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Abstract

We study the drift and cyclical components in U.S. Treasury bonds. We find that

bond yields are drifting because they reflect the drift in monetary policy rates.

Empirically, modeling the monetary policy drift using demographics and productivity

trends, plus long-term inflation expectations, leads to cyclical deviations of bond

prices from their drift that predict bond returns in- and out-of-sample. These bond

cycles can be interpreted as term premia or/and temporary deviations from rational

expectations in a behavioral framework. Through the lens of our model, we detect a

significant role of the latter in determining the cyclical properties of yields with short

maturities.

JEL codes: E43, E52, G12.

Keywords: Monetary Policy Rule, Secular Trends, Term Structure, Diagnostic

Expectations, Bond Return Predictability.
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I Introduction

Bond prices are co-drifting: They are non-stationary and they share a common

trend.1 Understanding the drift in bond prices is of essential importance in the current

scenario in which several fiscal authorities are considering issuing very long dated bonds or

pension funds would like to buy long-term Treasuries for duration matching purposes;2

indeed it is at the long-end of the curve where the implications for a drifting term structure

become more relevant. This paper proposes a model of monetary policy with drifting

equilibrium rate that describes in a coherent way the co-drifting term structure. Our

empirical analysis shows that, once the common trend has been removed, the cyclical (i.e.,

stationary) component of yields emerge as a strong predictor of excess bond returns.3

The time-series nature of bond prices makes it essential for term structure factor

models and (empirical models built on) monetary policy rules to account for the

non-stationarity of bond yields, a fact that has been acknowledged (e.g., Kozicki and

Tinsley, 2001) and modeled within an arbitrage-free dynamic term structure model

(DTSM) with a shifting endpoint (e.g., Bauer and Rudebusch, 2020). Despite these

contributions, the exact nature of the drivers of the stochastic trend in yields, the relation

between the cyclical components of yields with the term premium and expectation errors

about the short-term rate, and the extent of interest rates and bond returns predictability

in a model of drifting yields, all warrant further research.

This paper shows that reconstructing the term structure starting from a simple

1Bond prices have been drifting in the last forty years because their secular drivers have been drifting. As
we shall see later, we find that the age structure of the population, potential output growth, and long-term
inflation expectations jointly capture the stochastic trend in yields. Throughout the paper, we use the words
trend and driver interchangeably.

2See Need discount debts:try 50-year bonds (WSJ, 2021).
3The relevance of investigating the drift in the term structure of yields is not restricted to Treasury

bonds. For example, Farhi and Gourio (2018) propose a macro-finance neoclassical growth model to account
for drifting real rates and stable return to private capital. van Binsbergen (2020) finds that accounting
for secular trends in interest rates is fundamental for assessing long duration dividend risk. Campbell and
Sigalov (2020) derive a model of reaching for yield and show that agents take more risk when the real interest
rate declines while the risk premium remains constant. Also, see Campbell (2019) for a discussion (available
here) on the importance of drifting prices for long-term investing.

1
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monetary policy rule with an equilibrium rate driven by productivity and demographics

trends, together with long-term inflation expectations, goes a long way in capturing the

stochastic trend in yields. Our framework establishes a set of novel facts about Treasury

bonds, while offering the possibility to revisit classic questions related to bond

predictability and monetary inertia.

First, our monetary policy rule—with a target rate modeled by fluctuations in

potential output, demographics, and long-term inflation expectations—tracks well the

evolution of the short-term rate both in- and out-of-sample. Importantly, by being explicit

about the non-stationary drivers of rates, our model is purposely transparent and simple

(i.e., not involving any filtering). We find that policy inertia can be overestimated if the

drivers of the drifting equilibrium policy rates are not included in the monetary reaction

function, contributing to the debate on monetary policy inertia as a result of omitted

factors in the Fed’s reaction function or interest rate smoothing (see, e.g., Rudebusch,

2002, 2006; Coibion and Gorodnichenko, 2012).

Second, we derive the implications of our monetary policy rule specification for the

entire term structure of Treasury bond yields. Our approach decomposes bond yields at

any maturity into a drifting component—the average expected sequence of monetary policy

rates over the life of the bond—and a residual cyclical component—the deviation of yields

from their drift. We show that our framework with drifting bond prices implies a battery of

mis-specification tests such as parametric restrictions on yields and their drift that are

analogous to the restriction between prices and dividends in the Campbell and Shiller

(1988) present-value model. Specifically, when the (non-stationary) drivers of the monetary

policy rates have been correctly specified, deviations of bond prices from their estimated

drift should be stationary with a co-integrating vector of (1, −1), generating the cyclical

components of yields. Our empirical analysis confirms these predictions.

Having analyzed the statistical properties of our model, and confirmed it is

well-behaved, we investigate bond risk premia predictability within our framework with
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drifting bond prices. We formally show that stationary deviations of bond prices from their

drift should predict excess bond returns. Empirically, our model generates large R2 of

about 30% (10%) when it is used to predict the one-year (one-quarter) ahead excess

returns on bond with maturities ranging from 2 to 10 years. We also construct a single

yield-based cycle factor and find that our return-forecasting factor subsumes common bond

risk premia predictors, such as the Cochrane and Piazzesi (2005) and Cieslak and Povala

(2015) factors. Importantly, our results survive out-of-sample and hold internationally.

In the last part of the paper, we address the, admittedly challenging, question of the

economic interpretation of the cyclical components. Within our stylized framework, we

supply an upper bound to the role of deviations from rational expectations (in the form of

diagnostic expectations) for the fluctuations in the cyclical component of yields. In

particular, when we test for the role of Diagnostic Expectations (overreaction of agents to

deviations of the monetary policy rate from its trend), we find that up to 40% of the

fluctuations in yield cycles can indeed be attributed to this mechanism for bonds with a

2-year maturity. However, the explanatory power of diagnostic expectations for bond cycles

declines with the maturity of the bond, leaving an important role for term premia.

Related Literature. Our evidence that bond prices are drifting is in line with several

papers documenting a slow-moving component common to the entire term structure (see,

for example, Balduzzi et al., 1998 and Fama, 2006). Although a factor model for bond

yields can admit a unit root in the feedback autoregressive matrix, OLS estimates of

near-unit roots are notoriously biased downward, thus overestimating the amount of mean

reversion in yields.4 To address this issue, an important and growing literature has

modeled Treasury yields using shifting endpoints (Kozicki and Tinsley, 2001),

near-cointegration (Jardet et al., 2013) or long memory (Golinski and Zaffaroni, 2016),

vector autoregressive models (VAR) with common trends (Negro et al., 2017), slow-moving

4Piazzesi and Cochrane (2008) propose to fit the cross-section via an affine model to reduce some of the
statistical uncertainty surrounding level-stationarity vs. unit roots specifications.
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averages of inflation (Cieslak and Povala, 2015) and consumption (Jørgensen, 2018), or an

(unobserved) stochastic trend common across Treasury yields (Bauer and Rudebusch,

2020). We contribute to this important literature by proposing a cohesive (cointegrated)

framework with observable economic trends to explore the implications of drifting

equilibrium rates for monetary policy, Treasury yields, and bond returns predictability.5

Jordà and Taylor (2019) and Feunou and Fontaine (2021) couple simple restrictions

from New Keynesian IS and Phillips curves with a cyclical and secular decomposition of

short rates and output to study monetary policy divergence and the impact of nominal

shocks, respectively. We complement this line of research by documenting the importance

of a transitory-permanent decomposition of bond yields for interest rates and bond return

predictions. Furthermore, we provide evidence that demographics together with the growth

rate of potential output are important drivers of the secular trend in bond yields.

