0
nΦ− δ01)Xt −B0

nΩ (λ0 + λ1Xt) +
1
2
B0
nΩBn

ª
= exp

©
−δ0 +An +B0

n (μ−Ωλ0) +
1
2
B0
nΩBn + (B

0
nΦ−B0

nΩλ1 − δ01)Xt

ª
= exp

©£
A1 +An +B0

n (μ−Ωλ0) +
1
2
B0
nΩBn

¤
+ [B0

nΦ−B0
nΩλ1 +B0

1]Xt

ª
5. An alternative presentation for the no-arbitrage coefficients.

In order to understand intuitively how these restrictions are imposed di-
rectly on the coefficients in the yield equation, we can write them in the
following affine form.
Given that

pt,t+n = An +B0
nXt

yt,t+n = an + b0nXt =
−1
n
(An +B0

nXt)

we can derive

bn+1 =
1

(n+1)

∙
nP
i=0

(Φ0 − λ01Ω)
i

¸
b1

an+1 = a1 − 1
(n+1)

nP
i=1

B(i)

where B(i) = B0
i (μ− Ωλ0) +

1
2
B0
iΩBi.
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9.2 Appendix 2. The likelihood function with Chen-
Scott (1993) method

In order to be able to extract factors under no-arbitrage restrcitions, we
employ the method by Chen and Scott (1993)14. We assume that there
are K factors in the state equation and that among them, K2 factors are
unobserved. When the number of yields N exceeds number of unobserved
factors K2, we assume that K2 yields, yNE

t , are observed without measure-
ment errors, and that N −K2 yields, yEt , are measured with error u

m
t . The

state vector contains both observed variables Xo
t and latent factors X

u
t , thus

Xt = [X
o
t ; Xu

t ]
The measurement equation can be written as follows:

yt = a+ boXo
t + buXu

t + bmumt

where yt =
∙
yNE
t

yEt

¸
, a =

∙
aNE

aE

¸
, bo =

∙
bNE,o

bE,o

¸
, bu =

∙
bNE,u

bE,u

¸
, and

bm =

∙
0(K2×(N−K2))

bE,m

¸
For a given parameter vector θ = (μ,Φ,Ω, δ0, δ1, λ0, λ1), the unobserved

factors Xu
t will be solved from the yields and the observed variables Xo

t as:
Xu

t =
¡
bNE,u

¢−1 £
Y NE
t − aNE − bNE,oXo

t

¤
.

Denoting the normal density functions of the state variables Xu
t and the

error umt as fX and fum respectively, the joint likelihood £(θ) of the observed
data on zero coupon yields Yt and the observable factors Xo

t is given (up to
a constant) by:

$ (θ) =
TQ
t=2

f
¡
yt,X

o
t |yt−1, Xo

t−1
¢

log(£(θ)) =
TP
t=2

log |det (J−1)|+ log fX
¡
Xo

t , X
u
t |Xo

t−1, X
u
t−1
¢
+ log fum (u

m
t )

= − (T − 1) log |det (J)|− (T−1)
2
log(det(Ω))

−1
2

TP
t=2

(Xt − μ−ΦXt−1)
0Ω−1 (Xt − μ−ΦXt−1)

− (T−1)
2

N−K2P
i=1

log (σ2i )− 1
2

TP
t=2

N−K2P
i=1

(umt,i)
2

σ2i

The Jacobian term is: J =
µ

IK−K2 0(K−K2)×K2 0(K−K2)×(N−K2)

Bo Bu Bm

¶
.

14Our presentation follows closely the discussion in Ang and Piazzesi (2003).
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Figure 1: Macro variables 
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Figure 2: First four macro factor 
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Figure 3: Forecast periods comparison 
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Notes: 
 

1) This figure shows three yields (3 month, 3 year and 10 year)  in the period from 1994:2 to 2003:9.  
 

2) In the Diebold-Li (2006) paper, forecast for yields are made in the period between 1994:2- 2000:12. 
The straight line denotes the time of 2000:12 when their forecast ends.   
 

