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A Data

We consider a set of quarterly equity returns over the period 1952Q2 to 2012Q4. Our choice

of the start date is dictated by the availability of data for our predictors. Real returns are

computed by deflating nominal returns by the Consumer Price Index inflation.

1. Stock returns: Return data on the value-market index are obtained from the Center for Re-

search in Security Prices (CRSP) at the University of Chicago. We use the NYSE/Amex

value-weighted index with dividends as our market proxy, Rt+1. Quarterly returns are

constructed by compounding their monthly counterparts. The h-horizon return is calcu-

lated as Rt+h = exp(rt,t+h) = exp(rt+1 + . . .+ rt+h) where rt+j = ln(Rt+j) is the 1-period

log stock return between dates t+ j − 1 and t+ j and Rt+j is the simple gross return.

2. Portfolio returns: With regard to value portfolios, we form quintiles and use the returns

on the High, Medium, and Low portfolios. We measure value using three alternative

signals, which gives us a total of nine portfolios. The first measure of value is standard,

and it is based on the ratio of the book value to the market value of equity, as in Fama

and French (1992). Book values are observed each June and refer to the previous fiscal

year-end in December to ensure data availability to investors at the time of portfolio

formation. The most recent market values are used to compute the ratios following Asness

and Frazzini (2013). Consistent with previous literature, we exclude financial firms: a
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given book-to-market ratio might indicate distress for a non-financial firm, but not for

a financial firm (see Fama and French (1995)). We denote this measure BMi,t,Ex.fin..

However, because many financial firms are large and in the investment opportunity set of

most investors, we also consider a second set of industry-adjusted book-to-market ratios:

BMi,t,Ind.adj., which subtract from each BMi,t the value-weighted average book-to-market

ratio of the industry to which stock i belongs. Finally, we also perform a sort across

17 industries, using for each industry the average book-to-market ratio as value signal

(denoted IndustryBMi,t).

3. Short-term rate: The nominal short-term rate (Rf,t+1) is the annualized yield on the

3-month Treasury bill taken from the Center of Research in Security Prices (CRSP) at

the University of Chicago. Longer (than 1Q) returns are constructed by rolling over

the three-month T-bill. As an alternative, we have also considered the yield-to-maturity

on a zero-coupon bond with maturity matching the horizon h. Results were basically

unchanged and particularly so at the 1-year horizon. Since in all cases one needs to

subtract the inflation realized over the given horizon h from the return on each strategy,

for robustness we have also considered the case in which real yields on Treasury Inflation

Protected Securities (TIPS) were used instead of nominal yields minus realized inflation.

Once again results were unaffected.

4. Stock market predictors: consumption-wealth ratio, cayt, see Lettau and Ludvigson (2001);

the dividend-price ratio, dpt, see Campbell and Shiller (1988a) and Campbell and Shiller (1988b).

5. Portfolio predictors: in addition to cayt and dpt, we also use the book-to-market ratio

of the portfolio. Specifically, we use BMi,t for the classical value portfolios that exclude

financial firms, the industry-adjusted book-to-market ratios, BMi,t,Ind.adj., for the port-

folios that include financials, and the IndustryBMi,t for the industry-based portfolios.

Throughout, i = {High,Medium,Low}.

6. Short-rate predictors: the lagged yield spread, sprt; the one month maturity US treasury-

bill rates, yt (see, e.g., Campbell (1987) and Fama and French (1989)). The term spread,

sprt, is the difference between the long term 5-year yield on government bonds and the
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Treasury-bill (see, e.g., Campbell (1987) and Fama and French (1989)).

7. Inflation: we use the seasonally unadjusted CPI from the Bureau of Labor Statistics.

B Model Estimation and Parameters Value

B.1 Long-Run Risks

B.1.1 Bansal, Kiku, and Yaron (2016)

The model is estimated using annual data from 1930 till 2015. The estimation procedure is based

on the Generalized Method of Moments (GMM). To account for a potential discrepancy between

the sampling frequency of the data and the decision interval, the vector of model parameters is

estimated simultaneously with the decision interval of the agent. That is, estimating the model

entails searching jointly for the best parameter set and the decision frequency that fit the data.

A full list of moment conditions is presented in Table 3 of Bansal, Kiku, and Yaron (2016).

Three sets of moments are exploited:

1. moments that characterize the joint dynamics of consumption and dividend growth rates;

2. moments that characterize the level and volatility of asset returns;

3. moments that characterize the predictability of asset returns and consumption.

