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1 Introduction

This paper documents novel evidence of time-series anomaly return predictability, which con-

tradicts the standard no-arbitrage condition and challenges prevailing factor pricing models.

Our proposed predictor has a unique feature: it relies solely on information about anomaly

and factor price dynamics, without using data outside of the model such as sentiment, ac-

counting signals, or macro-based state variables. We show that economic theory puts sign

restrictions on the loading from regressing anomaly returns on our endogenous predictor.

Violations of these restrictions represent direct evidence for the conditional misspecification

of the candidate factor model. Thus, our work bridges two prominent research areas in

finance—the literature on time-series return predictability and the one on cross-sectional

factor models (see Karolyi and Van Nieuwerburgh, 2020, for a review)—by offering a coher-

ent predictive framework to study whether a candidate set of factors captures the stochastic

discount factor. Our portfolio predictability evidence points to systematic mispricing that

vanishes over time, while the sign associated with our predictor is consistent with models

featuring overreaction and slow adjustment of prices to news.

Our analysis starts from the expected return-beta representation which posits a linear

relationship between expected returns of any asset and the expected return on the mean-

variance efficient portfolio. When the model is correctly specified, no variable should forecast

risk-adjusted returns. Nonetheless, the identification of an appropriate predictor is subject to

data snooping (e.g. Lo and MacKinlay, 1990) and publication bias (e.g. McLean and Pontiff,

2016). To address these issues, we propose to construct a predictor that is endogenous

to a given factor model: the difference between assets and factors long-term returns. We

refer to this difference as price deviation. This choice builds on the notion that long-term

returns convey information about possible model misspecification beyond one-period returns

(Chernov, Lochstoer, and Lundeby, 2021) as they can capture persistence mispricing (see,

e.g. Shiller, 1981).

We proceed to construct a simple test using our predictor. Consider regressing risk-

adjusted returns on lagged price deviations. We show that if factors do not span the mean-

variance efficient portfolio, the loading from this predictive regression should be negative.

The intuition for the negative sign is straightforward: When an asset’s price is above its
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intrinsic value as measured by long-run mean-variance portfolio returns, prices will revert

back to their target level, leading to lower future expected returns. This return response to

price deviations is consistent with a model where prices feature a permanent and transitory

components (see Fama and French, 1988 and, more recently, Dong, Li, Rapach, and Zhou,

2021).

Our test is formulated in terms of implications for the conditional mean-variance efficient

(CMVE) portfolio. As a benchmark case, to construct different heuristic CMVE portfo-

lios, we use several versions of the Fama-French (2015, FF5) five-factor model. First, we

employ a standard combination of the FF5 factors based on their unconditional first and

second moments. Then, to account for conditioning information about the factors’ mean

and volatility in the construction of the mean-variance efficient portfolio, we implement a

version with factor timing (Haddad, Kozak, and Santosh, 2020), and a version with volatil-

ity timing (Moreira and Muir, 2017). Finally, we use the characteristic-efficient factors of

Daniel, Mota, Rottke, and Santos (2020) since Kozak and Nagel (2022) show that hedging

the unpriced components of heuristic factor returns makes them more likely to span the

stochastic discount factor. We also we perform several robustness tests by replacing the FF5

factors with the Hou, Xue, and Zhang (2015) q-factors and the PC-based model employed

in Haddad, Kozak, and Santosh (2020) to construct the mean-variance portfolio.

We refer to the difference between cumulative (log) asset returns and the cumulative

returns on the mean-variance efficient portfolio (built from one of the factor models de-

scribed above) as to price deviations. As benchmark test assets, we use 90 portfolios from

the long and short sides of 45 well-known and widely used characteristic-based strategies

(Haddad, Kozak, and Santosh, 2020; Kelly, Kozak, and Giglio, 2020). Independently from

how we construct the mean-variance portfolio, we show that price deviations forecast future

anomaly returns with a negative sign, thus rejecting the restriction from the conditional

beta-representation. Importantly, we document similar results even when using the classic

25 portfolios sorted on size and book-to-market or the large cross-section proposed by Chen

and Zimmermann (2021) as test assets. The negative loading of future portfolio returns

on the current price deviation implies that when asset prices are higher (lower) than the

long-run price level implied by the factor model, we expect lower (higher) returns in the

next period so that the deviations are corrected. Thus, it is natural to interpret the price
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deviations as the level of under- or over-pricing of a given asset relative to the price implied

by the mean-variance portfolio.

The evidence in favor of anomalies’ predictability is obtained by taking an out-of-sample

perspective, i.e. by constructing price deviations in real time. The out-of-sample nature of

our exercise is designed to combat overfitting and to detect demonstrable, ex ante mispricing.

Also, importantly, our documented predictability already accounts for the possibility that

the exposure of a given test asset to the mean-variance portfolio is time-varying. We do

so in two ways: by using a classic fixed-length rolling window approach not subject to

overconditioning bias (e.g., Fama and French, 1997; Boguth, Carlson, Fisher, and Simutin,

2011) and by using the non-parametric method proposed by Ang and Kristensen (2012). The

latter allows for tighter windows when there is more portfolio variation that can be picked

up with greater precision. Despite these attempts, we continue to find evidence of sizable

asset return predictability implied by the price deviations.

Similar to Dong, Li, Rapach, and Zhou (2021), the statistical model underlying our

predictive framework assumes that the price deviations eventually correct. However, the

correction process can last for multiple periods. We study the timing of this correction

process in our large cross-section of assets. Specifically, averaging across different factor

models, we find that a value of the test asset above the target value implied by the mean-

portfolio signals future negative returns over the next two to three years, at which point

the price deviation is washed away. Interestingly, the long spell of time it takes for returns

to revert toward their target value is in line with the evidence in Daniel, Klos, and Rottke

(2022) who show that the beliefs of optimistic agents (who overreact to positive information)

decay towards rational beliefs over a roughly 5-year period.

The mean-reverting behavior of price deviations toward the price implied by the mean-

variance portfolio suggests that factor models provide a meaningful description of the fi-

nancial system in the long run—a similar interpretation is discussed in Merton (1987)’s

presidential address. Related, our documented portfolio-level return predictability can be

interpreted in terms of speed of adjustment to the long-run price implied by the factor

model. Our predictability disappears when the speed of adjustment is instantaneous while it

becomes more apparent when the speed of adjustment to the long-run price reduces because

of slow moving capital, slow adjustment to new information, or persistent behavioral pattern
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in expectations.