Finally, our paper fits into the literature that studies the role played by (shifts in)

the monetary conduct in determining the dynamics of bond yields.6 Berardi et al. (2020)

show that the stance of monetary policy—as proxied by the difference between the natural

rate of interest and the current level of short term rate—contains valuable information for

bond predictability. Ang et al. (2011) show that the evolution of the Fed’s response to

inflation affect long-term yields. Similarly to Ang et al. (2011), we propose to model

monetary policy and the term structure of interest rates jointly. However, our modeling of

the policy rule with a drifting equilibrium rate is different from their model with

time-varying policy coefficients. In turn, our approach has implications for interest rates

comovement and bond returns predictability induced by deviations of bond prices from

5Also, in our framework stationarity of bond returns naturally co-exists with non-stationary bond prices.
Bond returns are predicted by the stationary deviations of bond prices from their drift. Interestingly Bauer
and Rudebusch (2020) note that, even when no-arbitrage is imposed, the loading of returns on the unobserved
common stochastic trend is an order of magnitude smaller than the loading of prices. They also report that
predictive regressions of yields on de-trended yields and trend proxies lead to coefficients on the trend that
are not significantly different from zero.

6An important literature (see, for example, Bernanke and Kuttner, 2005; Ozdagli, 2018; Chava and Hsu,
2020) investigate the impact of monetary policy shocks on equity prices and the cross–section of stock returns.
Koijen et al. (2017) propose a three-factor model for stocks and bond returns. The investigation of a factor
model with drifting bond and equity prices is an interesting avenue for future research.
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their drift. These testable implications are unique to our framework and not shared by Ang

et al. (2011).

II Modeling Monetary Policy

Monetary policy rules specify the dynamics of the short-term rate, y
(1)
t . The

following specification is general and encompasses most of the rules that have been

proposed in the literature:

y
(1)
t = y∗t + β′Xt + u

(1)
t ,(1)

where y∗t is the equilibrium monetary policy rate,7 Xt is a vector of stationary monetary

policy factors, and u
(1)
t is a monetary policy residual following an AR(1) process with

persistence ρ, as in, e.g., Rudebusch (2006) and Pasten et al. (2020). Arguably, the most

famous special case of this specification is the Taylor (1993) rule. In this case, the vector

Xt is composed of the output gap and the percentage deviation of inflation from its target.

Furthermore, the Taylor (1993) rule assumes a constant equilibrium policy rate (i.e.,

y∗t = y∗) and provides a natural benchmark for our analysis.

With a constant equilibrium rate, the estimate of the AR(1) persistence parameter

is often close to one. This is to be expected since, if monetary policy rates are drifting, any

attempt to model them only by means of stationary factors such as the output and

inflation gaps naturally leads to a highly persistent process for u
(1)
t . This fact has spurred

an important literature debating the sources and the implications of monetary policy

inertia.8 One common narrative is that monetary policy inertia is fictitious and stems from

7The “natural” level of real interest rates is often referred to as the “natural”, “equilibrium” or “neutral”
real rate of interest. Interestingly, the possibility of a non-stationary equilibrium rate is rarely entertained
in the traditional literature. A notable exception is Woodford (2001) who shows that the optimal policy
response to real disturbances requires including a time-varying real rate in monetary policy rules. See
Giammarioli and Valla (2004) and Kiley (2015) for a review of the various concepts and estimation methods
adopted in the literature.

8For a detailed discussion on optimal monetary policy inertia see Woodford (2001, 2003).
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omitted variables in the Fed’s reaction function (e.g., Rudebusch, 2002, 2006). Others have

argued that the central bank conducts sluggish partial adjustment of short-term policy

interest rates, modeled through interest smoothing in the policy rule (e.g., Coibion and

Gorodnichenko, 2012).

We contribute to this debate showing that monetary policy inertia is overestimated

when the time-varying drivers of the drifting equilibrium rate are not included in the

monetary policy rule.

Interest rates are sometimes modeled in first-difference which removes the stochastic

trend in policy rate at the cost of leaving the equilibrium level of the policy rate

undetermined (e.g., Orphanides, 2003). The model in first-difference is a special case of our

general specification when ρ = 1. Specifying the monetary policy rule in first-difference

comes with benefits and costs.9 The benefit of making the rule independent from the

challenging estimation of the level of the equilibrium rate has to be traded-off against the

cost of accepting that any monetary policy shock (i.e., any deviation from the rule) has a

permanent effect on policy rates. Indeterminacy is a major concern for long-term

forecasting, because as the unconditional distribution of policy rates is not defined, the

long-run policy rate is also left undetermined.

We propose a “cointegrating” approach to drifting policy rates, where the

stationarity of residuals of the monetary policy reaction function is taken as an indication

of a valid specification for y∗t . Equivalently, a valid specification for the equilibrium rate

requires that y∗t is the stochastic trend that drives drifting policy rates.10

9Cochrane (2007) provides a thorough discussion on the effects of specifying a model in level vs. first-
difference to compute long-term yield-curve decomposition.

10We assume the component y∗t of the short-rate to be integrated of order one (i.e., I(1)) and model it
using demographics and productivity trends, plus long-term inflation expectations. This is an over-identifying
restriction in the sense that one could make other assumptions, e.g., y∗t ∼ I(d). We thank an anonymous
referee for this observation.
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Specifically, we propose to model drifting policy rates as follows:

y
(1)
t = y∗t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t(2)

y∗t = γ1MYt + γ2∆x
pot
t + γ3π

∗
t

u
(1)
t = ρu

(1)
t−1 + ε

(1)
t ,

where y
(1)
t is the one-period (three-month) yield, y∗t is the equilibrium nominal rate, πt is

the percentage annual log change in Personal Consumption Expenditures (PCE), π∗t is the

Fed perceived target rate (PTR), and xt is the output gap (log percentage difference

between real GDP and potential GDP). The monetary policy residual with a drifting

equilibrium rate u
(1)
t is stationary under cointegration, i.e., | ρ |< 1; ε

(1)
t is an i.i.d

innovation. The drivers of the equilibrium real rate are the age structure of population

(MY ) and potential output growth (∆xpott ).11 We obtain the nominal equilibrium rate by

adding the central bank inflation target π∗t . Appendix A provides details on the data

source.

Our choice for potential output growth and demographics as drivers of the

equilibrium real rate borrows from Laubach and Williams (2003) and Jordà and Taylor

(2019). In particular, Jordà and Taylor (2019) show that the decline of the neutral rate

cannot be explained just by the decline in the growth rate of potential. We link this

unobserved component to demographic. Specifically, as demographic variable we use the

ratio of middle-aged (40-49) to young (20-29) population in the U.S. (labelled as MY ).

The use of this variable is motivated by the overlapping generation model of Geanakoplos

et al. (2004) which predicts a negative relation between Treasury yields and MY . Potential

output growth is the percentage annual log change in potential output. MYt, ∆xpott , and π∗t

11Including only inflation as driver of non-stationary policy rates is equivalent to assume a counterfactual
stationary equilibrium real rate (see, e.g., Lunsford and West, 2019). Empirically, although inflation is
the most important driver of the policy rate, using only inflation leaves a persistent component in yields

unexplained (i.e., the AR(1) persistence parameter for u
(1)
t in equation (2) is 0.79); this evidence is in line

with Bauer and Rudebusch (2020).
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are non-stationary (i.e., they are integrated of order 1) and they represent the drivers of

the drifting equilibrium rate in our cointegrated specification.12,13

Finally, in our tests, we always compare the results from our baseline (drifting)

model to the results of a restricted model that, inspired by the large body of literature on

the classical Taylor (1993) rule, does not model the drift in monetary policy:14

y
(1)
t = y∗ + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t .(3)

u
(1)
t = ρu

(1)
t−1 + ε

(1)
t .

II.A Empirical Results

Panel A of Figure 1 displays the realized nominal short-term rate, the fitted rates

from our cointegrated monetary rule (c.f. Equation (2)), and the fitted monetary policy

rates from a version of our model which restricts the equilibrium rate to be constant (c.f.

