
Appendices

A Details on Aggregate Level Analysis

Impulse response functions are computed following the algorithm. Step 1 -
solve dynamically forward the estimated equation putting all shocks to zero;
step 2 - simulate the equation setting the fiscal adjustment plan to 1% of GDP;
step 3 - compute impulse response as a difference between step 2 and step 1;
step 4 - compute confidence intervals using the block bootstrap to take into
account serial correlation.

In Section 2.2 we build impulse response functions using truncated moving
average model. In particular we estimate the following specification:

Δyt = α +B1(L) · fu
t · EBt +B2(L)f

u
t · TBt + ...

...+ C1(L) · fa
t · EBt + C2(L) · fa

t · TBt + ...

...+
H∑
j=1

Dj · fa
t,t+j · EBt +

H∑
j=1

Ej · fa
t,t+j · TBt + εt

with:

fa
t,t+j = δTB

j · fu
t · TBt + ε1t+j, for j = 1, H

fa
t,t+j = δEB

j · fu
t · EBt + ε2t+j, for j = 1, H

where B(L) and C(L) are polynomials of the length six, H - is the antici-
pation horizon and also equal to six. We follow Mertens and Ravn (2012) on
this and six is the median implementation lag.

Figure 11 and 12 show the estimated impulse response functions of several
other tax receipts shares of GDP to TB and EB fiscal adjustment plans. Those
impulse responses are obtained using truncated moving average model.

B Industry Data

In this section we describe the data we use in our analysis.
Firstly, the disaggregation level, n = 62, is determined by starting from the

finest decomposition available on the Bureau of Economic Analysis (BEA) at a
yearly frequency, namely 71 sectors, and then aggregating those sectors whose
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Figure 11: Tax Receipts Response to TB Plans

data are not available for older years. We exclude the Government sector
and consider only Government Enterprises as the only public, but politically
independent, sector. The Government sector needs to be excluded since its
outcome variable is G, government spending, which mechanically falls when a
fiscal adjustment occurs.
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Figure 12: Tax Receipts Response to EB Plans

Value Added

We use real industry value-added as the dependent variable, Δyit. Value-added
equals gross output minus intermediate inputs. It consists of compensation of
employees, taxes on production and imports less subsidies (formerly indirect
business taxes and non-tax payments), and gross operating surplus (formerly
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“other value added”). We prefer it over gross output to be consistent with
Acemoglu, Akcigit, and Kerr (2016).29

Industry Specific Shares:

Following Acemoglu, Akcigit, and Kerr (2016), we construct the vector of
industry-specific weights by exploiting information from the input-output ta-

bles, namely: ωEB
i =

Salesi→G

Salesi
; where “G” stands for Government.30 By

doing so, we take into account the fact that the government purchases goods
and services in different quantities from each sector.31 Lastly, the vector of
weights for the EB plan, denoted by ωEB, is then normalized to one.
On the contrary, we assume that aggregate TB fiscal plans impact each sector
in the same fashion, therefore, we set ωTB

i = 1/n for all i and the n× 1 vector
will be: ωTB = 1/n · 1n.

B.1 Input-Output Network

The BEA provides I-O tables that report the amount of commodity used (Use
Table) and made (Make Table) by each industry. Horowitz, Planting, et al.
(2006) outline the procedure to construct an industry-by-industry direct re-
quirement matrix, with elements given by SALESj→i/SALESi for each sector.
Let’s denote this matrix by A and note that its elements coincide one to one
with the weights of Δydown

i,t in Equation 6. Therefore, the downstream spatial
variable can be written in vector notation as: Δydown

t = A·Δ log yt and matrix
A can be constructed from the Make and Use Tables of the BEA.32 Henceforth
we will refer to matrix A as the “downstream matrix”.
Finally, we construct a new matrix starting from A and using BEA’s in-
dustry specific gross output, such that its (ij)th element is represented by
SALESi→j/SALESi, which coincides one to one with the weights of Δyupi,t in

Equation 6. We denote this new matrix by ÂT , and refer to it as the “up-
stream matrix”. The upstream spatial variable can now be written in vector

29Their decision is justified by the fact that value-added is adjusted for energy costs, non-
manufacturing input, and inventory changes which are all outside of the general equilibrium
model which provides the theoretical underpinning to their empirical strategy.

30Our definition of Government encompasses both Federal and State&Local government
spending. We therefore exclude here Government Enterprises, which instead are considered
as part of the industrial network.

31We thank Roberto Perotti for this point.
32We use the Make and Use tables of year 1997, which is the closest to the occurrence of

fiscal plans. Nevertheless, notice that I-O matrices are fairly stable over time.
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notation as: Δyup
t = ÂT ·Δ log yt.

The construction of matrices A and ÂT starts from the analysis of the Make
and Use tables illustrated in chapter 12 of Horowitz, Planting, et al. (2006). We
outline here the details of the construction and the precise mapping between
the theory and the data.

The Use Table

The Use table is a commodity-by-industry table which illustrates the uses
of commodities by intermediate and final users. The rows of the Use Table
represent the commodities (or products) and the sum of the entries in a row
is the total output of that commodity. On the contrary, the columns display
the industries that employ them and the final users. Horowitz, Planting, et al.
(2006) provides a useful numerical example with 3 industries:

Example of Use Table - 3 Industries

Commodity/Industry 1 2 3 Final demand Total Commodity Output

1 50 120 120 40 330
2 180 30 60 130 400
3 50 150 50 20 270

Scrap 1 3 1 0 5
VA 47 109 34 / 190

Total Industry Output 328 412 265 190 /

What is of our interest is clearly the n× n commodity-by-industry part of
the Table, whose values can be denoted with the following notation:

(Use)ij = INPi→j := Commodity i used as input by Industry j

Therefore, the n× n part of the Use Table we are going to use is:

U =

⎡
⎢⎢⎢⎢⎣
INP1→1 INP1→2 INP1→3

INP2→1 INP2→2 INP2→3

INP3→1 INP3→2 INP3→3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ 50 120 120
180 30 60
50 150 50

⎤
⎦
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In practice, the above matrix U is a “symmetric” commodity-by-industry Use
Table.

Next step boils down in constructing a commodity-by-industry direct re-
quirement table by dividing each industry’s input, INPj→i, by its corresponding
total industry output, yi. We denote such a matrix with letter B:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

INP1→1

y1

INP1→2

y2

INP1→3

y3

INP2→1

y1

INP2→2

y2

INP2→3

y3

INP3→1

y1

INP3→1

y2

INP3→3

y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

50

328

120

412

120

265

180

328

30

412

60

265

50

328

150

412

50

265

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣
0.152 0.291 0.453

0.549 0.073 0.226

0.152 0.364 0.189

⎤
⎥⎥⎥⎥⎦ .

Notice one important thing: matrix B is different from matrix A, since xi→j �=
INPi→j: the former is an industry output flow, while the second measures a
commodity flow to an industry.

The Make Table

The Make table is an industry-by-commodity table which shows the production
of commodities by industries. Row i represents an industry and its summation
delivers the total industry output, yi. Column j represents a commodity and
its summation delivers the total commodity output.
Borrowing again Horowitz, Planting, et al., 2006’s 3 industries example, we
have:

Example of Make Table - 3 Industries

Industry/Commodity 1 2 3 Scrap Total Industry Output

1 300 25 0 3 328
2 30 360 20 2 412
3 0 15 250 0 265

Total Commodity Output 330 400 270 5 /

Similarly to what done for the Use Table, we are interested in the central
n × n elements of the table, which we can denote by V. The generic element
of the “heart” of the Make table is:

(Make)ij = OUTi→j := Commodity j produced by Industry i
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Therefore, the n× n part of the Make Table we are going to employ is:

V =

⎡
⎢⎢⎢⎢⎣
OUT1→1 OUT1→2 OUT1→3

OUT2→1 OUT2→2 OUT2→3

OUT3→1 OUT3→2 OUT3→3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣300 25 0
30 360 20
0 15 250

⎤
⎦

In practice, the above matrix V is a “symmetric” industry-by-commodity Make
Table.

Analogously to what done before, we now take ratios; in particular, we
divide each element of V by the total production of commodity j. The resulting
matrix is denoted by D, and its generic element is:

(D)ij =
OUTi→j∑n
k=1 OUTk→j

=
OUTi→j

Cj

where Cj :=
∑n

k=1 OUTk→j is the total production of commodity j. D rep-
resents the share of industry i in the total production of commodity j; not
surprisingly, Horowitz, Planting, et al. (2006) refer to this matrix as the “mar-
ket share matrix”. In the 3 industries/commodities example we have:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

OUT1→1

C1

OUT1→2

C2

OUT1→3

C3

OUT2→1

C1

OUT2→2

C2

OUT1→3

C3

OUT3→1

C1

OUT3→2

C2

OUT3→3

C3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

300

330

25

400

0

270

30

330

360

400

20

270

0

330

15

400

250

270

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣0.909 0.063 0
0.091 0.900 0.074
0 0.038 0.926

⎤
⎦

Adjustment for Scrap Products

The I-O accounts include a commodity for scrap, which is a byproduct of in-
dustry production. No industry produces scrap on demand; rather, it is the
result of production to meet other demands. In order to make the I-O model
work correctly, we have to eliminate scrap as a secondary product. At the
same time, we must also keep industry output at the same level.