Importantly, the predictive content of our price deviations survives after controlling for

alternative asset-specific predictors, including the test asset’s book-to-market ratio, for the

asset momentum or reversal effects captured by the 1- and 5-year past returns, respectively,

and for measures of aggregate sentiment (Baker and Wurgler, 2006; Huang, Jiang, Tu, and

Zhou, 2014). The result that our price deviations predict returns negatively and survive

after controlling for the portfolio reversal based on long-term (5-years) past returns is strik-

ing. After all, our price deviations are obtained from the cumulative past returns relative to

the cumulative mean-variance efficient ones. Thus, the fact that the price deviations series

remains statistically significant after controlling for the (absolute) 5-years past returns, sug-

gests that there is more information content in relative (to a given factor model) mispricing

than in absolute mispricing as captured by the stand-alone past return series.

Although the out-of-sample R2 from a forecasting model is a commonly used metric in

the return predictability literature (see, e.g., Rapach and Zhou, 2022), Kelly, Malamud, and

Zhou (2023) pointed out that it is an incomplete measure of the model economic value.

Thus, we also implement a portfolio exercise to quantify the economic magnitude of the

documented no-arbitrage rejections. Specifically, we form a zero-cost portfolio that buys

anomalies with high one-year-ahead expected returns and sells anomalies with low one-year-

ahead expected returns based on the signal provided by the anomaly-specific price deviations.

Such a zero-cost investment strategy generates an out-of-sample annualized Sharpe ratio

of 0.8 and 1.0 when the deviations are relative to the Fama-French five-factor model or

to the Daniel, Mota, Rottke, and Santos (2020) hedged factors, respectively. Thus, the

misspecification of the return dynamics in state-of-the-art models of the stochastic discount

factors are quantitatively large.

We also show that the performance of our price deviations-based portfolio cannot be

explained by other factor models, including those behavioral models that aim to capture

temporary, long- and short-horizon deviations of prices from fundamental values (Daniel,

Hirshleifer, and Sun, 2020), as well as models where factors are constructed to capture ag-

gregate mispricing (e.g., Stambaugh and Yuan, 2016; Bartram and Grinblatt, 2018). Indeed,

we find that regressing our managed portfolio returns on the Daniel, Hirshleifer, and Sun

(2020) behavioral factor model and the mispricing factor model of Bartram and Grinblatt
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(2018) features large and statistically significant alphas. This evidence suggests that our

strategy captures under/over reaction of asset price levels and, to capture such price dy-

namics, one needs additional mispricing factors outside those included in the candidate SDF

model (which we use to infer the target price level). Consistent with this argument, we find

that adding our managed price deviations-based portfolio to the mean-variance portfolio

leads to a significant reduction in risk-adjusted returns predictability, thus improving the

factor model at hand.

Price deviations could be related to frictions that prevent rational traders from eliminat-

ing such deviations or to irrational behaviour of agents, or both. On the one hand, price

divergences can be associated with noise trader risk (e.g., De Long, Shleifer, Summers, and

Waldmann, 1990), holding costs (Tuckman and Vila, 1992), and idiosyncratic risk and trans-

action costs (e.g., Pontiff, 1996, 2006). Transitory price dislocations can also be due to the

limited, and therefore slow-moving, capital of the currently available investors (e.g., Duffie,

2010) or slow adjustment of prices to new information (Amihud and Mendelson, 1987). Along

this line, we show that a calibrated economy à la Amihud and Mendelson (1987) delivers

a predictive coefficient on price deviations of similar magnitude to that found empirically.

On the other hand, temporary price discrepancies that forecast return reversal (rather than

continuation) can be the consequence of over-reaction to news. Behavioral models in which

investors overreact to, e.g., news about firms’ prospects have a long tradition; see, e.g., Bar-

beris, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998, 2001) and

Gervais and Odean (2001). Interestingly, diagnostic expectation (e.g., Bordalo, Gennaioli,

Porta, and Shleifer, 2019; Gennaioli and Shleifer, 2018) provides a modeling framework that

yields overreaction to not just private but also public information, unlike model of investor

overconfidence (Daniel, Hirshleifer, and Subrahmanyam, 1998) where decision makers exag-

gerate the precision of private information. Thus, inspired by the literature on diagnostic

expectations, we conclude by linking our predictive framework to a model where the price

deviation captures agents’ over-reaction to news in prices that are subsequently corrected in

return dynamics.

Related Literature. Our analysis builds upon, and relates to, the large empirical lit-

erature that studies temporary deviations of asset values from fundamentals. In an early

contribution, Poterba and Summers (1988) find positive autocorrelation in returns over short
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horizons and negative autocorrelation over longer horizons which can be explained by per-

sistent, but transitory, divergences between prices and fundamental values. Concurrently,

Fama and French (1988) argue that the observed U-shaped pattern of the regression slope

from forward h-period industry returns rt,t+h on past returns rt−h,t is consistent with the view

that prices have a slowly decaying stationary component. Our finding that the deviations of

a portfolio price from a given factor model forecast the portfolio returns is consistent with

the permanent-transitory decomposition of prices proposed by Fama and French (1988).

Recently, Dong, Li, Rapach, and Zhou (2021) show that returns of the short- and (to a

lesser extent) the long-leg of anomaly portfolios are positively related to the next period’s

market return. To explain this finding, these authors also exploit the permanent-transitory

decomposition of an anomaly portfolio price. Differently from them, we show predictability

at the individual anomaly level, rather than at the aggregate market level; furthermore, we

link our predictive framework to a conditional test of a given factor model. Importantly, our

evidence is that price deviations forecast reversal, not continuation, of returns. Thus our ev-

idence complements that in Ehsani and Linnainmaa (2021) about positive auto-correlations

in anomalies.

Our paper is related to a recent and rapidly growing literature that aims at explaining

multi-period (cumulative) portfolio returns and portfolio price level.1 The paper closest

to ours is Chernov, Lochstoer, and Lundeby (2021). These authors propose to use multi-

horizon returns to test over-identifying restrictions of a given factor model. Using their

novel test, Chernov, Lochstoer, and Lundeby (2021) find that popular factor pricing models

are unable to price their own factors at multiple return horizons even when one allows

for state-of-the-art SDF sensitivities. We share a similar interest in (misspecification of)

conditional dynamics. The conditional model misspecification documented in our paper

is complementary to that analyzed by Chernov, Lochstoer, and Lundeby (2021). Whereas

Chernov, Lochstoer, and Lundeby (2021) focus on the pricing of factors at multiple horizons,

we instead test for mispecification in the risk-adjusted short-run dynamics of a test asset by

exploiting information in long-run (cumulative) asset and factor returns.

