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Abstract

This paper estimates the impact of longevity risk on pen-

sion systems by combining the prediction based on a Lee-Carter

(1992) mortality model with the projected pension payments for

different cohorts of retirees. We measure longevity risk by the

difference between the upper bound of the total old-age pension

expense and its mean estimate. This difference is as high as 4 per

cent of annual GDP over the period 2040-2050. The impact of

longevity risk is sizeably reduced, but not fully eliminated, by the

introduction of indexation of retirement age to expected life at re-

tirement. Our evidence speaks in favour of a market for longevity

risk and calls for a closer scrutiny of the potential redistributive

effects of longevity risk.
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system by combining the predictions based on a Lee-Carter (1992) mor-
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of retirees. Our approach uses the uncertainty generated by a stochastic

mortality model to assess the impact of longevity risk on pension ex-

penditure and the effect of social security reforms. The adoption of an

explicit mortality model to assess social security policy has two main ad-

vantages. First, mortality models generate predictions for the evolution

over time of population in each cohorts. This is the requirement needed

to assess the impact of sequential social security reforms that, by usually

not being retroactive, have an heterogenous impact on different cohorts

of the population. Second, the parameters in a mortality model are very

unlikely to be affected by the specific social security policy adopted by

the government. Therefore, the econometric specification used for policy

simulation analysis is robust to the Lucas’critique (1976). The frame-

work proposed here is of general applicability. In our specific application

we concentrate on Italy, as this country represents one of the most inter-

esting cases to ask the question to our interest. The Italian economy is

characterized by one of the largest world public debt (both as a ratio of

GDP and in an absolute terms) and a traditionally very generous pen-

sion system (Sartor, (1999)). Also, the Italian pension system has been

subject to a number of reforms, and the most recent one, implemented

initially in 2010 and completed in 2012, has introduced an automatic

indexation of the retirement age to expected residual life at retirement.

There is a vast literature on equilibrium OLG models that evaluates

quantitatively different scenarios for social security reform. The typical

question asked is the sustainability of social security systems, given the

projected demographic trends. The most recent literature has answered

this question through the application of dynamic general equilibrium

models in a closed economy framework or, less frequently, in an open

economy framework. Starting from the seminal contribution of Auerbach

and Kotlikoff (1987) a far from exhaustive list of the closed economy con-

tribution includes Kotlikoff(1993), Kotlikoff and Burns (2004), Gomes

et al. (2011), Auerbach et al. (1999) Geanakoplos, Mitchell and Zeldes

(1998), De Nardi, Imrohoroglu and Sargent (1999), Huggett and Ven-

tura (1999), Kotlikoff, Smetters and Walliser (1999), Abel (2001, 2003),

Bohn (2001), Diamond and Geanakoplos (2003), Krueger and Kubler

(2005), Ludwig and Reiter(2011). In an open economy context some au-

thors have argued that the unsynchronized demographic trends across

more and less developed countries can shape the dynamics of current

accounts. See, among others, Henriksen (2002), Brooks (2003), Domeij

and Floden (2004), and Attanasio, Kitao and Violante (2006).

All these models solve for the equilibrium by taking the demographic

trends as exogenous. Scenario-based forecasts are then widely used

to express the uncertainty of long term forecasts where high and low
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trajectories are specified. As correctly pointed out by Lee and Tul-

japurkar(1998) no probability is assigned to any of the trajectories or

to the range that they cover, and therefore no statistical quantification

of the risk associated to demographic trends is feasible in thix context.

Although the relevance of longevity risk is widely recognized, especially

by supranational institutions (see Visco(2006),Visco(2009), IMF(2012)),

the abundant literature in demography aimed at estimating statistical

models of mortality rates to be able to project them with the associ-

ated uncertainty is currently very little used to simulate the impact of

longevity risk on pension systems1. This literature is potentially impor-

tant as pension providers face the risk that retirees might on average live

longer than expected. The risk of deviation of martality from its mean

can be decomposed in two underlying components: random variation

risk and trend risk. Random variation risk is the risk that individual

mortality rates differ from the outcome expected as a result of chance

— some people will die before their life expectancy, some will die after.

Trend risk is the risk that unanticipated changes in life-style behavior

or medical advances significantly improve longevity. The term longevity

risk is typically used for the trend risk component in the terminology

adopted by the International Actuarial Association. A state pension

system naturally deals with random variation risk by pooling a large

number of different individuals and relying on the law of large numbers

to reduce its variability. Longevity risk, similarly to any macroeconomic

risk, is on the other hand an "aggregate risk" that cannot be diversified

away by pooling and is therefore the relevant one for a state pension

system. A first look at the data reveals immediately the possibility of

sizeable longevity risk. Mortality rates, survival probabilities, frequen-

cies of death and expected residual life have dramatically changed for

individuals aged 65 and over in Italy2. Figure 1.1 illustrates the strong

downward trend in the time series of mortality at age 65 over the period

1965-2008. Note, however, that the reduction in mortality is not uniform

at all ages. Mortality improvements at old ages have been more drastic

than the ones for individuals aged between 65 and 70. In 1980 an indi-

1There are exceptions, a notable one is Alho et al.(2008).
2( ) denotes the mortality for individuals of age x in year t, where mortality

is the probability that a person aged x and alive at the beginning of the year dies

within the end of the year. ( ) is instead the survivor probability for individuals

of age x in year t, which is the probability that an individual will be alive at age

 given that he has survived up to age  − 1. Survivor probabilities are derived
recursively for individuals aged 65 and over: If  = 65 then ( ) = 1 − ( ) if

