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Abstract

A characteristic function-based method is proposed to estimate the time-changed Lévy models,

which take into account both stochastic volatility and infinite-activity jumps. The method facilitates

computation and overcomes problems related to the discretization error and to the non-tractable

probability density. Estimation results and option pricing performance indicate that the infinite-

activity model performs better than the finite-activity one. By introducing a jump component in

the volatility process, a double-jump model is also investigated.

Keywords: Empirical characteristic function; Stochastic volatility; Infinite-activity jumps; Option

pricing; Continuous GMM.

1. Introduction

Stochastic volatility and jumps in the stock price process are well documented. On the one hand,

they are inherent components of the stock price dynamics (Bollerslev et al., 1994; Merton, 1976;

Cont and Mancini, 2007; Ait-Sahalia and Jacod, 2009). On the other hand, they play important roles

in explanation of distributional characteristics of returns and of the implied volatility smile/skew

of options. Much work has been done on jump-diffusion stochastic volatility models (Bakshi et al.,

1997; Bates, 1996, 2000; Pan, 2002; Andersen et al., 2002). Even though these models perform

acceptably in fitting the stock price process and in pricing options, they feature a counter-factual

assumption that jumps are rare events. By observing time-series evolution of stock prices, we find

that the stock price process is accompanied not only by large jumps, but also by a lot of small

jumps. Jumps are empirically not rare events. Based on this observation, alternative models are
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being developed. These models use infinite-activity Lévy processes to capture both large jumps and

small jumps in the stock price dynamics (Madan et al., 1998; Carr et al., 2002; Carr and Wu, 2003).

In this paper, we introduce the tempered stable process, based on which a flexible option pricing

model is built. Depending on different values of its stable index, the tempered stable process can be

an infinite-activity process that can generate an infinite number of (large and small) jumps within

any finite time interval, or be a finite-activity process that generates only a finite number of large

jumps. Therefore, this process unifies the jump-diffusion model and the infinite activity model into

one framework with a rich structure. Financial applications of the tempered stable process have

also been investigated by Carr et al. (2002) and Wu (2006).

A major difficulty in continuous-time financial modeling is the lack of efficient tools for estimating

and making inference with discretely observed samples, especially when models have latent factors

and jumps. This is particularly striking for the tempered stable model studied in this paper.

The maximum likelihood estimation is usually inapplicable because the transition density is rarely

in closed-form, the frequently used simulation-based methods are difficult to implement since the

model is hard to simulate, and the traditional GMM is computationally demanding since high

order derivatives need to be calculated. Fortunately, for most of the Lévy models, the analytical

characteristic functions are obtainable. The characteristic function is equivalent to and contains the

same information as the probability density function, and we can thus directly use it for estimation.

We apply the time-change approach to introduce stochastic volatility in our models (Clark,

1973; Carr et al., 2003; Carr and Wu, 2004). Given a nonnegative right continuous with left limit

stochastic process υt, we define a stopping time as

Tt =

∫ t

0
υs−ds, (1)

which is finite almost surely. Intuitively, we could think of t as calender time and Tt as business

time. The variable υt reflects the intensity of economic activity. Stochastic volatility is generated

by replacing calender time t with business time Tt. For a stochastic process X(t), its time-changed

counterpart is defined by XTt = X(Tt). If we assume independence between υt and X(t), through
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iterated expectation we can obtain the conditional characteristic function of XTt

φX(u, τ) = E[eiuXTτ |Ft] = E[E[eiuXTτ |Tτ ]|Ft]

= E[e−cTτ |Ft] = E[e−c
∫ t+τ
t

υsds|Ft], (2)

and the joint conditional characteristic function of XTτ and υt+τ

φX,υ(u1, u2, τ) = E[eiu1XTτ+iu2υt+τ |Ft] = E[e−cTτ eiu2υt+τ |Ft]

= E[e−c
∫ t+τ
t υsdseiu2υt+τ |Ft], (3)

where, as we shall see in the text, c is related to the characteristic function of X(t).

Since our models contain the latent volatility factor vt, we propose a characteristic function-

based implied-state method to jointly estimate models by using information contained in both stock

and options markets. Given parameters, we can back out the unobserved volatility from options,

and with these backed-out volatility, we implement a characteristic function-based GMM. With this

method, we not only obtain the consistent estimates of model parameters, but also identify market

prices of risks as well as filter out a sequence of state variables which should be the best proxy for

the true ones (Pastorello et al., 2003).

Estimation using the characteristic function has been investigated since 1970’s (Feuerverger and

Mureika, 1977; Feuerverger and McDunnough, 1981a, 1981b; Feuerverger, 1990). The method is

recently redeveloped for estimation of continuous-time financial models by Singleton (2001), Jiang

and Knight (2002) and Chacko and Viceira (2003). Carrasco et al. (2007) extend the method by

using a continuum of moment conditions, which makes this method obtain the MLE efficiency. This

approach is very useful for estimating models that do not contain unobserved state variables such as

stochastic volatility. We overcome the problem of non-observability of stochastic volatility jointly

using stock prices and options. Pan (2002) advocates an implied-state GMM to focus directly on

joint dynamics of stock returns and near-the-money short maturity options. Pastorello et al. (2003)

propose a general iterative and recursive method on estimating structural nonadaptive models. Our

method is similar to those of Pan (2002) and Pastorello et al. (2003) except that we directly use the

characteristic function. Direct use of the characteristic function is not trivial. It makes estimation
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of many Lévy models feasible and avoids model discretization errors since characteristic functions

of these models are exact.

Monte Carlo and empirical studies show that the method is computationally less costly than

the other methods and can be easily adapted to different Lévy models. Estimation results and

option pricing performance indicate that the infinite-activity model performs better than the finite-

activity one, which results in higher mean of moments and option pricing errors. We also provide an

extension to investigate the double-jump model by introducing a jump component in the volatility

process. Our empirical study points to an only marginal improvement of this double-jump model.

The remainder of this paper is organized as follows. Section 2 builds a time-changed Lévy model.

Section 3 describes the characteristic function-based estimation method and provides a Monte Carlo

study. Section 4 discusses empirical results and evaluates models. Section 5 extends the model by

introducing a jump component in the volatility process. Lastly, section 6 concludes the paper.

Proofs are provided in the appendix.