Our work is also related to Baba-Yara, Boyer, and Davis (2022). We both focus on

1See, e.g., Cohen, Polk, and Vuolteenaho (2009), Brennan and Wang (2010), Keloharju, Linnainmaa, and
Nyberg (2019), Baba-Yara, Boons, and Tamoni (2020), Hendershott et al. (2020), Van Binsbergen and Opp
(2019), Cho and Polk (2020), and Boons et al. (2021).
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conditional models. In particular, Baba-Yara, Boyer, and Davis (2022) show that cutting-

edge asset pricing models cannot explain the average returns of the implied mean-variance

efficient (MVE) portfolios of other models. In this sense, Baba-Yara, Boyer, and Davis (2022)

continue to use information external to a given model (but contained in other models) for

their conditional asset pricing test. We instead rely only on information that is endogenous

to a given model to study the (mispecification of) conditional dynamics of asset returns.

Hence our paper speaks to the literature on factor timing (Cohen, Polk, and Vuolteenaho,

2003; Haddad, Kozak, and Santosh, 2020; Baba-Yara et al., 2020). In particular, we provide

evidence that price deviations predict a vast array of portfolio returns. Also, we show that

such predictability derives naturally from portfolio prices being anchored to factor prices.

Our paper also contribute to the literature that links the time-series and cross-sectional

predictability. For example, Maio and Santa-Clara (2012) and Boons (2016) employ the

I-CAPM to study the consistency between time-series and cross-sectional behavior of state

variables and factors. Koijen, Lustig, and Van Nieuwerburgh (2017) propose a mode that

prices the cross-section of equity while reproducing the time-series variation in bond returns.

Lettau and Pelger (2020) discuss the tension between the time-series and cross-sectional

objectives when designing a factor model. Our contribution is to show that cross-sectional

models should incorporate the information in the limit multi-period returns (i.e. prices) in

order to capture the time-series dynamics of portfolio returns.

Recently, Lopez-Lira and Roussanov (2022) show how to construct a portfolio that ex-

ploits individual stock return predictability while hedging all undiversifiable risk; they doc-

ument that such portfolio delivers a Sharpe ratio above one. Kim, Korajczyk, and Neuhierl

(2020) propose a procedure that gives characteristics maximal explanatory power for risk

premiums before attributing any explanatory power to alphas (mispricing). Similar to these

authors, our paper challenges the notion of a trade-off between systematic risk and expected

returns. Whereas Lopez-Lira and Roussanov (2022) exploit a wide range of characteristics

to forecast stock returns, we instead show how to construct a predictor that is endogenous to

the factor model under scrutiny, and link this predictability to the conditional pricing ability

of the model. We then show how to exploit this endogenous mispricing to form portfolios

that hedge out the systematic risk associated with the MVE factor, in a spirit similar to the

arbitrage portfolios of Kim, Korajczyk, and Neuhierl (2020).
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Finally, despite the popularity of factor models in asset pricing (e.g., Ang, 2014), the

literature on the relationship between the choice of factors and the investment horizon is

less developed. Specifically, the factor-based approach to portfolio allocation and risk man-

agement has concentrated almost exclusively on modeling one-period returns, devoting less

attention to the long-run relation between the performance of assets and factors.2 In this

paper, we propose a methodology that exploits long-horizon returns to test the short-run

dynamic properties of asset pricing models.

2 Mean-variance returns, prices and predictability

Let Re
t+1 be the vector collecting the return on asset i in excess of the risk-free rate, Rei

t+1.

The conditional mean-variance efficient (CMVE) portfolio is given by3

Rmv
t+1 =

(
k−1
t Vt

(
Re
t+1

)−1
Et
[
Re
t+1

])ᵀ
Re
t+1, (1)

where Vt
(
Re
t+1

)
and Et

[
Re
t+1

]
are the conditional first and second moments of excess returns,

and kt is a time-varying scalar, known at time t, governing the leverage of the portfolio.

The no-arbitrage condition

Et
[
Re
t+1

]
= −

Covt
(
Mt+1, R

e
t+1

)
Et [Mt+1]

, (2)

implies the conditional beta-pricing representation:4

Et
[
Re
t+1

]
= βi,tEt

[
Rmv
t+1

]
(3)

For any return i included in the portfolio, the validity of Equation (3) requires that in a time

2Hansen and Scheinkman (2009) and Backus, Chernov, and Zin (2014) have developed tools allowing
researchers to characterize properties of equilibrium models at different horizons.

3See Hansen and Richard (1987); Ferson and Siegel (2001); Cochrane (2005); Chernov, Lochstoer, and
Lundeby (2021). For completeness, we show the derivations of the CMVE portfolio in Appendix A.

4Consider the linear SDF Mt = 1 − bt
(
Rmv

t+1 − Et

[
Rmv

t+1

])
. Applying the no-arbitrage condition (2) to

the minimum variance efficient portfolio we have: Et [Mt+1] = bt
V art[Rmv

t+1]
Et[Rmv

t+1]
. By substituting this expression

and Covt
(
Mt+1, R

e
t+1

)
= −btCovt

(
Rmv

t+1, R
e
t+1

)
into (2), one obtains the desired expression.
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series regression of the form:
Rei
t+1 = βi,tR

mv
t+1 + εi,t+1 (4)

the error terms should be unpredictable, i.e. Et [εi,t+1] = 0 (see, e.g., Ferson and Harvey,

1991, 1999; Ferson and Korajczyk, 1995). Otherwise, one would buy (sell) the hedged portfo-

lio Rei
t+1−βi,tRmv

t+1 when the error is expected to be positive (negative), making a risk-adjusted

profit and violating the fact that the SDF prices conditionally the given asset.

We propose to test for conditional misspecification of the SDF implied by (1) by gen-

erating a return predictor that is endogenous to the model (i.e., it depends solely on the

candidate CMVE). We start by log-linearizing the Euler condition (2):5

Etr
e
i,t+1 +

1

2
Vartr

e
i,t+1 = βi,tEtr

mv
t+1 (5)

where rei,t+1 = ri,t+1 − rf,t+1, and the conditional variance of the risky asset return on the

left hand side of (5) is a Jensen’s inequality correction that appears because we are working

with logs.