  65 then ( ) = ( − 1 )[1 − ( )]. Frequencies of death for individuals of

age  at time  are determined as first differnces of survival probabilities: ( ) =

( )−(+1 ). Finally, life expectancy at 65 is defined as follows  =
∞
Σ
=1

( )
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vidual alive at age 65 had a probability of 90.5% of being alive at 69, a

probability of 52.7% of being alive at 79, and a probability of 10.7% of

being alive at 89. Such probabilities have shifted respectively to 95.4%,

73.5% and 29% in 2008. Figure 1.2 illustrates this point by reporting

survival probabilities for individuals aged 65 and over in 1980 and 2008.

Note also that the survivor function tend to shift towards a rectangu-

lar shape over time as a consequence of the increasing concentration of

death around the mode of the curve of deaths. Figure 1.3 illustrates how

this "compression of morbidity" (see, for example, Robine J. Michel J.P.

and Institut S. (2008)) has made the profile of frequencies of death for

ages above the mode closer and closer to a straight vertical line. Finally,

Figure 1.4 shows that life expectancy at 65 has moved from about 13

years to nearly 20 years in 2010.

The aim of this paper is the evaluation of the impact of longevity

risk on pension systems by combining a stochastic mortality model with

institutional information on the pension payments to each cohort and

by conditioning to the macroeconomic scenario for income growth and

inflation and to no migration flows. Our strategy to assess the impact

of longevity risk on the Italian pension system is based on three steps.

First, we derive the numerosity of each cohort of retirees up to 2050 by

using the Lee-Carter mortality model to project future mortality and

by applying it to the current population pyramid. As future mortality

rates are projected with uncertainty, a confidence interval is associated

to future population at each age. Second, pension payments to each

cohort in the future are projected using institutional information on the

Italian pension system. Third, total old-age pension expenditure as a

ratio of GDP is projected over the horizon 2012-2050 with its associated

confidence intervals. The width of our confidence intervals reflects the

impact of longevity risk. In fact, an analogue of the concept of Value at

Risk in portfolio management or to Solvency II capital requirements can

be applied to future pension expenditure by estimating the upper bound

with a given probability (in our application the upper bound of the 95

per cent confidence interval) of pension expenditure as a ratio of GDP

in each year. In assessing the impact of longevity risk on the Italian

Pension system we consider first a scenario that reflects all the current

institutional details with the exception of the indexation of retirement

age to expected residual life at retirement. We then devote a section to

the simulation of the impact of such an indexation.

2 Methodology

Our proposed methodology is based on the computation of future pen-

sion payments based on the last observed population pyramid (2011, in
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our sample), projected mortality rates and projected future pension pay-

ments to each cohort. In practice, the following specification is adopted:

 (2011+ | Ω2011)=
45X
=0

 (65+2011+ | Ω2011) (65+2011+ | Ω2011)

 (65+2011+ | Ω2011)=65+−2011

Y
=1

(1− b65+−+2011+−1) (1)

=1  39  = 0  45

where  (2011+ | Ω2011) is the expected total old age pension pay-
ments in year 2011+j, given the information set available in year 2011.

Pension payments for each cohort from retirement age onward are com-

puted by multiplying the projected number of individuals in each cohort

 (65+2011+ | Ω2011) times the average projected pension payment
to each individual in that cohort  (65+2011+ | Ω2011)  The num-
ber of individuals in each cohort over the horizon 2012-2050 is obtained

by applying to the observed population pyramid in 2011 the mortal-

ity rates projected for each cohort over the period 2012- 2050. A de-

mographic model is used to project future mortality rates, while sim-

ple time-series model for annual income growth and inflation, paired

with a description of the Italian institutional system, deliver projected

 (65+2011+ | Ω2011)  i.e. the expected pension due to all cohorts in
all future years. Note that our specification assumes conditional indepen-

dence between  (65+2011+) and  (65+2011+) given Ω2011 In

fact  (65+2011+ | Ω2011) depends on two macroeconomic variables,
inflation and income growth that in principle can be affected by demo-

graphic trends. We believe that using the ECB target to project future

rate of inflation at very long horizon is a fairly safe practice. If the central

bank is credible, then the equilibrium inflation of any dynamic stochas-

tic general equilibrium model should coincide with the inflation target

of the monetary policy maker. Admittedly having a simple univariate

model for income growth independent from the demographic trends is

a more controversial assumption. In fact, incentives that determine the

labour market equilibrium, and therefore wage growth, might be affected

by potential distorsions arising from the pension systems (see Ludwig

and Reiter (2011)). However, having an endogenous path for income

growth generated by an equilibrium model disaggregated by cohorts is

a daunting task, we therefore follow the simple approach proposed by

Lee and Tuljapurkar (1998) to project income growth via a univariate

time-series models. As we concentrate on the demographic risk by condi-

tioning upon a macroeconomic scenario, and on the assumption that the
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effect of macroeconomic variables on longevity (which is omitted from

our model) is small and slowly evolving, we expect that the practical

consequences of our simplifying assumptions are rather limited. Using

then the lower bound of the 95 per cent confidence interval on the pro-

jected mortality rates we compute the upper bound on future pension

payments as follows:

 95 (2011+ | Ω2011)= 95

"
45X
=0

(65+2011+ | Ω2011) (65+2011+ | Ω2011)
#

(65+2011+ | Ω2011)=65+−2011

Y
=1

(1− b65+−+2011+−1) (2)

=1  39  = 0  45

 95 (2011+ | Ω2011) calculated by bootstrap and based on the
Lee-Carter model, provides an estimate of the impact on pension pay-

ments of the realization of the lowest projected mortality rates from

2012 onwards. Note that, as in the computation the only source of un-

certainty allowed for is that on demographic trends, the macroeconomic

uncertainty affecting  (65+2011+ | Ω2011) is not considered in the
computation of the upper bound for pension expenditure.