This adjustment is accomplished by calculating the ratio of non-scrap out-
put to industry output for each industry and then applying these ratios to
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the market shares matrix in order to account for total industry output. More
precisely, the non-scrap ratio, which I denote by θi, is defined as follows:

θi =
yi − (scrap)i

yi

and represents the share of total industry output imade of commodity different
from “scrap”. In the 3 industries example we have:

Industry Tot.Ind.Out. Scrap Δ θi

1 328 3 325 0.991
2 412 2 410 0.995
3 265 0 265 1

The market shares matrix, D, is adjusted for scrap by dividing each row by
the non-scrap ratio for that industry. In the resulting transformation matrix,
called W, the implicit commodity output of each industry has been increased.
In other words, we are increasing each market share to take into account that
to produce each unit of each commodity, industry i will produce 1/θi units
of output. In essence, we are spreading the production of commodity “scrap”
over the production of all the other commodities:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

OUT1→1

C1

· 1
θ1

OUT1→2

C2

· 1
θ2

OUT1→3

C3

· 1
θ3

OUT2→1

C1

· 1
θ1

OUT2→2

C2

· 1
θ2

OUT1→3

C3

· 1
θ3

OUT3→1

C1

· 1
θ1

OUT3→2

C2

· 1
θ2

OUT3→3

C3

· 1
θ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.909

0.991

0.063

0.991

0

0.991

0.091

0.995

0.900

0.995

0.074

0.995

0

1

0.038

1

0.926

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣0.917 0.063
0.091 0.904 0
0 0.038 0

The Direct Requirement Table

To summarize:

1. We constructed matrix B, a commodity-by-industry direct requirement
table, whose columns tell us how much an industry j needs of commodity
i relative to its own total industry production.

2. We constructed matrix W, an industry-by-commodity matrix which rep-
resent the market share - adjusted for scrap - of each industry i in the
production of a commodity j.
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By combining these two matrices we can obtain an industry-by-industry direct
requirement matrix:

P︸︷︷︸
industry×industry

:= W︸︷︷︸
industry×commodity

· B︸︷︷︸
commodity×industry

In order to understand the meaning of each element of matrix P, it is important
to derive it analytically:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

OUT1→1

C1 · θ1
OUT1→2

C2 · θ2
OUT1→3

C3 · θ3
OUT2→1

C1 · θ1
OUT2→2

C2 · θ2
OUT1→3

C3 · θ3
OUT3→1

C1 · θ1
OUT3→2

C2 · θ2
OUT3→3

C3 · θ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

INP1→1

y1

INP1→2

y2

INP1→3

y3

INP2→1

y1

INP2→2

y2

INP2→3

y3

INP3→1

y1

INP3→2

y2

INP3→3

y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

Denoting by pij the generic element of P, we have:

pij =

OUTi→1

C1 · θ1 · INP1→j +
OUTi→2

C2 · θ2 · INP2→j +
OUTi→3

C3 · θ3 · INP3→j

yj
≈ SALESi→j

SALESj

In other words, pij represents how much industry j depends on inputs form
industry i relative to its own total industry output yj.

33

Notice that the transposed of matrix P is approximately equal to matrix A in
the paper:

P ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SALES1→1

SALES1

SALES1→2

SALES2

SALES1→3

SALES3

SALES2→1

SALES1

SALES2→2

SALES2

SALES2→3

SALES3

SALES3→1

SALES1

SALES3→2

SALES2

SALES3→3

SALES3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒ A ≈ P T

33Notice that a big assumption is made in the construction of this matrix: if industry i
has adjusted market share of production of commodity K, OUTi→K/(CK ·θK) equal to, say
10%, then it is assumed that if industry j purchases z := INPK→j dollars of commodity K,
then 10% of z$ come from industry i. This must be true on average but it might not be
exactly true case by case.
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Matrix P can be either constructed from the Make and Use table or down-
loaded from the BEA, as an industry-by-industry direct requirement table. Its
transposed value identifies the matrix A in Equation (6).
The construction of matrix ÂT , in equation (7), is trivial once we have matrix
A as well as a vector of average industry output.

C Spatial Econometric Estimation

We believe that our empirical methodology presents some results of indepen-
dent interest. Although we do not want to divert attention from the macroe-
conomic focus of the paper, we believe certain econometric facts are worth
mentioning here in the Appendix. We provide this discussion in the spirit of
promoting the usage of these new techniques in macroeconomic analysis.

Firstly, the adoption of spatial econometric methods allows us to disen-
tangle the direct and network effect of aggregate shocks. This is a novel and
recent innovation in macroeconomics, as noted in Ozdagli and Weber (2017).
Secondly, spatial models are traditionally estimated by row-normalizing and
removing the main diagonal from the weighting matrix. Another common as-
sumption is homoskedasticity of the error term. In a recent paper, Aquaro,
Bailey, and Pesaran (2019) develop a new estimator which relaxes homoskedas-
ticity and allow for different spatial coefficients, thus indirectly relaxing the
row-normalization assumption. They refer to it as Heterogenous Spatial Au-
toregressive model (HSAR). They also point out that not assuming zero entries
on the main diagonal of the weighting matrix is simply a re-parameterization
of the model, which does not harm the statistical properties of the MLE, but
does change the interpretation of the parameters.34 Their econometric model,
adopted by Ozdagli and Weber (2017), is very convenient for macroeconomic
applications which use non-row-normalized, dense main diagonal weighting
matrices and in a setting where units are subject to heteroskedastic idiosyn-
cratic shocks.

However, we highlight that even the standard dynamic spatial panel au-
toregressive model of Yu, DeJong, and Lee (2008) can easily be relaxed to ac-
commodate for non-zero entries on the main diagonal and non-row-normalized
weighting matrix with heteroskedastic errors.35 Our construction of a Bayesian
MCMC, similar to the one in LeSage and Pace (2009), is thus an easy and nat-
ural extension to the more general version of the spatial panel autoregressive

34We are grateful to Hashem Pesaran for making us aware of this.
35We thank Lung-Fei Lee for pointing this out.
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model of Yu, DeJong, and Lee (2008). Moreover, the Bayesian MCMC method
provides an easy way to recover the posterior distributions of the aggregate
effects of the shocks, as illustrated earlier.
We encourage macroeconomists to adopt spatial econometric tools to study
the propagation of aggregate shocks into a network of sub-units (countries,
industries, regions...) but in doing so we also recommend them to follow three
good practices:

1. Firstly, always allow for heteroskedasticity, since sub-units in general
have different volatilities.

2. Secondly, never remove the main diagonal from the empirically observed
weighting matrices, in our case A and ÂT . In fact, zero-entries in the
main diagonal imposes a lack of spillovers within the same observed unit
(“intra-unit feedback”). This is a reasonable assumption when units are
individuals - like in standard spatial econometric applications - but it is
not sensible when units are aggregates, such as industries. Notice, that
the empirically observed A and ÂT weighting matrices from our analysis
exhibit very dense main diagonals (see Figure 9).

3. Thirdly, never row-normalize the weighting matrices. Row-normalization
flattens the differences in the degree of connection of each unit. For in-
stance, in our application with the industrial network, A and ÂT exhibit
very different row-sums, indicative of different degrees of exposure to
customer and supplying industries.

We recommend using either the Bayesian MCMC methodology developed here
and detailed in Appendix C.3 or the HSAR model of Aquaro, Bailey, and Pe-
saran (2019), whenever the application requires heterogeneous spatial coeffi-
cients. The relationship between the two models is left for future research.

In what follows we outline the details of the spatial econometric estimator
that we employ.

C.1 Log-likelihood

The standard way to estimate the parameters of Equations (6) and (7) is via
maximum likelihood (see LeSage and Pace (2009) for an introduction to spatial
econometrics). The asymptotic and small sample properties of the MLE have
been studied in Lee (2004) for cross-sectional data, and in Yu, DeJong, and
Lee (2008), for dynamic panel data models with fixed effects.
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We provide here the derivation of the log-likelihood of the baseline model
(6), necessary for the calculation of both the MLE and the conditional posterior
distributions of the Bayesian MCMC.36 Collecting fiscal adjustment plans,
industry fixed effects and other controls into matrix Xt, from Equation (6):

H−1
t ·Δyt

n×1
= Xt

n×k
· β + εt

Ht =
(
In − ρdown · A · TBt − ρup · ÂT · EBt

)−1
εt ∼ N (0,Ω), ∀t ∈ {1, ..., T}
Ω = diag(σ2

1, ..., σ
2
n)

εt ⊥ εt+i, ∀t ∈ {1, ..., T}, ∀i ∈ Z

where k is the number of regressors.37 We now make a convenient change in
the notation: 1. we now use ′ as a symbol for transposition instead of T ; 2. we
now set ρ1 = ρdown, ρ2 = ρup, A = W1 and Â′ = W2. We have:

Zt := H−1
t ·Δyt ∼ N (Xtβ,Ω) =⇒ Δyt ∼ N (HtXtβ,HtΩH

′
t)

The density function of the random vector Δyt is:

f(Δyt
n×1
|Xt, ρ, β,Ω) =

1√
(2π)n · |HtΩH ′

t|
exp

{
−1
2
·(Δyt−HtXtβ)

′·(HtΩH
′
t)
−1·(Δyt−HtXtβ)

}
,

with ρ =
[
ρdown, ρup

]
.