2. A Time-changed Lévy model

2.1. Risk-neutral stock price and volatility dynamics

Under a given probability space (Ω,F , Q) and the complete filtration {Ft}t≥0, we introduce the

tempered stable process Xt, which is a Lévy process on R with the Lévy density defined as:

V (x) = c
e−λ+x

x1+α
1x>0 + c

e−λ−|x|

|x|1+α 1x<0, (4)

where c > 0 and λ+, λ− > 0. To guarantee the finite quadratic variation, the stable index α should

be less than 2. The Lévy density V (x) measures the arrival rate of jumps with size x defined on R0

(real line without zero). Its characteristic function has the form:

φX(u) = E[eiuX(t)] = e−tψX(u),

ψX(u) = −cΓ(−α)
[
(λ+ − iu)α − λα+ + (λ− + iu)α − λα−

]
, (5)

where α �= 0, 1, ψ(u) is called the characteristic exponent, u ⊆ R is the characteristic index, Γ(·) is
a gamma function, and when α = 0 or 1, the characteristic exponent has a different form (Carr et
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al., 2002; Wu, 2006; Cont and Tankov, 2004).

The parameters in the Lévy density (4) play different roles: c measures the overall and relative

frequency of jumps; λ+ and λ− govern how fast the tails decay and lead to a skewed distribution

when they are not the same; and the stable index α governs how the process evolves between big

jumps. Specifically, if α < 0, the tempered stable process becomes a compound poisson type finite

activity process, while if α ≥ 0, it is an infinite activity process (in particular, when α = 0, the

tempered stable process becomes the well-know variance gamma process.).

The stock price process under the risk-neutral measure Q is modeled by an exponential time-

changed Brownian motion and tempered stable process:

St = S0 exp
{
(r − q)t+

[
WTt − kW (1)Tt

]
+
[
XTt − kX(1)Tt

]}
, (6)

Tt ≡
∫ t

0
υs−ds, (7)

where r is a constant risk-free rate, q the dividend yield, Wt a standard Brownian motion, Xt

the tempered stable process, Tt the stochastic business time, vt is called the variance rate and

reflects the intensity of economic activity, and kW (1) and kX(1) the convexity adjustments. For any

stochastic process Yt, the convexity adjustment can be derived from its cumulant exponent k(s),

which is defined as

k(s) ≡ 1

t
log(E[esYt ]) ≡ −ψY (−is), (8)

where ψY (·) is the characteristic exponent of the process Yt.

The time-change approach is a standard technique to generate stochastic volatility (Clark, 1973;

Carr et al., 2003). Randomly changed time can be regarded as business time or trading time. The

randomness in business time generates the stochastic volatility. In fact, with the time-changing

approach, we introduce not only stochastic volatility, but also stochastic higher moments such as

skewness and kurtosis because the higher moments of the jump part depend on the variance rate.

The function t :�→ Tt should be nonnegative and nondecreasing, requiring that the variance rate υt

be a nonnegative process.

A well-known nonnegative process we can use for υt is the square-root process of Cox et al. (CIR

process, 1985). Under the risk-neutral measure, this process has the following stochastic differential
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equation (SDE):

dυt = κ(θ − υt)dt+ σ
√
υtdZt, (9)

where if κ > 0, κ is the rate of mean-reversion, θ the long-run mean of the variance rate, σ a

variation parameter, and Zt a standard Brownian motion.

We allow Wt in (6) and Zt in (9) to be correlated with the instantaneous correlation [dWtdZt] =

ρdt, where ρ ∈ [−1, 1]. This is to accommodate the so-called leverage effect of the diffusion part.

The leverage effect of jump is actually inherent in the time-changed model because during a time

of high variance rate, business time flows faster and price jumps occur at an increased rate.

Under these specifications, we obtain a model of the stock price process capturing both jumps

and stochastic volatility. In the following, we refer to this model as LTS-SV. This general model

can flexibly explain the negative skewness and leptokurtosis in the distribution of stock returns.

Negative skewness can arise either from the difference in tail parameters of the tempered stable

process or from negative correlation between the variance rate and return process. The positive

excess kurtosis can arise either from a high jump frequency induced by the tempered stable process

or from a volatile variance rate.

Since the return process (6) is correlated with the variance rate process (9), we firstly internalize

this correlation with the approach proposed by Carr and Wu (2004) and then derive the conditional

characteristic function of log return with the transform approach of Duffie et al. (2000).

PROPOSITION 1: Define a new filtration Gt generated by the business time sigma algebra FTt .
The conditional characteristic function of log return Rt+τ = ln(St+τ/St) in LTS-SV model with the

variance rate process (9) under the risk-neutral measure Q is

φR(u; τ, υt) ≡ EQ[eiuRt+τ |Gt]

= eiu(r−q)τ+A(u,τ)+B(u,τ)υt , (10)

where

A(u, τ) = −κθ
σ2

[
2 log

(
1− (γ − κ∗)(1− e−γτ )

2γ

)
+ (γ − κ∗)τ

]
,

B(u, τ) =
2[ϕW (u) + ϕX(u)](1 − e−γτ )

(γ − κ∗)(1− e−γτ )− 2γ
,
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ϕW (u) =
1

2
(iu+ u2), ϕX(u) = ψX(u) + iukX(1),

γ =
√

(κ∗)2 + 2σ2[ϕW (u) + ϕX(u)],

κ∗ = κ− iuρσ.

Note that the characteristic function (10) depends on the unobserved variance rate υt. We also

note that the information flow is now modeled by the complete filtration (Gt)t≥0 generated by the

business time sigma algebra FTt . With the above characteristic functions, we can use the fast

Fourier transform (FFT) to numerically compute option prices if we can observe the variance rate.

Option pricing with FFT is proposed by Carr and Madan (1999). Chourdakis (2005) advocates

the fractional Fourier transform (FRFT) in pricing options. It is demonstrated that FRFT is more

efficient than FFT in the sense of computational precision by careful selection of the integration

upper bound and grid sizes of the characteristic index and log strike. In this paper, we apply FRFT

to pricing options.

2.2. Market prices of risks and objective joint CCF

By introducing stochastic volatility and jumps to the stock price process, the market is no

longer complete. There may exist many equivalent martingale measures that can guarantee absence

of arbitrage. This feature may produce extra difficulty and complexity in change of measure since

the objective dynamics could be extremely different from the risk-neutral one. We are interested in

the structure-preserving change of measure because it preserves tractability and the same structure

under both measures.

