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Appendix to Section 2: The SEIR-HC-SEC-AGE Model

In this appendix we characterize the basic epidemiological concepts on which the SEIR-

HC-SEC-AGE model presented in the paper is constructed. We start with the basic SEIR

model.

SEIR Model

The basic SEIR model (Allen, 2017) for the transmission dynamics of the virus (Figure

B–1) for the transmission dynamics of the virus classifies individuals as: Susceptible, then

Exposed, then Infectious, then Removed. Infectious are divided in three groups: Mild (no

hospitalization is needed), Severe(hospitalization needed with a lag Tshosp), and Fatal (this

condition has to be interpreted as a pre-assigned final outcome for that condition, after

hospitalization, with a lag Tshosp ). At the end of the process some subjects are removed as

Recovered (REC) and the others are removed as fatalities (REM FAT ).

Figure B–1: Flowchart of the SEIR model

Note: Description of the possible dynamic transitions of a subject in the basic SEIR model (Allen, 2017)

Time is measured in days and is denoted by t. An initial total population ofN0 individuals

is divided into the first infectious subject (I0 = 1) and S0 = N0−1 susceptible subjects. The

virus spreads via the interaction between Susceptible and Infectious individuals ( visually

illustrated in the graphical representation of the model by the black arrow)

In each subsequent day t some susceptibles become exposed. The daily quantity of new

exposed that become new infectious after an incubation period is determined by the net

reproduction number of the infection multiplied by the number of existing infectious. The

net reproduction number is time varying and it depends on three components: the basic

reproduction number (BRN) of the infection, R0 (i.e. the number of secondary infections

each infectious individual produces at the initial stage of the infection in absence of policies
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or behavioural responses ), the average number of days in which a subject is infectious, Tinf ,

and the fraction of susceptibles to the total population, St−1

Nt−1
, so in each period we have:

NewEt =
Rt

Tinf

It−1 ; Rt = R0
St−1

Nt−1

The exposed, after an incubation period of Tinc days, become infectious. Therefore the

outflow from the susceptibles is the inflow into the exposed in each period and, similarly, the

outflow from the exposed is the inflow into the infectious, who fall into two categories: those

whose destiny is recovery and those whose destiny is to become a fatality. The allocation

to these two groups is controlled, respectively by the two probabilities: 1 − pfat and pfat.

Those who survive the infection are then removed as recovered, REM RECt, after a period

of Tsrec days from symptoms to recovery. Those who become instead fatalities are removed

as fatalities, REM FATt, after a period of Tsd days from symptoms to death.

Some comments are necessary to understand the extensions of this basic model that will

be presented later. First, a feature of the model is that the lethality of the virus, as measured

by

λseirt =
REM FATt

Et + It +REM RECt +REM FATt
,

always converges eventually to the Case Fatality Rate which is the exogenously fixed prob-

ability with which an Exposed individual eventually dies. If R0 ≤ 1 the virus diffusion is

inhibited and the share of the total population that dies goes to zero as λseirt goes to the

CFR. If instead R0 > 1, the share of the total population that dies converges to the CFR

as λseirt converges to pfat, and all individuals become eventually Exposed. In this second

case, the total number of victims will be the same independently of the size of R0, which

determines only the speed at which the asymptotic number of victims is reached.

The full model dynamics is described as follows:
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∆St =

(
− R0

Tinf

It−1
Nt−1

)
St−1

∆Et =

(
R0

Tinf

It−1
Nt−1

)
St−1 −

(
1

Tinc

)
Et−1

∆It =

(
1

Tinc

)
Et−1 −

(
1

Tinf

)
It−1

∆RECt =
(
1− pfat

)( 1

Tinf

)
It−1 −

(
1

Trec

)
RECt−1

∆FATt = pfat
(

1

Tinf

)
It−1 −

(
1

Tsd − Tshosp

)
FATt−1

∆REM FATt =

(
1

Tsd − Tshosp

)
FATt−1

∆REM RECt =

(
1

Trec

)
RECt−1

Nt = Nt−1 −∆REM FATt

From the basic SEIR to the SEIR-HC-AGE-SEC model

As discussed in the main text our SEIR-HC-AGE model extends the basic SEIR model along

several dimensions:

1. Multi-risk and multi-activity Populations is divided into 9 age-brackets (from 0-9 to

80+) of which 5 are in working age (20-69 yers old). The working cohorts are allocated

to two-production sectors, characterized by different levels of coworkers proximity, or

inactivity imposed by a containment policy. We have therefore 19 groups with different

probabilities of infection, hospitalization and fatality that vary with age, sector and

age-specific labor force participation.

2. Intervention Policies and Behavioural Responses In our model to basic repro-

duction number of homogenous agents model will be substituted by a basic reproduc-

tion matrix,R(a, b;α), that describes the number of agents of type (a) that are infected

by an agent of type (b) for a level of activity α, (for example, a worker in the high-risk

sector does not infect many people if he is not active). The virus dynamics will be

affected not only by the containment policy adopted by the government and reflected

in the choices of Activity Levels but also by the behavioural response of individuals to

the development of the virus.

3. Time-Varying death probability The probability of death is time-varying and it

can become higher than the constant CFR ( Case Fatality Rate) of COVID-19. The
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Probability of death is modelled to increase progressively with the saturation of hos-

pitals and to reach a critical point when the available supply of intensive care beds is

fully saturated.

4. Management of Hospital Flows With our specification of the probability of death

management of the hospital flows becomes an important policy to reduce mortality.

Extensive testing, early detection of the infectious, their placement in domestic quar-

antine paired with administering medicines can prevent them to reach the stage of

symptoms that need hospitalization.

The dynamics in the SEIR-HC-AGE model (Figure B–2) is much richer than that of the

basic SEIR model. To evaluate the impact of the extensions on the model dynamics, we

describe how the compartmental dynamics evolves at the different stages of the model.

Figure B–2: Flowchart of Multiple-Risk SEIR-HC-SEC-AGE Model
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1. The Dynamics of Susceptible and Exposed

The core equations describing the dynamics of the virus are reported in the following

interaction of Susceptible and Exposed, in each of our 19 groups of agents:

∆St(a) = − 1

TInf

β(mt−1)

β(m0)

∑
b∈A

It−1(b)Pr(Vt ≥ v∗t |b)
Nt−1

R(b, a;α)St−1(a)Pr(Vt ≥ v∗t |a)

∆Et(a) = −∆St(a)− 1

TInc
Et−1(a)

The number of susceptible that each infectious infect, depends on the activation policy

for each sector of the working population, described by α, on the probability of con-

tamination β(mt−1) (This probability may evolve over time with the spreading of the

virus as it is affected by precaution, such as wearing masks, and mutation of the virus

aggressiveness that might be related to a number of different factors, such as temper-

ature and humidity) and on the probabilities with which susceptibles and infectious

agents are active, Pr(Vt ≥ v∗t |a). Note that, as the model features quadratic matching,

what matters for the virus dynamics is the product of probabilities of being active for

susceptible and infectious agents. These probabilities reflect both the average response

of agents to policies and their behavioural response to the spreading of the virus and

they vary over time.

In standard single-agent SEIR models the diffusion of the virus in each period depends

on the basic reproduction number rt, which is the product of the basic reproduction

number r0 and the share of susceptible individuals in the total population at time t. A

virus starts to implode when rt goes below unity. “Herd immunity” is reached when the

share of susceptible individuals in the total population goes below 1/r0. We emphasize

the r0 used here is the reproduction number at initial pre-epidemic conditions, when

no precautionary measure of any type is taken, so the number of infected contracts

even if no such measure is taken.