3) Starting from 2001:1 to 2003:9, the yield curve has experienced a large downward movement where 
the 3-month yield declined from 4.973% in 2001:1 to 0.931% in 2003:9, a total change of more than 
400 basis points.  The medium and long term interests rates also fall dramatically. 
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Table 1  Factor loadings 
 

 
   
Factor 1 Total variance explained: 32.26% 2R  
 Index of IP: Non-energy, total 0.93 
 Index of IP: Mfg 0.93 
 Index of IP: Non-energy excl CCS 0.92 
 Index of IP: Total 0.92 
 Index of IP: Non-energy excl CCS and MVP 0.91 
   
Factor 2 Total variance explained: 22.25%  
 PPI: crude materials 0.80 
 CPI: housing 0.79 
 CPI: services 0.79 
 Loans and Securities @ all commercial banks: commercial and 

Individual loans (in mil of current $) 
0.78 

 CPI: food and beverages 0.77 
   
Factor 3 Total variance explained: 9.04%  
 Loans and Securities @ all commercial banks: Securities, U.S. 

govt (in mil of current $) 
0.55 

 Loans and Securities @ all commercial banks: Securities, total 
(in mil of current $) 

0.41 

 ISM mfg index: Employment 0.39 
 M1 (in bil of current $) 0.38 
 Mean duration of unemployment 0.38 
   
Factor 4 Total variance explained: 4.69%  
 Nominal effective exchange rate 0.65 
 Spot Euro/US  0.63 
 Spot SZ/US 0.56 
 Depository institutions reserve: Total (adj for rr changes) 0.35 
 Spot Japan/US 0.34 
   
Factor 5 Total variance explained: 3.97%  
 M3 (in bil of current $) 0.40 
 M2 (in bil of current $) 0.31 
 Employment on nonag payrolls: Financial activities 0.21 
 Loans and Securities @ all commercial banks: Total (in mil of 

current $) 
0.19 

 Total merchandise exports (FAS value) (in mil of $) 0.19 
   

 
 
Notes: Factors are extracted from a panel with 162 macro variables (1974:4-B003:9) after transformation 
to control for stationarity. The first five factors are shown with the five variables with which they are most 
highly correlated. The first five factors together explain 72.21% of the total variation in the transformed 
macro panel. The series used are the same as in Giannone, Reichlin and Sala (2004), except that we 
exclude 9 interest rate variables. 
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Notes on the forecast comparison for Table 2 to Table 4: 
 
1) Rolling forecast.  We set the estimation window fixed at 180 periods. By moving the sample forward one 

observation at a time, we implement rolling estimation starting from the sample period of 1978:1-1992:12. 

2) y(n): yield of maturity n, n measured in month;  
h: forecast horizon in month;  
X: {X1 X2 X3},  the state vector and the variables. 
NS: Nelson-Siegel yield factors. 
CS: Chen-Scott yield factors. 
mf: macro factors. 

3) Forecasting period.  For 1 month ahead forecasting horizon, we conduct our exercise for all dates in the 
period 1993:1 - 2003:9, a total of 129 periods. For 6 month, 18 month and 24 month ahead forecast, we 
have a total of 124, 112 and 106 forecast periods respectively. 

4) FRMSE ratio: the first forecast performance measure constructed from forecast root mean squared error 
(FRMSE) of competing models. For yield forecast in Table 2-A and Table 4, we calculate the ratio of 
forecast root mean squared error (FRMSE) of the specific model with respect to that of Random Walk for 
y(n) on forecast horizon h months ahead; for macro variable forecast in Table 3-A, we take the ratio of the 
FRMSE of the selected model with respect to that of a simple AR(1) model. 

5) BMAI ratio: the second forecast performance measure constructed from a Bayesian model averaging index 
(BMAI). For yield forecast in Table 2-B, we calculate the ratio of posterior probability that model i’s 
forecast iny )(ˆ  is included in a realised yield )(ny ’s regression with respect to that of Random Walk  

forecast rwny )(ˆ : rwi nynyny )(ˆ)(ˆ)( 210   ; for macro variable forecast in Table 3-B,  we 

calculate the ratio of the posterior probability of selected model forecast with respect to that of a simple 
AR(1) model. 

6) Risk price specifications in no-arbitrage models, Table 3-A and Table 3-B:  
trp = 0: constant risk price;  
trp = 1: time varying risk price, 1 diagonal;  

trp = 2: time-varying risk price, 1 full matrix. 