The first set of moments comprises the mean, volatility and autocorrelation of consumption

and dividend growth rates as well as their correlation. The second set of moments consists of

the mean and volatility of the equity returns, the risk-free rate, and the price-dividend ratio,

thus confronting the model with both the equity premium (Mehra and Prescott (1985)) and

the volatility puzzles (Shiller (1982)). The estimation also uses the autocorrelation of the price-

dividend ratio. To account for predictability of consumption growth and equity returns, Bansal

et al. (2016) use the correlations of the price-dividend ratio with future consumption growth

and with future market returns.

To simulated the Bansal et al. (2016) model-implied SDF, we use all the estimated pa-

rameters reported in Table 2 of Bansal et al. (2016), and reported in Table B1 for reader’s
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convenience.

Table B1 Parametrization of Bansal et al. (2016) long-run risks model. The
estimated values and corresponding standard errors (in parentheses) are taken from (Bansal
et al., 2016) Table 2. The model is simulated at the monthly frequency.

Parameter Bansal-Kiku-Yaron (BKY)

Preferences
Time preference δ 0.9990

(0.0001)

Risk aversion γ 9.67
(1.44)

EIS ψ 2.18
(0.21)

Consumption growth dynamics, gt
Mean µ 0.0016

(0.0005)

Long-run risk, xt
Persistence ρ 0.9762

(0.0035)

Volatility parameter ϕe 0.0318
(0.0053)

Consumption growth volatility, σt
Mean σ0 0.0070

(0.0009)

Persistence v 0.9984
(0.0007)

Volatility parameter σw 2.12× 10−6

(5.32×10−7)

Aggregation h 11
(2.16)

B.1.2 Schorfheide, Song, and Yaron (2018)

The model is estimated using a particle MCMC approach that exploits the conditional linear

structure of the approximate equilibrium in the endowment economy. All model parameters

and latent stochastic volatilities are estimated jointly using full likelihood.

The vector of observables contains the consumption growth rate, the dividend growth rate,

the observed market return and the risk-free rate. To estimate the model, Schorfheide, Song,

and Yaron (2018) use data sampled at different frequencies. In particular they use annual
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consumption growth data from 1930 to 1959, and monthly data from 1960:M1 to 2014:M12;

monthly dividend annual growth data from 1930:M1 to 2014:M12; monthly returns and prices

of the CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ

from 1930:M1 to 2014:M12; finally, the ex-ante real risk-free rate constructed as the fitted value

from a projection of the ex-post real rate on the current nominal yield and inflation over the

previous year from 1930:M1 to 2014:M12.

To simulate the Schorfheide et al. (2018) model-implied SDF, we use the 50% posterior

values of the estimated parameters reported in Table 5 of Schorfheide, Song, and Yaron (2016),

and reported in Table B2 for reader convenience.

Table B2 Parametrization of Schorfheide et al. (2018) long-run risks model. The
estimated values are taken from Schorfheide et al. (2016), Table 5. The model is simulated at
the monthly frequency.

Distr. Schorfheide-Song-Yaron (SSY)
Posterior

5% 50% 95%

Household Preference
δ B − 0.999 −
ψ G 1.134 1.935 3.416
γ G 5.441 8.598 12.969

Preference Risk
ρλ U 0.9157 0.9559 0.9818
σλ IG 0.0003 0.0005 0.007

Consumption Growth Process
ρ U 0.9486 0.9872 0.9995
ϕx U 0.1388 0.2315 0.5058
σ IG 0.0020 0.0032 0.0044
ρhc NT 0.9733 0.9914 0.9958
σ2
hc

IG 0.0074 0.0088 0.0100
ρhx NT 0.9874 0.9943 0.9988
σ2
hx

IG 0.0027 0.0039 0.0061

Consumption Measurement Error
σε IG 0.0006 0.0010 0.0016
σaε IG 0.0061 0.0231 0.0423
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A final comment is in order. Schorfheide et al. (2018) also allow for stochastic volatility in

dividends, σ2
d,t. This additional volatility is important to reproduce asset pricing moments, but

irrelevant in our context since the SDF in Eq. (10) in the main text is solely determined by

consumption dynamics. This is why we report only the parameters for σ2
c,t and σ2

x,t in Table

B2.
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B.2 Rare disasters

B.2.1 Nakamura, Steinsson, Barro, and Ursúa (2013)

The Nakamura, Steinsson, Barro, and Ursúa (2013) model is estimated using annual data from

1890 to 2006. The estimation is carried out in two steps. The first step consists in estimating

(using Bayesian Markov-Chain Monte-Carlo methods) the model parameters solely related to

the consumption dynamics. This step relies on annual data from the Barro and Ursúa (2008)

dataset. In the second step, the preference parameters are calibrated to match asset pricing

moments. In particular Nakamura et al. (2013) set the IES to 2. The value of the coefficient

of relative risk aversion (CRRA) is chosen to match the equity premium in the data (when

IES= 2). In the baseline case, CRRA equals to 6.4. Finally, the discount factor β is chosen to

match the risk-free rate in the data for the baseline values of CRRA and IES. This procedure

yields a value of β = exp(−0.034).