The same concepts apply to our model except that the basic reproduction number

becomes a basic initial reproduction matrix. Rt(a, b, α) depends on the share of sus-

ceptible individuals in the total population, the evolution over time of the probability

of contracting the virus for a susceptible given a contact with an infectious, and the

product of the probabilities of activation of susceptible and infectious agents. The
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Rt(a, b, α) element of the matrix will evolve according to:

Rt(a, b;α) =
St−1(b)

Nt−1

β(mt−1)

β(m0)
Pr(Vt ≥ v∗t |a)Pr(Vt ≥ v∗t |b)R(a, b;α)

In the current multi-risk model, Pr(Vt ≥ v∗t ) is a 19 dimensional vector that describes

the probability with which agents in each group become active. As explained in Section

3 of the main paper each of the elements of this vector is given by:

Pr(Vt ≥ v∗t |a) =
(V −Kt(a)) (1 + ψ ∗ TEMPt)

It + V (1 + ψ ∗ TEMPt)

To determine Kt(a) we use the estimates of the behavioural response of grocery moves

in the first column of Table 3 of Section 3. We pick the parameter estimates for grocery

because they refer to an activity that can be chosen more freely by an individual,

differently than workplace and transportation activities that may be constrained by the

legal possibility to work or by interruptions of transportation services during Lockdown

or the Phase 2. Indeed grocery was never prohibited, provided that a minimum distance

could be maintained between individuals inside the shops or in their vicinity. For agents

that are activated and go to school and work we set Kt(a) = 0, as their choice of being

active depends only on the behavioural reaction and no lockdown policy is imposed to

them. For agents that are inactive we use the estimation results and set

Kt(a) = 199.87Lock + 55.36Phase2.

where Lock and Phase2 are defined in foonote 10 of the main paper. Agents in the

first two groups are activated when schools are opened and inactive otherwise. For

agents in group 3,...12 (the ten groups constructed by considering the share of agents

in working age employed in high risk and low risk sectors) a share α is active and the

complement to one is inactive. Finally, agents in groups, 13,...19 are all inactive.

2. From Infectious to Mild and Severe

Infectious do not initially feel symptoms, but unlike the period in which they were

just exposed, they spread the virus for a period that lasts Tinf days. After this pe-

riod they suffer symptoms, that can be mild or severe. Severe patients (SEV) never

revert to a state of MILD. MILD patients without proper medical care may turn into

Severe. This process occurs after Tinf days, in which both infected and infectious

have very mild symptoms, and thus do not avoid contacts. Within this framework,

we introduce testing, which leads to domestic quarantine of the infectious with mild
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symptoms. Domestic quarantine, paired with pharmacological treatment, can stop

them from reaching a stage requiring hospitalization. The dynamics of the Infectious

in daily data is as follows:

∆It(a) =

(
1

Tinc

)
Et−1(a)− (1− δ)

(
1

Tinf

)
It−1(a)− δ

(
1

Tinf0

)
It−1(a)

∆MILDU
t (a) = pmild(a) (1− δ)

(
1

Tinf

)
It−1(a)−

(
1

Tsrec,U

)
MILDU

t−1(a)

−pM2Sev,U (a)

(
1

Tshosp,U

)
MILDU

t−1(a)

∆MILDD
t (a) = pmild(a)δ

(
1

Tinf0

)
It−1(a)−

(
1

Tsrec,D

)
MILDD

t−1(a)

−pM2Sev,D(a)

(
1

Tshosp,D

)
MILDD

t−1(a)

∆SEVt(a) =
(

1− pmild(a)
)(

(1− δ)
(

1

Tinf

)
+ δ

(
1

Tinf0

))
It−1(a)−

(
1

Tshosp

)
SEVt−1(a)

Exposed enter the compartment of the infectious as those with mild symptoms, MILDt(a),

and those with severe symptoms, SEVt(a). The allocation to these groups is controlled

by two probabilities: pmild(a) and
(
1− pmild(a)

)
. Testing allows to detect a share δ of

those destined to become MILD; they thus become detected, MILDD
t (a) while (1− δ)

become undetected, MILDU
t (a). Detection and associated medical care reduces the

length of the period in which agents are infectious from Tinf to Tinf0 < Tinf . The same

applies to the infectious who are destined to become Severe. As a consequence of the

severity of symptoms, there are no Severe undetected after Tinf days in which they are

virtually asymptomatic.