7) Illustration on the display of FRMSE ratio: 

 

8) Illustration on the display of BMAI ratio: 
 

 
 

< 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 

<  0.5 0.5 - 2 2.00 – 5.00 > 5.00 
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Table 2. Forecast comparison of yields 

Table 2-A. FRMSE ratios 

Unrestricted No-arbitrage Restricted 

In
fo

. 
n.

 y
ie

ld
 

n.
 m

ac
ro

 

   Const. risk price Time-varying risk price, 1 diagonal

   
  X: {NS1 NS2 NS3} 

(Diebold-Li)   
X: {CS1 CS2 CS3} 

A0(3)
X: {CS1 CS2 CS3} 

A0(3) 

3 0 

y(n)\h 1 6 12 24 

y(3) 0.89 0.84 0.88 0.93 
y(12) 1.06 0.98 0.95 0.96 

y(36) 1.02 1.01 0.98 1.06 

y(60) 1.04 1.03 1.00 1.17 

y(120) 1.06 1.06 1.06 1.37  

 y(n)\h 1 6 12 24 

y(3) 0.91 0.85 0.91 0.87
y(12) 1.03 0.97 0.96 0.84

y(36) 0.98 0.98 0.95 0.84

y(60) 1.02 0.99 0.96 0.87

y(120) 1.00 1.00 0.98 0.93
 

y(n)\h 1 6 12 24 

y(3) 0.84 0.75 0.84 0.90
y(12) 0.99 0.95 0.94 0.96

y(36) 1.01 1.02 1.00 1.12

y(60) 1.06 1.06 1.05 1.30

y(120) 1.02 1.09 1.14 1.62 

  X: {NS1 NS2 NS3  infl  IPgrowth}   X: {CS1 CS2 CS3  infl  IPgrowth} X: {CS1 CS2 CS3  infl  IPgrowth} 

S
m

al
l N

 

3 2 

y(n)\h 1 6 12 24 

y(3) 0.89 0.87 0.92 0.93 
y(12) 1.03 1.00 0.97 0.96 

y(36) 1.06 1.10 1.07 1.18 

y(60) 1.08 1.15 1.15 1.39 

y(120) 1.08 1.21 1.28 1.77 
 

  y(n)\h 1 6 12 24 

y(3) 0.89 0.81 0.88 0.84
y(12) 0.96 0.95 0.95 0.82

y(36) 0.98 1.00 0.98 0.85

y(60) 1.02 1.01 0.98 0.89

y(120) 1.00 1.01 1.00 0.96 

y(n)\h 1 6 12 24 

y(3) 0.85 0.78 0.86 0.87
y(12) 0.95 0.97 0.96 0.91

y(36) 1.02 1.06 1.03 1.05

y(60) 1.06 1.09 1.08 1.21

y(120) 1.04 1.15 1.21 1.55
   
  X: {NS1 NS2 NS3  mf1  mf2}   X: {CS1 CS2 CS3  mf1  mf2} X: {CS1 CS2 CS3  mf1  mf2} 

3 2 

y(n)\h 1 6 12 24 

y(3) 0.89 0.85 0.87 0.85 
y(12) 1.01 0.96 0.91 0.88 

y(36) 1.05 1.07 1.01 1.05 

y(60) 1.07 1.12 1.08 1.24 

y(120) 1.08 1.17 1.19 1.56 
 

  y(n)\h 1 6 12 24 

y(3) 0.92 0.87 0.93 0.88
y(12) 1.00 0.96 0.95 0.83

y(36) 1.00 0.97 0.95 0.80

y(60) 1.03 0.98 0.94 0.80

y(120) 1.00 0.98 0.96 0.88 

y(n)\h 1 6 12 24 

y(3) 0.84 0.77 0.79 0.83
y(12) 0.98 0.93 0.85 0.87

y(36) 1.04 1.05 0.97 0.98

y(60) 1.09 1.14 1.10 1.16

y(120) 1.06 1.27 1.34 1.58
 

  X: {NS1 NS2 NS3  mf1  mf2 mf3 mf4}     

3 4 

y(n)\h 1 6 12 24 

y(3) 0.93 0.84 0.77 0.69 
y(12) 1.02 0.89 0.79 0.73 

y(36) 1.03 0.97 0.89 0.84 

y(60) 1.05 1.03 0.96 0.97 

y(120) 1.05 1.08 1.08 1.18 
 

    