3 Projecting Retired Population over the period

2012-2050

To project retired population at each age over the period 2012-2050 we

take the Italian population pyramid observed in 2011, available from

the Italian National Agency for Statistics (ISTAT) website3, and adopt

a Lee-Carter mortality model to predict future mortality at all ages.

Natality is irrelevant to our projections as individual born from 2012

onwards cannot retire before 2050. Our results are also based on the

maintained hypothesis of future zero net immigration flows. In 2011

younger generations in the ages between 20 and 34 accounted for slightly

more than 16% of the total population, while ages between 35-50 for

more than 25%. Individuals above 65 years accounted for approximately

24% of the total. Data on Italian central mortality rates for the years

1872-2008 are available from the Berkeley Human Mortality Database

website4. The mortality model is estimated on the sample annual data

1965-2008.We adopt the Lee-Carter (1992) model to project future mor-

tality rates. The model consists of a system of equations for logarithms

3http://dati.istat.it/
4www.mortality.org
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of mortality rates for age cohort  at time  ln[] and a time-series

equation for an unobservable time-varying mortality index :

ln[] =  +  +  (3)

= 0 + 1−1 + 

∼
¡
0 2

¢
∼

¡
0 2

¢
where  and  are age-specific constants. The error term  cap-

tures cross-sectional errors in the model based prediction for mortality

of different cohorts, while the error term  captures random fluctuations

in the time series of the common factor  driving mortality at all ages.

This common factor, usually known as the unobservable mortality index,

evolves over time as an autoregressive process and the favorite Carter-Lee

specification makes is a unit-root process by setting 1 = 1. Identifica-

tion is achieved by imposing the restrictions
P

  = 0 and
P

  = 1

so that the unobserved mortality index  is estimated through Singular

Value Decomposition5. Identification and estimation of the system al-

lows to perform stochastic simulations to obtain projections for ln[+]

and associated confidence intervals.

3.1 The performance of the Lee-Carter model on

Italian data

Before using the Lee-Carter model to project future mortality rates we

have evaluated its ex-post performance by fitting the model to Italian

mortality rates for the period 1965-1999 and generating forecasts for the

subsequent nine years, up to 2008. Cohorts ranging from 20 to 110 years

have been considered. In fact, this is the age-range needed to project

pension profiles up to 2050, as the latest cohort to retire in our projection

period is made by individuals in their twenties today. Figures 2.1 and 2.2

report the estimates of the coefficients  and , with their associated 95

per confidence intervals. The constant term monotonically increasing

in  reflects the heterogeneity in mortality for different age groups,

while  pins down the response of mortality rates at different age to

the common (stochastic) trend in mortality  (note that this coefficient

decreases roughly uniformly from age 70 onwards). The cross-sectional

variability of the estimates  is a typical feature of the Lee-Carter model,

reflecting the higher volatility of observed mortality rates in the right tail

of the population distribution. Figure 2.3 shows the goodness of fit in the

5See Appendix 1 for a full description of the adopted identification and estimation

strategy.
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cross section of ages by reporting the 2 of each of the ninety equations

estimated for mortality rates in the age range 20 to 100 over the sample

1965-1999. The model performs very well in explaining mortality from

40 to 100 years, while its power significantly drops as the observations on

mortality rates become more volatile at very old ages. Still, the overall

within-sample fit of the model is remarkable. Figure 2.4 illustrates the

point by showing the performance of the model on the 65-years cohort.

Out-of-sample projections are obtained by simulating the models for

mortality rates at all ages jointly with the following autoregressive model

for  (standard deviation of coefficients in parentheses).

 = 10174
(00148)

−1 − 16165
(028062)

+  (4)

In practice, upper and lower bounds for projected  are derived by

first bootstrapping the above model, allowing for parameters uncertainty,

to obtain 1000 simulated path for  based on drawing with replacement

from the empirical distribution of the estimated residuals. Projected

mortality rates and their associated uncertainty are then derived by com-

bining the simulated paths for  with the estimated coefficients  and

 and their associated uncertainty.The evidence reported in Figure 3 al-

lows pseudo-out-of-sample model simulation by assessing the projected

mortality, survivor and frequency of death over the period 2000-2008

against those observed ex-post. The overall performance of the model

is overall satisfactory, as the realized ex-post data almost never violate

the bounds of 95 per cent confidence intervals.

To further assess the performance of the Lee-Carter model on italian

data, we use the benchmark of an alternative mortality model for age

above 20, such as the one proposed by Cairn, Blake and Dowd (2006)

(CBD).