Given that (HtΩH
′
t)
−1 = (H ′

t)
−1 ·Ω−1 ·H−1

t and |HtΩH
′
t| = |Ht|2 · |Ω|, we have:

f(Δyt|·) = (2π)−n/2 · |Ht|−1 · |Ω|−1/2 · exp
{
− 1

2
(Zt −Xtβ)

′ ·H ′
t · (H ′

t)
−1 · Ω−1 ·H−1

t ·Ht · (Zt −Xtβ

= (2π)−n/2 · |(In − ρ1W1TBt − ρ2W2EBt)
−1|−1 · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}

= (2π)−n/2 · |In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| · |Ω|−1/2 exp
{
− 1

2
ε′tΩ

−1εt

}
,

At this point we need to find the likelihood of the random vector Δy =[
Δy′1 . . . Δy′T

]
. Since the model is static and we have assumed cov(εt, εt−k) =

36Results for the inverted model, Equation (7)) are symmetric to the baseline case.
37k in our baseline is n fixed effects plust 6 fiscal adjustment components (unexpected,

announced and future for both TB and EB plans) plus 2 year dummies for 2008 and 2009.
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ρ0
n×n

, then Δyt is iid over time. By consequence, the following holds:

f( Δy
nT×1

|X1, . . . , XT , ρ, β,Ω) =
T∏
t=1

f(Δyt
n×1
|Xt, ρ, β,Ω) =

(
(2π)n|Ω|)−T/2·

·
T∏
t=1

|In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| exp
{− 1

2
·

T∑
t=1

ε′tΩ
−1εt
}
.

Now we divide the time series of length T in three different sub-periods. In
doing so, consider the following new parameters:

• t1: set of years when a tax based fiscal adjustment occurs.
Formally t1 := {1, ..., t, ..., T1| t such that TBt = 1}. We set: Ht| t ∈
t1 = (In − ρ1 ·W1)

−1 = Hτ .

• t2: set of years when an expenditure tax based fiscal adjustment occurs.
Formally: t2 := {1, ..., t, ..., T2| t such that EBt = 1}. We set Ht| t ∈
t2 = (In − ρ2 ·W2)

−1 = Hγ.

• t3: set of years when neither a tax based fiscal adjustment nor an expen-
diture based fiscal adjustment occurs.
Formally t3 := {1, ..., t, ..., T3| t such that TBt = 0 ∧ EBt = 0}. We set
Ht| t ∈ t3 = (In)

−1 = In.

Therefore, we have that t1, t2 and t3 account for a partition of the whole time
series and T = T1 + T2 + T3. By consequence we have:

T∏
t=1

|In − ρ1W1TBt − ρ2W2EBt| =
T∏
t=1

|H−1
t |

=
T∏
t=1

1

|Ht|

=

T1∏
t∈t1

1

|Ht| ·
T2∏
t∈t2

1

|Ht| ·
T3∏
t∈t3

1

|Ht|
= |Hτ |−T1 · |Hγ|−T2 · |In|−T3

= |In − ρ1 ·W1|T1 · |In − ρ2W2|T2

At this point, we rewrite the probability density function of our dependent
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variable as:

f(Δyt|X1, . . . , XT , ρ, β,Ω) = (2π)−nT/2 · |Ω|−T/2·

· |In − ρ1 ·W1|T1 · |In − ρ2W2|T2 · exp
{
− 1

2
·

T∑
t=1

ε′t · Ω−1 · εt
}
.

Finally, the log-likelihood of our dataset is:

logL (ρ, β,Ω|Δy1, . . . ,ΔyT , X1, . . . , XT ) = −nT

2
ln(2π)− T

2
· ln(|Ω|)+

+ T1 · ln(|In − ρ1 ·W1|) + T2 · ln(|In − ρ2W2|)− 1

2
·

T∑
t=1

ε′t · Ω−1 · εt.

with:

εt = Zt−Xt ·β = H−1
t ·Δyt−Xtβ = (In−ρ1W1TBt−ρ2W2EBt) ·Δyt−Xt ·β.

Furthermore, we impose the condition λ−1min < ρ̂1 < λ−1max and μ−1min < ρ̂2 <
μ−1max, where λ and μ are the eigenvalues of the spatial matrices W1 and W2

respectively. This condition guarantees that the estimated model will have
positive definite covariance matrix (see Ord (1975)).
Notice that in the inverted model of Equation (7), it is enough to switch the
definition of W1 and W2 by setting: A = W2 and Â′ = W1.

C.2 The Analytical Fisher Information Matrix

In order to derive the Fisher Information Matrix we firstly need to obtain
the total gradient of the log-likelihood function. Let’s start with the spatial
coefficient ρ1:

∂ logL (θ|Δy,X)

∂ρ1
= T1

1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1
−1
2

T∑
t=1

∂(Z ′tΩ
−1Zt)

∂ρ1
−2∂(Z

′
tΩ
−1Xtβ)

∂ρ1
.

By some matrix algebra, it is possible to show that:

∂(Z ′tΩ
−1Zt)

∂ρ1
= −TBt ·Δy′t · Ω−1 ·W1 ·Δyt − TBt ·Δy′t ·W ′

1Ω
−1 ·Δyt

+ 2ρ1 · TB2
t ·Δy′t ·W1 · Ω−1 ·W1 ·Δy′t + 2ρ2 · TBt · EBt ·Δy′t ·W1 · Ω−1 ·W2 ·Δy′t
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Since our fiscal adjustment plans are mutually exclusive, we have that TBt ·
EBt = 0 for all t. Moreover, by rearranging the above expression, we get:

∂(Z ′tΩ
−1Zt)

∂ρ1
= −2 · TBt ·Δy′t · (In − ρ1 ·W ′

1) · Ω−1 ·W1 ·Δyt

After other matrix algebra, we get:

−2 · ∂(Zt · Ω−1Xtβ)

∂ρ1
= 2 · TBt ·Δy′t ·W ′

1 · Ω−1 ·Xt · β

Wrapping up all together, and employing the notation introduced earlier: (In−
ρ1W1)

−1 = Hτ , we have:

∂ logL (θ|Δy,X)

∂ρ1
= T1

1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1
+

+

T1∑
t∈t1

[
Δy′t · (In − ρ1 ·W ′

1) · Ω−1 ·W1 ·Δyt −Δy′t ·W ′
1 · Ω−1 ·Xt · β

]
=

= T1
1

|In − ρ1W1| · |In − ρ1W1| · Tr
(
(In − ρ1W1)

−1 · (−W1)

)
+

+

T1∑
t∈t1

[(
(In − ρ1 ·W1) ·Δyt

)′ · Ω−1 ·W1 ·Δyt − β′ ·X ′
t · Ω−1 ·W1 ·Δyt

]

= −T1 · Tr
(
Hτ ·W1

)
+

T1∑
t∈t1

[(
Zt −Xtβ

)′ · Ω−1 ·W1 ·Δyt

]

=

T1∑
t∈t1

(
ε′t · Ω−1 ·W1 ·Δyt

)− T1 · Tr
(
Hτ ·W1

)
.

By simmetry we have that:

∂ logL (θ|Δy,X)

∂ρ2
=

T2∑
t∈t2

(
ε′t · Ω−1 ·W2 ·Δyt

)− T2 · Tr
(
Hγ ·W2

)
,

with Hγ = (In − ρ2W2)
−1, from the previous notation.

As far as concern the derivative with respect to β, we have already seen when
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concentrating the log-likelihood that:

∂ logL (θ|Δy,X)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β
= X ′ · Σ−1 · (Z −X · β) =
= X ′ · Σ−1 · ε =

=
T∑
t=1

X ′
t · Ω−1 · εt.

Concerning the derivatives with respect to σ2
i , we need firstly to acknowledge

that:
T∑
t=1

ε′t · Ω−1 · εt =
T∑
t=1

n∑
i=1

ε2i,t
σ2
i

=
n∑

i=1

1

σ2
i

T∑
t=1

ε2i,t,

and that:

ln(|Ω|) = ln(
n∏

i=1

σ2
i ) =

n∑
i=1

ln(σ2
i ).

Therefore, we have that:

∂ logL (θ|Δy,X)

∂σ2
i

= −T

2

∂ ln(|Ω|)
∂σ2

i

− 1

2
· ∂

∂σ2
i

T∑
t=1

ε′t · Ω−1 · εt

= − T

2 · σ2
i

+
1

2 · σ4
i

·
T∑
t=1

ε2i,t.
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We now have all the elements to write down the gradient of the log-likelihood:

∇ logL (θ|Δy,X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ logL (θ|Δy,X)

∂ρ1

∂ logL (θ|Δy,X)

∂ρ2

∂ logL (θ|Δy,X)

∂β

∂ logL (θ|Δy,X)

∂σ2
1

...

∂ logL (θ|Δy,X)

∂σ2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

38×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑T1

t∈t1
(
ε′t · Ω−1 ·W1 ·Δyt

)− T1 · Tr
(
Hτ ·W1

)
∑T2

t∈t2
(
ε′t · Ω−1 ·W2 ·Δyt

)− T2 · Tr
(
Hγ ·W2

)
∑T

t=1 X
′
t · Ω−1 · εt

− T

2 · σ2
1

+
1

2 · σ4
1

·∑T
t=1 ε

2
1,t

...

− T

2 · σ2
n

+
1

2 · σ4
n

·∑T
t=1 ε

2
n,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Another round of derivation is now needed. Let’s start with the first row of

the matrix: all the derivatives of
∂ logL (θ|Δy,X)

∂ρ1
with respect to all the

parameters. To simplify notation we will refer with Hij to the element of row
i and column j of the Hessian matrix.