In the main text of the paper we also consider three alternative specifications of the disaster

model. In particular we consider (a) the case in which disasters are completely permanent

but unfold over several years; (b) the Rietz (1988)-Barro (2006) model of permanent and

instantaneous disasters (i.e. a disaster occurs in a single period, and the drop is permanent);

(c) the case of No Disasters, i.e. a long sample in which agents expect disasters to occur with

their normal frequency but none actually occur. For these alternative cases we use the value of

parameters reported in Table 7 of Nakamura et al. (2013).

To simulate the Nakamura et al. (2013) model-implied SDF, we use the estimated posterior

mean of the disaster parameters reported in Table 1; the estimated posterior mean of the post-

1973 mean growth rate of potential consumption (united states) reported in Table 3; and the

estimated posterior mean of of the variances of the permanent (for U.S.) and transitory shocks

(post-1946, for U.S.) to consumption reported in Table 4 of Nakamura et al. (2013). We report

this parameters in Table B3 for the reader’s convenience.
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Table B3 Parametrization of asset pricing model incorporating rare disasters by
Nakamura et al. (2013). The value of the parameter estimates and corresponding standard
errors (in parentheses) are taken from Nakamura et al. (2013). The model is simulated at the
annual frequency.

Parameter Annual
Preferences
Time preference δ 0.967
Risk aversion γ 6.4
Elasticity of intertemporal substitution ψ 2

Potential consumption dynamics, gt, only for US
Mean of potential consumption growth, xt µ 0.022

(0.003)

Volatility parameter σε 0.003
(0.002)

Volatility parameter ση 0.018
(0.002)

Disaster parameters
Probabilities of
a world-wide disaster pW 0.037

(0.016)

a country will enter a disaster when a world disaster begins pCbW 0.623
(0.076)

a country will enter a disaster “on its own.” pCbI 0.006
(0.003)

a country will stay at the disaster state 1− pCe 0.835
(0.027)

Disaster gap process, zt
Persistence ρz 0.500

(0.034)

a temporary drop in consumption caused by shock, φt
Mean φ −0.111

(0.008)

Volatility parameter σθ 0.121
(0.015)

a permanent shift in consumption caused by shock, θt
Mean θ −0.025

(0.007)

Volatility parameter σφ 0.083
(0.006)
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B.2.2 Gabaix (2012)

Gabaix (2012) incorporates a time-varying severity of disasters into the baseline disasters model

of Rietz (1988) and Barro (2006).

The consumption growth has the following dynamic

Ct+1

Ct
= egC ×

 1 if there is no disaster at t+ 1

B−γ
t+1 if there is a disaster at t+ 1

where gC is the normal-time growth rate of log consumption and Bt+1 > 0 is the recovery rate

of consumption after disaster and assumed to be a random variable. At each period t + 1, a

disaster may happen with a probability pt. pt is a random variable with mean µp, and standard

deviation σp.

Furthermore, the notion of “resilience” Hit of asset i is introduced to model the time varia-

tion in the asset’s recovery rate. The resilience of a consumption claim

Hc,t = ptEt
[
B−γ
t+1 − 1

]
can be split into a constant part Hc∗ and a variable part Ĥc,t. As shown in the online appendix

of Levintal (2017), the steady state value Hc∗ is

Hc∗ = e−γµp log(B)+µp log(B) − 1 ,

and Ĥc,t satisfies the condition

Ĥc,t+1 =
1 +Hc∗

1 +Hc,t

e−φHĤc,t + εHc,t+1 ,

where 1+Hc∗
1+Hc,t

is close to 1 and Et
[
εHc,t+1

]
= 0.

To be consistent with the asset pricing models that we diagnosed in the main part of the

paper, we restrict our attention to the extension of the Gabaix (2012) model to an Epstein-Zin
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economy. Within the Epstein-Zin setup, the SDF is given approximately (see Theorem 3 in

Gabaix (2012)) by

mt+1 = e−δ
(
1 + (χ− 1)Hct + εMt+1

)
×

 1 if there is no disaster at t+ 1

B−γ
t+1 if there is a disaster at t+ 1

where δ = ρ+ gC/ψ, χ = 1−1/ψ
1−γ , εMt+1 = (1− χ)

εHc,t+1

δC+φH
and δC = δ − gC − χHc∗.