We have therefore estimated the following alternative stochastic model

for mortality :

 =
1+2(−20)

1 + 1+2(−20)
+ 

1+1 = 1 + 1 + 1+1
2+1 = 2 + 2 + 2+1

CBD features a logit specification of mortality because it has the intu-

itive property of constraining mortality, which is effectively a conditional

probability, to lie between zero and one. The property of loglinearity in

age of the CDB specification is also well documented to fit satisfactorily

the empirical evidence for a number of countries.The Lee-Carter model
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does not undeperform the CBDmodel in out-of-sample performance and

it does better for predicting mortality at old age, which is the main focus

of our analysis. This point of graphically illustrated by Figure 3.5 that

shows that mortality projections from the CBD model are not more pre-

cise than those from the Lee-Carter model. This evidence is relevant in

that it speaks in favour of the particular specification for mortality that

we have shown but it also gives us the opportunity to stress that our

empirical strategy does not consider the impact of model uncertainty on

the measurement of mortality risk6. In fact, we have considered only one

model of mortality The Lee-Carter model has been evaluated against

the available data and against an alternative specification, but we have

not allowed explicitly for the possibility that there are many models of

mortality. Giving a unit weight to one model and zero weight to all

other possible alternative specifications is a strategic choice that leads

to a conservative evaluation of the risk, as one layer of risk is actually

removed.

3.2 From Mortality Projections to Retired Popula-

tion Projections

Projections for retired populations and its age structure are immediately

obtained by applying the projected mortality rates to the observed popu-

lation pyramid in 2011. Figures 4.1-4.4 show our mean and lower-bound

projections for the Italian retired population’s mortality, specifically of

age 65, 75, 85 and 95 years old, from 2012 to 2050 and compare them to

a benchmark offered by a constant-mortality scenario, i.e. the projec-

tions given by a random walk (without drift) model for mortality rates

at all ages. Projected mortality for 65-years old people in 2050 is equal

to 0.17% (while it stands at 0.94% in 2008) and converges to zero in the

lower-bound case. Similarly, mortality rates of 75-, 85- and 95-years old

people are expected to decline from 2.57%, 8.70% and 27.90% in 2008 to

0.49%, 2.01% and 10.78% in 2050, respectively. Figure 4.5 reports the

expected residual life at 65 consistent with the path of mortality projec-

tions at ages of 65 and over. Expected life at 65 increases from 20 years in

2009 (fully consistent with the projections made by the Italian Institute

of Statistics, ISTAT) to roughly 30 years in 2050 in the mean-mortality

case, and to 36 years in the lower bound mortality (upper bound life

expectancy) case. Figure 5.1 summarizes the results of projections of

mortality at all ages by reporting the resulting over-65 population struc-

ture over the period 2012-2050. The projected retired population grows

at an average rate of 1.65% per year from 2012 to 2050, almost dou-

6We are grateful to an anonymous referee for haivng raised this point.
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bling from an initial level of around 12.5 millions to 23.5 millions in

2050. Interestingly, projections based on constant mortality rates at all

ages would on average underestimate the retired population by as much

as 7.5 millions, and by 14 millions if the upper bound for longevity is

considered.

4 Projecting the Future Payments of the Italian

Pension System

Mapping the future structure of retired population in future pension

payments requires a representation of the institutional design of the

pension system. Several pension reforms have progressively changed

the Italian Pension system over the last thirty years. Three main re-

forms, namely the Amato (1992) reform, the Dini (1995) reform and

the Sacconi-Tremonti(2010), completed by the Fornero-Monti(2012) re-

forms, that have so far affected the system have determined a progressive

shift from the retributive to the contributive pension system. We there-

fore identify three periods:

• Pre-Amato reform period (pre-1992). This period was character-

ized by a retributive method for calculating pensions. The initial

annual pension paid to the retiree was 2% of the average income

of the last five years before retirement, multiplied by the num-

ber of years of the individual’s contribution. Pensions were then

revaluated with a perfect indexation to inflation.

• Amato reform (1992). The Amato reform was aimed at lower-

ing pension expenditure by making the annual pension function of

the income earned during the entire working life rather than that

earned in the last years before retirement. The pension was calcu-

lated as 2% of the average income of all the contributing life, times

the number of years of contribution. Pensions were revaluated at

inflation plus 1%.

• Dini reform (1995). This reform shifted the Italian pension system
from retributive to contributive. Under the contributive regime

workers contribute during their working life with a share (33%) of

their income to the formation of a capital. This capital is reval-

ued each year at the five-year moving average of the nominal GDP

growth. Upon retirement, an annual pension is then calculated to

equate the present value of the total contributed capital at retire-

ment to the resent value of totale pension payments. As annual

pension payments in real terms are constant, the equalization is

10



obtained by multiplying the accumulated capital by a transforma-

tion coefficient, that depends on life expectancy and a long-run

discount rate. In theory, life expectancy in the transformation co-

efficient can be automatically indexed to the evolution of mortality

over time, in practice this parameter has been kept constant from

1996 to 2007, it was then changed on a one-off basis in 2007, while

automatic indexation has been postponed until the 2010-2012 re-

form. The minimum age for retirement under this method was 57

years, the maximum one 65, and the reform fully applied for those

who started working in 1996.

• The 2010-2012 reform. This reform has moved the Italian system

to a fully contributive and it has introduced the indexation of the

pension system to the evolution of mortality after retirement. Two

aspects of this reforms are particularly important to us. The first

one is the indexation of the pension payments to the expected

length of life at retirement, the second one is the indexation of

retirement age to expected life at retirement.