  X: {y(1)  mf1  mf2 mf3 mf4}   
X: {y(1)  mf1  mf2 mf3 mf4} 

(Moench)
X: {y(1)  mf1  mf2 mf3 mf4} 

(Moench)

1 4 

y(n)\h 1 6 12 24 

y(3) 1.53 1.03 0.86 0.72 
y(12) 2.09 1.05 0.83 0.74 

y(36) 2.37 1.12 0.83 0.84 

y(60) 2.53 1.17 0.88 0.98 

y(120) 2.82 1.36 1.09 1.35 
 

  y(n)\h 1 6 12 24 

y(3) 1.92 1.09 0.87 0.72
y(12) 3.32 1.25 0.88 0.79

y(36) 4.09 1.65 1.26 1.26

y(60) 5.22 2.10 1.56 1.63

y(120) 6.69 2.80 2.10 2.50
 

y(n)\h 1 6 12 24 

y(3) 1.74 1.06 0.88 0.73
y(12) 2.28 1.11 0.87 0.76

y(36) 2.63 1.25 0.94 0.87

y(60) 3.19 1.41 1.03 1.07

y(120) 4.10 1.83 1.38 1.63
 

  X: {mf1  mf2 mf3 mf4}   X: {mf1  mf2 mf3 mf4} X: {mf1  mf2 mf3 mf4} 

L
ar

g
e 

N
 

0 4 

y(n)\h 1 6 12 24 

y(3) 5.38 1.42 0.81 0.71 
y(12) 4.53 1.32 0.77 0.76 

y(36) 3.84 1.29 0.79 0.89 

y(60) 3.70 1.30 0.84 1.05 

y(120) 3.64 1.47 1.08 1.42 
 

  y(n)\h 1 6 12 24 

y(3) 5.64 1.47 0.83 0.72
y(12) 4.82 1.41 0.83 0.84

y(36) 4.04 1.58 1.23 1.28

y(60) 4.93 1.98 1.49 1.68

y(120) 6.08 2.59 1.97 2.45
 

y(n)\h 1 6 12 24 

y(3) 5.32 1.40 0.81 0.76
y(12) 4.69 1.35 0.80 0.86

y(36) 4.22 1.48 0.95 1.12

y(60) 4.30 1.62 1.09 1.40

y(120) 4.90 2.07 1.51 2.03
  

 
 

 



 40

 

 

Table 2-B. BMAI ratios 

Unrestricted No-arbitrage Restricted 

In
fo

. 
n.

 y
ie

ld
 

f n.
 m

ac
ro

 

   Const. risk price Time-varying risk price, 1 diagonal

   
  X: {NS1 NS2 NS3} 

(Diebold-Li)
  X: {CS1 CS2 CS3} 

A0(3)
X: {CS1 CS2 CS3} 

A0(3) 

3 0 

y(n)\h 1 6 12 24 

y(3) 0.9  1.0 1.0  1.0  
y(12) 1.0  1.0 1.0  1.0  

y(36) 1.1  1.0 1.0  1.0  

y(60) 1.0  1.0 1.0  2.4  

y(120) 1.9  1.8 1.2  3.0   

y(n)\h 1 6 12 24 

y(3) 1.2 0.8 1.1 1.0 
y(12) 1.0 1.0 1.0 1.0 

y(36) 1.0 1.0 1.0 1.0 

y(60) 1.0 1.0 1.1 1.1 

y(120) 1.2 1.9 2.1 3.5 
 

y(n)\h 1 6 12 24 

y(3) 0.9  1.0 1.1 1.5 
y(12) 0.9  1.0 1.0 1.4 

y(36) 1.0  1.0 1.1 3.1 

y(60) 1.0  1.0 2.5 9.5 

y(120) 1.5  2.5 3.2 0.4  

  X: {NS1 NS2 NS3  infl  IPgrowth}   X: {CS1 CS2 CS3  infl  IPgrowth} X: {CS1 CS2 CS3  infl  IPgrowth} 

S
m

al
l N

 