Equation (3)). Panel B plots the monetary policy residuals implied by our proposed

monetary policy rule and its restricted version. Table 1 reports the estimation results for

these two rules.15

12Our specification is compatible with yields being non-stationary or yields appearing non-stationary
from the perspective of a model that does not include regime-shifts. What matters for the validity of our
specification is that the deviations of actual rates from equilibrium rates are stationary.

13The p-values from the Phillips and Perron (1988) unit root test for MYt, ∆xpott and π∗t are respectively
0.95, 0.13, and 0.69; thus, we cannot reject the null of each series being integrated of order 1. Furthermore,
since the seminal work of Laubach and Williams (2003) it is standard to take that the growth of potential
output as integrated of order 1.

14We deviate in two respects from a standard empirical Taylor rule. First, the model in (3) is a forward-
looking version of the policy rule. This is consistent with the perspective that monetary policy changes take
time to affect the economy (see, e.g., Clarida et al., 2000; Coibion and Gorodnichenko, 2011). Second, we
specify the inflation gap as deviations of inflation from a time-varying inflation target (π∗t ) rather than from
a constant inflation target (e.g., 2%). This is in line with the idea that the inflation gap should measure
the difference between actual inflation and the central bank’s long-run target (e.g., Cogley et al., 2010). A
standard empirical Taylor rule with constant inflation target would lead to a better in-sample fit (R2 = 66%).
The in-sample success of the standard Taylor rule is explained by the fact that de-trending inflation with a
constant target over the full sample results in a highly persistent inflation gap, which mechanically explains
better non-stationary yields. Importantly, a standard Taylor rule is inferior to our rule with drifting rates
in terms of long-term forecasts, modeling the term structure, and bond risk premia predictability.

15Our estimate of the loading on π∗t is in line with parameter values reported in Bauer and Rudebusch
(2020, Table 1) despite the difference in the maturity of the bond analyzed (their Table 1 analyzes the 10-year
bond, whereas we focus on the 3-month Treasury bill).
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Figure 1–Panel A shows that our monetary rule with a drifting equilibrium rate

tracks well the short-term rate movements throughout the sample. Indeed, the R2 for the

cointegrated specification is about 95% whereas that of a model with constant equilibrium

rate is just about 4% (c.f. Table 1).16,17 Figure 1–Panel B shows that the residuals implied

by our drifting monetary policy rule are mean reverting. On the other hand, the residuals

from a rule with constant equilibrium rates display a close-to-unit root behavior. This is

confirmed in Table 1: the residuals from the rule with drifting (constant) equilibrium rates

have an autoregressive coefficient equal to 0.67 (0.95).

[Insert Figure 1 about here]

[Insert Table 1 about here]

Figure 2 displays the forecasts implied by the two monetary policy rules. Although

the in-sample performance from the two models are similar, the long-term out-of-sample

forecasts are different. Indeed, the policy rule with constant equilibrium rates generates

forecasts that converge fast to the unconditional mean.18 On the other hand, the drifting

monetary policy rule tracks well the future evolution of the short-rate for each of the three

out-of-sample periods considered in the figure. Online Appendix Figures A.2 and A.3

confirm that allowing for interest rate smoothing in the rule with constant equilibrium rate

does not alter our conclusion: The long-term forecasts converge fast to the unconditional

mean, and underperform relative to the forecasts from a model with drifiting equilibrium

rate. This conclusion holds independently from whether interest smoothing is characterized

as a first- or a second-order autoregressive process (Coibion and Gorodnichenko, 2011).

16Furthermore, a regression of the three-month yield on the fitted values implied by the two monetary
rules (dotted and dashed lines in Figure 1–Panel A) delivers an estimate of zero on the rule with constant
equilibrium rates (3), and a statistically significant estimate not different from one on the drifting rule (2).

17Positing the following cointegration framework where the equilibrium real rate r∗t is estimated first, i.e.,

y
(1)
t = α1r

∗
t + α2π

∗
t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t

r∗t = γ1MYt + γ2∆xpott

leaves our conclusions unaltered. See Online Appendix Figure A.1.
18Rudebusch (2002) highlights the tension between apparent high-persistence and low-predictability of

policy rates.
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Finally, note that the fitted short rate in Figure 2(a) falls below zero only for a very

short period of time, and the forecasts in Figure 2 never hit the bound. As the economy is

affected by the entire path of expected future short-term rates (e.g., Swanson and

Williams, 2014), our results suggest that an accurate modeling of the trend alleviates

concerns related to the effectiveness of monetary policy at the zero lower bound (see

Aruoba and Schorfheide, 2016 for a discussion).

In all, our evidence points to the importance of modeling the economic determinants

of the time-varying equilibrium rates. This is consistent with Jordà and Taylor (2019) who

document that a policy rule with a time-invariant intercept (as in equation (3)) is rejected

in international data.

[Insert Figure 2 about here]

III Modeling a Drifting Term Structure

The entire term structure is drifting. Models that parsimoniously describe the term

structure by projecting rates on a set of factors and by modeling the dynamics of the

factors with a VAR will be inevitably confronted with the problem generated by the

presence of unit roots in the VAR. Highly persistent VAR generate imprecise forecasts at

long-horizons (e.g., Giannone et al., 2019). This feature can explain mixed results from the

forecasting performance of affine term structure models (see, for example, Duffee, 2002;

Sarno et al., 2016). We propose to use the drift in monetary policy rates to model the drift

in the entire term structure:

y
(n)
t = y

(n),∗
t + δ

(n)
0 + u

(n)
t(4)

y
(n),∗
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i]

u
(n)
t = ρ(n)u

(n)
t−1 + ε

(n)
t
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Yields at all maturities are decomposed into a trend, y
(n),∗
t , and a cyclical component,

δ
(n)
0 + u

(n)
t . The trend is the average of expected monetary policy rates over the duration of

the bond, while the cyclical component is the stationary residuals from the (1,−1)

cointegrating relationship between yields and their drift. We consider as valid any model of

the term structure that delivers cointegration between y
(n)
t and y

(n),∗
t with a (1,−1)

cointegrating vector and, therefore, a stationary u
(n)
t .

Our full term structure model is specified as follows :

y
(1)
t = y∗t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t(5)

y∗t = γ1MYt + γ2∆x
pot
t + γ3π

∗
t

u
(1)
t = ρu

(1)
t−1 + ε

(1)
t

y
(n)
t = y

(n),∗
t + δ

(n)
0 + u

(n)
t(6)

u
(n)
t = ρ(n)u

(n)
t−1 + ε

(n)
t

y
(n),∗
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i]

(πt − π∗t ) = θ1,1
(
πt−1 − π∗t−1

)
+ θ1,2xt−1 + θ1,3

(
y
(1)
t−1 − y∗t−1

)
+ v1,t(7)

xt = θ2,1
(
πt−1 − π∗t−1

)
+ θ2,2xt−1 + θ2,3

(
y
(1)
t−1 − y∗t−1

)
+ v2,t(8)

where we assume Cov(v1,t, u
(1)
t ) = Cov(v2,t, u

(1)
t ) = 0.

Projections of the equilibrium policy rates depend on productivity and

demographics, which we take as exogenous; thus, we do not specify the law of motion for

MYt and ∆xpott ). The U.S. Census Bureau and the U.S. Congressional Budget Office

provide ready-to-use projections respectively for MY and potential output. Equations (7)

and (8) are used to compute the projections of inflation and output gaps. The dynamics of

these two stationary variables depend on their own lags and on a third stationary variable:

the deviation of the short-term rate from its trend. This cycle in monetary policy enters

the dynamics of output and inflation gaps with a one-quarter lag; this is consistent with

the delay with which monetary policy affects these variable in our specification of the
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forward looking policy rule (5). Finally, note that we do not impose no-arbitrage (NA)

restrictions when estimating our model. Thus, our estimation strategy runs the cost of

losing efficiency if NA holds to gain consistency in the case NA is violated.