This model is calibrated at annual frequency. The parameter values are obtained directly

from Gabaix (2012), and its online appendix. For completeness, we report them in Table

B4. Figure B.1 shows the SDF obtained from Gabaix (2012)’s model. We also report the SDFs

generated by the different models discussed in the main part of the paper. The figure highlights

that the Gabaix (2012) SDF satisfies the 5-year unconditional bounds but it fails to meet our

predictors-based bounds at all horizons. Since there is no estimated parameters with related

standard deviation values, we only include the results of this model in this appendix.

Table B4 Gabaix (2012) Variable Rare Disasters model. The parameters’ values are calibrated
as in Gabaix (2012). The model is simulated at the annual frequency.

Parameter Gabaix (2012)

Preferences

Time preference ρ 0.048

Risk aversion γ 4

Elasticity of intertemporal substitution ψ 2

Consumption dynamic

Growth rate of consumption gC 0.025

Recovery rate of consumption after disaster B 0.66

Probability of disaster µp 0.0363

σp 0.004

Resilience

Speed of recovery φH 0.13

Volatility σH 0.010

Normal-times volatility in SDF σεM 0.064
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Figure B.1 Predictors-based bound (σz(v)), Hansen-Jagannathan (1991) bound
(σHJ(v)), and model-implied SDFs.- SET A and SET B. The figure displays the Hansen-
Jagannathan (1991) bounds (dashed violet line) and the predictors-based bounds (solid black
line). We follow Bekaert and Liu (2004) to construct the predictors-based bounds. To construct
the bounds we use data from 1952Q2 to 2012Q3. The green circle and blue star correspond
to the (average mean and standard deviation of the) SDF obtained from 10 simulation runs of
600,000 months of the Bansal et al. (2016) (BKY model) and Schorfheide et al. (2018) (SSY
model) long-run risks models, respectively. The red triangle corresponds to the SDF obtained
from 10 simulation runs of 50,000 years of the (baseline case of) Nakamura et al. (2013) rare
disasters model. The black square corresponds to the no disasters case, i.e. it refers to a long
sample in which agents expect disasters to occur with their normal frequency but none actually
occur. The magenta diamond corresponds to the SDF obtained from 10 simulation runs of
50,000 years of the Gabaix (2012) variable rare disasters model.
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C Quantifying uncertainty

This appendix explains how we account for uncertainty in the evaluation of the difference

between the estimated model-implied standard deviation of the SDF, σ
(
mX
t

)
, and the estimated

predictors-based bound, σZ(v). First, to compute the mean and variance of a given model-

implied SDF, we take into account the uncertainty of the parameters of the exogenous state

dynamics. Second, since the predictors-based bound are estimated from the data, we also

account for the uncertainty surrounding the linear predictive model, which is used to compute

the conditional moments of asset returns, see Eq.(12). Finally, we obtain the finite sample

distribution of the difference, ∆ = σ
(
mX
t

)
− σZ(v), based on a related approach in Cecchetti,

Lam, and Mark (1994) and Burnside (1994).

To make explicit the dependence of the moments of the SDF from the parameters of the

model, we denote the model-implied mean and standard deviation of the SDF as

µm (φ, ψ)

σm (φ, ψ)

where φ denotes the vector of parameters that characterize the preferences, and ψ contains

all the parameters associated with the state dynamics. For instance, in the LRR model,

φ = (δ, γ, ψ) and ψ = (µ, µd, φ, ϕd, ρdc, ρ, ϕe, σ, υ, σω), (see Table B1). Then, for the Bansal

et al. (2016), and the Nakamura et al. (2013) models, we draw the parameters related to state

dynamics, i.e. ψ, from normal distributions with mean and standard deviation given in Table

B1 and B3, respectively. Similarly, for the Schorfheide et al. (2018) model we use the distribu-

tions detailed in B2. In this latter case, we also verify that our results are robust to drawing

parameters from normal distributions with 90% intervals covering the maximum among the 5%

and 95% values reported in Table B2. Given these parameters, for each model we simulate an

SDF of length equal to the size of our data, i.e. 742 months, and compute the model-implied

mean, µm (φ, ψ), and variance, σm (φ, ψ).
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Moving to the predictors-based bounds, we draw the coefficients in Eq. (18), βS0 , β
S,cay
1 , βS,dp1 ,

for stocks, and βB0 , β
B,spr
1 , βB,y1 , for bonds, from normal distributions. For each parameter, the

mean of the normal distribution is set to the sample estimates from the predictive regressions,

and the standard deviation is provided by the Newey-West t-stats corrected value (see the

regression results in Table 3). Given these parameters, we simulate a series of returns of length

equal to 742 months, re-estimate the predictive regressions, and compute the predictors-based

bounds using Eq. (6).