Under the objective measure P , which is assumed to be absolutely continuous with respect to

Q, we propose the following stock price and variance rate dynamics,

St = S0 exp
{
(r − q)t+ πWTt +

[
kPX(1) − kX(1)

]
Tt

+
[
WP
Tt −

1

2
Tt

]
+

[
XP
Tt − kPX(1)Tt

]}
, (11)

and

dυt = [κ(θ − υt) + πvυt]dt+ σ
√
υtdZ

P
t (12)
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with Tt =
∫ t
0 υs−ds. Define κP ≡ κ − πv. In equations (11) and (12), the term πWTt denotes the

risk premium for the diffusion, the term πX ≡ (kPX(1) − kX(1))Tt represents the risk premium for

the jump, and πvυt is the risk premium for volatility.

Under change of measure, WP
t and ZPt are still Brownian motions. To guarantee the absolute

continuity between Xt and X
P
t , coefficients α and c should remain unchanged and only tail parame-

ters could be different (Sato, 1999; Cont and Tankov, 2004). Thus, under the objective measure, the

tempered stable process has the Lévy density with the same structure as that under the risk-neutral

measure, but with different tail parameters. Furthermore, we assume that the risk-neutral measure

is simply an exponential tilting of the objective measure. This change of measure is justified by the

well-known Esscher transform. The Esscher transform is a minimum entropy change of measure

method (Chan, 1999), which indicates that there exists a constant ξ such that the objective Lévy

density is related to the risk-neutral one by V P (x) = eξxV (x). We thus have the following objective

Lévy density of the tempered stable process XP
t

V P (x) = c
e−(λ+−ξ)x

x1+α
1x>0 + c

e−(λ−+ξ)|x|

|x|1+α 1x<0. (13)

The intuition behind this measure change is consistent with our understanding of financial market

movements. Large jumps play very important roles in option pricing and risk management since

they determine the tail behavior of the return distribution.

To implement estimation, we need the joint conditional characteristic function of return and

variance rate under the objective measure. The following proposition gives the tractable joint CCF

of log return and variance rate using the same method as before.

PROPOSITION 2: The joint conditional characteristic function of log return and variance rate

with specifications of (11) and (12) under the objective measure equipped with the filtration Gt is
given by

φR,υ(u1, u2; τ, υt) ≡ EP [eiu1Rt+τ+iu2υt+τ |Gt]

= eiu1(r−q)τ+A(u1,u2,τ)+B(u1,u2,τ)υt , (14)
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where A(u1, u2, τ) = A(τ), B(u1, u2, τ) = B(τ) and

A(τ) =
κθ(ac− d)

bcd
log

(c+ debτ

c+ d

)
+
κθ

c
τ, B(τ) =

1 + aebτ

c+ debτ
,

a = iu2(d+ c)− 1,

b =
d
[
− (κP − iu1ρσ)− 2uc] + a(−(κP − iu1ρσ)c+ σ2)

ac− d
,

c = −(κP − iu1ρσ) +
√

(κP − iu1ρσ)2 + 2σ2u

2u
,

d = (1− iu2c)
−(κP − iu1ρσ) + iu2σ

2 +
√

(κP − iu1ρσ)2 + 2σ2u

−2iu2(κP − iu1ρσ) + (iu2σ)2 − 2u
,

u = ϕPW (u1) + ϕPX(u1)− iu1(πW + πX),

ϕPW =
1

2
(iu1 + u21), ϕPX = ψPX(u1) + iu1k

P
X(1).

This general model nests a number of specific models, obtained by imposing appropriate restric-

tions on parameters. For example, the jump-diffusion stochastic volatility model can be obtained by

imposing α to be negative. Therefore, estimation will naturally select the best-fitting specification.

3. Econometric methodology

We assume that stock and options markets are fully integrated. It is well-known that the

information content in the stock market differs from that in the options market. The stock market

contains the historical information regarding the stock price evolution, whereas options are forward-

looking. Parameter estimates should reflect both sources of information. We propose a characteristic

function-based estimation method which makes full use of information contained in both markets

and exploits tractability of the characteristic function of the model.

It is shown (Feuerverger and McDunnough, 1981b) that a GMM estimation can be carried out

by using the following moment conditions based on the conditional characteristic function when the

process Yt is stationary and Markovian,

E
[
z(u, Yt)

(
exp{iuYt+τ } − φ(u;Yt,Θ)

)]
= 0, (15)

where u ∈ R and Θ is a vector of parameter, exp{iuYt+τ} is the empirical characteristic function

(ECF), and φ(u;Yt,Θ) = E[eiuYt+τ |Yt] is the conditional characteristic function (CCF) of Yt+τ . This
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estimation is equivalent to MLE and globally efficient if the instrument z(u, Yt) is selected as

z(u, Yt) =
1

2π

∫ +∞

−∞

∂ log f(Yt+τ |Yt,Θ)

∂Θ
exp{−iuYt+τ}dYt+τ , (16)

which requires a priori knowledge of the probability density function. For most of Lévy models, it

is impossible to have this information.

Recently, Singleton (2001), Jiang and Knight (2002) and Chacko and Viceira (2005) reinves-

tigate this approach. The basic idea behind these endeavors is to construct moment conditions

by firstly dividing the domain of the characteristic index into a finite number of grids and then

approximating the instrument. One critical problem here is that when grids become finer and

finer in order to improve efficiency, the associated covariance matrix becomes singular. Carrasco et

al. (2007) develop a characteristic function based GMM with a continuum of moment conditions

(CCF-CGMM) that is computationally less demanding than the commonly used simulation-based

method and traditional GMM and solves the problems of singularity and instability induced by the

discrete moment condition methods.

In our model if we can observe the variance rate vt, the full system Yt = (Rt, vt)
′ is a Markov

process and stationary. Section 2.2 has already given the joint conditional characteristic function

of return and volatility, which depends only on vt. Therefore, the moment condition (15) implies

E
[
Z(z, vt)

(
exp{iuYt+τ} − φR,v(u; τ, vt)

)]
= 0, (17)

where u = (u1, u2), for some set of instruments Z(z, vt), z ∈ R.