Our test for conditional mispecification involves the coefficient δi in the following model-

implied regression specification

rei,t+1 = ci,t + βi,tr
mv
t+1 + δiui,t + εi,t+1 . (6)

where ci,t is a (possibly time-varying) intercept that captures the Jensen’s effect. If the

portfolio is CMVE and, hence, the associated SDF is correctly specified, one should have

δi = 0. One has, of course, many choices for ui,t. We construct a predictor that is endogenous

to the model as follows:

ui,t = ui,t−1 +
(
rei,t − ci,t−1 − βi,t−1r

mv
t

)︸ ︷︷ ︸
εi,t

(7)

i.e., our predictor is the cumulative sum of risk-adjusted returns. To interpret ui,t, it is conve-

nient to define the log price of asset i as the cumulative log return: lnPi,t+1 = lnPi,t + ri,t+1.

Similarly, we have lnPmv,t+1 = lnPmv,t + rmv,t+1 for the CMVE portfolio, and lnPrf,t+1 =

5This expression holds exactly if the SDF and the asset i returns have a joint conditional lognormal
distribution.
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lnPrf,t + rf,t+1 for the risk-free asset. Note now that if βi,t ' βi,t−1, then

ui,t = lnPi,t − lnPrf,t −
∑

ci,t − βi,t lnPmv,t , (8)

so that ui,t captures deviations of test asset prices from the price warranted by the CMVE

portfolio (adjusted for a possible time-varying trend captured by
∑
ci,t).

6 The intuition

behind our proposed predictor is that if there is persistent mispricing, it will show up in the

price level (Shiller, 1981). Equation (8) suggests to compute the mispricing by comparing

the portfolio price level to the value implied by the mean-variance portfolio, βi,t lnPmv,t.

Although in our empirical analysis we work with time-varying exposures, the interpreta-

tion of ui,t as price deviations rest on the assumption βi,t ' βi,t−1, i.e. the portfolios’ betas

vary slowly and smoothly over time. This assumption is consistent with several economic

models. E.g., Gomes, Kogan, and Zhang (2003) suggest that betas are a function of pro-

ductivity shocks, which are often calibrated with an autocorrelation of 0.95 at the quarterly

horizon. This translates into a monthly autocorrelation of conditional betas above 0.98.

Similarly, in Santos and Veronesi (2006), stock betas change as the ratio of labor income

to total consumption changes, which is also a highly persistent variable. Also, many previ-

ous empirical studies (see, e.g., Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001;

Petkova and Zhang, 2005; Lewellen and Nagel, 2006; Ang and Chen, 2007; Pelger, 2020;

Lopez-Lira and Roussanov, 2022) find that conditional betas are stable within short time

window.

6Practically, by cumulating log excess returns on asset i we abtract from any source of long-run nominal
comovement between the asset prices and the mean-variance efficient prices. To see this, consider for ease
of exposition the CAPM model (the market is always included in the factor models studied in this paper)
and constant betas. Under the null, we have: (ri,t+1 − rf,t+1) = βi (rm,t+1 − rf,t+1) + εi,t+1.
Compounding the left- and right-hand side yields:

lnPi,t+1 − lnPrf,t+1 = βi (lnPm,t+1 − lnPrf,t+1) + ui,t+1,

or, equivalently,

lnPi,t+1 = βi lnPm,t+1 + (1− βi) lnPrf,t+1 + ui,t+1.

The term (1− βi) lnPrf,t+1 effectively removes inflation-related trends that are common to the market factor
and the asset prices.
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Note that the test δi = 0 in equation (6) is equivalent to testing the null:

ui,t = ui,t−1 + εi,t (H0)

Indeed, in a correctly specified factor model there is an unpredictable error term εi,t. This

error term leads to a random walk component in the price of the test asset, where prices are

defined as cumulative returns. Hence, under the null of the model, the deviation of an asset

price lnPi,t from the price implied by the mean-variance portfolio (c.f., equation (8)) are

permanent, and ui,t is a martingale. This implies that price deviations should not forecast

risk-adjusted excess returns (Et [ui,t+1 − ui,t] = Et [εi,t+1] = 0).

The alternative hypothesis, which we entertain in this paper, is that these price deviations

are persistent instead. To be specific, we assume that the price deviations are mean reverting:

ui,t = ρiui,t−1 + εi,t (H1)

which implies δi = ρi− 1 < 0 in Eq. (6).7 In words, if asset prices are above the target value

implied by the mean-variance portfolio, and if these price deviations are persistent but mean-

reverting (i.e. ρi < 1), then future expected returns are lower (higher) on a risk-adjusted

basis (i.e. after controlling for βi,tr
mv
t+1).

Finally, note that under the null (H0), ui,t is a martingale, i.e. ρi = 1 and δi = 0 in Eq.

(6). Thus one can view (H1) as the unrestricted model, and (H0) as the restriced model.

2.1 Construction of Price Deviations

A large literature (e.g., Goyal and Welch, 2007, Rapach and Zhou, 2013, Martin and Nagel,

2020, Boudoukh, Israel, and Richardson, 2021) documents that out-of-sample tests pro-

vide the most rigorous and relevant evidence on stock return predictability. Therefore, to

construct our predictor ui,t and to test the null δi = 0 in (6), we take an out-of-sample per-

7The result obtains by first differencing ui,t = (lnPi,t − lnPrf,t) −
∑
ci,t − βi,t lnPmv,t (see Eq. (8)),

using the autoregressive dynamics for ui,t under (H1) and our definition of log prices as cumulative log
returns, and using the assumption that betas are changing slowly over time, i.e. βi,t+1 ' βi,t which implies
βi,t+1 lnPmv,t+1 − βi,t lnPmv,t ' βi,trmv

t+1.
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spective. The out-of-sample nature of our exercise is particularly important since we want

to detect demonstrable, ex ante mispricing. Indeed, we will confirm that the price deviations

captured by ui,t can be exploited in real time to predict asset returns.