3 2 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 1.0  1.5  
y(12) 1.0  1.0 1.0  1.9  

y(36) 1.0  1.0 1.0  7.8  

y(60) 1.0  1.0 1.0  4.8  

y(120) 1.8  1.0 6.0  0.3  
 

  y(n)\h 1 6 12 24 

y(3) 1.0 0.8 1.1 1.0 
y(12) 0.9 1.0 1.0 1.0 

y(36) 1.0 1.0 1.0 1.0 

y(60) 1.0 1.0 1.0 1.0 

y(120) 1.2 1.9 2.7 3.4  

y(n)\h 1 6 12 24 

y(3) 0.9  0.9 1.8 5.8 
y(12) 1.0  1.0 2.6 2.7 

y(36) 1.0  1.0 2.9 9.0 

y(60) 1.0  1.0 7.0 4.8 

y(120) 1.0  0.6 0.3 0.2 
   
  X: {NS1 NS2 NS3  mf1  mf2}   X: {CS1 CS2 CS3  mf1  mf2} X: {CS1 CS2 CS3  mf1  mf2} 

3 2 

y(n)\h 1 6 12 24 

y(3) 0.9  0.9 1.3  1.1  
y(12) 1.0  1.0 1.4  1.0  

y(36) 1.0  1.0 2.0  3.7  

y(60) 1.0  1.0 4.7  7.1  

y(120) 1.6  3.5 2.8  0.7  
 

  y(n)\h 1 6 12 24 

y(3) 1.1 1.0 1.4 1.0 
y(12) 1.0 1.0 1.1 1.0 

y(36) 1.0 1.0 1.6 1.4 

y(60) 1.0 1.0 3.9 2.1 

y(120) 1.2 2.0 1.2 4.9  

y(n)\h 1 6 12 24 

y(3) 1.0  0.8 2.0 9.8 
y(12) 0.9  1.1 4.6 12.2 

y(36) 1.0  1.0 10.1 1.6 

y(60) 1.0  1.2 3.5 0.2 
y(120) 0.9  0.3 0.1 0.4 

 

  X: {NS1 NS2 NS3  mf1  mf2 mf3 mf4}     

3 4 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 5.8  16.6  
y(12) 1.0  1.0 13.0  16.7  

y(36) 1.0  1.0 8.0  5.1  

y(60) 1.0  1.0 1.2  1.6  

y(120) 1.7  4.6 0.2  1.0  
 

    

  X: {y(1)  mf1  mf2 mf3 mf4}   X: {y(1)  mf1  mf2 mf3 mf4} 
(Moench)

X: {y(1)  mf1  mf2 mf3 mf4} 
(Moench)

1 4 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 1.2  11.6  
y(12) 1.0  1.0 1.5  13.3  

y(36) 2.0  1.0 7.1  12.0  

y(60) 3.1  1.7 5.6  10.9  

y(120) 0.2  4.1 0.9  1.6  
 

  y(n)\h 1 6 12 24 

y(3) 1.0 1.0 1.5 10.1 
y(12) 1.0 1.0 7.8 12.3 

y(36) 1.0 3.8 11.5 14.4 

y(60) 1.8 9.7 1.2 5.5 

y(120) 9.7 1.1 1.0 1.0 
 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 1.2 10.4 
y(12) 1.0  1.0 2.3 15.5 

y(36) 1.9  1.0 11.9 11.9 

y(60) 0.8  3.5 2.5 4.1 

y(120) 0.3  9.5 0.9 1.0 
 

  

X: {mf1  mf2 mf3 mf4}   X: {mf1  mf2 mf3 mf4} X: {mf1  mf2 mf3 mf4} 

L
ar

g
e 

N
 

0 4 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 1.3  9.1  
y(12) 1.0  1.0 1.7  10.8  

y(36) 1.0  1.1 12.3  13.0  

y(60) 1.3  5.7 2.0  12.1  

y(120) 7.3  4.2 0.7  1.1  
 

  y(n)\h 1 6 12 24 

y(3) 1.0 1.0 1.0 14.0 
y(12) 1.0 1.0 2.7 15.1 

y(36) 1.1 5.8 12.1 13.8 

y(60) 3.1 9.7 2.0 13.2 

y(120) 1.9 0.9 1.0 1.1 
 

y(n)\h 1 6 12 24 

y(3) 1.0  1.0 1.1 6.4 
y(12) 1.0  1.0 1.4 11.4 

y(36) 1.0  2.4 11.7 13.9 

y(60) 2.0  9.7 1.1 5.9 

y(120) 1.6  0.8 0.7 1.0 
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Table 3. Forecast comparison of macro variables 
Table 3-A. FRMSE ratios 