Define a Hilbert space of complex-valued functions

L2(p) =
{
f : Rd → C;

∫
|f(u)|2p(u)du <∞

}
, (18)

where p is the reference pdf of a distribution and p(u) > 0 for all u ∈ Rd. p dampens off all the

oscillating behavior of integrands in estimation and as long as p > 0, the choice of p does not affect

the estimation efficiency in large sample. In our implementation, we choose the standard normal

distribution as the reference pdf. The inner product on L2(p) is defined as 〈f, g〉 = ∫
f(u)g(u)p(u)du,

where the overline denotes complex conjugate. In this setting, Carrasco et al. (2007) propose to
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construct the optimal instruments with the exponential functions

Z(z, vt) = eizvt . (19)

The basic idea of this choice of instruments is that although we can not construct the optimal

instruments directly, they can be spanned by a set of basis functions (19). Accordingly, we have

moment functions

H(u∗;Yt+τ , vt,Θ) = eizvt
(
exp{iuYt+τ} − φR,v(u; τ, vt)

)
, (20)

where u∗ = (u, z), and Θ is a vector of model parameters which we need to estimate. It is clear that

the moment functions (20) form a martingale difference sequence and thus are not autocorrelated.

Under certain regularity conditions, the CCF-CGMM estimator is

Θ̂T = argmin
Θ∈Ξ

∣∣∣∣∣∣WT H̄T (Θ)
∣∣∣∣∣∣2, (21)

where H̄T (Θ) = 1
T

∑T
t=1H(u∗;Yt+τ , vt,Θ) is the sample counterpart of moment conditions, Ξ is

a compact parameter space, and WT is the weighting covariance operator defined on L2(p). The

estimator Θ̂T is asymptotically normal,

√
T (Θ̂T −Θ0)

d→ N (0,V), (22)

V = 〈Wd0,Wd0〉−1 〈Wd0, (WKW−1)Wd0
〉 〈Wd0,Wd0〉−1 , (23)

where Θ0 is the true parameter, d0 = E
(
∂H(Θ0)
∂Θ0

)
, and K is the covariance operator with the kernel

k(u∗1, u
∗
2) = E[H(u∗1,Θ0)H(u∗2,Θ0)] such that

(Kf)(u∗1) =
∫
k(u∗1, u

∗
2)f(u

∗
2)p(du

∗
2). (24)

Consistent estimates VT , KT , and dT of V, K, and d0 can be obtained from the sample moment

conditions. Since the inverse of K is not bounded, it needs to be stabilized by a regularization term

α: (Kα)−1 = (K2 + αI)−1K. See Carrasco and Florens (2000) and Carrasco et al. (2007).
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In their original paper, Carrasco et al. (2007) have proved that the optimal weighting covariance

operator is W = K−1/2. Here we simply use the identity matrix as the weighting covariance operator

in order to alleviate numerical instability. In GMM, Cochrane (2005) advocates to use the identity

matrix as the weighting matrix, which produces more robust and stable estimates. In Appendix B,

we conduct a Monte Carlo study, which shows that the loss of efficiency in using the identity matrix

is tiny and that the algorithm is more stable and faster than that based on the optimal weighting

operator.

For our model, the state variable υt is unobservable. We overcome this problem by jointly using

stock prices and options. The idea is that since options contain rich information on the volatility

dynamics, we can back out volatilities from options and use them in estimation. This approach

is in essence similar to the so-called implied-state method of Pan (2002) except that we directly

use the characteristic function. We assume that there exists an one-to-one relationship between

volatility and option. According to our model specification, the risk-neutral parameters can be

fully identified using the option price data alone. By using both stock price and option data, we

can not only identify the risk-premium parameters but also improve the estimation efficiency of the

risk-neutral parameters since they appear both in the objective and the risk-neutral models (see a

Monte Carlo study in Appendix B).

The CCF-CGMM can produce the MLE efficient estimator if the variance rate vt is really

observable and if the score belongs to the span of moment conditions. The use of an infinite number

of moment conditions can theoretically guarantee this latter condition. When vt is unobservable, the

implied-state method can still have consistent estimator. In this case, we should take into account

the fact that the variance rate is backed out from the option and it is parameter-dependent. The

moment conditions in the objective function (21) now had better be explicitly written as

H̄T (Θ) =
1

T

T∑
t=1

H(u∗;Rt+τ , Vt(Ot,ΘRN ),Θ), (25)

where Vt = [vt+τ , vt], which only depend on the risk-neutral parameters. The calculation of the

covariance matrix VT needs to be corrected through dT : dT = 1
T

∑
d(Θ, Rt+τ , Vt), and

d(Θ, Rt+τ , Vt) =
∂

∂Θ
H(Rt+τ , Vt,Θ) +

∂

∂vt+τ
H(Rt+τ , Vt,Θ)

∂vt+τ
∂Θ
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+
∂

∂vt
H(Rt+τ , Vt,Θ)

∂vt
∂Θ

. (26)

We refer readers to Pan (2002) and Pastorello et al. (2003) for further discussion of the consistency

and root-T asymptotic normality of the implied-state estimates.

4. Empirical results and discussions

In this section, we present estimation results and discuss their implications. Subsection 4.1

presents the data, subsection 4.2 reports the parameter estimates, and subsection 4.3 implements

model performance analysis.

4.1. Data

The data used in this paper are S&P 500 index and index options traded in Chicago Board

Options Exchange (CBOE) during the period from January, 1996 to October, 2009. They are

obtained from OptionMetrics. The data are in weekly frequency and are those traded on Wednesday.

If Wednesday is a holiday, we select Thursday options. There are 721 weeks in total. The dataset

contains the following series on option Trading Date, Expiration Date, Spot price, Strike Price,

Best Bid and Ask Prices, Trading Volume, Open Interest, BS implied volatility and other Greeks.

The interest rate used by OptionMetrics is calculated from a collection of continuously-compounded

zero-coupon interest rates at various maturity, collectively referred to as zero-curve, which is derived

from LIBOR rates and settlements prices of Eurodollar futures. For each option, we simply select

the corresponding zero-curve rate that has the closest maturity to this option.