First, following e.g., Fama and French (1997) and Ferson and Harvey (1999), we estimate

the conditional betas using a regression over a 60-month rolling window:8

reτ+1 = ci,t + βi,tr
mv
τ+1 + ετ+1, τ = t− 60 : t− 1. (9)

We then construct the risk-adjusted return at time t+ 1 as:

ε̂i,t+1 = rei,t+1 − ĉi,t − β̂i,trmvt+1

where the beta and the constant are obtained from the rolling window regression (using

information up to time t only, as denoted by the subscript). We repeat this same steps at

time t+ 2 and construct ε̂i,t+2 based on betas (and constant) from a rolling regressions over

the period t− 60 + 1 to t. Our predictor is given by:

ûi,t =
t∑

τ=0

ε̂i,τ (10)

and, importantly, it is obtainable in real time. We then run the predictive regression

rei,t+1 − ĉi,t − β̂i,trmvt+1 = δiûi,t + εi,t+1 . (11)

and test the null hypothesis δi = 0 in Section 3.2. A rejection of the null, and in particular

a negative δi, suggests that underpricing (ui,t < 0) is followed by positive returns. We

exploit this insight, and the fact that ui,t can be obtained in real time, to develop a trading

8Using rolling windows to estimate conditional loadings gets around the problem of instrumenting time-
varying factor loadings with the “right” state variables (e.g., Shanken, 1990; Jagannathan and Wang, 1996;
Lettau and Ludvigson, 2001. See also discussion in Lewellen and Nagel, 2006). As we use a rolling window
of 60-months, our conditional betas estimates are not subject to overconditioning bias (Boguth, Carlson,
Fisher, and Simutin, 2011). While the choice of the rolling window length is arbitrary, we document that our
results hold both for a rolling window of 24-months and when using the optimal nonparametric technique
developed in Ang and Kristensen (2012) to estimate time-varying betas. Additional unreported results show
that results hold if one considers alternative window lengths of 12-months, 120-months, or an expanding
window.
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strategy based on mispricing in Section 3.3. As we will see, the price deviations take time

to be reabsorbed, which implies that our trading strategy does not require high-frequency

rebalancing, reducing possible concerns about trading costs.

Note that our empirical analysis is using conditional betas since, as shown by Hansen

and Richard (1987), assuming constant betas is not innocuous.9 For example, with constant

betas, price deviations could simply be a byproduct of time-varying loadings. In the Ap-

pendix, we repeat our analysis using progressively shorter time windows and high frequency

(daily returns) (Appendices E.1 and E.2), or when we estimate time-varying betas using the

kernel method proposed by Ang and Kristensen (2012) (Appendix E.3). The advantage of

this method is that it allows the bandwidth of the kernel to vary across portfolios, i.e. to use

tighter windows when there is more variation to be picked up with greater precision. Impor-

tantly, we will see that our findings continue to hold across these alternative specifications

and different approaches.

The following steps summarize our approach to test for conditional misspecification:

1. Start from a factor model.

2. Construct the CMVE portfolio Rmv
t+1 given in equation (1).

3. Using a rolling window (or kernel methods), estimate equation (9) to then construct

real-time risk-adjusted returns ε̂i,t+1 and price deviations ût.

4. Run the predictive regression (11). An estimate of δ < 0 leads to a rejection of the null

(H0) in favor of the alternative (H1), thus implying that the model is misspecified.

Finally, if δ < 0, we describe how to engage in anomaly timing in Section 3.3.

3 Main Results

3.1 Data

Our analysis focuses on characteristics-based factors. To pit models in a fair manner, we

work with the MVE portfolio implied by the characteristics-based factors (this approach is

9Gormsen and Jensen (2022) show that the alpha of major equity risk factors can partly be explained by
time-varying market betas.
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also adopted by, e.g., Chernov, Lochstoer, and Lundeby, 2021 and Baba-Yara, Boyer, and

Davis, 2022).10 Specifically, we implement the mean-variance efficient portfolio using the

following factor model representation:

Rmv
t+1 = bᵀtCtR

e
t+1 = bᵀt ft+1 , (12)

where Ct is a K × Nt matrix of stock-level characteristics which define a set of K factors,

ft+1 = CtR
e
t+1; and bt is a K×1 timing vector that optimally combines these factors over time

to get to the minimum variance portfolio (see, e.g., Haddad, Kozak, and Santosh, 2020; Mor-

eira and Muir, 2017). Theoretically, the variation in the minimum variance portfolio weights

must be driven by factor and volatility timing: bt ∝ Vt (ft+1)−1Et [ft+1]. We use the Fama and

French (2015, FF5, henceforth) as factors, i.e. f ′t = [MKTt SIZEt HMLt RMWt CMWt]

in equation (12), and entertain a version of FF5 with either factor return (factor-timing,

henceforth) or volatility timing (vol-timing, henceforth). Mindful that standard factors are

contaminated with unpriced components,11 we also employ the hedging approach of Daniel,

Mota, Rottke, and Santos (2020, DMRS) that aims at removing unpriced risks from the

original factors. We call the residualized (with respect to the hedge portfolio returns) FF5

factors, FF5-DMRS.12 This gives a total of four candidate SDFs. In addition, in Appendix

F we repeat our main analysis when we use the Hou, Xue, and Zhang (2015) q-factors or sta-

tistical factors to construct the mean-variance efficient portfolio. In the latter case, we adopt

principal components analysis (PCA) to extract factors from the 45 long-short portfolios.13

Following, e.g., Kozak, Nagel, and Santosh (2020) and Haddad, Kozak, and Santosh (2020),

we market-adjust the long-short strategies before computing the principal components. We

then add back the aggregate market portfolio as a potentially important pricing factor. In

10See Bessembinder, Burt, and Hrdlicka (2022) for a discussion on the time variation in the number of
significant factors and its relation to time-varying economic complexity.

11For example, Gerakos and Linnainmaa (2017) find that the HML value factor is contaminated with
unpriced components.

12We are grateful to Simon Rottke for sharing the up-to-date hedged FF5 factors.
13PCA is grounded in Ross (1976) seminal Arbitrage Pricing Theory (APT) and it is by far the most

popular technique in finance to analyze latent factor models for returns with key empirical contributions
dating back to Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986, 1988). Recently, Kelly,
Pruitt, and Su (2019) propose instrumental principal component analysis (IPCA) where the factor loadings
are dynamic and can be instrumented with observable portfolio characteristics. Giglio and Xiu (2021) show
that using ridge regression instead of PCA for reducing the dimensionality of the returns space yields similar
results.
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other words, we study: f ′t = (Rmkt,t, PC1,t, . . . PCn−1,t) and refer to this factor model as

PCAn. Inspired by Haddad, Kozak, and Santosh (2020), we set n = 6.