Unrestricted Restricted 

3 Nelson-Siegel factors 1 yield factor: 1-month rate 3 latent (Chen-Scott) yield factorsM
ac

ro
 

X: {NS1 NS2 NS3 infl.} X: {CS1 CS2 CS3 infl.}

h 1 6 12 24 

 1.02 1.04 1.06 1.24  

h 1 6 12 24 

trp=0 1.02 1.01 0.98 1.09
trp=1 1.02 1.01 0.95 0.98

trp=2 1.02 1.09 1.16 1.47

X: { NS1 NS2 NS3 infl. IPg} X: {m1  infl. IPg} X: {CS1 CS2 CS3 infl. IPg}In
fla

tio
n 

h 1 6 12 24 

 1.07 1.28 1.41 1.70  

h 1 6 12 24 

1.03 1.14 1.33 1.29 

h 1 6 12 24 

trp=0 1.09 1.30 1.41 1.44
trp=1 1.10 1.37 1.48 1.35

trp=2 1.04 1.20 1.41 1.46  

X: {NS1 NS2 NS3 IPg}  X: {CS1 CS2 CS3 IPg}

h 1 6 12 24 

 0.97 0.90 0.83 0.96  

 h 1 6 12 24 

trp=0 1.00 0.96 0.87 1.14
trp=1 0.98 0.96 0.88 1.04

trp=2 1.00 0.91 0.83 0.98
 

X: {NS1 NS2 NS3 infl. IPg} X: {m1 infl. IPg} X: {CS1 CS2 CS3 infl. IPg}

IP
 g

ro
w

th
 

h 1 6 12 24 

 0.95 0.80 0.84 1.05  

h 1 6 12 24 

1.01 0.98 0.92 1.05 

h 1 6 12 24 

trp=0 0.98 0.95 0.95 1.33
trp=1 0.99 0.95 0.95 1.24

trp=2 1.05 1.02 0.91 1.07
  

Table 3-B. BMAI ratios 

Unrestricted Restricted 

3 Nelson-Siegel factors 1 yield factor: 1-month rate 3 latent (Chen-Scott) yield factorsM
ac

ro
 

X: {NS1 NS2 NS3 infl.} X: {CS1 CS2 CS3 infl.}

h 1 6 12 24 

 0.8  0.9  0.8  0.9   

h 1 6 12 24

trp=0 0.8  1.0  0.8 5.0 
trp=1 0.8  1.0  0.5 1.1 

trp=2 0.8  0.9  0.4 4.2  

X: { NS1 NS2 NS3 infl. IPg} X: {m1  infl. IPg} X: {CS1 CS2 CS3 infl. IPg}In
fla

tio
n 

h 1 6 12 24 

 0.8  0.9  0.8  0.9   

h 1 6 12 24

1.0 0.5 0.5 0.2  

h 1 6 12 24

trp=0 0.8  1.0  0.8 4.0 
trp=1 0.8  0.9  0.5 1.0 

trp=2 1.1  0.4  0.5 0.9 
  

X: {NS1 NS2 NS3 IPg}  X: {CS1 CS2 CS3 IPg}

h 1 6 12 24 

 0.8  1.0  1.0  0.2   

 h 1 6 12 24

trp=0 0.9  1.0  0.5 0.1 
trp=1 0.9  1.0  1.0 0.1 
trp=2 0.9  1.0  0.7 0.1 

 

X: {NS1 NS2 NS3 infl. IPg} X: {m1 infl. IPg} X: {CS1 CS2 CS3 infl. IPg}

IP
 g

ro
w

th
 

h 1 6 12 24 

 0.3  0.3  0.7  0.6   

h 1 6 12 24

0.3 0.3 0.4 1.0  

h 1 6 12 24

trp=0 0.4  0.6  0.9 1.0 
trp=1 0.3  0.2  0.5 1.0 

trp=2 0.3  0.6  0.9 1.0 
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Table 4. FRMSE ratios for Nelson-Siegel factor models: 
1-step MLE estimation with Kalman filter 