To take into account the effect over time of these reforms, the pension

of a retiree as of the beginning of 2012 is computed as a function of his

working history with one of the three following alternative computation

methods: contributive, mixed or retributive.For all agents retiring before

1992, the Pre-Amato regime applies. This regime implies that


¡
65+(2012+−)2012+ | Ω2011

¢
= 

2012+−Y
=1

(1 + ++−1 +1993001)

1967≤  ≤ 1992 (5)

 =−5

=0  45− (2012− )

where  is the year of retirement,  = 2%,  is the number of years

for which he has contributed at retirement and −5 is the average
labour income for the last five years before retirement.  is inflation and

1993 is a dummy taking value of 1 from 1993 onward and zero otherwise.

This dummy captures the change in mechanism of indexation of 1992

that adjusted annual pension from 1993 onward with a mark-up of one

per cent on the annual realized inflation rate.
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For all individuals retiring between 1993 and 1995 the Amato reform

applies and we have:


¡
65+(2012+−)2012+ | Ω2011

¢
= 

2012+−Y
=1

(101 + ++−1)

1993≤  ≤ 1995 (6)

 =
¡
−5 ( − ( − 1993)) + −10 ( − 1993)

¢
=0  45− (2012− )

where −10 is the average labour income for the last 10 years be-
fore retirement and all the other variables have the same meaning as in

Equation 5.

For individuals retiring from 1996 onwards the Dini reform’s frame-

work applies, with the necessary adjustments for the 2010-2012 reforms


¡
65+(2012+−)2012+ | Ω2011

¢
= 

2012+−Y
=1

(101 + ++−1)

1996≤  ≤ 2050 (7)

 =
¡
−5 ( − ( − 1993)) + −10 ( − 1993)

¢
 1995 ≥ 18

 =
¡
−5 ( − ( − 1993)) + −10 (1996− 1993)

¢
+2012+

X
=1996

(1 + )−

 01995  18

 = 2012+

X
=−

(1 + )−

 1995=0

2012+ =

⎛⎝(|Ω)X
=1

1

(1 + )

⎞⎠−1
=0  45− (2012− )

where  = 33%,  is income earned in contribution year ,  is the

five-year moving average of nominal GDP growth and 2012+ is a co-

efficient, calculated by ISTAT, based on life expectancy at retirement,

(), conditional on the information set on life expectancy available at

retirement, Ω. This coefficient has been kept constant from 1996 to

2007, it has been then changed on a one-off basis in 2007 while auto-

matic indexation (every three-years) has been introduced by the Sacconi
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reform in 2010. We report in Table 1 the values of the contributive coeffi-

cients for different ages as of the beginning of 2012 (assuming a long-run

discount rate  = 15%). Baseline simulations will be performed by

including this aspect of the 2010-2012 reforms in our analysis but not

its second feature, which is the indexation of the retirement age. A spe-

cific section will be then devoted to the evaluation of the effect of this

important modification of our baseline scenario.

4.1 Old-Age Pension Expense Projections

Projections of total pension expenditure over the period 2012-2050 re-

quire as input projections for future labour income and inflation. We

adopt very simple models for these macroeconomic variables, as the main

objective of our exercise is the evaluation the impact of longevity risk

on the pension system. As we expect a low correlation between macro-

economic and longevity risk, the model adopted for macroeconomic pro-

jections should be very little relevant for the estimation of the effect of

longevity risk. Historical data on labour income in Italy are taken from

the annual Survey on Households Income (“Indagini sui Bilanci delle

Famiglie Italiane") made available by the Bank of Italy through its web-

site for the annual sample 1965-20087. These data are based on annual

surveys conducted by the Bank of Italy on income, real wealth, finan-

cial assets’ diffusion, use of different means of payment, housing market,

use of public services and quality of life. Given the availability of these

data we construct a time series of average labour income from employ-

ment and self-employment, by excluding other sources of income that

do not enter the computation of pensions (such as, for example, interest

income). These computations make available a consistent time series

for five types of categories: self-employed (other than entrepreneurs),

entrepreneurs, employees (other than office workers), office workers and

managers8.We then combine the historical time-series with forecasts for

nominal labour income over the period 2012-2050. These forecasts are

based on the prediction of a time-series model for real labour income and

a scenario for inflation. Future real labour income growth is projected

to move one-to-one with future real GDP growth. Real GDP growth is

modelled, using data available up to 2011, as an AR(1) process. The

following equation has been estimated by OLS:

 = + −1 +  (8)