H1,1 =
∂2 logL (θ|Δy,X)

∂ρ21
=

T1∑
t∈t1

( ∂ε′t
∂ρ1

· Ω−1 ·W1 ·Δyt
)− T1 ·

∂Tr
(
Hτ ·W1

)
∂ρ1

=

T1∑
t∈t1

(
(−Δy′t ·W ′

1) · Ω−1 ·W1 ·Δyt
)− T1 · Tr

(∂Hτ

∂ρ1
·W1

)
=

= −
T1∑
t∈t1

(
Δy′t ·W ′

1 · Ω−1 ·W1 ·Δyt
)− T1 · Tr

(
(−Hτ · (−W1) ·Hτ ) ·W1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

(
Δy′t ·W ′

1 · Ω−1 ·W1 ·Δyt
)
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Symmetrically we have:

H2,2 =
∂2 logL (θ|Δy,X)

∂ρ22
=

= −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)− T2∑
t∈t2

(
Δy′t ·W ′

2 · Ω−1 ·W2 ·Δyt
)

Going back to the first row, we now calculate the cross derivative with respect
to ρ2. Before doing so, recall that, being the log-likelihood a continuously
diffirentiable function, the Schwarz’s theorem applies and the Hessian matrix
is symmetric.

H1,2 = H2,1 =
∂2 logL (θ|Δy,X)

∂ρ1∂ρ2
= 0.

Going on with the calculation we have:

H1,3:1,23 =
∂2 logL (θ|Δy,X)

∂ρ1∂β
=

T1∑
t∈t1

(∂ε′t
∂β

· Ω−1 ·W1 ·Δyt
)

= −
T1∑
t∈t1

X ′
t · Ω−1 ·W1 ·Δyt

= −X ′
τ · (IT1 ⊗ Ω−1)

Σ−1
τ

· (IT1 ⊗W1) ·Δyτ

where H1,3:1,23 means all the elements of the first row, from column 3 up to
column 23. Xτ and Δyτ represent X and Δy but for the only years when a
tax based fiscal adjustment occur:

Xτ =

⎡
⎢⎢⎢⎢⎢⎣

X1
...
Xt
...

XT1

⎤
⎥⎥⎥⎥⎥⎦

T1n×k

and Δyτ =

⎡
⎢⎢⎢⎢⎢⎣

Δy1
...

Δyt
...

ΔyT1

⎤
⎥⎥⎥⎥⎥⎦

T1n×k

with t ∈ t1,
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Symmetrically:

H2,3:2,23 =
∂2 logL (θ|Δy,X)

∂ρ2∂β
=

T2∑
t∈t2

(∂ε′t
∂β

· Ω−1 ·W2 ·Δyt
)

= −
T2∑
t∈t2

X ′
t · Ω−1 ·W2 ·Δyt

= −X ′
γ · (IT2 ⊗ Ω−1)

Σ−1
γ

· (IT2 ⊗W2) ·Δyγ,

with:

Xγ =

⎡
⎢⎢⎢⎢⎢⎣

X1
...
Xt
...

XT2

⎤
⎥⎥⎥⎥⎥⎦

T2n×k

and Δyγ =

⎡
⎢⎢⎢⎢⎢⎣

Δy1
...

Δyt
...

ΔyT2

⎤
⎥⎥⎥⎥⎥⎦

T2n×k

with t ∈ t2,

H3,3:23,23 =
∂2 logL (θ|Δy,X)

∂β2
=

∂

∂β2

( T∑
t=1

X ′
t · Ω−1 · εt

)

=
T∑
t=1

X ′
t · Ω−1 ·

∂(Zt −Xt · β)
∂β2

=
T∑
t=1

X ′
t · Ω−1 ·Xt

= −X ′ · Σ−1 ·X.

H3,24:23,38 =
∂2 logL (θ|Δy,X)

∂β∂σ2
=

T∑
t=1

X ′
t ·

∂Ω−1

∂σ2
· εt

The generic element of the above matrix is a k × 1 vector:

−σ−41 ·
T∑
t=1

X ′
1,t · εi,t.

Going on with the calculation:
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Hi,i|i∈[24,38] =
∂2 logL (θ|Δy,X)

∂(σ2
i )

2
=

T

2
· 1
σ4
i

·
(
1− 2

T · σ2
i

·
T∑
t=1

ε2i,t

)
.

H23+i,23+j|i,j∈[1,n] =
∂2 logL (θ|Δy,X)

∂σ2
i ∂σ

2
j

= 0 ∀i �= j.

H1,24:1,38 =
∂2 logL (θ|Δy,X)

∂ρ1∂σ2
i

=
∂

∂σ2
i

( T1∑
t∈t1

ε′t · Ω−1 ·W1 ·Δyt

)

=
∂

∂σ2
i

( T1∑
t∈t1

Tr
(
ε′t · Ω−1 ·W1 ·Δyt

))

=
∂

∂σ2
i

(
Tr
(( T1∑

t∈t1
Δyt · ε′t

) · Ω−1 ·W1

))

= Tr
(( T1∑

t∈t1
Δyt · ε′t

) · ∂Ω−1
∂σ2

i

·W1

)

Note that

∂Ω−1

∂σ2
i

=

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

...
0 · · · −σ−4i · · · 0
...

...
. . .

...
0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ = diag(0, · · · , 0,−σ−4i , 0, · · · , 0)

Symmetrically:

H2,24:2,38 =
∂2 logL (θ|Δy,X)

∂ρ2∂σ2
i

= Tr
(( T2∑

t∈t2
Δyt · ε′t

) · ∂Ω−1
∂σ2

i

·W2

)

At this point we have all the elements to construct the Hessian matrix of the
log-likelihood.
To sum up, first row:

• H1,1 = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)−∑T1

t∈t1
(
Δy′t ·W ′

1 · Ω−1 ·W1 ·Δyt
)

• H1,2 = 0
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• H1,3:1,23 = −
∑T1

t∈t1 X
′
t · Ω−1 ·W1 ·Δyt

• H1,24:1,38 = Tr
((∑T1

t∈t1 Δyt · ε′t
) · ∂Ω−1

∂σ2
i

·W1

)
.

Second row:

• H2,1 = 0

• H2,2 = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)−∑T2

t∈t2
(
Δy′t ·W ′

2 · Ω−1 ·W2 ·Δyt
)

• H2,3:2,23 = −
∑T2

t∈t2 X
′
t · Ω−1 ·W2 ·Δyt

• H2,24:2,38 = Tr
((∑T2

t∈t2 Δyt · ε′t
) · ∂Ω−1

∂σ2
i

·W2

)
.

From row 3 to row 23:

• H3,1:23,1 = H ′
1,3:1,23

• H3,2:23,2 = H ′
2,3:2,23

• H3,3:23,23 =
∑T

t=1 X
′
t · Ω−1 ·Xt

• H3,24:23,38 =
∑T

t=1 X
′
t ·

∂Ω−1

∂σ2
· εt

From row 24 to the last row (number 38):

• H24,1:38,1 = H ′
1,24:1,38

• H24,2:38,2 = H ′
2,24:2,38

• H24,3:38,23 = H ′
3,24:23,38
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• H23+i,23+j|i,j∈[1,n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
T

2
· 1
σ4
i

·
(
1− 2

T · σ2
i

·
T∑
t=1

ε2i,t

)
∀i = j ∈ [1, n]

0 ∀i �= j

The last step we have to make to finally obtain the Fisher Information Matrix
is taking expectations of every element.

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

E
[
Δy′t ·W ′

1 · Ω−1 ·W1 ·Δyt
]
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

E
[
Tr
(
W1 ·Δyt ·Δy′t ·W ′

1 · Ω−1
)]
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

Tr
(
W1 · E

[
Δyt ·Δy′t

] ·W ′
1 · Ω−1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

Tr
(
W1 · E

[
Hτ ·Xt · β · ε′t ·H ′

τ+

+Hτ ·Xt · β · β′ ·X ′
t ·H ′

τ +Hτ · εt · ε′t ·H ′
τ · εt · β′ ·X ′

t ·H ′
τ

] ·W ′
1 · Ω−1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)− T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · E[ε′t] ·H ′

τ+

+Hτ ·Xt · β · β′ ·X ′
t ·H ′

τ +Hτ · E[εt · ε′t] ·H ′
τ + E[εt] · β′ ·X ′

t ·H ′
τ

]
·W ′

1 · Ω−1
)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)−
−

T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · β′ ·X ′

t ·H ′
τ +Hτ · Ω ·H ′

τ

]
·W ′

1 · Ω−1
)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)−
−

T1∑
t∈t1

Tr
(
W1 ·Hτ ·Xt · β · β′ ·X ′

t ·H ′
τ ·W ′

1 · Ω−1 +W1 ·Hτ · Ω ·H ′
τ ·W ′

1 · Ω−1
)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +H ′

τ ·W ′
1 · Ω−1 ·W1 ·Hτ · Ω

)−
−

T1∑
t∈t1

Tr
(
β′ ·X ′

t ·H ′
τ ·W ′

1 · Ω−1 ·W1 ·Hτ ·Xt · β
)
=
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Setting M τ
1 = H ′

τ ·W ′
1 · Ω−1 ·W1 ·Hτ we can rewrite the above identity as:

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)− T1∑

t∈t1
β′ ·X ′

t ·M τ
1 ·Xt · β =

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)− β′ ·X ′

τ ·
(
IT1 ⊗M τ

1

) ·Xτ · β.

Simmetrically:

E[H2,2] = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ +Mγ

1 · Ω
)− β′ ·X ′

γ ·
(
IT2 ⊗Mγ

1

) ·Xγ · β.

with Mγ
1 = H ′

γ ·W ′
2 · Ω−1 ·W2 ·Hγ.