 
Table 4-A. Models with 3 Nelson-Siegel dynamic factors 

X: {NS1 NS2 NS3} 

Model Setting Diebold-Li No-arbitrage Nelson-Siegel 

 

 fixed 

y(n)\h 1 6 12 24 

y(3) 0.90 0.86 0.89 0.95
y(12) 1.07 1.00 0.95 0.97

y(36) 1.02 1.02 0.97 1.04

y(60) 1.05 1.03 0.97 1.11

y(120) 1.07 1.04 0.99 1.24 

y(n)\h 1 6 12 24 

y(3) 0.91 0.88 0.90 0.95 
y(12) 1.09 1.02 0.95 0.96 

y(36) 1.03 1.03 0.96 1.01 

y(60) 1.07 1.04 0.96 1.07 

y(120) 1.10 1.05 0.96 1.14  

  

 free 

y(n)\h 1 6 12 24 

y(3) 0.89 0.84 0.88 0.93
y(12) 1.03 0.98 0.95 0.96

y(36) 1.05 1.01 0.97 1.05

y(60) 1.06 1.03 0.99 1.13

y(120) 1.10 1.06 1.04 1.28
 

y(n)\h 1 6 12 24 

y(3) 0.91 0.86 0.88 0.93 
y(12) 1.06 1.00 0.95 0.95 

y(36) 1.06 1.02 0.96 1.01 

y(60) 1.09 1.04 0.97 1.08 

y(120) 1.13 1.06 1.00 1.15  

 

 
Table 4-B. Models with 3 Nelson-Siegel factors and macro variables/factors 

 fixed at 0.0609 

X: {NS1 NS2 NS3  infl  IPgrowth}  X: {NS1 NS2 NS3  mf1  mf2} X: {NS1 NS2 NS3  mf1  mf2 mf3 mf4} 

y(n)\h 1 6 12 24 

y(3) 0.90 0.87 0.90 0.89 
y(12) 1.04 1.01 0.96 0.91 

y(36) 1.06 1.11 1.05 1.08 

y(60) 1.09 1.16 1.12 1.26 

y(120) 1.11 1.21 1.23 1.58  

 

y(n)\h 1 6 12 24 

y(3) 0.89 0.88 0.92 0.88
y(12) 1.01 0.99 0.94 0.88

y(36) 1.07 1.10 1.02 1.05

y(60) 1.09 1.15 1.10 1.25

y(120) 1.11 1.20 1.23 1.60
 

y(n)\h 1 6 12 24 

y(3) 0.99 0.85 0.80 0.78
y(12) 1.01 0.92 0.88 0.81

y(36) 1.02 1.01 1.01 0.88

y(60) 1.06 1.07 1.09 0.94

y(120) 1.07 1.15 1.22 1.07 

 
Notes: 
1) The above table reports 1-step MLE estimation of models with 3 Nelson-Siegel dynamic factors. In Table 

4-A, the first column is  unrestricted Diebold-Li model, while the second column is No-arbitrage Nelson-
Siegel model. The first row is the result when   fixed at 0.0609, and the second row reports the result 
when we estimate   as free parameter.  

2) In Table 4-A, Model in the first row and first column has the same specification as the Diebold-Li model 
reported in Table 2. The only difference is the estimation procedure. In Table 2, we estimate the model 
with two step OLS. We first estimate the Nelson-Siegel factors from yields, then we estimate the VAR(1) 
dynamics of Nelson-Siegel factors. Here, we explore the state-space framework to estimate the model in 
one step with Maximum Likelihood, extracting the Nelson-Siegel factors by Kalman Filter. 

3) In Table 4-B, these three models corresponds to the second to the fourth models in the first column of 
Table 2, i.e. three Nelson-Siegel factors with macro variables/factors. In Table 2, we estimate these models 
with two step OLS. We first estimate the Nelson-Siegel factors from yields, then we estimate the VAR(1) 
dynamics of Nelson-Siegel factors together with macro variable/factors. Here, we explore the state-space 
framework to estimate the model in one step with Maximum Likelihood, extracting the Nelson-Siegel 
factors by Kalman Filter and restrict the factor loadings on the measurement equations of yields to be zero. 
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Table 5. Forecast periods and FRMSE performance between models 