3. Hospitalization,ICU needs and endogenous mortality

The mild infected either recover – after periods of duration respectively of Tsrec,U and

(Tsrec,D) days – or their condition becomes severe and they require hospitalization,

after a period of duration Tshosp,U (Tshosp,D) days. The probability of becoming severe

is higher for the undetected than for the detected: pM2Sev,U(a) > pM2Sev,D(a). With

testing and early detection, patients are cared at home and hospitals congestion is

reduced. MILD patients who become severe and are hospitalized recover after a period

of (Tshd,U − Tshosp,U) days. All severe patients become hospitalized after Tshosp days.

Severe hospitalized either recover after (Tshd,U − Tshosp,U) days with probability pic(a)

or they worsen with probability (1− pic(a)) and require intensive care after Thosp−ic

days. Patients needing ICU may die or recover. When ICU is available and there is no

hospital congestion mortality is determined by the CFR, pfat(a). However, mortality

in ICU increases with hospital congestion. This increase is modelled by a logistic
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function of total hospitalization. The parameter k in the logistic is calibrated in such

a way that the endogenous mortality probability is zero under normal conditions and

it increases with hospital saturation. When ICU is fully saturated, mortality explodes

as all patients in need of ICU who do not find availability succumb. Those patients in

ICU who recover, leave ICU after (Tshd − Thosp−ic). Those who do not recover die after

(Tsd − Tshosp−ic). Those who need ICU and do not find it available, die immediately.

The dynamics of hospitalization is determined as follows:

∆HOSP MILDt(a) = pM2Sev,D(a)

(
1

Tshosp,D

)
MILDD

t−1(a) + pM2Sev,U (a)

(
1

Tshosp,U

)
MILDU

t−1(a)

−
(

1

Tshd − Tshosp,U

)
HOSP MILDt−1(a)

∆HOSPt(a) =

(
1

Tshosp

)
SEVt−1(a)− pic(a)

(
1

Thosp−ic

)
HOSPt−1(a)

−(1− pic(a))

(
1

Tshd − Tshosp

)
HOSPt−1(a)

pdeath(a) =
(
pfat−ic(a)

)
+
(

1− pfat−ic(a)
)( 1

1 + e−k0(HOSP MILDt+HOSPt−k1)

)
NEW DEM ICt(a) = pic(a)

(
1

Thosp−ic

)
HOSPt−1(a)

pav = min

{
1,
ICCt −

∑
aHOSP ICt−1(a)∑

aNEW DEM ICt(a)

}
∆HOSP ICt(a) = pavNEW DEM ICt(a)− pdeath(a)

(
1

Tsd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

−(1− pdeath(a))

(
1

Tshd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

∆HOSP POST ICt(a) = (1− pdeath(a))

(
1

Tshd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

−
(

1

Tic−rec

)
HOSP POST ICt−1(a)

4. Recoveries and Fatalities

At the end of each day the population decreases because of fatalities, while the stock

of recovered grows by the amount of those who survive having had mild or severe

symptoms, with or without the need of IC.