Using the estimates of  and  respectively equal to 0.0152 and

0.252, we project forward the AR model that converges to a long-run

7http://www.bancaditalia.it/statistiche/indcamp/bilfait
8Please refer to Appendix B for the analysis of the surveys and their elaboration.
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equilibrium real GDP growth of 2.03%.9 The generated projections for

the level of average real labour income imply that real labour income will

more than double in the next forty years, going from the current value

of around  16,000 to a value of around  35,000 in 2050. Given these
forecasts for annual real labour income, we generate the corresponding

nominal labour income by making the assumption that CPI inflation

will be in the future determined by the ECB’s target of 2 percent. The

resulting nominal incomes’ projections range from  15,831 in 2009 to
 36,175 in 2050. The projections of the future numerosity of each co-
hort of retired individuals are then combined with the macroeconomic

scenario and the institutional framework to generate total old-age pen-

sion expenditure. In particular, the computation of pensions with the

retributive method is based on the assumption of an age at retirement

equal to 65 years and 40 years of contribution. The retributive system

is relevant for those who have retired between 1969 and 2012 (as the

Fornero-Monti(2012) reform does not allow for retirement with the re-

tirbutive method after 2011). The mixed system applies instead to those

individuals who had less than 18 years of contribution at 31.12.1995, and

in this case the retributive part of the pension is computed for the years

of contribution before 1996, and the contributive part applies to the in-

come earned after 1996, which is observable up to 2008 and projected by

the AR model from 2009 onwards. The annual payment of the contribu-

tive part of the pension is then computed taking the transformation

coefficient  to be equal to 0.33 and using the method of computing

the (()) coefficients adopted by ISTAT - whose values are shown

in Table 1 for the 2010-2013 period. Under simulation the coefficient

(()) is modified every three years to reflect mortality improvements

and the change in life expectancy at 65. Finally, for those retiring from

2036 onwards, only the contributive method applies. By combining the

information on pension payments to retired individuals of different co-

horts with the projections on the population at different ages obtained

with the Lee-Carter mortality model, we have derived mean estimate

for future pension expenditure as a fraction of real GDP, and the upper

bound of the associated confidence interval 10. The difference between

9We have also experimented with specifications allowing the long-run to be func-

tion of the demographic structure of the population. As the results obtained were not

stastically strong and unstable over-time, we have preferred the simple AR model.
10In our computation we have also taken into account the constraint posed by the

minum pension and its evolution over time. We obtained the data relative to the

minimummonthly pension in Italian £ (from 1994 to 2001) and in Euros (from 2002 to

2011) from INPS’ website. From 2012 onwards, we let the minimum pension of 2011

grow at the constant ECB inflation rate of 2% already discussed when forecasting of

average salaries, consistently with the assumption that revisions of minimum pensions
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the mean and the upper bound can be taken as a measure of the impact

of longevity risk on Italian Pension payments. By adding up pensions

paid to each cohort, we have generated an estimate of total old-age pen-

sion expenditure ranging from  197 billion in 2012 to  1.09 trillion
in 2050. Figure 5.2 reports total old-age pension expense as percentage

of nominal GDP. Our results indicate that at constant (2012) mortality

rates over the next 40 years, the ratio will pass from 11.70% in 2012 to

13.70% in 2040. The peak is reached when the cohort of those who are

in their 35-50 years today retire. These constant-mortality projections

are drastically different from those taking the model-generated pattern

of mortality over the next 50 years. According to our mean mortality es-

timates, old-age pensions over nominal GDP will reach a peak of 15.58%

in the middle of the 2040’s and will stay well above 15% until the end

the period. Neglecting longevity improvements has an impact of 2.7% of

GDP in 2050, when the difference between base and constant-mortality

projections is the widest. Longevity risk for the Italian Pension System

is represented by higher-than-expected longevity resulting into an unex-

pected increase in total old-age pension expense. Longevity risk can be

measured by the difference between the upper bound of the total old-age

pension expense and its mean estimate, ranging between 0.06% in 2012

and 4.35% in 2050. Total longevity risk over the period 2040-2050 is as

high as 40 per cent of total GDP over the same period.

4.2 The Effects of Indexation of Life Expectancy

and Retirement Age

The results derived so far have been obtained in simulations where re-

tirement age has been kept constant at 65. In this section we investigate

the impact of introducing changes in retirement age over time, as estab-

lished by the 2010-2012 reforms. In particular, we present the results of

an experiment made by adjusting retirement age to generate a constant

(over time) expected pension period of 20 years at retirement. In this

simulation retirement age is progressively adjusted to reflect mortality

improvements in such a way that the pension period is kept constant at

20 years (retirement age is set to the age in which expected residual life

is twenty years11). In this scenario, indexation occurs every three years

and it affects both the coefficient (()) (as in the baseline model)

and retirement age. Our analysis is positive rather than normative. We

are made to preserve retirees’ purchasing power. Moreover, future pensions have been

revaluated using projected inflation
11In formulae, we have that retirement age in Equation 7 is adjusted by a term 

reflecting the difference between expected life at 65 from 2012 to 2050 and expected

life at 65 in 2009 (which is roughly equal to 20)
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do ask the question of the optimality of the indexation mechanism but

we rather propose a framework to assess the effect of the 2012 refrom

in reducing the impact of longevity risk on the pension system The

possibility of using mortality models to offer insights into the optimal

design of an indexation mechanism is an interesting further applciation

that goes beyond the scope of the current study. Figure 6 reports the

upper and lower bounds of the pension payments to GDP ratio and

the projected expected age of retirement in our simulation. The results

shows that the indexation of retirement age has a very sizeable impact

on longevity risk, which is reduced from four per cent per year over

the period 2040-2050 in the baseline scenario to about one per cent per

year over the same period in the alternative after-2010/12 reform sce-

nario. The driver of this reduction in the impact of longevity risk on the

Italian Pension System is the increase in expected retirement age that

is sizably increased form 65 year in 2012 to 74 years in 205012. Note

that the indexation of retirement age does not fully eliminate longevity

risk. This happens for two reasons: first, the indexation is based on

expected residual life at retirement, if realized residual life is larger than

expected residual life some risk still materializes, second indexation is

not retroactive and there is some inertia affecting individuals that have

retired before the reform. This evidence illustrates that an alternative

system (such as the Swedish one) in which retirement age is flexible, but

benefits are indexed to life expectancy is more espoused to longevity risk

if individuals choose to retire earlier than when they have an expected

residual life of twenty years.