Models Diebold-Li (2006) paper results DL Forecast replication DL Forecast extension Forecast in our paper 

 Forecast period: 1994:2 to 2000:12 Forecast period: 1994:2 to 2000:12 Forecast period: 1994:2 to 2003:9 Forecast period: 1993:1+h-1 to 2003:9

Random 
Walk

y(n)\h 1 6 12 

y(3) 0.179 0.605 1.019
y(12) 0.241 0.779 1.197

y(36) 0.279 0.879 1.237

y(60) 0.276 0.861 1.191

y(120) 0.254 0.758 1.052 

y(n)\h 1 6 12 

y(3) 0.178 0.606 1.019
y(12) 0.240 0.779 1.195

y(36) 0.278 0.879 1.237

y(60) 0.276 0.861 1.190

y(120) 0.254 0.758 1.048
 

y(n)\h 1 6 12 

y(3) 0.214 0.836 1.429
y(12) 0.259 0.906 1.493

y(36) 0.309 0.917 1.354

y(60) 0.307 0.869 1.230

y(120) 0.282 0.727 1.002 

y(n)\h 1 6 12 

y(3) 0.205 0.809 1.417
y(12) 0.251 0.877 1.480

y(36) 0.302 0.891 1.345

y(60) 0.302 0.850 1.223

y(120) 0.278 0.719 1.000 

3 NS 

AR(1)

y(n)\h 1 6 12 

y(3) 0.176 0.517 0.739
y(12) 0.236 0.669 0.841

y(36) 0.279 0.750 0.918

y(60) 0.292 0.777 0.978

y(120) 0.260 0.721 0.981
 

y(n)\h 1 6 12 

y(3) 0.183 0.547 0.801
y(12) 0.243 0.661 0.832

y(36) 0.279 0.767 1.018

y(60) 0.286 0.808 1.137

y(120) 0.251 0.748 1.175
 

y(n)\h 1 6 12 

y(3) 0.225 0.927 1.490
y(12) 0.294 1.023 1.565

y(36) 0.318 0.980 1.472

y(60) 0.323 0.936 1.392

y(120) 0.293 0.789 1.234
 

y(n)\h 1 6 12 

y(3) 0.216 0.842 1.395
y(12) 0.287 0.960 1.466

y(36) 0.319 0.943 1.326

y(60) 0.325 0.903 1.223

y(120) 0.290 0.757 1.033
 

3 NS

VAR(1)

y(n)\h 1 6 12 

y(3) n.a. n.a. 1.102
y(12) n.a. n.a. 1.293

y(36) n.a. n.a. 1.393

y(60) n.a. n.a. 1.385

y(120) n.a. n.a. 1.279
 

y(n)\h 1 6 12 

y(3) 0.165 0.582 1.147
y(12) 0.229 0.829 1.387

y(36) 0.299 0.990 1.549

y(60) 0.301 1.009 1.562

y(120) 0.254 0.901 1.461
 

y(n)\h 1 6 12 

y(3) 0.186 0.779 1.591
y(12) 0.262 1.011 1.846

y(36) 0.322 1.081 1.827

y(60) 0.325 1.050 1.700

y(120) 0.292 0.888 1.449
 

y(n)\h 1 6 12 

y(3) 0.182 0.678 1.248
y(12) 0.265 0.864 1.399

y(36) 0.309 0.904 1.315

y(60) 0.313 0.879 1.224

y(120) 0.294 0.761 1.060
 

Notes: 
1) In this table, we report the value of FRMSE instead of the ratio between two competing models, in order to compare with the results of Diebold-Li (2006) to 

understand the different performance of AR(1) vs. VAR(1) settings of Nelson-Siegel dynamic factor models.  

2) In each column, the three models are forecast with the same data, same forecast strategy and period. The first column compiles the results reported in Diebold-Li 
(2006) where they make the forecast with a data set of 17 Fama-Bliss yields.  

3) Among the three models in each column, the lowest FRMSE for a yield-horizon combination is marked with bold face. 

4) For Nelson-Siegel three factor models, the result is underlined if the VAR(1) forecast better than AR(1) model for a yield-horizon combination.  

5) Forecast in the first three columns are made with recursive window starting from 1985:1 and dynamic forecast, while the last column presents our results with 
rolling window of 180 months and iterated forecast.   
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