The upper panel of Figure 1 plots the time-series of S&P 500 index returns, from which the

characteristics of “jumps” and “time-varying/stochastic volatility” are clearly observable. For the

purpose of model estimation, we use S&P 500 index prices and index at-the-money short maturity

call options. The at-the-money short maturity (ATM-SM) calls are constructed as follows: among

all call options, we choose those with moneyness (S/K) larger than 0.97 and less than 1.03 and

with maturity greater than 15 days and less than 45 days. When there are more than one call

option available at each time instant, we select that with moneyness closest to 1. The constructed

ATM-SM calls have the mean moneyness 1.000 with the standard deviation 0.003, and the mean

maturity approximately 25 days with the standard deviation 10 days. Table 1 gives the descriptive
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Figure 1: S&P 500 Index Returns and Implied Volatility

Note: The upper panel plots the time series of S&P 500 index returns and the lower panel plots the Black-Scholes
implied volatility of the constructed at-the-money short maturity call options. The data are over the period from
January 1996 to October 2009 in weekly frequency.

statistics of S&P index returns and the constructed ATM-SM call options. JB test easily rejects

the normality hypothesis of the return distribution with very small p-value.

We also use other options to test our models. The following filters are applied to the dataset:

first, we only consider call options. Second, in order to ensure that options are liquid enough, we

select call options with maturity less than 1.5 years (365-day/52-week year) and with moneyness

greater than 0.85 and less than 1.10. Furthermore, we rule out options with zero trading volume and

with open interest less than 100 contracts. Third, we exclude call options with maturity less than 10

days and best bid prices less than 3/8 dollar to mitigate market microstructure problems. Finally,

we check for the no-arbitrage conditions in option prices. By doing so, we obtain a cross-sectional

call options with 37,320 observations in our sample, averagely 52 options each day.
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Table 1: Descriptive Statistics of Data

A. S&P 500 Index Returns
T Mean St. Dev. Skewness Kurtosis JB Test

Weekly 721 0.038 0.183 -0.600 7.208 1(< 0.001)
B. ATM-SM Calls

Mean Mn. Std Mn. Mean Mt. Std Mt. Mean IV. Std IV.

ATM-SM 1.000 0.003 25.01 9.855 0.202 0.086

Note: Table presents the descriptive statistics of data we use for model estimation. Data are from January, 1996 to
October, 2009 in weekly frequency. There are 721 weeks in total. In panel A, JB Test is the Jarque-Bera normality
test, where the value 1 (with p-value in brackets ) indicates rejection of the null hypothesis of normality. In panel B,
Mn stands for moneyness, Mt maturity (in days), and IV BS implied volatility.

4.2. Joint CCF-CGMM estimators

Table 2 reports estimation results including parameter estimates and standard deviations. Mod-

els are estimated by the Joint CCF-CGMM described in Section 3. The standard errors, which are

computed using the formula (23) combined with (25), (26), and W = I, are presented in brackets.

We first estimate the general model (LTS-SV). Looking at the jump-related parameters, we find

that the tempered stable process in this model acts as an infinite activity process with finite variation

since the estimate of α is 0.856 (positive and less than one). The estimates of the risk-neutral tail

parameters λ+ and λ− are respectively 198.2 and 3.40, indicating fast right tail dampening and

left-skewed distribution. We have discussed in Section 2 that under the change of measure, only tail

parameters change, and the other two (c and α) remain constant. The objective tail parameters

are related to the risk-neutral ones through λP+ = λ+ − ξ and λP− = λ− + ξ. ξ is a risk-premium

parameter. The positive estimate of ξ (9.189) implies that the risk-neutral distribution is more

left-skewed than the objective one, consistent to the empirically observed fact.

Turning to the variance rate parameters, we notice that the estimate of the long-term mean is

around 22.5%-squared, a little larger than the historical one (18.6%-squared), and the estimate of

the volatility of volatility parameter is about 0.46. The estimate of κ (3.44) is a little bit large with

comparison to previous empirical studies on the jump-diffusion stochastic volatility (JDSV) models

(Bakshi et al., 1997; Bates, 1996, 2000; Andersen et al., 2002). The reason is that in the JDSV

models the stochastic volatility is only from the diffusion part, whereas in our model we use the

same variance rate process to time change both the diffusion part and the jump part. The estimated
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κ should reflect both the persistent diffusion volatility and the transient jump effect.

We have a negative risk premium of volatility πv (-2.24), which is consistent with the negative

correlation between the return process and variance rate process (ρ̂ = -0.52). We observe that the

diffusion risk premium is small (0.44), indicating that the market does not price this risk factor

significantly. The negative premium on the stochastic variance risk and the relative importance

of the jump and volatility risk premia over the diffusion risk premium are also reported in Bates

(2000), Pan (2002), Carr and Wu (2008) and others and in Pan (2002), respectively. Our estimate

of the volatility risk premium is also significant. This is because we time-change both the diffusion

and jump parts with the same business time and the inherent feature of jumps in stock returns

makes difference when estimating the volatility risk premium.

The estimate of α in the LTS-SV model, even though positive, is insignificant. We then study

other two special cases where α takes values -1 and 0. Taking a negative value of α, we obtain

a compound Poisson type jump-diffusion stochastic volatility model with an enriched structure.

We refer to this model as LTS-SVJD, with which we can compare the infinite activity stochastic

volatility model and the finite activity jump-diffusion stochastic volatility model. The parameter

estimates of the variance rate process do not change much in comparison to those of the LTS-SV

model, but the jump-related parameter estimates are different. The estimate of c, which reflects

jump frequency, has a larger value (7.78 vs 0.48). The negative value of α forces c to capture both

large and small jumps and in this case, large jumps and small jumps are indistinguishable.

When α is equal to 0, the tempered stable process becomes the variance gamma process studied

by Madan et al. (1998), which is infinitely active and of finite variation. We refer to this model as

LTS-SVVG. We notice again that the variance rate parameter estimates are not very different, but

jump parameter estimates are different. The estimate c is larger than that in the LTS-SV model

but less than that in the LTS-SVJD model, consistent with change of the stable index α.