Our results show that acknowledging longevity risk and implementing

measures such as indexing retirement age leads to a sizeable reduction

but not to a total elimination of longevity risk. Further action, such as

risk sharing between governments and private sector or transfer risk to

capital markets via longevity link securities, should be considered if the

residual risk after the indexation of retirement age is still considered too

high.

5 Conclusions

This paper has shown that pension systems in which the retirement age

is not indexed to expected life at retirement have a very large exposure

to longevity risk. This exposure is sizeably reduced, but not fully elim-

inated, by the indexation of retirement age to expected life at the cost

of a remarkable increase of the retirement age over time. The stochas-

12Note that the coefficient (()) is always automatically adjusted to the actual

"projected" mortality while the indexation of retirement age depends on the mean

expected life in all simulations.
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tic simulation of a mortality model to project future population over 65

illustrates that longevity risk might generate incremental pension pay-

ments as high as 4 per cent of GDP per year in the period 2040-2050,

without indexation of retirement age. This exposure is reduced to one

per cent of GDP over the same period when indexation of retirement

age is introduced. The longevity risk that affects the pension system is

not idiosyncratic and therefore not diversifiable. Our empirical analysis

leads to two main conclusions that bear important policy implications .

First, the diversification of the residual longevity risk requires specific in-

struments, such as longevity bonds or longevity swaps, which are not yet

widely available. The introduction of these instruments would be partic-

ularly important if an indexation of retirement age is difficult to sustain

after its introduction. Our results show that sovereign states, being li-

able for pension payments, should not increase their exposure towards

longevity by issuing longevity bonds. However, exposure to longevity

might help the diversification of a private portfolio. If this is the case,

than the private sector could take the role of issuer of longevity bonds.

In a companion paper Bisetti et al. (2012) offer some evidence on this

issue by showing that including a longevity-linked security helps diver-

sification of a portfolio of equity and bonds and it has a diversification

effect that varies with the investment horizon. Second, indexation of

retirement age, as all policies that are linked to age, raises some delicate

redistributive and ethical issues. If the exposition to the common trend

of mortality improvement is different across high- and low-income groups

of the population, then the relevance of longevity risk poses serious (and

most likely regressive) redistributive issues in pension payments which

are not currently sufficiently debated. Similarly, the diversity of jobs and

their associated physical requirements poses serious issues regarding the

potential diversification of retirement age across different groups in the

population of retirees.
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7 Figures and Tables

Figure 1: Longevity for over-65 in Italy
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Figure 2: Within-sample performance of the Lee-Carter model for Italy
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Figure 3: Pseudo out-of-sample (1999-2008) projections
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Figure 4: Out-of-sample (2009-2050) projections

.000

.005

.010

.015

.020

.025

1970 1980 1990 2000 2010 2020 2030 2040 2050

M 65
M 65_CONST
M 65_LEE C_FIT
M 65 (B asel ine Upper)
M 65 (B asel ine Lower)
M 65 (B asel ine M ean)

.00

.01

.02

.03

.04

.05

.06

.07

1970 1980 1990 2000 2010 2020 2030 2040 2050

M75
M75_CONST
M75_LEEC_FIT
M75 (Bas eline Upper)
M75 (Bas eline Lower)
M75 (Bas eline Mean)

Figure 4.1: Mortality at 65-years Figure 4.2: Mortality at 75-years

.00

.04

.08

.12

.16

.20

1970 1980 1990 2000 2010 2020 2030 2040 2050

M85
M85_CONST
M85_LEEC_FIT
M85 (Bas eline Upper)
M85 (Bas eline Lower)
M85 (Bas eline Mean)

.0

.1

.2

.3

.4

.5

1970 1980 1990 2000 2010 2020 2030 2040 2050

M95
M95_CONST
M95_LEEC_FIT
M95 (Baseline Upper)
M95 (Baseline Lower)
M95 (Baseline Mean)

Figure 4.3: Mortality at 85-years Figure 4.4: Mortality at 95-years

10

15

20

25

30

35

40

1970 1980 1990 2000 2 01 0 2020 2030 2040 2050

E L65_CONS T
E L_65 (B aseline Upper)
E L_65 (B aseline Lower)
E L_65 (B aseline M ean )

Figure 4.5: Life-Expectancy at 65

24



Figure 5: Retired population and old-age pension predictions (2012-2050)

Figure 5.1: Retired population projections

Figure 5.2: Old-age pensions, no adjustment in retirement age
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Figure 6: The indexation of retirement age to expected life

Longevity risk when retirement age is indexed to the increase in life expectancy

to deliver a constant expected retirement period of 20 years

Age at retirement when indexation applies
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Age at Retirement Contributive Coefficient Expected Residual Life

57 4.903% 24.5

58 5.049% 23.5

59 5.204% 23

60 5.368% 22

61 5.542% 21

62 5.727% 20.5

63 5.925% 20

64 6.136% 19

65 6.361% 18

Table 1: Contributive Coefficient as Function of Age at Retirement in

2012. Source: www.inps.it

8 Appendix 1:Identification and Estimation of the

Lee-Carter Mortality Model

The Lee-Carter (1992) consists of a system of equations for logarithms

of mortality rates for age cohort  at time  ln[] and a time-series

equation for an unobservable time-varying mortality index :

ln[] =  +  +  (9)

= 0 + 1−1 + 

∼
¡
0 2

¢
(10)

∼
¡
0 2

¢
(11)

where  and  are age-specific constants. The error term  cap-

tures cross-sectional errors in the model based prediction for mortality

of different cohorts, while the error term  captures random fluctuations

in the time series of the common factor  driving mortality at all ages..