Going on with the calculation:

E[H1,3:1,23] = E
[
−

T1∑
t∈t1

X ′
t · Ω−1 ·W1 ·Δyt

]
=

= −
T1∑
t∈t1

X ′
t · Ω−1 ·W1 · E

[
Hτ ·Xt · β +Hτ · εt

]
=

= −
T1∑
t∈t1

X ′
t · Ω−1 ·W1 ·Hτ ·Xt · β

= X ′
τ · (IT1 ⊗M τ

2 ) ·Xτ · β

with M τ
2 = Ω−1 ·W1 ·Hτ .

Simmetrically:

E[H2,3:2,23] = X ′
γ · (IT2 ⊗Mγ

2 ) ·Xγ · β

with Mγ
2 = Ω−1 ·W2 ·Hγ.
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Next step:

E[H1,24:1,38] = Tr
(( T1∑

t∈t1
E
[
Δyt · ε′t

]) · ∂Ω−1
∂σ2

i

·W1

)
=

= Tr
(( T1∑

t∈t1
E
[
Δyt · ε′t

]) · ∂Ω−1
∂σ2

i

·W1

)
=

= Tr
(( T1∑

t∈t1
Hτ · E

[
εt · ε′t

]) · ∂Ω−1
∂σ2

i

·W1

)
=

= T1 · Tr
(
Hτ · Ω · ∂Ω

−1

∂σ2
i

·W1

)
=

= T1 · Tr
(
Ω · ∂Ω

−1

∂σ2
i

·W1 ·Hτ

)
,

Notice that

Ω · ∂Ω
−1

∂σ−2i

= −σ2
i · Iii

where the generic element of matrix Iii is given by

ωs,t =

{
1 s = i, j = i

0 otherwise

Therefore

E[H1,23+i] = T1 · σ−2i · Tr
(
Iii ·W1 ·Hτ

)
=

= T1 · σ−2i ·
(
W1 ·Hτ

)
ii

Finally we have that:

E[H1,24:1:38] = T1 · diag
(
Ω−1 ·W1 ·Hτ

)
= T1 · diag(M τ

2 ).

Simmetrically:

E[H2,24:2:38] = T2 · diag
(
Ω−1 ·W2 ·Hγ

)
= T2 · diag(Mγ

2 ).
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Going on:

E[H3,3:23,23] = E[
T∑
t=1

X ′
t · Ω−1 ·Xt] =

T∑
t=1

X ′
t · Ω−1 ·Xt = X ′ · Σ−1 ·X

E[H3,24:23,38] = E[
T∑
t=1

X ′
t ·

∂Ω−1

∂σ2
· εt]

=
T∑
t=1

X ′
t ·

∂Ω−1

∂σ2
· E[εt]

= 0
k×n

E[H23+i,23+j|i,j∈[1,n]] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
T

2
· 1
σ4
i

·
(
1− 2

T · σ2
i

·
T∑
t=1

E[ε2i,t]

)
∀i = j ∈ [1, n]

0 ∀i �= j

=

⎧⎨
⎩−

T

2
· 1
σ4
i

∀i = j ∈ [1, n]
0 ∀i �= j

= −T

2
·

⎡
⎢⎢⎢⎣
σ−41 0 · · · 0
0 σ−42 · · · 0
...

...
. . .

...
o 0 · · · σ−4n

⎤
⎥⎥⎥⎦ = −T

2
· V

We finally have all the elements of the Fisher Information Matrix for our panel
(with dummy variables) spatial model:

I =
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣−T
1
·T
r( W

1
·H

τ
·W

1
·H

τ
+
M

τ 1
·Ω
) −

−
β
′ ·
X
′ τ
·( I T

1
⊗

M
τ 1

) ·X
τ
·β

0
( X′ τ

·(
I T

1
⊗

M
τ 2
)
·X

τ
·β
) ′

T
1
·d

ia
g
(M

τ 2
)′

0
−T

2
·T
r( W

2
·H

γ
·W

2
·H

γ
+
M

γ 1
·Ω
) −

−
β
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C.3 Bayesian MCMC - Technical Details

Even if the MLE is a common standard method in spatial econometric ap-
plications, we have two valid reasons for not adopting it: 1. non-stationary
estimates of aggregate total effects; 2. prior information on the values of the
parameters. Let’s explore both the issues.

1. Non-Stationary Solutions

We can estimate the parameters by maximizing the concentrated log-likelihood
over the compact set which guarantees a positive definite matrix (see Ord
(1975)): Cdown =

(
λ−1min, λ

−1
max

)
and Cup =

(
μ−1min, μ

−1
max

)
. The standard errors

are constructed using the analytical Fisher Information of the model, centered
on the point estimates, ρ̂down and ρ̂up. The asymptotic results of Yu, De-
Jong, and Lee (2008) guarantees the asymptotic normality of the parameters
of equation (6) and (7) (See Theorem 3 case n/T → 0). For instance, for the
estimator of ρdown we have:

√
T · n (ρ̂down

nT − ρdown
) d−→ N

(
0, σ2

)
where σ2 is the asymptotic variance of the MLE, obtained by the calculating
the analytical Fisher Information matrix of our model. However, we are inter-
ested in estimating the aggregate total effect of fiscal consolidations, not the
parameters of the model themselves. At page 70, LeSage and Pace (2009) sug-
gest to construct the asymptotic distribution of the average total effect (our
aggregate total effect) by following these steps: 1. estimate the parameters of
the model via MLE; 2. Draw values of the parameters by their approximate

asymptotic distribution (ρ̃down ≈ N
(
ρ̂down
nT ,

σ̂2(ρ̂down
nT )

nT

)
; 3. Calculate at each

step the aggregate total effect. After doing so we calculated the standard errors
of the ATETB by calculating the standard deviation of the asymptotic distri-
bution so constructed. We obtained explosive solutions. This is a surprising
result, in fact, the asymptotic normality of the average effect is guaranteed by
the Δ-method:

√
T · n (ATETB(ρ̂

down
nT )− ATETB(ρ

down)
) d−→ N

(
0, σ2 ·

(
∂ATETB(ρ

down)

∂ρdown

)2
)

where ATETB : Cdown → R and ATETB(x) = v′ · (In − x · A)−1 · ωTB and
v is a vector of industry output shares of total industrial production (the
weights we use to calculate the aggregate effect of fiscal consolidations). What
goes wrong in this procedure? The Δ-method is an asymptotic result, which
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might provide a terrible approximation of a finite sample distribution. It all
boils down in finding a distribution which approximates well the small sample
one. If ρ̂down

nT is very closed to the boundary and its asymptotically normal
standard errors are large, that is, they approach the boundary of Cdown then
we end up drawing values of ρdown which deliver unrealistically large values of
ATETB, because matrix (In − ρdown ·A)−1 becomes singular (the boundary is
one eigenvalue of A). This situation is described in Figure 13.

Figure 13: Explosive Solutions of ATETB

2. Prior Information

We have two extra “prior” pieces of information on the value of the spatial
parameters, ρdown and ρup:

i. Values of ρdown and ρup close to the boundaries will deliver unrealistically
high values of ATE, ADE and ANE, since the determinant of matrices
(In − ρdown · A) and (In − ρup · ÂT ) will approach zero by definition of
eigenvalue. In turn, the elements of their inverse matrices will explode,
as illustrated above. Therefore, we should assign less weight to values of
ρdown and ρup close to the boundaries.

ii. We know that industries that are close to each other in the production
network will co-move. For instance, if industry X faces increasing prices
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for its input, it will shrink production and increase prices; in turn, cus-
tomers of X will also face the same problem and will react similarly, by
reducing production and increasing prices. Therefore, the direction of
the spatial correlation among industries’ output is positive: ρdown > 0
and ρup > 0.

Model Estimation

We can integrate such prior information into our estimation and avoid non-
stationarity aggregate effects, by adopting a Bayesian MCMC similar to the
one introduced by LeSage and Parent (2007). We illustrate here how we im-
plement the Bayesian MCMC to estimate the parameters of Equation (6)
(baseline). The log-likelihood of that model is the one outlined above. The
priors we employ on the parameters are:

π(β) ∝ constant

Ω = σ2 · V with V = diag(v1, ..., vn)

π(σ2) ∝ 1

σ2

π(vi)
iid∼ Γ−1

(r
2
,
r

2

)
, i = 1, ..., n

ρdown ∼ Gen.Beta(d, d)

ρup ∼ Gen.Beta(d, d).

We adopt non-informative priors for σ2 and β to reflect our lack of information
around the values of these parameters. Concerning r, a lower value generates
more diffusion in the distributions of vi, thus regulating our confidence towards
heteroskedasticity. Unlike LeSage and Pace (2009), who suggest a value of 4,
we set r equal to 3 to reflect a strong belief towards heteroskedasticity. For
instance, industries in the Agriculture (NAICS 11) as well as Mining (NAICS
21) macro sectors, exhibit much higher volatilities than the rest of the indus-
tries.
We impose a “generalized (or non-standardized) Beta(d, d) prior”, with sup-
port from 0 to λ−1max for ρ

down and from 0 to λ̂−1max for ρ
up. We follow LeSage

and Pace (2009) and set d equal to 1.1; which has the benefit of letting the
generalized Beta prior to resemble a Uniform distribution (diffuse prior), but
with low density at the boundaries, as illustrated in Figure 14. The choice of
such a prior allows us to be agnostic about the specific value of the spatial
parameters but at the same time it allows to embed the prior information we
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Figure 14: Generalized Beta prior
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Figure 14: line-plot of a non-standardized Beta(1.1, 1.1) density function, with support from
(0, λ−1

max(A) = 2.047) which we employ as a prior for the spatial parameter ρdown.

have into their estimates.
Furthermore, we assume that all the prior distributions are independent from
each other. We use the standard “Metropolis within Gibbs” algorithm, and
we obtain an approximation of the posterior densities for each parameter of
the model.
We now outline the precise steps of the procedure:

1. Initialization: Set up initial values for the parameters: β(0), σ
2
(0), V(0), ρ

down
(0) , ρup(0),

where V(0) = diag
(
v21,(0), ..., v

2
n,(0)

)
.