Given our factors (e.g., the FF5), we estimate b such that the single-horizon monthly

returns to the factors themselves are priced without error. For the volatility timing version,

we follow Moreira and Muir (2017) and use bi,t = biV
−1
t (fi,t+1) which is computed using

squared realized daily factor returns. For the factor timing version, we follow Haddad, Kozak,

and Santosh (2020) and use bi,t = biEt (fi,t+1) where the out-of-sample expectations for the

factors are constructed using each factor’s book-to-market ratio. In all cases, we estimate

the constant of proportionality bi for each factor i by matching the in-sample average returns

to the timed factors in the model at hand, analogous to how we estimated the vector b in

the baseline FF5 models.

We focus on U.S. data–NYSE, AMEX, and Nasdaq stocks from the Center for Research in

Security Prices (CRSP) and Compustat data required for sorting – for the sample 1967–2019.

In most of our analysis, we use monthly observations but we focus on 1-year holding-period

return. A long holding period allows for a reaction of returns at time t+ 1 to the asset price

deviations from the mean-variance portfolio prices at time t. So unless it is said otherwise,

rt+1 will denote the one-year-ahead log excess returns. This choice is also in line with recent

empirical studies on time-variation in anomaly returns (e.g., Lochstoer and Tetlock, 2020)

and on the dynamics of equity portfolios (e.g., Kelly, Kozak, and Giglio, 2020). Interestingly,

in our sample (see discussion of Figure 2) there is statistical evidence in favor of return

predictability for one- up to twenty month ahead, i.e. ûi,t manifests forecasting ability for

rt+h/12 with h = 1, . . . , 20. Therefore, while we leave open the question of the exact timing

of return reaction to price deviations, we repeat the relevant tests with monthly returns in

Appendix D.2.

To investigate the validity of a given SDF, we consider as test assets a large cross-section

of anomaly portfolios based on single-sorts of 45 different characteristics. These test assets,

or a subset of it, have been used by Kozak, Nagel, and Santosh (2020), Kelly, Kozak, and

Giglio (2020), Haddad, Kozak, and Santosh (2020), and Lettau and Pelger (2020), among

others.14 In Appendix G, we provide robustness using an alternative, even larger, cross-

14We thank Serhiy Kozak for making his data available at https://sites.google.com/site/

serhiykozak/data?authuser=0. Appendix Table C.1 lists the categories and the portfolios included in
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section of portfolios from Chen and Zimmermann (2021).

3.2 Conditional Mispecification and Price Deviations

To test for the conditional validity of a given SDF, we run the following predictive regression:

r̃i,t+1 = a+ δûi,t + εi,t+1 (13)

where r̃i,t+1 = rei,t+1− ĉi,t− β̂i,trmvt+1 is the log excess return of test asset i at time t+ 1 net of

the exposure to the log return on the mean-variance efficient portfolio rmvt+1; and ûi,t measures

the deviations of asset i prices from the mean-variance portfolio ones. The null is H0 : δ = 0

against H1 : δ < 0.15,16

We start by describing the properties of the price deviations ui,t, i.e. our predictor in (13).

In particular, Table 1 shows the half-life (Panel A) and the volatility of price deviations ui,t

(Panel B) across our test assets i = 1, . . . , 90. The price deviations are persistent but

mean-reverting with an average half-life of about 2.5 years for all the models considered.

Comparing the FF5 model to its timed or hedged versions, we observe very similar half-life

distributions. Also, all models display price-deviations that are economically sizable, with a

volatility of about 20% on average. In Panel C, we observe that price deviations from the

FF5 SDF have a high correlation of 0.8 or more with those obtained from its factor-timed

or hedged versions. Finally, the price deviations display a strong factor structure (see Panel

D), in particular for the version of FF5 with factor timing and for the hedged FF5-DMRS.

Independently from the model considered, five PCs capture about 90% of the total variation

in price deviations.

each category.
15Note that the factor models considered perform well in pricing unconditionally the cross-section of the

test assets. For example, the mean-variance efficient portfolio implied by the FF5 factor model and its
hedged version (FF5-DMRS) reduces the mean absolute pricing errors on the 90 test assets from 5.21% per
year in a risk-neutral benchmark economy to 2.77% and 2.64%, respectively, per year.

16Our test and the one proposed by Chernov, Lochstoer, and Lundeby (2021) are complementary. To
see this, consider i.i.d. factor returns. In this case, the SDF prices the factors both conditionally and
unconditionally and would pass the novel test of Chernov, Lochstoer, and Lundeby (2021) (which is solely
based on factor dynamics). However, we show in Appendix B that this SDF could still admit test asset
return predictability (δ < 0), i.e. the SDF does not correctly price excess returns on test assets conditionally.
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Table 2, column (1), shows the results from the pooled regression (13). Each panel refers

to a different candidate SDFs, namely the FF5 model, its factor timed and volatility managed

versions, and the FF5 residualized with respect to the DMRS hedge portfolio. Independently

from the candidate SDF, we find a negative and statistically significant coefficient on the

price deviations. The coefficient is economically large: for example, for the FF5-DMRS we

find that a one standard deviation increase of (log) portfolio prices from the model-implied

SDF value, implies an expected return that is lower by 4.6% over the next year (on average,

across portfolios).17 Also, note that the R2 associated with the predictability induced by

the price-deviations are about 10%, or larger, and thus comparable to the R2 found in the

aggregate market return predictability literature(e.g., Cochrane, 2008, 2011).

Figures 1 reports the asset specific δ̂i, along with its standard error, obtained from esti-

mating equation (13) for each top decile portfolio.18 The figure shows that δ̂i is negative and

significantly different from zero for all the portfolios and all the candidate SDFs considered.

Hence, the evidence points to an ubiquitous rejection of the null in favor of price deviations

that are persistent but mean reverting (0 < ρi < 1).

Next, we discuss the predictive ability of price deviations over alternative horizons. Recall

that so far we have used annual returns in equation (13). Figure 2 shows the estimates

of δ from a pooled regression when we forecast h-period ahead monthly returns, with h =

1, ..., 60 (i.e. returns are not compounded). For ease of exposition, we multiply the estimated

coefficients by twelve so to make their magnitude comparable to the coefficient reported in

Table 2 (which is based on annual returns). Across all models, there is statistical evidence in

favor of return predictability for each of the future twenty months. Moreover, the magnitude

of the coefficient is negative, similar across models, and decaying to zero only slowly as

we increase the forecasting horizon. Comparing different SDFs, we observe that the price

deviations from the FF5 and FF5-DMRS predict returns quite persistently, for up to forty

months. On the other hand, the adoption of factor timing and, to a lesser extent, volatility

management make the price deviations more transient as confirmed by a faster decay pattern

in the coefficients, which become insignificant between 1.5 and 3 years. In sum, a value of

17From Table 1, we know that the average standard deviation is about 21% for FF5. Multiplying this value
by the coefficient in Panel A of Table 2 we have: −0.22 × 0.21 = −4.6%. Equivalently, a pooled regression
on standardized price deviations from FF5 yields a coefficient of −4.65%.