4.3. Model performance analysis

In the implementation of CCF-CGMM estimation, we approximate the (double) integral with

the weighted sums in the objective function (21) by selecting 16 equally spaced values of each

characteristic index (u1 and u2) from the range [−π, π] (outside this range, the integrand is almost

zero.), and thus have 256 moment conditions in total. By studying these moment conditions, we
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Table 3: Statistics of Moment Conditions

LTS-SV LTS-SVVG LTS-SVJD LTS-SVDJ

Mean Mom 3.429 3.462 3.491 3.440

γ1 -0.087 -0.098 -0.105 -0.091
γ2 -0.010 0.022 0.032 0.007
γ3 0.007 0.015 -0.013 0.037

γ̄1 0.131 0.135 0.153 0.137
γ̄2 0.034 0.035 0.041 0.043
γ̄3 0.021 0.019 0.031 0.025

Note: Table presents descriptive statistics of the estimated discretized moment conditions. There are 256 moment
conditions in total. Mean Mom stands for the mean of all the absolute moment conditions with scale 10−2; γi
represents mean of the ith autocorrelation of the moment functions and γ̄i is mean of the absolute values of the ith
autocorrelation of the moment functions.

can make a qualitative test of the goodness-of-fit of models. Table 3 presents descriptive statistics

of the estimated moment conditions. We find that the mean of moment conditions for the LTS-SV

model is the smallest. As mentioned in Section 3, the full system (lnSt, vt)
′ is Markovian, so the

sequence of moment functions {Ht}Tt=1 forms a martingale difference sequence with respect to Gt
and hence is theoretically non-autocorrelated. Table 3 empirically investigates autocorrelations of

these moment functions. γi is mean of the autocorrelations of all moment conditions and γ̄i is mean

of absolute values of the autocorrelations of moment conditions. Putting together, we find that the

LTS-SV model is the best.

We begin to compute option prices with parameters and variance rates estimated in the previous

subsection. In practice, this is more interesting. We test models according to their capacity in pricing

options. The relative pricing error, which is defined as follows

Rerr =
1

N

T∑
t=1

nt∑
i=1

|Pmdit − Pmkit |
Pmkit

, (27)

is used to measure the performance. In (27), N is the total number of options we consider, T the

number of weeks, nt the number of options at date t, Pmdit the model-implied option price, and Pmkit

the market-quoted option price of the ith option at date t.

Table 4 presents option pricing errors. We find that among all groups, the LTS-SV model

performs the best except in only 3 groups, that with respect to maturity, the LTS-SV performs

better than all the other models, and that with respect to moneyness, the LTS-SV model performs

18



Table 4: Option Pricing Errors

Moneyness (S/K)
Maturity Model < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 >1.03 Sub-Total

< 60 LTS-SV 0.109 0.092 0.062 0.071 0.046 0.067
LTS-SVVG 0.120 0.108 0.100 0.063 0.033 0.076
LTS-SVJD 0.231 0.095 0.084 0.064 0.041 0.074
LTS-SVDJ 0.128 0.107 0.071 0.077 0.049 0.074

[0.203] [0.179] [0.168] [0.178] [0.233] [0.188]
(617) (3125) (7085) (6293) (5231) (22351)

60 < 180 LTS-SV 0.097 0.077 0.076 0.063 0.048 0.070
LTS-SVVG 0.128 0.107 0.125 0.095 0.051 0.102
LTS-SVJD 0.127 0.084 0.107 0.084 0.067 0.090
LTS-SVDJ 0.107 0.083 0.085 0.070 0.053 0.078

[0.204] [0.197] [0.181] [0.184] [0.206] [0.192]
(1188) (1505) (2916) (2273) (1744) (9626)

> 180 LTS-SV 0.097 0.080 0.083 0.101 0.076 0.088
LTS-SVVG 0.141 0.117 0.114 0.145 0.104 0.126
LTS-SVJD 0.097 0.083 0.092 0.116 0.087 0.097
LTS-SVDJ 0.091 0.082 0.088 0.102 0.078 0.089

[0.209] [0.210] [0.209] [0.193] [0.201] [0.204]
(1229) (730) (1190) (1204) (990) (5343)

Sub-Total LTS-SV 0.099 0.086 0.068 0.073 0.050 0.071
LTS-SVVG 0.132 0.109 0.108 0.080 0.046 0.090
LTS-SVJD 0.136 0.091 0.091 0.075 0.049 0.082
LTS-SVDJ 0.105 0.097 0.076 0.078 0.051 0.077

[0.206] [0.189] [0.175] [0.181] [0.223] [0.191]
(3034) (5360) (11191) (9770) (7965) (37320)

Note: The option pricing error is measured by the relative pricing error, defined in (27). In total, we consider 15
groups of options, divided according to maturity and moneyness. For each group, we report the option pricing error
of each model, the average BS implied volatility (in square brackets), and the number of options (in brackets).

the best except for the deep in-the-money options. We also find that all these models perform

relatively better in pricing in-the-money options and worse in pricing deep out-of-money options.

Putting all together, the infinite activity infinite variation LTS-SV is preferable to the finite activity

LTS-SVJD model. The average pricing error is 0.071 for the LTS-SV model, whereas it is 0.082 for

the LTS-SVJD model.

5. Extension: A double-jump model

Recently, some empirical investigations with jump-diffusion stochastic volatility models argue

that a jump component is also necessary in the volatility process (Eraker et al., 2003; Broadie et

al., 2007). Thus, a natural extension of our model is to introduce a jump component in the variance

19



rate process. To this end, we model the variance rate process under the risk-neutral measure with

the following SDE,

dυt = κ(θ − υt)dt+ σ
√
υtdZt + dJt, (28)

where Zt is a Brownian motion, which is correlated with Wt and independent of Xt. The new

process Jt is a compound Poisson pure jump process that is independent of Wt, Zt and Xt, whose

jump sizes are independent and exponentially distributed with mean μJ , and whose jump times

follow a Poisson process with jump intensity λJ . The characteristic function of this jump process

Jt is

φJ(u) = exp

{
−tλJ iuμJ

iuμJ − 1

}
, (29)

where u ∈ R is the characteristic index.

The variance rate process (28) is the so-called basic affine process (Duffie and Garleanu, 2001).

With this specification, we now have jump components both in the return process and in the variance

rate process. We assume that under change of measure, the jump process Jt does not change its

parameters, that is, the risk premium for the risk factor Jt is zero. We thus have the objective

model as follows,

St = S0 exp
{
(r − q)t+ πWTt +

[
kPX(1) − kX(1)

]
Tt

+
[
WP
Tt −

1

2
Tt

]
+
[
XP
Tt − kP (1)Tt

]}
, (30)

dυt = [κ(θ − υt) + πvυt]dt+ σ
√
υtdZ

P
t + dJt, (31)

with Tt =
∫ t
0 υs−ds. Define κP ≡ κ− πv and πX ≡ (kPX(1)− kX(1))Tt.

Following the same approach as in Proposition 2, we can derive the analytical joint conditional

characteristic function of return and variance rate under the objective measure as follows due to

Duffie and Garleanu (2001).