∆FATt(a) = (1− pavailable)NEW DEM ICt(a) + pdeath(a)

(
1

Tsd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

∆RECt(a) =

(
1

Tic−rec

)
HOSP POST ICt−1(a) + (1− pic(a))

(
1

Tshd − Tshosp − Tshosp

)
HOSPt−1(a)

+

(
1

Tsrec,U

)
MILDU

t−1(a) +

(
1

Tsrec,D

)
MILDD

t−1(a) +

(
1

Tshd − Tshosp,U

)
HOSP MILDt−1(a)

∆Nt = −
∑
a∈A

∆FATt(a)
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Appendix to Section 6.6: Calibration Results

Figure B–3: Simulated and observed daily hospitalization with parameters from Ferguson
et al. (2020)

Note: the figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19.The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the
new school year (September 14). Source: The simulated values are from the SEIR-HC-SEC-AGE model. The observed series
were downloaded from https://github.com/pcm-dpc/COVID-19.

Figure B–4: Simulated daily Rt with parameters from Ferguson et al. (2020)

Note: The figure reports, for both Lombardia (left panels) and Veneto (right panels), the average Rt during the simulation
period under the 5 representative policies that we consider with behavioral response. The upper panels refer to β(m) = 0.7
while the lower panels refer to β(m) = 0.9. The jumps are due to the change of temperature from months to months.
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Appendix to Section 7.1: The BRM under alternative

policies

Figure B–5: Equivalent Basic Reproduction Matrices post-Lockdown for Policy LOCK

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–6: Equivalent Basic Reproduction Matrices post-Lockdown for Policy SEC

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–7: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Figure B–8: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE-SEC

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–9: Equivalent Basic Reproduction Matrices post-Lockdown for Policy ALL

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Appendix to Section 7.2: The Simulation of the Ef-

fects of Different Policies

Table B–1: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response amd β(m) = 0.9

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC4 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 0.6 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = SEC SEC8 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC9 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC10 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC11 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC12 1 1 1 0.6 0.6 1 1 0.6 0.6 0.6

p = AGE SEC13 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC14 1 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC16 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC17 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC18 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC19 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC20 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC22 1 1 1 1 1 1 0.6 1 1 0.6

p = AGE SEC23 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC24 1 1 1 1 1 1 0.6 1 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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Figure B–10: The trade off between herd immunity and fatalities

Note: This figure describes the trade off betweeen fatalities and herd immunity which is defined as the ratio between total
recoveries and population in the last period of the simulation. Source: our simulations of the SEIR-HC-SEC-AGE model.

Table B–2: Lombardia and Veneto: final main outcome with β(m) = 0.9

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 31518 39512 40095 36993 45632

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.074 0.087 0.089 0.083 0.098

Average Rt 0.991 0.991 0.992 0.992 0.991
(0.775-1.324) (0.727-1.324) (0.727-1.324) (0.732-1.324) (0.733-1.333)

Veneto

Total fatalities 11661 17936 18234 15858 22756

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.051 0.071 0.073 0.065 0.087

Average Rt 0.981 0.985 0.986 0.985 0.987
(0.818-1.225) (0.751-1.225) (0.749-1.225) (0.776-1.225) (0.719-1.284)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.9, measured over the year between November 1, 2020 and October 31, 2021. Final immunity share is
calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
the parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval.
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Appendix C
Evidence based on Covid-19 parameters from CDC (Garg, 2020)
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This section evaluate the robustness of results using Covid-19 parameters estimated for

the U.S. by the Center of Deseases Control (CDC (Garg, 2020)) . The next two tables report

this different set of parameters.

Table C–3: Health effects of Covid-19 by age bracket (Garg (2020))

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

psev 0.001 0.003 0.012 0.032 0.049 0.102 0.166 0.243 0.273

pic 0.05 0.05 0.05 0.05 0.063 0.122 0.274 0.432 0.709

pfat 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Note: the table reports for each age bracket the probability of hospitalization, psev , the probability of needing intensive care if
hospitalized, pic and the probability of death pfat for a subject exposed to Covid-19 infection. Source: Garg (2020).