III.A Empirical Results

III.A.1 Misspecification Test for Term Structure Models

The validity of a model with drifting monetary policy rates and bond prices can be

assessed by checking the existence of cointegrating relationships with parameters (1, −1)

between y
(n)
t and y

(n),∗
t (see Equation (6)). Thus, in this section we investigate the strength

of the cointegrating relationship, the (1,−1) parametric restriction, and the behavior of the

residuals for our baseline model (see Equations (5)–(8)) as well as for its restricted version

where the drift in monetary policy is assumed away (i.e., y∗t = y∗).

Figure 3 reports the results for the cointegration relationship for five maturities

ranging from 2- (n = 8 quarters) to 10-years (n = 40 quarters). Panel (a) is for the

restricted model whereas Panel (b) is for our model with drifting equilibrium policy rates.

[Insert Figure 3 about here]

Our model with drifting equilibrium monetary policy rate provides overwhelming

evidence to reject the null hypothesis of absence of cointegrating relation between y
(n)
t and

y
(n),∗
t for all the considered maturities. From an economic perspective, this implies that

fluctuations in productivity, demographics and long-term inflation expectations are

successful in modeling not only the drift in monetary policy rates but also the drift in the

entire term structure.

Furthermore, Online Appendix Table A.1 confirms that, within our framework with

drifting policy rates, the parametric restriction (1,−1) on the cointegrating relationship

between yields and their drift is supported in the data for every maturities ranging from 2-

to 10-years.
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In all, our choice of the drivers for the equilibrium rate y∗t provides also an accurate

description of the stochastic trend underlying interest rates.

III.B Predicting Holding Period Excess Returns

Predictability of interest rates on the basis of a model with a common stochastic

trend in yields also implies predictability of holding period excess returns on the basis of

the stationary deviations of bond yields from their drift.

To see this, write the expected excess return obtained by holding the n-period bond

for one period as:

Et(rx
(n)
t+1) = y

(n)
t n− (n− 1)Et(y

(n−1)
t+1 )− y(1)t

= y
(n)
t − (n− 1)

(
Et(y

(n−1)
t+1 )− y(n)t

)
− y(1)t

= y
(n)
t − y

(1)
t − (n− 1)

(
Et(y

(n−1)
t+1 )− y(n−1)t

)
− (n− 1)

(
y
(n−1)
t − y(n)t

)
,(9)

where y
(n)
t − y

(1)
t is the slope of the term structure,

(
y
(n−1)
t − y(n)t

)
is known as the

roll-down, and
(
Et(y

(n−1)
t+1 )− y(n−1)t

)
is the expected change in prices of the

(n− 1)-maturity bond. Since the seminal contributions by Fama and Bliss (1987) and

Campbell and Shiller (1991), the slope of the term structure has played a central role for

forecasting bond returns. Indeed, it is common to assume away any predictability arising

from
(
Et(y

(n−1)
t+1 )− y(n−1)t

)
, since the level of the term structure is deemed to be close to

unforecastable (see, e.g., Duffee, 2013).

Our “cointegrated” specification of the monetary policy rule and the term structure

suggests otherwise. Using equation (6) one can express the expected price changes as

Et(y
(n−1)
t+1 )− y(n−1)t = Et

(
y
(n−1),∗
t+1 − y(n−1),∗t

)
+(10) (

ρ(n−1) − 1
) (
y
(n−1)
t − y(n−1),∗t − δ0

)
︸ ︷︷ ︸

u
(n−1)
t

.
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Therefore, in our model, persistent but stationary deviations of bond prices from their

drift, u
(n−1)
t , show up as a natural predictor of excess bond returns.19 This term has gone

unrecognized since standard models start off with stationary factor (within our framework,

this is equivalent to assume a constant equilibrium rate). In turn, this leads to a

close-to-unit-root residual (c.f., Figure 4(a)), or ρ(n−1) − 1 ≈ 0 (and the level being a

random walk Et(y
(n−1)
t+1 ) = y

(n−1)
t ).20

We start the evaluation of the predictive performance of our model with a drifting

equilibrium rate by running the following regression:

(11) rx
(n)
t+4 = α + βEt(rx

(n)
t+4) + εt ,

where rx
(n)
t+4 is the realized one-year holding period excess return of a bond with maturity

n-quarters. We denote with Et(rx
(n)
t+4) the expected excess return implied by our

specification that allows for stationary deviations of bond prices from their drifts.21 We

compare our specification to the classical model with a constant equilibrium rate.22 Table 2

displays the results for the model with constant equilibrium rate in Panel A, and the

results for our model with drifting bond prices in Panel B. We consider maturities ranging

from 2 (n = 8 quarters) to 10 years (n = 40 quarters). The regression of realized excess

returns on the expected returns implied by our (cointegrated) model with drifting

equilibrium rates delivers statistically significant estimates and coefficients of

19More precisely, u
(n−1)
t should forecast the price change component in bond returns. However, empirically

the correlation between rx
(n)
t+4 and the price change term, −

(
y
(n−4)
t+4 − y(n−4)t

)
, is high at 93%, 95%, 97%,

98%, and 99% for n = 8, 12, 20, 28, 40 quarters, respectively.
20Cieslak and Povala (2015) and Jørgensen (2018) predict bond returns using a de-trended (term structure)

level factor. Using their proposed persistence-based Wold decomposition, Ortu et al. (2020) extract a cyclical
component from the level of the yield curve and show that it contains information about future excess bond
returns. To our knowledge, we are the first to show that a cyclical component of the level of the term
structure emerges as a natural predictor within a cointegrated framework of bond prices.

21We exploit equations (5)–(8) together with the exogeneity of demographics and potential output to

construct the expected change in constant-maturity yield
(
Et(y

(n−1)
t+1 )− y(n−1t

)
in equation (9).

22To make our results comparable to a large literature (e.g., Cochrane and Piazzesi, 2005; Cieslak and
Povala, 2015) we focus on one-year excess returns. However, our conclusions are identical when we use
one-quarter holding period returns.
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determination that are greater than 30% at all maturities.23 On the other hand, a classical

model with constant equilibrium rates leads to a coefficient not significantly different from

zero and to small explanatory power.

We also highlight that the model with constant equilibrium rates performs worse

than a (reduced-form) model based just on the slope. This is easily explained. The realized

returns rx
(n)
t+4 on the left hand side of (11) are stationary whereas the expected returns

Et(rx
(n)
t+4) from the model with constant equilibrium rate is non-stationary since it inherits

the drift from the residual component u
(n)
t (c.f. Figure 4).

[Insert Table 2 about here]

III.B.1 Dissecting Predictive Regressions

To further dissect the unique contribution coming from our cointegrated approach,

Table 3 shows that the expected change in the (n− 1)-maturity bond prices drives away

the predictability of the slope (column (1)), and that deviations of bond prices from their

drift, u
(n−1)
t , are the most important driver of such predictability (c.f. columns (3) and (4)).

Also, the loading on the cyclical component u
(n−1)
t is negative as predicted by our

framework: if 0 < ρ(n−1) < 1, then next period returns are negative in times when bond

prices are higher than those implied by their drift.

In the Online Appendix, we show that the relevance of such cyclical component for

forecasting excess returns is not restricted to any specific maturity or holding period. Table

A.2 reports results for the predictive regressions when we use bonds with maturities

ranging from 2- to 7-years. Also, Table A.3 confirms that stationary deviations of bond

prices from their drift predict quarterly holding period bond returns (i.e., non-overlapping

returns). Overall, this evidence suggests that the adjustment of bond prices towards their

drift is a key economic mechanism for understanding bond returns predictability.

23The constant is not statistically significant for bond with maturities n = 8, 12, 20 quarters. Appendix
Figure A.4 Panel (a) displays the realized and fitted values for bonds with 2- and 10-years maturity.
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Finally, Online Appendix Table B.1 shows that the US cyclical component u
(n)
t

predict UK and Canadian bond returns, even after controlling for the local slope of the

term structure.24 This evidence of predictability of international bond risk premia using

the US cyclical component is in line with recent work by Miranda-Agrippino and Rey

(2020) who find that US monetary policy shocks induce comovements in a single global

factor that explains significant variation in financial asset returns.