Finally, we compute the difference between σm (φ, ψ) and σZ(µm) and repeat this exercise

10000 times. We consider three different cases. In the first case (reported in the leftmost block

in Table 3) the mean of the SDF, µm (φ, ψ), is fixed to the long-run mean obtained from a

simulations run of 600,000 months, vlr. Given this (population) value of the mean SDF, the

only source of uncertainty stems from the location of the bound, σZ(vlr), and the standard

deviation implied by the model, σm (φ, ψ). The second case (reported in the middle block in

Table 3) keeps the parameters of the predictive regressions fixed at their point estimates so that

(for a given value of the average SDF, µm (φ, ψ)) there is no uncertainty in the location of the

bound, σZ(µm). However, there is uncertainty induced by the fact that the mean of the SDF

for the model, µm (φ, ψ), must be estimated, as well as uncertainty in the standard deviation

implied by the model, σm (φ, ψ). The last case (reported in the the rightmost block) is the case

when there is: (i) uncertainty induced by the fact that the mean of the SDF for the model,

µm (φ, ψ), must be estimated (ii) uncertainty in the location of the bound, σZ(µm) (for a given

expected value of the SDF), (iii) and uncertainty in the standard deviation implied by the

model, σm (φ, ψ) (for a given expected value of the SDF).

D Extensions

The empirical results in the main text have shown that incorporating predictability of asset

returns does make the variance bounds tighter and hence it imposes a harder yardstick on asset

pricing models that deliver unpredictable discounted returns. In this Section we analyze the
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robustness of our results to the possibility of misspecification of the model for the conditional

moments of returns.

D.1 Predictability, model mis-specification and variance bounds

Recall that the results presented so far are obtained under the assumptions of a time-invariant

variance-covariance matrix for returns and a linear model for their conditional means. To inves-

tigate possible mis-specification of the conditional moments and the efficiency of the bound we

plot in Figure D.1 alternative implementations of the variance bounds. Specifically, along with

the predictors-based bound obtained following Bekaert and Liu (2004) (BL), in this figure we

plot the bounds obtained following alternatively Gallant, Hansen, and Tauchen (1990) (GHT)

and Ferson and Siegel (2003, 2009) (FS).
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Figure D.1 Alternative implementation of the HJ bounds – SET A. We present the
volatility bounds using conditional information based on Ferson and Siegel (2003, 2009) (FS
Bound), Bekaert and Liu (2004) (BL-predictors-based bound) and Gallant et al. (1990) (GHT
Bound) specifications, respectively. The bounds are generated using asset returns included in
SET A. Sample: 1952Q2 - 2012Q3.

Bekaert and Liu (2004) show that their bound, obtained by maximizing the Sharpe ratio

over all returns obtained from portfolios that condition on Zt and that cost 1 on average, must

be a parabola under the null of correct moments specification. Figure D.1 shows that in our case

we obtain a smooth parabola indeed. The figure, moreover, shows that the GHT bound and
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the BL bound are virtually on top of each another, i.e. there is no duality gap. This suggests

that the BL bound closely approximates the efficient use of conditioning information. Overall

the three alternative implementations of the variance bounds that incorporate information from

the predictors Zt generate similar bounds with no visible misspecification. The FS is the lowest

bound: this is readily understood by observing that the FS bound collects all those payoffs

that are generated by trading strategies that reflect the information available at time t, and

that have unit price almost surely equal to one, and not just on average as for the BL case.1

Although the FS approach yields the most conservative bound, the differences between the three

approaches would not change our conclusions. This evidence suggests that misspecification of

the conditional moments does not seem to be a driver of our results.

1More formally, the FS bound (see Ferson and Siegel (2003)) is defined as

σ2
FS(v) = ν2 sup

Rw
t+h∈RFS

(
E(Rw

t+h)− ν−1

V ar
(
Rw

t+h

) )2

where RFS =
{
Rw

t+h ∈ RZ | w′te = 1 almost surely
}

i.e. the FS variance bound follows from maximizing the
Sharpe ratio over the set of returns from portfolios that, while conditioning on Zt, are required to have unit
price almost surely, and not just on average. Therefore, it is evident that σ2

FS(v) ≤ σ2
Z(v).
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