2. Gibbs Sampling:

a) Draw β(1) from the conditional posterior distribution, which is ob-
tained by mixing the likelihood with a normal prior with mean c
(a vector of zeros in our simulation) and covariance matrix L. In
order to not add any information, we simply set L to be equal to a
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diagonal matrix whose entries are infinite (1e12 in our simulation):

P (β(0)|D , σ2
(0), V(0), ρ

down
(0) , ρup(0)) = N (c∗, L∗) ∝ L (θ|D) ·N (c, L)

c∗ =
1

T
· (

T∑
t=1

X ′
t · V −1(0) ·Xt +

σ2
(0)

T
· L−1)−1 · ( 1

T
·

T∑
t=1

X ′
t · V −1(0) ·Ht ·Δyt +

σ2
(0)

T
· L−1 · c)

L∗ =
σ2
(0)

T
· (

T∑
t=1

X ′
t · V −1(0) ·Xt +

σ2
(0)

T
· L−1)−1

b) Draw σ2
(1) from the conditional posterior distribution, which is pro-

portional to likelihood times an inverse gamma distribution as a
prior:

P (σ2
(1)|D , β(1), V(0), ρ

down
(0) , ρup(0)) = Γ−1(

θ1
2
,
θ2
2
) ∝ L (θ|D) · Γ−1(a, b)

θ1 = nT + 2a θ2 =
T∑
t=1

ε′t · V −1(0) · εt + 2b

In practice we draw σ2
(1) from θ2/χθ1 .

Notice that, setting a and b (the prior’s parameters) equal to 0, is
like putting a Jefferey’s prior on σ2. This is exactly what we do.

c) Draw vi,(1) from the following conditional posterior distribution,
proportional to an inverse gamma prior:

P (vi,(1)|D , σ2
(1), ρ

down
(0) , ρup(0)) = Γ−1(

q1
2
,
q2
2
) ∝ L (θ|D) · Γ−1(r

2
,
r

2
)

q1 = r + T q2 =
1

σ2
(1)

·
T∑
t=1

ε2i,t + r

In practice we draw vi,(1) from q2/χq1 .
As anticipated above in the paper, since we are confident on the
heteroskedastic behavior of industry value added, we set our prior
hyperparameter r to be equal to 3 rather than 4, as done in LeSage
and Pace (2009).
Replicating this procedure n times, we get a first simulation of
matrix V(1).

3. Metropolis-Hastings: We now need to draw the spatial coefficients.
However we cannot apply a simple Gibbs Sampling, since the conditional
posterior distribution is not defined for them. LeSage and Pace (2009)
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suggest the adoption of the Metropolis-Hastings algorithm to overcome
this problem. To ease notation we set ρ1 := ρdown and ρ2 := ρup. The
algorithm is the following:

(a) Draw ρc1 (where the c superscript stands for “candidate”) from the
(random walk) proposal distribution:

ρc1 = ρ1,(0) + c1 ·N (0, 1)

(b) Run a bernoulli experiment to determine the updated value of ρ1:

ρ1,(1) =

{
ρc1 π (accept)

ρ1,(0) 1− π (reject)

Where π is equal to π = min{1, ψMH1} and, setting: Aτ (ρ1) =
In − ρ1 ·W1, we have:

ψMH1 =
|Aτ (ρ

c
1)|

|Aτ (ρ1,(0))| · exp
{
− 1

2σ2
(1)

·
T1∑
t∈t1

[
Δy′t ·

(
Aτ (ρ

c
1)
′ · V −1(1) · Aτ (ρ

c
1)−

− Aτ (ρ1,(0))
′ · V −1(1) · Aτ (ρ1,(0))

) ·Δyt−
− 2β′ ·X ′

t · V −1(1)

(
Aτ (ρ

c
1)− Aτ (ρ1,(0))

) ·Δyt

]}
·

·
[

(ρc1 − 0) · (λ−1max − ρc1)

(ρ1,(0) − 0) · (λ−1max − ρ1,(0))

]d−1
· 1(0 ≤ ρc1 ≤ λ−1max

)
Basically, we compute the probability to accept the candidate value
from the proposal distribution, and then we update the value of
ρ1 by running the bernoulli experiment with such a probability of
success. Notice that if we draw a value of ρ1 outside the support of
the beta prior, ψMH1 = 0 and then π = 0 and we clearly reject the
candidate value.
We set d equal to 1.1, on both ρ1 and ρ2; this is done to resemble
a Uniform (0,1) but with less density on its boundary values.

(c) Once updated ρ1, we replicate the procedure for ρ2. SettingAγ(ρ2) =
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In − ρ2 ·W2 we have:

ψMH2 =
|Aγ(ρ

c
2)|

|Aγ(ρ2,(0))| · exp
{
− 1

2σ2
(1)

·
T2∑
t∈t2

[
Δy′t ·

(
Aγ(ρ

c
2)
′ · V −1(1) · Aγ(ρ

c
2)−

− Aγ(ρ2,(0))
′ · V −1(1) · Aγ(ρ2,(0))

) ·Δyt−
− 2β′ ·X ′

t · V −1(1)

(
Aγ(ρ

c
2)− Aγ(ρ2,(0))

) ·Δyt

]}
·

·
[

(ρc2 − 0) · (λ̂−1max − ρc2)

(ρ2,(0) − 0) · (λ̂−1max − ρ2,(0))

]d−1
· 1(0 ≤ ρc2 ≤ λ̂−1max

)
(d) At this point we need to update the variance of the proposal distri-

butions: if the acceptance rate (number of acceptances over number
of iterations of the Markov Chain) of the first parameter ρ1 falls
below 40% we need to reduce the value of c1, the so called tuning
parameter, which regulates the variance of the proposal distribu-

tion. The variance is reduced by rescaling it: c′1 =
c1
1.1

. In this way,

we are able to draw values closer to the current state of ρ1, and
therefore, we expect to increase the acceptance rate.
On the contrary, if the acceptance rate rises above 60%, we need to
increase the tuning parameter, in order to draw values far from the
current state, in this way we increase the chance to explore more
the low-density parts of the distribution. We increase the variance
of the candidate distribution by scaling upward its standar devia-
tion: c′1 = 1.1 · c1.
Clearly we replicate this procedure also for ρ2.

4. Repeat: Once updated all the values, we replicate steps 2 and 3, 45,000
times to make sure the acceptance rate has converged.

5. Burn-in: we drop the first 35,000 iterations of the Markov Chain, thus
obtaining a vector of 10,000 observations for each of the parameters,
which account for the simulated posterior distributions.

C.4 Simulating the ATE, ADE and ANE

We construct via Monte Carlo the distribution of the ATE, ADE and ANE.
In particular we follow these steps:

1. (Parameters) Draw ρdown, ρup, τ and γ from their posterior distribu-
tions. To take into account the potential correlation among them, draw
from the same iteration of the Bayesian MCMC.
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2. (Style of the plan) Construct both a TB and an EB simulated fiscal
plan, by drawing the style from a distribution which mimics the empirical
one.

3. (Average effects) Construct ATE, ADE and ANE using the parame-
ters drawn in step 1 and the style drawn in step 2.

4. Repeat 100,000 times steps from 1 though 3, to make sure all the possible
combination of styles and parameters are simulated.

Step 2 allows us to claim that the baseline results reported in the paper are
robust to different styles of fiscal plans.

Empirical distribution of style of fiscal plans

We are interested in simulating a 2 years fiscal consolidation made of an unex-
pected part, no announced part and a single year future part to be implemented
in the second year of the simulation.
First of all, we want to simulate the unexpected part of the fiscal plan,
therefore, we need to look at those years when an unanticipated shock oc-
curs. Define the two sub-samples: TBu := {t : 1, ..., T | taxu

t > 0} and
EBu := {t : 1, ..., T | exput > 0}. Then calculate the mean and the standard
deviation of the unexpected component conditional on the occurrence of an
unexpected shock:

μτ := E(taxu
t | t ∈ TBu) στ :=

√
V(taxu

t | t ∈ TBu)

μγ := E(exput | t ∈ EBu) σγ :=
√

V(exput | t ∈ EBu)

In order to simulate a plausible unexpected component of the plan, we draw
them from the following distributions:

˜tax
u ∼ U (μτ − στ , μτ + στ )

˜expu ∼ U (μγ − σγ, μγ + σγ)

where the˜denotes a simulated component.
Concerning the future component, we need to predict what is the value of a
one year ahead policy change, conditional on the occurrence of an unexpected
policy change. Therefore, we run the following regressions:

taxf
t,1 = aτ + bτ · taxu

t with: t ∈ TBu

expft,1 = aγ + bγ · exput with: t ∈ EBu
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The estimates of aτ , bτ , aγ, bγ will be stored and used to predict values of

taxf
t,1 and expft,1, conditional on the occurrence of an unexpected component.