Our finding also resonates with the evidence in Dahlquist and Hasseltoft (2013).

Despite this similarity, Dahlquist and Hasseltoft (2013) attributes the international

comovement in bond returns to a global (admittedly, mostly US) bond risk premium; on

the other hand, we have not imposed no-arbitrage restrictions so that our cyclical

component is also compatible with investors overreacting to deviations of policy rates from

its trend leading to overestimation of future short rates (and lower bond returns).25

[Insert Table 3 about here]

III.B.2 The Information Content of Yield Cycles

Several bond returns predictors have been proposed in the literature since the

seminal papers by Fama and Bliss (1987) and Campbell and Shiller (1991). It is then

natural to ask to what extent the yield cycles u
(n)
t capture new information not already

conveyed by other variables.

Specifically, we compare the predictive power of our yield cycles to two well known

return-predicting factors that are both constructed from the yield curve:26 (1) the

24Consistent with our model, we employ the local slope of the term structure as a proxy for the deviations of
non-US yields from their drifts. Controlling for the local cyclical component does not change our conclusion.
However, we note that the lack of an exogenous potential output series, ∆xpott , and of a perceived target
inflation rate, π∗t , may be responsible for the poor performance of the local cycle in Canada and UK. Further
investigation on this topic is on our agenda for future research.

25Our findings are also consistent with the idea that the Fed is the leader among central banks in setting
monetary policy (Brusa, Savor and Wilson, 2019). See also One Policy to Rule Them All: Why Central

Bank Divergence Is So Slow (Wall Street Journal, 2016) for a recent discussion on the topic.
26Several papers have found that the state of the economy also conveys information about future bond

returns. E.g., Cooper and Priestley (2008) propose the output gap, whereas Ludvigson and Ng (2009) propose
to extract information from a large set of macrofinancial variables. Related, Bansal and Shaliastovich (2013)
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Cochrane and Piazzesi (2005, CP) factor which is based on a linear combination of forward

rates; (2) the Cieslak and Povala (2015, CPo) factor which relies on information contained

in yields that have been detrended using a long-term moving average of inflation.27 Finally,

we also benchmark our yield cycles to the Ludvigson and Ng (2009) single

macro-factor—the fitted value from a regression of average (across maturity) excess returns

on a set of six factors extracted from a large dataset of macro-financial variables—which

the authors show to contain information about excess bond returns that is not captured by

the principal components of the yield covariance matrix.

Rather than using a specific cycle for each maturity n we construct a common yield

cycle using a procedure akin to Cochrane and Piazzesi (2005). Specifically, we run

regressions of the average (across maturity) excess return on all cycles,

1

9

10∑
n=2

rx
(n)
t+4 = γ0 + γ1u

(1)
t + . . .+ γ40u

(40)
t + εt+1.

Our yield-based cycle factor is given by ũt = γ̂ ′ut.

Table 4 shows the results. In Panel A we investigate the predictive content of our

cycle relative to the CP factor, whereas in Panel B we compare it to the CPo factor. The

odd columns confirm that both CP and CPo forecasts excess returns of all bonds.

Importantly, Panel A shows that our yield cycle drives away the CP factor, and delivers R2

that are about tree times those obtained by the CP regressions. Panel B tells a similar

story. Despite the large R2 obtained by the CPo factor, our yield cycle continues to be a

significant predictor of bond returns at all maturities ranging from 2- to 10-years. In fact,

document that real growth and inflation uncertainties predict, respectively, lower and higher bond risk
premia, and propose a long-run risk type model for rationalizing this finding. Since our yield cycles are
obtained by removing the stochastic trend (due to the equilibrium rate) in interest rates, we restrict our
attention only to yield-based predicting factors.

27To construct the CP and CPo factors we follow the procedure described in the original papers. I.e., to
construct the CP factors we use only one- through five-year zero coupon bond prices and estimate the loadings
by running a regression of the equally-weighted average (across maturity) excess return on the forward
rates. To construct the CPo factor instead we employ duration standardized returns. To be consistent with
the overall empirical analysis, unlike in the original papers, both factors are constructed using quarterly
observations.
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comparing the R2 from the multiple regression in Panel A to those in Panel B, we see that

replacing CP with CPo does not alter the predictive content of our yield-based cycle.

Finally, in Panel C, we observe that our yield cycle has sizable forecasting power for future

excess returns on U.S. government bonds, above and beyond the predictive power

contained in the Ludvigson and Ng (2009) single macro-factor.

[Insert Table 4 about here]

III.B.3 Out-Of-Sample Predictability

As a final robustness test we consider out-of-sample predictability as measured by

R2
OOS computed as follows:

R2
OOS = 1−

T∑
t=1

(
rx

(n)
t+4 − r̂x

(n)
t+4

)2
T∑
t=1

(
rx

(n)
t+4 − r̄x

(n)
t+4

)2

where r̂x
(n)
t+4 is the fitted value from our predictive regression estimated through period

t− 1 and r̄x
(n)
t+4 is the historical average return estimated thorough period t− 1. If the

R2
OOS is positive, then the predictive regression has lower average mean squared prediction

error than the historical average return. This is always the case for all regressions reported

in Table 5.28

[Insert Table 5 about here]

28Online Appendix Figure A.4 Panel (b) displays the realized and fitted values for bonds with 2- and
10-years maturity. Also, replacing our proposed drivers for the equilibrium rate (MY, ∆xpott , and π∗t ) with
a time trend would result in negative out-of-sample R2. See Online Appendix Table A.4 .
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IV Further Results and Discussion

IV.A The Cyclical Yields Component: A RE Interpretation

Our analysis contributes to the debate of whether the bond risk premium is

stationary. Hall et al. (1992) provide early evidence that bond yields are cointegrated and

that the bond risk premium is stationary. That view has been challenged, however. E.g.,

Wright (2011) argue for term premiums to decline internationally over the sample

1990–2007. Bauer et al. (2014) and Wright (2014) discuss the extent to which small-sample

bias in maximum likelihood estimates of affine term structure models alters the conclusions

about term premia and its (a)cyclical properties.

Figure 4 shows the decomposition of the 10-year yield y
(40)
t into y

(40),∗
t and

δ
(40)
0 + u

(40)
t , as per equation (6). As before, Panel (a) refers to the restricted model whereas

Panel (b) refers to our benchmark model with drifting equilibrium policy rates. The two

models have opposite implications: the residuals (dotted line) follow a random walk under

the classical model with constant equilibrium rates, but are stationary in our model with

drifting rates.29

Thus, if we interpret the deviations of bond prices from their drifts as risk premia,

we find overwhelming evidence that term premia are indeed stationary. Our evidence

complements the literature cited above. In fact, we do not focus on statistical biases but,

rather, we stress the importance of modeling the economic determinants of equilibrium

rates.

[Insert Figures 4 and 5 about here]

Finally, Figure 5 shows that our estimated deviations of bond prices from their

drifts comove strongly with the term premium estimates proposed by Bauer and

Rudebusch (2020). This analysis is reminiscent of Joslin et al. (2013) who find that the

29Replacing, in the restricted model, the perceived target rate π∗t with a fixed target rate at 2%, leaves
our conclusion unchanged: the 10-year residual is close to a random walk with an AR(1) coefficient of 0.98.
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estimated joint distribution within a macro-finance term structure model with NA is nearly

identical to the estimate from an economic-model-free factor vector-autoregression. The

evidence in Figure 5 suggests that this conclusion is likely to hold true also in models that

accommodate a drifting term structure.

IV.B The Cyclical Yields Component: A DE Interpretation

In this section, we assess the role played by deviations from rational expectations

(in the form of diagnostic expectations) in explaining the cyclical component of yields

within our framework.