18Appendix Figure D.1 displays the analogous analysis for each bottom decile portfolio.
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the test asset above the target value implied by the mean-portfolio signals future negative

returns over the next two to three years (in line with the average half-life reported in Table

1), at which point the price deviation is washed away. Interestingly, the long spell of time

it takes for returns to revert toward their target value is in line with the evidence in Daniel,

Klos, and Rottke (2022) who show that the beliefs of optimistic agents (who overreact to

positive information) decay towards rational beliefs over a roughly 5-year period.

Recall that our price deviations signal is obtained in real time, using only information

up-to-time t. Thus, we now evaluate its predictive ability for each portfolio using the out-

of-sample (OOS) R2 metric proposed by Campbell and Thompson (2008). Table 3 shows

the results for each test asset. Each panel refers again to a given SDF model. On average

(across models), we document positive OOS R2 for more than 70% of anomaly portfolios.

Most importantly, we find significant out-of-sample R2 for relevant characteristics-sorted

portfolios such as value, duration (Weber, 2018; Gormsen and Lazarus, 2020), and investment

(Cooper, Gulen, and Schill, 2008). Although the out-of-sample R2 from a forecasting model

is a commonly used metric in the return predictability literature (see, e.g., Rapach and Zhou,

2022), Kelly, Malamud, and Zhou (2023) pointed out that it is an incomplete measure of the

model economic value. Thus, in Section 3.3 we implement a portfolio exercise to quantify

the economic profits of a market timer that exploits the price deviations implied by a given

SDF model. Before doing so, in the next subsection we make sure that the predictive power

of the price deviations is not subsumed by well known predictors.

3.2.1 The information content of price deviations

Our predictor ui,t is endogenous to the model: it accounts for the conditioning information

(characteristics and possible timing variables) used in the construction of the SDF, and

it allows to test conditional aspects of the model, namely the dynamics of future returns.

However, one may wonder how ui,t relates to other portfolio return predictors.

To address this question, we run the following pooled regression:

r̃i,t+1 = a+ δûi,t + γXi,t + εi,t (14)

where Xi,t is an alternative candidate predictor for the anomaly portfolio i. Columns (2) to
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(5) of Table 2 show the estimates when we control for (the portfolio) long-term reversal, past

one-year returns, the book-to-market ratios, and aggregate sentiment as measured by the

Baker and Wurgler (2006) investor sentiment index. Each panel refers to a specific SDF. We

focus on results from the pooled regression only for ease of exposition, but all our conclusions

hold when we run asset-specific individual regressions.

[Insert Table 2 about here]

In column (2) we consider the reversal signal based on past 5-year returns (skipping

the most recent year) as an additional anomaly portfolio predictor. After all, our price

deviations are obtained from the cumulative past returns relative to the cumulative mean-

variance efficient ones. We see that the series of past returns relative to the mean-variance

portfolio remains statistically significant after controlling for the (absolute) 5-years past

return series. Moreover, the loading δ̂ is always negative and of similar magnitude to the

value reported in column (1). This result suggests that there is more information content in

relative (to a given factor model) mispricing than in absolute mispricing as captured by the

stand-alone past return series.

In column (3), we report results for regression (14) when we include the portfolio’s per-

formance over the prior year from month t − 12 to t − 1 along with the price deviations.

Ehsani and Linnainmaa (2021) document that most factors are positively autocorrelated,

and propose a factor that bets on the continuation in factor returns. Contrary to their

work, our framework focuses on price deviations that forecast reversal, not continuation, of

returns. It is then not surprising to see that our price deviations (capturing reversal) con-

tinue to be statistically significant after controlling for the portfolio momentum (capturing

continuation).

Column (4) reports results for regression (14) when the control variable Xi,t is the port-

folio’ book-to-market ratio. Indeed, valuation ratios are often used in return forecasting

regressions (e.g., Cochrane, 2005; Campbell, 2017) as they represent a natural predictor ac-

cording to the Campbell-Shiller (1988) log-linear present value model. Even after controlling

for the book-to-market ratio, the coefficient on the price deviations is statistically signifi-

cant, and negative: e.g., for the FF5 model, a one standard deviation increase of log portfolio
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prices from the model-implied MVE portfolio, implies a return that is lower by 4.6% over

the next year (c.f., computation in footnote 17).

Finally, Shen, Yu, and Zhao (2017) document a negative predictive relation between the

returns to portfolios sorted on macro-related risk factors and investor sentiment proxied by

Baker and Wurgler (2006) index. Related, Avramov, Chordia, Jostova, and Philipov (2019)

show that mispricing occurs across financial distressed firms during periods of high market

sentiment because in these times both retail and institutional investors are overly optimistic

about the likelihood and consequences of financial distress. The sluggish investors’ response

to correct overpricing leads to a wide range of anomalies in the cross-section of stocks and

bonds. Column (5) of Table 2 displays the results from a predictive regression that controls

for sentiment. Once again, we find that the predictive content of the price deviations is

not driven away by aggregate sentiment. This result continue to hold true when we use the

improved aggregate sentiment of Huang, Jiang, Tu, and Zhou (2014).

Overall, our evidence suggests that price deviations convey information about the time-

series dynamics of risk-adjusted returns, rei,t+1 − βi,trmvt+1, for a wide range of portfolios. The

predictive informative content of these price deviations is not subsumed by valuation ratios,

momentum or reversal in individual factors, or aggregate sentiment.

3.2.2 Robustness

We provide several robustness checks for the evidence that anomaly returns can be predicted

by the deviation of a portfolio price from the mean-variance target.

First, we verify the robustness of our results to alternative ways of computing time-varying

betas. Specifically, Appendix Figures E.1, E.2, and E.3 report the asset specific δ̂i, along

with its standard error, when we estimate betas using, respectively: (1) a shorter 2-year

window; (2) a 1-year window but employing daily observations of returns (in the spirit of,

e.g., Lewellen and Nagel (2006), and following the estimation approach described in Welch

(2022)); and (3) the nonparametric method proposed by Ang and Kristensen (2012).19 In

all the cases, we observe δ̂i that are negative and significantly different from zero for all the

19We report the results for the FF5 mean-variance portfolio but identical conclusions hold for the other
factor models.
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portfolios.