At this point we have all the ingredients to outline the steps we do in the
construction of a simulated style of the plan:

1. Draw unexpected components from their candidate distributions: ˜tax
u ∼

U (μτ − στ , μτ + στ ) and ˜expu ∼ U (μγ − σγ, μγ + σγ).

2. Predict the future component using the estimates of aτ , bτ , aγ, bγ. We

have: ˜tax
f
= âτ + b̂τ · ˜tax

u
and ˜expf = âγ + b̂γ · ˜expu.

3. Normalize the value to one: ˜tax
u
+ ˜tax

f
= 1 and ˜expu + ˜expf = 1.

For each iteration of the MC simulation used to approximate the posterior
distributions of the ATE, ADE and ANE, we repeat steps 1 through 3 to
simulate the style of the plan.
In the first year of the simulation we calculate the effects of TB and EB plans

with style given by: sTB = [ ˜tax
u
0 ˜tax

f
] and sEB = [ ˜expu 0 ˜expf ] respectively.

In the second year of the simulation, the future component of the shock is
rolled over and becomes an announced and implemented shock. Therefore we

calculate the effects of TB and EB plans with style given by: sTB = [0 ˜tax
f
0]

and sEB = [0 ˜expf 0] respectively.

D Estimates of Inverted Model

In this section we report the tables of estimates of the inverted model. Firstly,
Table VII shows the estimates of Equation (7).

D.1 Model Selection - Vuong Test for Static Spatial
Panel Data

We also provide results for a Vuong test of non-nested models, adapted to our
spatial specification, as in Wooldridge (2010).

Firstly, the Vuong test (see Vuong (1989)) is meant to discriminate be-
tween two misspecified and non-nested models. Basically, we assume there
is a hidden true model and we want to choose one of two competing non-
nested models which fit the data equally well. The Vuong test calculates and
compares the Kullback-Leibler distance between the two and the true model.
In practice, is a t-test on the KL divergence. One problem we encounter is
that it was developed for one-dimensional iid data, however, we deal with
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Table VII: Estimation Results

Inverted Model - Equation (7)

Parameters
MLE Bayesian MCMC - Posterior Distributions:

θ̂ML
i MLE Std. E(θi)

√
V(θi) Pr(θi < 0) 5% 10% 16% 50% 84% 90% 95%

ρup (TB) 0.554 0.103 0.528 0.097 0.000 0.368 0.405 0.432 0.528 0.625 0.653 0.687
τu 0.684 1.283 0.815 1.193 0.247 -1.143 -0.712 -0.372 0.814 2.002 2.351 2.778
τa -1.298 0.986 -1.290 0.919 0.920 -2.794 -2.463 -2.202 -1.293 -0.382 -0.112 0.225
τf -0.080 0.426 -0.084 0.391 0.585 -0.726 -0.585 -0.474 -0.082 0.301 0.415 0.562

ρdown (EB) 0.096 0.114 0.125 0.083 0.000 0.014 0.026 0.040 0.112 0.211 0.241 0.281
γu 0.073 1.126 0.050 1.034 0.480 -1.650 -1.272 -0.973 0.051 1.073 1.370 1.760
γa 1.286 0.617 1.296 0.567 0.011 0.361 0.572 0.732 1.295 1.861 2.023 2.226
γf -0.502 0.282 -0.499 0.259 0.973 -0.923 -0.831 -0.757 -0.499 -0.241 -0.169 -0.075

D2008 -2.984 0.674 -2.934 0.633 1.000 -3.973 -3.744 -3.562 -2.936 -2.307 -2.120 -1.891
D2009 -5.710 0.674 -5.371 0.661 1.000 -6.469 -6.216 -6.025 -5.368 -4.717 -4.529 -4.290

Table VII: θi denotes a generic parameter that we estimate. The columns report the following: θ̂ML
i is the ML point estimate; “MLE

Std.” is the standard deviation of the ML estimate, calculated using the analytical Fisher Information Matrix derived in Appendix C.2:√
I (θ̂ML)−1ii ; E(θi) is the expected value of the posterior distribution;

√
V(θi) is the standard deviation of the posterior distribution;

Pr(θ < 0) is the probability that a parameter is negative, calculated by integrating the posterior distribution; p% is the p-th percentile
of the posterior distribution. For brevity we don’t report here the Industry Fixed Effects and the Industry specific variances. In the
first columns, the spatial parameters also report the type of fiscal plan they are interacted with (in blue).

a panel whose observations are serially uncorrelated but spatially correlated.
Wooldridge (2010) shows that the Vuong test can easily be extended to panel
data models by accounting for serial correlation in the time series.38 However,
in our problem the n×1 vector of industry observations is iid over time and our
asymptotic keeps the cross-sectional dimension, which is spatially correlated,
fixed, and then let the time series to go to infinite T → ∞. Economically
speaking this makes sense: we observe those fixed 62 industries over time,
however, the cross sectional dimension exceeds the times series one, 37 years.
This means that our finite sample distribution will not be a very good approx-
imation of the asymptotic one. However, this is the best we can do, given the
data availability.
Let’s derive now the Vuong Test. The quasi-log-likelihood of the baseline
model, Equation (6), is:

�t,B(ρ, β,Ω︸ ︷︷ ︸
θB

) = log fB(Δyt|Xt; θB) = −n

2
ln(2π)− 1

2
· ln(|Ω|)+

+ ln(|In − ρdown · A · TBt − ρup · Â′ · EBt|)− 1

2
· ε′t · Ω−1 · εt.

with:
εt =

(
In − ρdown A TBt − ρup Â′ EBt

)
·Δyt −Xt · β.

38See Section 13.11.2 - Model Selection Tests.
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The sum of the quasi-log-likelihood evaluated at the MLE, θ̂B, for the baseline
model is: LB =

∑T
t=1 �t,B(θ̂B). Analogously, for the inverted model, Equation

(7), the quasi-log-likelihood is:

�t,I(ρ̃, β̃, Ω̃︸ ︷︷ ︸
θI

) = log fI(Δyt|Xt; θI) = −n

2
ln(2π)− 1

2
· ln(|Ω̃|)+

+ ln(|In − ρ̃down · A · EBt − ρ̃up · Â′ · TBt|)− 1

2
· ε′t · Ω̃−1 · εt.

with:
εt =

(
In − ρ̃down A EBt − ρ̃up Â′ TBt

)
·Δyt −Xt · β̃.

The sum of the quasi-log-likelihood evaluated at the MLE, θ̂I , for the inverted
model is: LI =

∑T
t=1 �t,I(θ̂I).

Following Wooldridge (2010), let’s define the estimator for the variance of the
KL divergence as:

η̂2 =
1

T
·

T∑
t=1

(
�t,B(θ̂B)− �t,I(θ̂I)

)2
.

Then, the Vuong Model Selection Statistic, VMS, is:

VMS = T−1/2 · (LB −LI)

η̂

=

1

T
·∑T

t=1

(
�t,B(θ̂B)− �t,I(θ̂I)

)
√√√√ 1

T
·∑T

t=1

(
�t,B(θ̂B)− �t,I(θ̂I)

)2
T

d−→ N(0, 1)

where the standard normal distribution holds under:

H0 : E[�t,B(θ
∗
B)] = E[�t,I(θ

∗
I )]

where θ∗B and θ∗I are the pseudo-true values of the parameters. Basically, the
null hypothesis is saying that the two potentially misspecified models fit the
data equally well. Notice that the test is super easy to implement: 1) define
the difference: d̂t = �t,B(θ̂B)− �t,I(θ̂I); 2. Regress d̂t on unity; 3. Run a t-test
to verify that the average of the difference is statistically different from zero.
We reject the null hypothesis in favor of a better fit to the data of the baseline
model if d̂t is statistically greater than zero. Notice that if this happens it
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does not mean that the baseline model is correctly specified (although it could
be), however, we can conclude that the baseline model fits better in terms of
expected likelihood.
The value we obtain is VMS = 0.033 which is clearly not statistically different
from zero. Even if positive sign of the statistics points at a better fit of the
baseline model against the inverted one, there is not enough statistical evidence
to claim that the baseline outperforms on average the inverted model.

D.2 Output Effect of Fiscal Plans in the Inverted Model

We report here the estimated posterior distributions of the ATE, ADE and
ANE for fiscal adjustment plans obtained from the estimates of Equation (7)
(inverted model).

Table VIII: Average Total, Direct and Network Effects of Fiscal Consolidations in the United States

Inverted Model - Equation (7)

E(θ) %
√
V(θ) Pr(θ < 0) 5% 10% 16% 50% 84% 90% 95%

ATETB -1.148 1 1.034 0.872 -2.909 -2.481 -2.162 -1.107 -0.131 0.140 0.480
ADETB -0.848 0.74 0.756 0.872 -2.106 -1.819 -1.593 -0.835 -0.101 0.107 0.375
ANETB -0.300 0.26 0.290 0.872 -0.828 -0.682 -0.572 -0.263 -0.029 0.030 0.102

ATEEB 0.522 1 0.337 0.064 -0.048 0.096 0.203 0.536 0.847 0.936 1.046
ADEEB 0.491 0.94 0.318 0.064 -0.044 0.089 0.188 0.501 0.799 0.886 0.990
ANEEB 0.031 0.06 0.032 0.064 -0.002 0.002 0.005 0.024 0.059 0.073 0.091

Table VIII: descriptive statistics of posterior distributions of Average Effects of a 2 years, 1% magnitude fiscal
adjustment plan. 2 years means that results are calculated by cumulating the effect of the first year of the plan
and then the second one. The style of the plan is simulated from a distribution which mimics the observed one;
see Appendix C.3 for technical details. Columns: E(θ) is the expected value of the posterior distribution; % is
the share of ATE represented by ADE and ANE.