Under Rational Expectations (RE), the cyclical component u
(n)
t would be identified

with the term premium of the n-period bond. However, a stationary u
(n)
t is also consistent

with, e.g., temporary deviations from Rational Expectations generated within a Diagnostic

Expectations framework (see Gennaioli and Shleifer, 2018) where long rates over-react

relative to change in expectations about short rates.

Following Bordalo et al. (2018) and d’Arienzo (2020), diagnostic expectations about

a stationary process ωt can be represented as follows:

(12) EDE [ωt+1 | It] = E [ωt+1 | It] + θ (E [ωt+1 | It]− E [ωt+1 | It−1]) .

We apply this expectation formation mechanism to the stationary deviations of the one

period rate from its stochastic trend:

(13) ωt+1 = y
(1)
t+1 − y∗t+1.

So we have:

(14) EDE
t

[
y
(1)
t+1 − y∗t+1

]
= Et

[
y
(1)
t+1 − y∗t+1

]
+ θ

(
Et

[
y
(1)
t+1 − y∗t+1

]
− Et−1

[
y
(1)
t+1 − y∗t+1

])
.
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Diagnostic expectations, EDE
[
y
(1)
t+1 − y∗t+1 | It

]
, differ from rational expectations,

E
[
y
(1)
t+1 − y∗t+1 | It

]
, by a shift in the direction of the information received at time t on

deviations of monetary policy from its (stochastic) trend. Under the diagnostic

expectations hypothesis agents over-react to the stationary deviations of monetary policy

from its trend.

Since we take the trend in monetary policy rates as exogenous, diagnostic

expectations on the drift coincide with the rational ones. We then write:

(15) EDE
t

[
y
(1)
t+1

]
= Et

[
y
(1)
t+1

]
+ θ

(
Et

[
y
(1)
t+1 − y∗t+1

]
− Et−1

[
y
(1)
t+1 − y∗t+1

])
.

Interestingly, in this case, Equation (4) can then be re-written as follows:

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ

(n)
0 +

(
1

n

) n−1∑
i=0

(
EDE

t [y
(1)
t+i]− Et[y

(1)
t+i]
)

︸ ︷︷ ︸
u
(n)
t

.(16)

Thus, the (stationary) component u
(n)
t can in principle be explained by the over-reaction

induced by diagnostic expectation: i.e., u
(n)
t can be justified also if term premia are

constant or even absent.

We rewrite equation (16) as follows:

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ

(n)
0 +

(
1

n

) n−1∑
i=0

(
EDE

t [y
(1)
t+i]− Et[y

(1)
t+i]
)

=

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ

(n)
0 +

+

(
1

n

)
θ
n−1∑
i=0

(
Et

[
y
(1)
t+i − y∗t+i

]
− Et−1

[
y
(1)
t+i − y∗t+i

])
(17)

where in the second step we exploit equation (15).
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In all, we can estimate the θ parameter by running the following regression:

y
(n)
t − y

(n,∗)
t = δ

(n)
0 + θ

(
1

n

) n−1∑
i=0

(Et − Et−1)[y
(1)
t+i − y∗t+i]

where
(
1
n

)
θ
n−1∑
i=0

(
Et

[
y
(1)
t+i − y∗t+i

]
− Et−1

[
y
(1)
t+i − y∗t+i

])
is obtained from forward simulation

of our model.

Several comments are in order. First, deviations from rational expectations depend

on the parameter θ and on the persistence of the deviations of monetary policy rates from

the trend. Second, the stationarity of
(
y
(1)
t − y∗t

)
implies that, for large n (i.e., at long

horizons), diagnostic expectations for the monetary policy rates will converge towards

rational expectations.30 Third, and most important, the estimated value of the θ parameter

allows to assess the relevance of Diagnostic Expectations under the null of our model.

Table 6 displays the results for such test. We find that diagnostic expectations

explain between 3% and 40% of the variability in the cyclical components of yields for

bonds with maturity from 2 to 10 years. In line with our discussion of equation (IV.B), the

importance of diagnostic expectations decreases with the maturity of the bond.

The empirical relevance of overreaction has been recently documented by Cieslak

(2018) for the short end of the curve. Similarly, Piazzesi et al. (2015) provide evidence that

realized survey (interest rates) forecast errors as well as forecast differences relative to

VAR-based measure may be responsible for the time-variation in bond premia from

statistical models. We have shown that these explanations may be important even in a

model that accommodates a drifting term structure. However, the contribution of

overeaction decreases at long maturities; this is consistent with deviations of monetary

policy rates from the equilibrium rate being fast mean-reverting.

[Insert Table 6 about here]

30Maxted (2019) considers a case in which convergence of DE to RE is not realized as the underlying
process is non-stationary.
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V Conclusions

This paper proposes a general framework to model a common drift in bond prices,

and studies its implications for monetary policy, the term structure of interest rates, and

bond returns predictability.

We start by showing that there is a drift in monetary policy rates which can be

successfully modeled by fluctuations in productivity, demographics, and long-term inflation

expectations. Our approach delivers monetary policy residuals that are substantially less

persistent than those implied by standard policy rules. Thus, through the lens of our

analysis, we find that monetary inertia is overestimated when the drift in policy rate is not

modeled.

The drift in bond prices is described by the average of expected monetary policy

rates over the residual life of the bond. Appropriate modeling of the drift in monetary

policy should deliver stationary deviation of yields to maturity from their drift. We find

that persistent but stationary deviations of U.S. Treasury bond prices from their drift

predict excess returns in- and out-of-sample, as well as outside the U.S. Next period

returns from holding long-term bonds are negative in times when bond prices are higher

than those implied by their drift.

Finally, stationary deviations of bond prices from their drift could be explained by

the presence of term premia and/or by temporary deviations from rational expectations in

a behavioral framework. Our empirical evidence shows that deviations from rational

expectations in the form of Diagnostic Expectations account for up to 40% of the

fluctuations in yield cycles for bonds with maturities 2-year. However, the importance of

DE decreases at longer maturities leaving an important role for term premia. At a

minimum, when the deviations of bond prices from their drift are interpreted as term

premia, our finding implies that models that mispecify the drift in monetary policy and in

bond prices will fail to generate stationary term premia.
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Tables and Figures

Table 1: Short-term rate models with and without drifting equilibrium rate

This table reports the estimates for our (cointegrated) model with drifting equilibrium rates (c.f. equation
(2); see column (2)) as well as estimates for a model that restricts the equilibrium rate to be constant (c.f.
equation (3); see column (1)). We estimate the two rules by instrumental variables, where the instruments
are lags of inflation gap and output gap. The last row reports OLS estimates for the monetary policy
residuals’ persistence. Values in parenthesis are GMM standard errors that correct for autocorrelation in
the residuals. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Three-Month Yield

1 2

MY −2.652∗∗∗

(0.726)

∆xpott 0.932∗∗∗

(0.317)

π∗t 1.656∗∗∗

(0.177)

Et(πt+1 − π∗t+1) 0.721 0.709∗∗∗

(0.519) (0.244)

Et(xt+1) 0.086 0.389∗∗∗

(0.481) (0.137)

Constant 4.656∗∗∗

(1.036)

Observations 160 160
Adjusted R2 0.036 0.950

ρ 0.949∗∗∗ 0.673∗∗∗

(0.022) (0.110)
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Table 2: Predictive Regressions across Different Maturities

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ βEt(rx

(n)
t+4) + εt where rx

(n)
t+4 is the realized

one-year holding period excess return of a bond with maturity n-period and Et(rx
(n)
t+4) is the expected

excess return implied by our specifications. Panel A reports results for the classical model with a constant
equilibrium rate. Panel B reports results for our model with drifiting equilibrium rates. Values in parenthesis
are conservative standard errors from reverse regressions computed as in Hodrick (1992). Constant estimates
are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Panel A: Model with constant equilibrium rate.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5

Et(rx
(8)
t+4) 0.427∗∗

(0.201)

Et(rx
(12)
t+4 ) 0.308

(0.188)