This common factor, usually known as the unobservable mortality index

evolves over time as an autoregressive process and the favourite Carter-

Lee specification makes is a unit-root process by setting 1 = 1 Identifi-

cation is achieved by imposing the restrictions
P

  = 0 and
P

  = 1

so that the unobserved mortality index  is estimated through Singular

Value Decomposition. SVD is a technique based on a theorem of lin-

ear algebra stating that a (× ) rectangular matrix  can be broken

down into the product of three matrices - an (×) orthogonal matrix

 , a diagonal ( × ) matrix , and the transpose of an orthogonal

(× ) matrix  . The SVD of the matrix  will be therefore be given

by  =  0 where  0 =  and  0 = . The columns of  are
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orthonormal eigenvectors of 0 , the columns of  are orthonormal

eigenvectors of 0, and  is a diagonal matrix whose elements are the

square roots of eigenvalues from  or  in descending order. The restric-

tion
P

  = 0 implies that  is the average across time of ln[], and

Equation 9 can be rewritten in terms of the mean-centered log-mortality

rate as

ln[]− ln[] ≡ ̃ =  + 

Grouping all the ̃ in an unique (× )matrix ̃ (where the columns

are mortality rates at time- ordered by age groups and the rows are

mortality rates through time for a specific age-group ), leads naturally

to use SVD to obtain estimates of  and . In particular, if ̃ can

be decomposed as ̃ =  0,  = [0 1      ] is represented by the
normalized first column of U, 1 = [01 11     1], such that

 =
1P

=0 1

On the other hand the mortality index vector  = [1 2      ] is given

by

 = 1(

X
=0

1)1

where 1 = [11 12     1 ]
0 is the first column of the Vmatrix and

1 is the highest eigenvalue of the matrix  (see Girosi and King (2007)

and Giacometti et al.(2010)). The values of mortality rates obtained

with this method will not, in general, be equal to the actual number of

deaths. The authors hence re-estimated  in a second step, taking the

values of  and  as given from the first-step SVD estimate and using

actual mortality rates. The new values of  were obtained such that, for

each year, the actual death rates would have been equal to the implied

ones. This two-step procedure allows to take into account the population

age distribution, providing a very good fit for 13 of the 19 age groups

in the authors’ sample, where more than 95% of the variance over time

was explained. For seven of these, more than 98% of the variance was

explained.

9 Appendix 2: The Data on Italian Labour Income

• Data in Italian £

— 1965-1969: data are available for monthly income in the var-

ious sectors and for the average monthly income. We consid-
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ered 13 months of income per year to get the yearly average

income.

— 1970-1971: data available for average monthly income, at

which the various employment sectors are indexed (e.g. If the

average monthly income is 130 and the index for managers is

120, then the monthly income for managers is (130*100)/120).

Figures are then translated into yearly values by multiplying

by 13 working months.

— 1973-1974: data available on total yearly income for each em-

ployment sector, on labour and mixed income (work into the

unincorporated sector, valid for the computation of the pen-

sion) as percentage of total income and on employment sectors

as percentages of total workforce. Overall labour income is

then an average of the labour income of the various employ-

ment sectors, weighted by the relative amount of that sector

on the total workforce.

— 1975-1983;1986: data available for average yearly income, at

which the various employment sectors are indexed (e.g. If the

average yearly income is 130 and the index for managers is

120, then the monthly income for managers is (130*100)/120).

— 1987;1989: figures on yearly labour income directly available

from reports.

— 1991;1993;1995;1998: data are separately available for the to-

tal income from subordinated work, the total income from

self-employment and the percentages of these two sources of

income relative to total income. Average labour income is

calculated accordingly as a weighted average between income

from self-employment and income from subordinated labour.

— 1972; 1984-1985;1988;1990;1992;1994;1996;1999: no surveys

available for these years.

• Data in Euros

— 2000;2002;2004;2006;2008: data are separately available for

the total income from subordinated work, the total income

from self-employment and the percentages of these two sources

of income relative to total income. Average labour income is

calculated accordingly as a weighted average between income

from self-employment and income from subordinated labour.

— 2001;2003;2005;2007: no surveys available for these years.
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Once obtained our nominal estimates of average labour income dur-

ing the years between 1965 and 2008 for which surveys were available,

first of all we converted all the data into the same currency by using the

fixed exchange rate of 1936,27 ITL/EUR. We then interpolated nominal

labour income for the years for which no surveys were conducted. Fi-

nally, using the CPI Index13, we deflated average nominal labour income

with which we subsequently produced our forecasts.

13Obtained from theWorldBank’s website, http://databank.worldbank.org/ddp/home.do
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