PROPOSITION 3: The joint conditional characteristic function of log return and variance rate

with specifications (30) and (31) under the objective measure equipped with the augmented filtration

Gt is

φR,υ(u1, u2; τ, υt) ≡ EP [eiu1Rt+τ+iu2υt+τ |Gt]
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Table 5: Parameter Estimates of Double-Jump Model

VR CIR VR Jump Return Jump Risk Premia

κ 4.367 μJ 0.038 c 0.641 πw 0.436
(0.322) (0.012) (1.512) (0.139)

θ 0.038 λJ 0.525 λ+ 1.11e2 ξ 5.694
(0.003) (0.051) (0.93e2) (1.147)

σ 0.368 λ− 3.285 πv -2.230
(0.030) (0.904) (0.628)

ρ -0.508 α 0.741
(0.038) (0.602)

Note: The table presents parameter estimates of the double-jump model. VR CIR represents the parameters related
to the CIR part of the variance rate process (28). VR Jump represents the parameters in the jump process Jt.
Return Jump represents the parameters in the tempered stable process and Risk Premia represents the risk-premium
parameters. Standard deviations are in brackets.

= eiu1(r−q)τ+A(u1,u2,τ)+B(u1,u2,τ)υt , (32)

where A(u1, u2, τ) = A1(u1, u2, τ) +A2(u1, u2, τ),

A1(u1, u2, τ) =
κθ(a1c1 − d1)

b1c1d1
log

(c1 + d1e
b1τ

c1 + d1

)
+
κθ

c1
τ,

A2(u1, u2, τ) =
λJ(a2c2 − d2)

b2c2d2
log

(c2 + d2e
b2τ

c2 + d2

)
+
λJ(1− c2)

c2
τ,

B(u1, u2, τ) =
1 + a1e

b1τ

c1 + d1eb1τ
,

and other parameters (ai, bi, ci, di, i = 1, 2) are given in Appendix A.

Our econometric method can be easily applied to estimate this double-jump model. Table 5

presents the parameter estimates of the double-jump model. Focusing on jump parameters of the

variance rate process, the mean of jump size μJ is 0.038 and the jump intensity λJ is 0.525. To

compare with the return jump size and intensity estimates in the previous studies (Pan, 2002,

Andersen et al., 2002, Eraker et al., 2003 and others), these values indicate that the variance rate

does not undergo large and frequent jumps. Implications of other parameter estimates are nearly

the same as in LTS-SV model.

Looking at moment conditions and autocorrelations of the moment functions in Table 3 under

the name LTS-SVDJ, we find that the absolute mean of moment conditions is 3.44, smaller than

those of the LTS-SVVG model and the LTS-SVJD model, but larger than that of the LTS-SV model
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and that the result from autocorrelations is undetermined. As for option pricing errors, Table 4

reports the relative pricing errors of this double-jump model (LTS-SVDJ). The improvement in the

option pricing error over the LTS-SV model is observable only in few cases and negligible. We

can thus conclude that Poisson jumps in the stochastic volatility are not critically important in

modeling stock price dynamics and pricing options when the infinite activity jump component is

introduced in the stock price process.

6. Conclusion

We have studied stock price dynamics by taking into account both stochastic volatility and

jumps. Jumps are captured by the tempered stable process, and stochastic volatility is introduced

by time changing the stochastic processes. For model estimation, we propose a characteristic func-

tion based estimation method. The empirical study indicates that the infinite activity stochastic

volatility model in general is preferable to the jump-diffusion stochastic volatility model. We also

make an extension to study a double-jump model. Our empirical study points to an only marginal

improvement of this double-jump model.

In this paper, we estimate the models using stock price data and only at-the-money short ma-

turity call options. All other call and put options are discarded in model estimation. Even though

at-the-money short maturity options are the most liquid financial securities, there are many other

options which are also very liquid and contain rich information about financial market movement.

Therefore, it may be interesting to study models and their implications using not only at-the-money

options, but also out-of-the-money and in-the-money options.
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Appendix

Appendix A. Proofs of Propositions

We first prove Proposition 2. Since Brownian motions WP
t and ZPt are correlated, we use

the approach proposed by Carr and Wu (2004) to implement a change of measure in order to

internalize this correlation. Define a new measure M , which is absolutely continuous with respect

to the objective measure P

dM

dP

∣∣∣
Gt

= exp

{[
iu(WP

Tt −
1

2
Tt) + ϕPWTt

]
+

[
iu(XP

Tt − kPX(1)Tt) + ϕPXTt

]}
. (A.1)

Under this new measure M , the variance rate process becomes,

dυt = [κθ − (κP − iuρσ)υt]dt+ σ
√
υtdZ

M
t , (A.2)

where κP∗ = κP − iuρσ and ZMt is now independent of WP
t . The joint conditional characteristic

function of Rt+τ and υt+τ can then be calculated as follows

φR,υ(u1, u2; τ, υt) ≡ EP [eiu1Rt+τ+iu2υt+τ |Gt]

= eiu1(r−q)τEP
[
eiu1[(πW+πX)Tτ+(WP

Tτ
− 1

2
Tτ )+(XP

Tτ
−kPX(1)Tτ )]+iu2υt+τ

∣∣∣Gt
]

= eiu1(r−q)τEP [M(τ)e−[ϕP
W+ϕP

X−iu1(πW+πX)]Tτ+iu2υt+τ |Gt]

= eiu1(r−q)τEM [e−
∫ t+τ
t uυsdseiu2υt+τ |Gt]

= eiu1(r−q)τ+A(u1,u2,τ)+B(u1,u2,τ)υt , (A.3)

where u = ϕPW + ϕPX − iu1(πW + πX) and E
M is the expectation operator under the new measure

M . A(u1, u2, τ) = A(t) and B(u1, u2, τ) = B(t) solve the following ODEs

Ḃ(t) = u+ κP∗B(t)− 1

2
σ2B2(t), (A.4)

Ȧ(t) = −κθB(t), (A.5)
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with the boundary conditions B(t + τ) = iu2 and A(t + τ) = 0. By solving these two ODEs, we

obtain the result of Proposition 2. Under the change of measure defined in the text, Proposition 1

can be easily proved by setting u2 = 0 and suppressing the risk-premium parameters.