Et(rx
(20)
t+4 ) 0.212

(0.167)

Et(rx
(28)
t+4 ) 0.171

(0.151)

Et(rx
(40)
t+4 ) 0.139

(0.131)

Observations 156 156 156 156 156
R2 0.128 0.092 0.069 0.060 0.054

Panel B: Model with drifting equilibrium rate.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5

Et(rx
(8)
t+4) 0.868∗∗∗

(0.187)

Et(rx
(12)
t+4 ) 0.822∗∗∗

(0.159)

Et(rx
(20)
t+4 ) 0.693∗∗∗

(0.151)

Et(rx
(28)
t+4 ) 0.707∗∗∗

(0.120)

Et(rx
(40)
t+4 ) 0.619∗∗∗

(0.120)

Observations 156 156 156 156 156
R2 0.366 0.366 0.331 0.361 0.320
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Table 3: Dissecting Predictive Regressions

This table reports OLS estimates for the regression rx
(40)
t+4 = α+β′Xt+εt where rx

(40)
t+4 is the realized one-year

holding period excess return of a bond with maturity 10-year and Xt contains different return predictors.
Column (1) exploits equation (9) reported here for reader’s convenience:

Et(rx
(40)
t+4 ) = y

(40)
t − y(4)t − (40− 4)

(
Et(y

(40−4)
t+4 )− y(40−4)t

)
− (40− 4)

(
y
(40−4)
t − y(40)t

)
.

Column (2) shows that the slope is a significant predictor of excess bond returns when considered in isolation.
Columns (3) and (4) exploit the decomposition of expected price changes per equation (11) reported here
for reader’s convenience:

Et(y
(40−4)
t+4 )− y(40−4)t = Et

(
y
(40−4),∗
t+4 − y(40−4),∗t

)
+
(
ρ(40−4) − 1

)
u
(40−4)
t .

In columns (3) and (4) we neglect the roll-down term which empirically is found to be insignificant. Values
in parenthesis are conservative standard errors from reverse regressions computed as in Hodrick (1992).
Constant estimates are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

rx
(40)
t+4

1 2 3 4

y
(40)
t − y(4)t 3.217 2.320∗ 0.740 0.929

(2.085) (1.397) (2.280) (1.212)

−(40− 4)
(
Et(y

(36)
t+4 )− y(36)t

)
0.543∗∗∗

(0.105)

−(40− 4)(y
(36)
t − y(40)t ) −4.340

(4.817)

−(40− 4)
(
Et(y

(36),∗
t+4 )− y(36),∗t

)
−0.241

(2.260)

−(40− 4) u
(36)
t −0.640∗∗∗ −0.626∗∗∗

(0.164) (0.119)

Adjusted R2 0.342 0.060 0.316 0.320
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Table 4: Predictive Regressions: Horse race against other bond predictors

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ β1Ft + β2ũt + εt where rx

(n)
t+4 is the realized

one-year holding period excess return of a bond with maturity n-period, Ft is the Cochrane and Piazzesi
(2005) factor (CPt) in Panel A, the Cieslak and Povala (2015) factor (CPot) in Panel B, and the Ludvigson
and Ng (2009) factor (LNt) in Panel C, and ũt is the single-return forecasting factor implied by our model
with drifting equilbrium rates. CPt is constructed as in Cochrane and Piazzesi (2005) using quarterly zero-
coupon Treasury yields from Gürkaynak et al. (2007) with maturities from 1 to 5 years. CPot is constructed
as in Cieslak and Povala (2015) using quarterly zero-coupon Treasury yields from Gürkaynak et al. (2007)
with maturities from 1 to 10 years. LNt is constructed as in Ludvigson and Ng (2009) as the fitted value from
a regression of average (across maturity) excess returns on a set of six factors extracted from a large dataset
of macro-financial variables. ũt is the fitted value from regressing the average one-year holding-period excess

returns on a n-periods Treasury bond for n = 4, 8, . . . , 40 on our cyclical components u
(n)
t n = 1, . . . , 40 (see

Eq. (11)). Values in parenthesis are standard errors from reverse regressions computed as in Hodrick (1992).
Constant estimates are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Panel A: Cochrane-Piazzesi (2005).

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5 6 7 8 9 10

CPt 0.434∗∗∗ 0.104 0.821∗∗∗ 0.168 1.554∗∗∗ 0.340 2.272∗∗∗ 0.589 3.307∗∗∗ 1.069
(0.139) (0.148) (0.305) (0.331) (0.580) (0.633) (0.810) (0.887) (1.141) (1.263)

ũt 0.219∗∗∗ 0.434∗∗∗ 0.807∗∗∗ 1.118∗∗∗ 1.488∗∗∗

(0.035) (0.079) (0.164) (0.240) (0.344)

Observations 156 156 156 156 156 156 156 156 156 156
Adjusted R2 0.130 0.390 0.132 0.421 0.145 0.451 0.159 0.459 0.174 0.446

Panel B: Cieslak-Povala (2015).

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5 6 7 8 9 10

CPot 1.366∗∗∗ 0.428 2.720∗∗∗ 0.959 5.230∗∗∗ 2.177 7.544∗∗∗ 3.535 10.650∗∗∗ 5.700∗

(0.247) (0.366) (0.516) (0.800) (1.011) (1.572) (1.467) (2.259) (2.119) (3.224)

ũt 0.184∗∗∗ 0.346∗∗∗ 0.599∗∗ 0.787∗∗ 0.972∗∗

(0.050) (0.118) (0.240) (0.344) (0.478)

Observations 156 156 156 156 156 156 156 156 156 156
Adjusted R2 0.305 0.396 0.342 0.433 0.389 0.472 0.413 0.487 0.424 0.480

Panel C: Ludvigson-Ng (2009).

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5 6 7 8 9 10

LNt 0.458 0.365∗∗∗ 0.870∗∗∗ 0.687∗∗∗ 1.472∗∗∗ 1.128∗∗ 1.905∗∗ 1.419∗ 2.390∗∗ 1.722
(0.120) (0.116) (0.266) (0.259) (0.528) (0.513) (0.765) (0.745) (1.105) (1.081)

ũt 0.221∗∗∗ 0.433∗∗∗ 0.815∗∗∗ 1.153∗∗∗ 1.583∗∗∗

(0.034) (0.074) (0.151) (0.218) (0.310)

Observations 156 156 156 156 156 156 156 156 156 156
Adjusted R2 0.133 0.472 0.136 0.504 0.118 0.518 0.100 0.509 0.080 0.476
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Table 5: Out-Of-Sample Tests

This table reports R2
OOS for the predictive regression rx

(n)
t+4 = α+β′ũt+εt where rx

(n)
t+4 is the realized one-year

holding period excess return of a bond with maturity n-period and ũt is the single-return forecasting factor
implied by our model with drifting equilbrium rates. ũt is the fitted value from regressing the average one-year
holding-period excess returns on a n-periods Treasury bond for n = 4, 8, . . . , 40 on our cyclical components

u
(n)
t n = 1, . . . , 40 (see Eq. (11)). We use a rolling window for estimating the predictive regressions. The

R2
OOS is computed as in Campbell and Thompson (2008); p-values for R2

OOS are computed as in Clark and
West (2007). In Panel A the out-of-sample period starts in 1990; in Panel B the out-of-sample period starts
in 2000. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Panel A: Out-of-sample period: 1990-2019.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5

R2
OOS 20.9∗∗∗ 27.18∗∗∗ 31.63∗∗∗ 31.65∗∗∗ 27.29∗∗∗

Panel B: Out-of-sample period: 2000-2019.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

1 2 3 4 5

R2
OOS 0.99∗∗∗ 3.38∗∗∗ 10.23∗∗∗ 14.26∗∗∗ 13.65∗∗∗

Table 6: Testing Diagnostic Expectations

This table reports seemingly unrelated regressions (SUR) estimates for regression (IV.B) for bonds with
different maturities (n). We restrict θ to be the same across maturities. Quarterly observations. The sample
period is 1980:Q1 to 2019:Q4.