Table C–4: Calibrated parameters

Lombardia Veneto

k0 k1 δ1:68 δ68:609 k0 k1 δ1:609 γ

0.0008 2000 0.3 0.7 0.0008 800 0.7 0.1

Note: k1 and k2 are the parameters of the logistic function that affects the endogenous mortality(
1

1+e−k0(HOSP MILDt+HOSPt−k1)

)
. δt and γ are consistent with the higher hospitalization rate implied by parame-

ters from Garg (2020).
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Appendix to Section 6.6: Calibration Results

Figure C–11: Simulated and observed total fatalities with parameters from Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19.The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the
new school year (September 14). Source: The simulated values are from the SEIR-HC-SEC-AGE model. The observed series
were downloaded from https://github.com/pcm-dpc/COVID-19.

Figure C–12: Simulated and observed daily fatalities with parameters from Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of daily fatalities due to Covid-
19. The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the new
school year (September 14). Source: The simulated values are from the SEIR-HC-SEC-AGE model. The observed series were
downloaded from https://github.com/pcm-dpc/COVID-19.
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Figure C–13: Simulated and observed daily hospitalization with parameters from Garg
(2020).

Note: the figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19. The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the
new school year (September 14). Source: The simulated values are from the SEIR-HC-SEC-AGE model. The observed series
were downloaded from https://github.com/pcm-dpc/COVID-19.

Figure C–14: Simulated average Rt with CDC parameters with parameters from Garg (2020).

Note: The figure reports, respectively for the two regions, the average Rt, weighted to take into account the population structure.
The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the new school
year (September 14).
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Figure C–15: The IC availability constraint in Lombardia and Veneto with parameters from
Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated demand for IC beds due to Covid-19, the observed
number Covid-19 patients in IC and the observed number of patients that were effectively hospitalized in IC. The vertical bars
indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the new school year (September
14). Source: the demand for IC is simulated by our SEIR-HC-SEC-AGE model. The observed series were downloaded from
https://github.com/pcm-dpc/COVID-19 for the used IC and from https://www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%

20statistics.xlsx?dl=0 for the supply of IC.

Figure C–16: Simulated daily Rt with parameters from Garg (2020).

Note: The figure reports, for both Lombardia (left panels) and Veneto (right panels), the average Rt during the simulation
period under the 5 representative policies that we consider with behavioral response. The upper panels refer to β(m) = 0.7
while the lower panels refer to β(m) = 0.9. The jumps are due to the change of temperature from months to months.
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Appendix to Section 7.1: The BRM under alternative

policies

Figure C–17: Equivalent Basic Reproduction Matrices post-Lockdown for Policy LOCK with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–18: Equivalent Basic Reproduction Matrices post-Lockdown for Policy SEC with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Figure C–19: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–20: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE-SEC
with parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–21: Equivalent Basic Reproduction Matrices post-Lockdown for Policy ALL with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Appendix to Section 7.2: The Simulation of the Ef-

fects of Different Policies

Figure C–22: The efficient frontier in the two regions with β(m) = 0.7

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

Figure C–23: The efficient frontier in the two regions with β(m) = 0.9

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.
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Figure C–24: Daily fatalities under the different policies in Lombardia with parameters from
Garg (2020).

Note: The figure reports, for Lombardia, the daily fatalities due to Covid-19 under the 5 representative policies that we consider,
for the scenario with behavioural response and β(m) = 0.7. The left panel covers the entire period from January 1, 2020 to
October 31, 2021. The right panel zooms into the year of simulation starting on November 1 in order to better highlight the
differences between the fatalities associated to each policy.
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Figure C–25: Daily fatalities under the different policies in Veneto with parameters from
Garg (2020).

The figure reports, for Veneto, the daily fatalities due to Covid-19 under the 5 representative policies that we consider, for the
scenario with behavioural response and β(m) = 0.7. The left panel covers the entire period from January 1, 2020 to October
31, 2021. The right panel zooms into the year of simulation starting on November 1 in order to better highlight the differences
between the fatalities associated to each policy.