The proof of Proposition 3 is similar to that of Proposition 2 except that we now solve

Ḃ(t) = u+ κP∗B(t)− 1

2
σ2B2(t),

Ȧ(t) = −κθB(t)− λJ
μJB(t)

1− μJB(t)
,

with A(t) = A(u1, u2, τ) and B(t) = B(u1, u2, τ) as well as boundary conditions B(t+ τ) = iu2 and

A(t+ τ) = 0. The solution is

A1(u1, u2, τ) =
κθ(a1c1 − d1)

b1c1d1
log

(c1 + d1e
b1τ

c1 + d1

)
+
κθ

c1
τ,

A2(u1, u2, τ) =
λJ(a2c2 − d2)

b2c2d2
log

(c2 + d2e
b2τ

c2 + d2

)
+
λJ(1− c2)

c2
τ,

B(u1, u2, τ) =
1 + a1e

b1τ

c1 + d1eb1τ
,

a1 = iu2(d1 + c1)− 1,

b1 =
d1(−κP∗ − 2uc1) + a1(−κP∗c1 + σ2)

a1c1 − d1
,

c1 = −κ
P∗ +

√
(κP∗)2 + 2σ2u

2u
,

d1 = (1 − iu2c1)
−κP∗ + iu2σ

2 +
√

(κP∗)2 + 2σ2u

−2iu2κP∗ + (iu2σ)2 − 2u
,

a2 =
d1
c1
, b2 = b1, c2 = 1− μJ

c1
, d2 =

d1 − μJa1
c1

,

u = ϕPW (u1) + ϕPX(u1)− iu1(πW + πX),

ϕPW =
1

2
(iu1 + u21), ϕPX = ψPX(u1) + iu1k

P
X(1),

κP∗ = κP − iu1ρσ.

By setting u2 = 0 and suppressing the risk-premium parameters, we could obtain the risk-neutral

conditional characteristic function, which can be used for option pricing.
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Table B.6: Monte Carlo Study I

μ κ θ σ ρ
True Value 0.150 6.000 0.025 0.300 -0.600
A. Identity Weighting Matrix

Mean 0.149 6.522 0.027 0.291 -0.623
Median 0.150 6.465 0.025 0.295 -0.590
RMSE 0.047 1.881 0.008 0.057 0.144
B. Optimal Weighting Matrix

Mean 0.153 6.195 0.028 0.312 -0.591
Median 0.151 5.827 0.026 0.290 -0.593
RMSE 0.047 1.214 0.010 0.069 0.123

Note: The Monte Carlo study is implemented using Heston stochastic volatility model. The number of simulations is
100 with the sample size 500 in weekly frequency. There are in total 11 exploding estimation results when using the
optimal weighting matrix. We delete these results when computing statistics in Panel B.

Appendix B. Monte Carlo Studies

In this appendix, we implement two Monte Carlo studies using Heston stochastic volatility

model. The first is to manifest the estimation efficacy of the Joint CCF-CGMM, and the second is

to show the efficiency gain in estimation when jointly using the stock price and options data.

Heston stochastic volatility model can be obtained from our general model by simply suppressing

the tempered stable process and related components. Under the objective measure, it has the form

St = S0 exp

{
μt+

(
WTt −

1

2
Tt

)}
, (B.1)

dυt = κ(θ − υt)dt+ σ
√
υtdZt, (B.2)

with Tt ≡
∫ t
0 υsds. The equivalence between the above time-changed form and the original (Heston,

1993) can be seen from

WTt
d
=

∫ t

0

√
vsdWs, (B.3)

where d indicates the equivalence in distribution. Under the change of measure discussed in the text,

we can obtain the risk-neutral model. Following the same procedure as described in Propositions,

we can derive the objective joint conditional characteristic function of return and variance rate and

the risk-neutral conditional characteristic function of return.

The first Monte Carlo study is based on 100 simulations with sample size 500 in weekly fre-

quency. We simulate Heston stochastic volatility model with an efficient scheme proposed by Ander-
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Table B.7: Monte Carlo Study II

κ θ σ ρ
True Value 6.000 0.025 0.300 -0.600
A. Options Alone

Mean 6.275 [5.522] 0.025 [0.025] 0.282 [0.281] -0.238 [-0.181]
Median 6.276 [5.580] 0.025 [0.025] 0.281 [0.279] -0.209 [-0.184]
RMSE 1.147 [0.699] 0.002 [0.001] 0.024 [0.023] 0.524 [0.530]
B. Stock Prices and Options

Mean 5.757 [5.751] 0.025 [0.025] 0.278 [0.288] -0.598 [-0.603]
Median 5.778 [5.816] 0.025 [0.025] 0.277 [0.281] -0.603 [-0.601]
RMSE 0.840 [0.627] 0.002 [0.001] 0.025 [0.023] 0.027 [0.019]

Note: The Monte Carlo study is implemented using Heston stochastic volatility model. The number of simulations
is 100 with sample size 500 and 1000 (in square brackets) in weekly frequency. The simulated options are those of
at-the-money short maturity call options with maturity being one month and moneyness being 1.

sen (2008). In this model, we have five parameters Θ = (μ, κ, θ, σ, ρ), and the true values are given

by Θ0 = (0.15, 6.00, 0.025, 0.30, −0.60). The model is estimated by the Joint CCF-CGMM us-

ing the simulated stock prices and volatility, and both the identity and optimal weighting matrices

are used. We find that the optimization is less sensitive to initial values when using the identity

weighting matrix since using the optimal weighting matrix results in 11 exploding estimates among

100 simulations/estimations. Table B.6 presents the Monte Carlo study results, which indicate that

the loss of efficiency is tiny.

In the second Monte Carlo study, we assume zero equity risk premium and volatility risk pre-

mium. Then the risk-neutral model is the same as the objective one. We also assume the interest

rate known with the value 5%, and only estimate Θ = (κ, θ, σ, ρ). We use the same true values as in

the first Monte Carlo study. In each simulation, we generate weekly stock prices and at-the-money

short maturity call options with maturity being one month and moneyness being 1. We estimate

the model using options data alone and using both stock prices and options data, respectively. In

total, 100 simulations are implemented. Table B.7 clearly shows the efficiency gain in estimation

with different sample sizes when using both stock prices and options data, especially for parameters

κ and ρ. More importantly, as indicated in the text, the risk-premium parameters can be identified

when using both stock prices and options data in estimation.
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