u
(8)
t u

(12)
t u

(20)
t u

(28)
t u

(40)
t

1 2 3 4 5

1/n
n−4∑
i=0

(Et − Et−1)[y
(1)
t+i − y∗t+i] 3.679∗∗∗ 3.679∗∗∗ 3.679∗∗∗ 3.679∗∗∗ 3.679∗∗∗

(0.299) (0.299) (0.299) (0.299) (0.299)

Constant 0.717∗∗∗ 0.877∗∗∗ 1.189∗∗∗ 1.467∗∗∗ 1.798∗∗∗

(0.058) (0.067) (0.076) (0.081) (0.085)

Observations 160 160 160 160 160
R2 0.408 0.254 0.112 0.057 0.026
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Figure 1: Actual vs Fitted Short-Term Rate. Panel (a) shows actual three-month yield
and fitted values for our (cointegrated) model with drifting equilibrium rates (c.f. equation (2); see green
dashed line) as well as for a model that restricts the equilibrium rate to be constant (c.f. equation (3); see
brown dotted line). Panel (b) shows the differences between actual three-months yield and the fitted values.
Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.
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Figure 2: Long-Term Forecasts of Short-Term Rate. This figure shows actual three-month
yield and predicted rates implied by our (cointegrated) model with drifting equilibrium rates (c.f. equation
(2); green dashed line) and by a model that restricts the equilibrium rate to be constant (c.f. equation (3);
brown dotted line). The forecast of the drifting rule exploits the exogeneity of the demographic variable
(MY ) and of potential output (∆xpot). In particular, the rule is estimated until 1995, 2000, and 2005 in
the top, mid, and bottom panels, respectively. We then use the coefficients estimates, the projections of
MY and ∆xpot (see also Appendix A), and the forecast of inflation and output gap from a VAR(1) as in
equations (7) and (8). π∗ is modeled as a random walk. Monetary policy residuals persistence ρ is 0.673 and
0.949 for the drifting and the constant equilibrium rate models respectively. Dotted vertical lines represent
the end of in-sample estimation period. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.
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(a) Model with constant equilibrium rate.
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(b) Model with drifting equilibrium rate.

Figure 3: Engle and Granger (1987) Cointegration Test.: This figure shows results for the Engle

and Granger (1987) cointegration test for u
(n)
t defined in equation (4) for different maturities. Panel (a)

reports test statistics for a model that restricts the equilibrium policy rate to be constant, i.e., y∗t = y∗ (c.f.
equation (3)). Panel (b) reports test statistics for our (cointegrated) model with drifting equilibrium policy
rates (c.f. equations (5)–(8)). The null hypothesis is absence of cointegration. The dashed red line is the
critical value at 5% level of significance as suggested by MacKinnon (2010). Quarterly observations. The
sample period is 1980:Q1 to 2019:Q4.
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(a) Model with constant equilibrium
rates.
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(b) Model with drifting equilibrium
rates.

Figure 4: Decomposing long-term rates. Panel (a) shows the decomposition of the ten-year
yield implied by a model which assumes away drifting monetary policy rates (i.e., y∗t = y∗). Panel (b) shows
the decomposition of the ten-year yield implied by our model with drifting equilibrium rates (see equations
(5)–(8)). Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.
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Figure 5: Cyclical component from model with drifting equilbrium rates vs. term
premium estimate: This figure shows the term premium component for a 10-year Treasury bond
estimated following the methodology (OSE, observed shifting endpoint) proposed by Bauer and Rudebusch

(2020) together with deviations of the 10-year bond yields from their drift, δ
(40)
0 + u

(40)
t , implied by our

(cointegrated) model with drifting equilibrium rates (c.f., equations (5)–(8)). Quarterly observations. The
sample period is 1980:Q1 to 2018:Q1.
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Appendix

A Data

We employ quarterly data in our empirical analysis; thus, we proxy for the 1-period
bond yields using the end-of-quarter 3-month Treasury bill rates from the Federal Reserve’s
H.15 release. Our sample period starts with Paul Volckers appointment as Fed chairman,
because of evidence that monetary and macroeconomic dynamics changed at that time
(e.g., Gertler et al., 1999).

Zero-coupon Treasury yields with 1- to 10-year maturities are from Gürkaynak et al.
(2007).

The Federal Reserve’s perceived target rate (PTR) for inflation is a survey-based
measure of long-run inflation expectations; PTR is used in the Fed’s FRB/US model and
available at https://www.federalreserve.gov/econres/us-models-package.htm.

MY is available until 2050 and is hand-collected from various past Census reports
available at https://www.census.gov/data.html. Potential output is available until 2030
and can be downloaded at https://fred.stlouisfed.org/series/GDPPOT. See also
Figure A.1.
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Figure A.1: Drivers of the Equilibrium Nominal Rate. This figure shows the dynamics
for the drivers of the time-varying equilibrium nominal rate y∗t in equation (2). The left panel shows the
ratio of middle-aged (40-49) to young (20-29) population, MY , and for potential output growth, ∆xpott . The
right panel shows the Federal Reserve’s perceived target rate (PTR) for inflation. MY is available until 2050
and is hand-collected from various past Census reports available at https://www.census.gov/data.html.
Potential output is available until 2030 and can be downloaded at https://fred.stlouisfed.org/series/
GDPPOT. Dotted vertical lines denote the end of our sample, i.e., 2019:Q4. Quarterly observations.

A natural concern for our analysis of bond return predictability is that ∆xpot may
be formed in a way that exploits information from the yield curve.31 Fortunately, this is
not the case. Indeed, the US Congressional Budget Office (CBO) defines potential output

31We thank an anonymous referee for raising this point.
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as the trend growth in the productive capacity of the economy. CBO uses the Solow
growth model in which the real GDP growth is the product of three input factors: capital,
labor, and technology. They attribute GDP into five sectors: nonfarm business,
government, farm, households and nonprofits, and housing. For every sector, the CBO
estimates a standard production function based on labor, capital, and total factor
productivity (TFP). Aggregate real GDP is the sum of real GDP across the five sectors.
To estimate potential output, CBO estimates for each sector the potential level of labor
force N∗i,t which is a function of the unemployment gap and business cycle dummies. With
N∗i,t in hands, CBO computes the potential level of hours worked L∗i,t. Then, CBO
cyclically-adjusts TFP to remove business cycle fluctuations. Finally, they compute for
each sector potential output as Y ∗i,t = Ai,tL

∗(0.7)
i,t K

(0.3)
i,t . For a complete description of the

methodology used by the CBO see CBO METHOD FOR ESTIMATING POTENTIAL OUTPUT. In
all, the CBO does not look at the yield curve when forming ∆xpott .
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(a) Rates and fitted values from policy rules.
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t from policy rules.

Figure A.2: Actual vs Fitted Short-Term Rate and Cycle: CBO vs Laubach and
Williams (2003) Potential Output. Panel (a) shows actual three-month yield and fitted values
for our (cointegrated) model with drifting equilibrium rates (c.f. equation (2)). The red dotted line is the
benchmark case in the paper based on CBO potential output. The green dashed line is instead the fitted
value from a model that employs the potential output provided by Laubach and Williams (2003). Panel (b)
shows the differences between actual three-months yield and the fitted values. Quarterly observations. The
sample period is 1980:Q1 to 2019:Q4.

We also replace ∆xpot from the CBO with the potential output provided by
Laubach and Williams (2003). Figure A.2 shows the results. In particular, Panel (a) shows
the three-month yield and fitted values for our (cointegrated) model that uses either the

CBO or the Laubach and Williams (2003) potential output. Panel (b) shows the cycle u
(1)
t .

The figure shows that the two fitted values for the short-term rate (panel (a)) and
the implied cycles (panel (b)) are highly correlated. This evidence suggests that the
adoption of the potential output from CBO is not essential to obtain the results.
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