√
V(θ) is the standard deviations of the posterior distribution;

Pr(θ < 0) is the probability of negative values, calculated by integrating the posterior distribution; “p%” is the
p-th percentile of the posterior distribution.

The most important thing to notice is that the ANE of EB plans accounts
for only 6% of their ATE, against the 12% of the baseline model. The relevance
of ANE of TB plans is basically unaffected, diminishing only by 1% relative
to the baseline (from 27% of the ATE to 26%). The statistical significance of
the ANE of TB plans declines, since the posterior distribution shrinks towards
zero.

E A Potential Theoretical Framework

We show here the theoretical framework which we have in mind when we refer
to the theoretical transmission of demand and supply shocks. The model is a
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slight modification of Acemoglu, Akcigit, and Kerr (2016), which we adapted
to allow for the propagation of a production tax.

The model considers a perfectly competitive economy with n sectors, where
the market clearing condition for the generic industry i is:

yi = ci +
n∑

j=1

xji +Gi (8)

where ci is household’s consumption of good produced by industry i; xij
39

is the quantity of goods produced in industry j used as inputs by industry i;
Gi are government purchases.

n∑
i=1

piGi = T + τ
n∑

i=1

piyi (9)

Each sector solves the following profit maximization problem:

max
li,{xij}nj=1

(1− τ) · pi ·

⎛
⎜⎜⎜⎜⎝l

αl
i

i ·
( n∏
j=1

x
αij

ij

)ρ
︸ ︷︷ ︸

yi

⎞
⎟⎟⎟⎟⎠− wli −

n∑
j=1

pjxij

where τ is a sales/production tax which mimics an excise tax.40 Notice that
the production function is similar to the one in Acemoglu, Carvalho, et al.
(2012) and Carvalho (2014). All alpha’s are non negative, and we assume
constant return to scale: αl

i+ ρ ·∑n
j=1 aij = 1. Notice here, that thanks to the

Cobb-Douglas specification, ρ can be interpreted as the share of intermediates
in production.

The economy is populated by a representative agent, who maximizes utility
subject to a budget constraint:

max
l,{ci}ni=1

(1− l)λ ·
n∏

i=1

cβi

i s.t.
n∑

i=1

pici ≤ wl

39In Equation (8) we actually have xji, that is, the amount of good i used as input by
industry j; we then sum over the j-s to obtain the total demand of good i from all the
industries.

40For example, an excise is a special type of sales tax, which is sector-specific. Excise tax
might be of two types: ad valorem (percentage of values of a good) and specific (tax paid
per unit). The excise tax may be paid by the producer, retailer, and consumer. Moreover,
it might be taken on federal, state, and local levels.
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with
∑n

i=1 βi = 1.
Firms and households take all prices as given, and the market-clearing con-
ditions are satisfied in the goods market and the labor market. Government
actions are taken as given and the wage is chosen as a numeraire (w = 1) .

We do not explicitly model a government budget constraints, since during
years of fiscal consolidations, spending cuts are not compensated by tax re-
ductions and viceversa. For simplicity we also do not model government debt
and deficit.

Households. The household problems returns the following equilibrium con-
ditions:

pi · ci
βi

=
pj · cj
βj

∀i, j

l =
1

1 + λ

ci =
βi

pi
· 1

1 + λ
∀i

n∑
i=1

pi · ci = 1

1 + λ

Therefore, in equilibrium we have:

d log ci = −d log pi ∀i
that is, percent changes in consumption of good i only depend on percent
changes in the price of the same good (with Cobb-Douglas utility income and
substitution effects cancel out).

Firms Firms maximize profits and in equilibrium the following FOCs hold
true:

(1− τ) · pi · ρ · aij · yi
xij

= pj

(1− τ) · pi · ρ · ali ·
yi
li
= 1

yi = l
αl
i

i ·
( n∏
j=1

x
αij

ij

)ρ
Acemoglu, Akcigit, and Kerr (2016) notes that solving the dual problem (cost
minimization) and obtaining the unit cost function is beneficial to the analysis.
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The unit cost function is equal to:

C(p1, ..., pn) =

(
1

ali

)ali

·
(

n∏
j=1

(
1

ρ · aij

)aij
)ρ

︸ ︷︷ ︸
:=Bi

(
n∏

j=1

p
aij
j

)ρ

.

Because of perfect competition, price equals marginal cost. Therefore:

(1− τ) · pi = C(p1, ..., pn)

By log differentiating the above expression, we have:

d log pi = ρ ·
n∑

j=1

aij · d log pj + τ

1− τ
d log τ

The above expression implies that prices are affected only by changes in the
production tax τ . Moreover, from profit maximiation we also have:

ρ · aij = 1

1− τ
· pj · xij

pi · yi ∝
SALESj→i

SALESi
.

In other word, if sector i is affected by a tax shock, the effect is propagated
downstream to the customers, via xij. This should be clear if we substitute
the firm’s FOC condition into the previous expression:

d log pi =
1

1− τ
·

n∑
j=1

pj · xij

pi · yi · d log pj +
τ

1− τ
d log τ.

E.1 Network effect of a tax shock

We want to know what is the output effect of a change in the production tax.
In order to do so, we need to look at the resource constraint (assuming for

79



simplicity that Gi = 0 for all sectors):

yi = ci +
n∑

j=1

xji

yi
ci
= 1 +

n∑
j=1

xji

ci
plug in: xji = (1− τ) · pj · ρ · aji · yj

pi
(Firm FOC)

yi
ci
= 1 + (1− τ) · ρ

n∑
j=1

aji · pj · yj
pi · ci plug in: ci =

βi

βj

· pj · cj
pi

(HH FOC)

yi
ci
= 1 + (1− τ) · ρ

n∑
j=1

aji · βi

βj

· yj
cj

Denote by: θi := yi/ci

θi = 1 + (1− τ) · ρ
n∑

j=1

aji · βi

βj︸ ︷︷ ︸
mij

·θj

Denote by M := [mij]i,j=1,...,n. Then, in matrix notation the above expression
becomes:

θ = 1n + (1− τ) · ρ ·M · θ =⇒ θ = (In − (1− τ) · ρ ·M)−1 · 1n

Notice that the equilibrium level of the output-to-consumption ratio, θi, has a
nice analytical form which, however, depends on τ . Therefore, when τ changes,
also this ratio changes and we don’t have d log yi = d log ci as in Acemoglu,
Akcigit, and Kerr (2016).

Differentiating the above expression yields:

dθ =
∂ (In − (1− τ) · ρ ·M)−1

∂τ
· 1ndτ

= −ρ · (In − (1− τ) · ρ ·M)−1 ·M · (In − (1− τ) · ρ ·M)−1 · 1ndτ

Using the d log notation:

d log θ = − τ · ρ ·Θ−1 · (In − (1− τ) · ρ ·M)−1 ·M · (In − (1− τ) · ρ ·M)−1︸ ︷︷ ︸
:=F

·1nd log τ

where Θ = diag(θ1, ..., θn). Recalling the definition of θi, we have:

d log y = d log c− F · 1n · d log τ =⇒ d log yi = d log ci − φi · d log τ
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where φi is the i-th element of vector F · 1n. Notice that if τ were fixed (i.e.
d log τ = 0), percent changes in consumption would be equal to the one of
output, as in Acemoglu, Akcigit, and Kerr (2016).

At this point we can find the relationship between output changes and tax
shocks. Consider the following three equations we derived earlier:⎧⎪⎪⎨

⎪⎪⎩
d log yi = d log ci − φi · d log τ
d log ci = −d log pi
d log pi = ρ ·∑n

j=1 aij · d log pj +
τ

1− τ
d log τ

Combining the three equations above yields the following expression:

d log yi = ρ ·
n∑

j=1

aij · d log yj −
(
φi +

τ

1− τ
− ρ ·

n∑
j=1

φj · aij
)

︸ ︷︷ ︸
=ψi>0

·d log τ

= ρ ·
n∑

j=1

aij · d log yj − ψi · d log τ

which is Equation (4) in the paper.

E.2 Network effect of a spending shock

Suppose now that τ = 0 and that the government reduces its purchases from
all sectors (i.e. d logGi < 0). We want to find the relationship between the
percent change in output, d log yi and percent changes in government purchases
d logGi.

Consider the resource constraint of the economy:

yi = ci +Gi +
n∑

j=1

xji Log-differentiate

d log yi =
ci
yi

d log ci︸ ︷︷ ︸
=0 (d log pi=0)

+
Gi

yi
d logGi +

n∑
j=1

xji

yi
· d log xji (Firm FOC) xji = pjρaji

yj
pi

d log yi =
Gi

yi
d logGi + ρ ·

n∑
j=1

aji · pj yj
pi yi︸ ︷︷ ︸

:=âji

d log xji

d log yi =
Gi

yi
d logGi + ρ ·

n∑
j=1

âji · d log xji
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From the firm’s FOC, we have:

d log yi = d log pj︸ ︷︷ ︸
0

+d log xji − d log pi︸ ︷︷ ︸
=0

therefore we can retrieve Equation (2):

d log yi = ρ ·
n∑

j=1

âji · d log yj + Gi

yi
d logGi.
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