27



Table C–5: Lombardia and Veneto: final main outcome with parameters from Garg (2020)
and β(m) = 0.9

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 28621 37066 37745 34702 43702

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.058 0.070 0.071 0.066 0.079

Average Rt 1.004 1.008 1.009 1.008 1.009
(0.771-1.397) (0.737-1.397) (0.732-1.397) (0.756-1.397) (0.700-1.409)

Veneto

Total fatalities 11311 17634 17956 15540 22556

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.039 0.055 0.057 0.050 0.068

Average Rt 0.983 0.991 0.991 0.989 0.996
(0.772-1.239) (0.740-1.254) (0.739-1.260) (0.753-1.239) (0.732-1.334)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.9, measured over the year between November 1, 2020 and October 31, 2021. Final immunity share is
calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
the parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval.

Table C–6: Lombardia and Veneto: final main outcome with parameters from Garg (2020)
and β(m) = 0.7

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 12504 18748 19244 16714 23808

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.038 0.046 0.047 0.044 0.053

Average Rt 0.953 0.964 0.965 0.962 0.971
(0.813-1.397) (0.791-1.397) (0.790-1.397) (0.799-1.397) (0.770-1.397)

Veneto

Total fatalities 2435 5473 5673 4249 8915

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.015 0.024 0.025 0.020 0.033

Average Rt 0.914 0.938 0.940 0.935 0.947
(0.844-1.239) (0.820-1.239) (0.816-1.239) (0.850-1.239) (0.783-1.239)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.7, measured over the year between Novbember 1, 2020 and October 31, 2021. Final immunity share
is calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
the parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval.
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Table C–7: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response, β(m) = 0.7 and parameters from Garg (2020)

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC4 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 1 1 0.6 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC8 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC9 1 1 1 0.6 1 0.6 1 0.6 0.6 0.6

p = AGE SEC10 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC11 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC12 0.6 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC13 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC14 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC16 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Lombardia only

p = AGE SEC17 1 1 1 1 1 1 1 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC18 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC19 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC20 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC21 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC22 1 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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Table C–8: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response, β(m) = 0.9 and parameters from Garg (2020)

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC4 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 1 1 1 0.6 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC8 1 1 1 0.6 1 0.6 1 0.6 0.6 0.6

p = AGE SEC9 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC10 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC11 0.6 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC12 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC13 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC14 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Lombardia only

p = AGE SEC16 1 1 1 1 1 1 1 0.6 0.6 1

p = AGE SEC17 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC18 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC19 1 1 1 1 1 1 0.6 1 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.

30



References

Allen, L.J., 2017. A primer on stochastic epidemic models: Formulation, numerical simula-
tion, and analysis. Infectious Disease Modelling 2, 128–142.

Ferguson, N.M., Daniel, L., Gemma, N.G., Imai, N., Kylie, A., Marc, B., Sangeeta, B.,
Adhiratha, B., Zulma, C.c., Gina, C.D., Amy, D., Ilaria, D., Han, F.a., 2020. Impact
of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare
demand. Imperial College Covid-19 Response Team 2, 60–66.

Garg, S., 2020. Hospitalization rates and characteristics of patients hospitalized with
laboratory-confirmed coronavirus disease 2019—covid-net, 14 states, march 1–30, 2020.
MMWR. Morbidity and mortality weekly report 69.

31


	B  Additional evidence based on Covid-19 parameters from Ferguson:2020
	Appendix to Section 2: The SEIR-HC-SEC-AGE Model
	SEIR Model
	From the basic SEIR to the SEIR-HC-AGE-SEC model

	Appendix to Section 6.6: Calibration Results
	Appendix to Section 7.1: The BRM under alternative policies
	Appendix to Section 7.2: The Simulation of the Effects of Different Policies

	C Evidence based on Covid-19 parameters from CDC garg:2020
	Appendix to Section 6.6: Calibration Results
	Appendix to Section 7.1: The BRM under alternative policies
	Appendix to Section 7.2: The Simulation of the Effects of Different Policies