Second, we evaluate the effect of using other well-established factor models in the con-

struction of the mean-variance portfolios. Appendix Table F.1 shows the results from the

pooled predictive regressions (13) and (14) when we employ deviations of asset prices from

the mean-variance portfolios implied by the HXZ factors (Panel A) or by their volatility

managed version (Panel B), and for the mean-variance portfolio constructed using statistical

(PCA-based) factors (Panel C). For all these candidate factor models, we find a negative

and significant loading on price deviations even after controlling for well-known predictors.

In Appendix Table F.2, we show that this predictability translates in out-of-sample R2s that

are positive for 86.7% and 68.9% of the portfolios when we use the HXZ and PCA-based

factor models, respectively.

Finally, we evaluate the FF5 factor model using as test assets the 25 FF book-to-market

and size sorted portfolios, i.e., a small cross-section of assets built using the very same

characteristics that feature in the FF factor model.20 Figure G.1 shows that even for this

cross-section we find evidence that price deviations forecast anomaly portfolio returns neg-

atively, providing a conditional rejection of the FF5 model.

Overall, the evidence points to an ubiquitous rejection of the null in favor of mean re-

verting price deviations (0 < ρi < 1) that convey information about future anomaly returns.

3.3 Return Dynamics, Mispricing, and Trading Strategy

In Section 3.2 we provided evidence against the null that price deviations follow a random

walk and that risk-adjusted returns are unpredictable. In this section we evaluate the eco-

nomic magnitude of this predictability by studying the performance of a strategy that –

according to our signal – longs underpriced portfolios and short those that are overpriced.

We proceed as follows. First, recall that ui,t measures the deviation of the portfolio

price i from the mean-variance target price, and ûi,t is obtained in real-time using only

information up to time t (c.f., Section 2.1). Second, in our framework δiui,t is a proxy

for anomaly expected returns. We estimate δi using an expanding window with a burn-in

20The mean-variance efficient portfolio implied by the FF5 factor model reduces the mean absolute pricing
errors on these 25 test assets from 6.87% per year in a risk-neutral benchmark economy to 2.03% per year.
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sample the first 20 years of observations (1967–1987). This provides us with an out-of-

sample estimate of expected returns δ̂i,tûi,t for portfolio i. We go long portfolios with prices

below the model-implied target (ui,t < 0), and consequent positive expected returns given

the ubiquitous negative δi (c.f., Section 3.2), and go short those with prices higher than

what the mean-variance portfolio would suggest (ui,t > 0) and negative expected returns.

This timing strategy that increases exposure to assets after they have fallen and decreased

exposure to stocks after they have risen in price emerges naturally, e.g., in a world where

noise traders’ misperception of returns follows a mean-reverting process (c.f. Section IV in

De Long, Shleifer, Summers, and Waldmann, 1990).

We focus on a large cross-section of anomaly portfolios based on single-sorts of 45 different

characteristics (see Kozak, Nagel, and Santosh, 2020), for a total of 90 portfolios. We sort

these 90 anomaly portfolios once per year (in December) according to the portfolio-specific

expected return, δ̂i,tûi,t and hold the position for one year, at which point we repeat the

sorting procedure. Rather than choosing an arbitrary quantile, we implement rank-based

strategy that invest in all portfolios.21

Figure 3 shows the performance of the long and short sides of our mispricing strategy,

along with the aggregate market returns. The top left panel refer to the results obtained

when we compute price deviations relative to the FF5 mean-variance portfolio. The next

two panels refer to the results for the factor and volatility timed version of the FF5. The

bottom right panel refers to DMRS hedged version of FF5. As expected, the long leg

which contains underpriced test assets outperforms the market, whereas the short leg with

overpriced portfolios underperforms. A strategy that goes long underpriced test assets and

short overpriced assets generates an annualized average excess return of 5.2% and 6.6% for

the FF5 model and its version that hedges unpriced risks. The associated annualized Sharpe

Ratios are 0.80 and 1, respectively. A version of the mean-variance portfolio that times

factors’ returns obtains even stronger performance with annualized average excess return of

6.8% and a Sharpe ratio of 1.05. The performance of a strategy based on deviations from a

volatility-timed mean-variance portfolio attains an average return of 4% and a Sharpe ratio

of 0.73, instead.

21Furthermore, using ranks of the signal as portfolio weights helps mitigate the influence of outliers.
Specifically, the weight on portfolio i at time t is: wi,t ∝ rank (δiui,t)−

∑
i rank (δiui,t)/N .
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Of course, it is important to ascertain that our mispricing zero-cost portfolio displays

alphas relative to factor models, in particular those behavioral models aiming at capturing

temporary, long- and short-horizon deviations of prices from fundamental values (Daniel,

Hirshleifer, and Sun, 2020), as well as models where factors are constructed to capture ag-

gregate mispricing (e.g., Stambaugh and Yuan, 2016; Bartram and Grinblatt, 2018). Table

4 shows the alpha of our zero-cost strategy based on model-implied price deviations. Several

observations stand out. First, the average return of our strategy is not captured by standard

characteristics-based or behavioral factors. In particular, our price deviations convey differ-

ent information from that captured by the Daniel, Hirshleifer, and Sun (2020) behavioral

factors and from the mispricing factor of Bartram and Grinblatt (2018): In correspondence

of these two models (see rightmost two columns of Table 4), we observe that the constant

remains large and statistically, for every panel (i.e. independently of the factors used to

construct the mean-variance portfolio).

Second, we observe that, for three our of the four candidate SDFs (the exception being

the volatility-managed FF5), the lowest alpha obtains in correspondence of the mispricing

factor model of Stambaugh and Yuan (2016). Nevertheless, focusing on the FF5-DMRS in

Panel (d), the alpha remains large and significant at 4.08% per year. Third, we find that

our strategy has a positive and (often) statistically significant loading (not reported) on the

Mgmt and Perf factors of Stambaugh and Yuan (2016), on the Daniel, Hirshleifer, and Sun

(2020) behavioral factor FIN which is designed to capture long-horizon mispricing, as well

as on the mispricing factor of Bartram and Grinblatt (2018). This suggests that indeed

our strategy captures under/over reaction of asset price levels and, to describe accurately

such price dynamics, one needs additional mispricing factors outside those included in the

candidate SDF model (which, in turn, dictates the target price level). Having said that,

none of the mispricing factor proposed in the literature subsumes the performance of our

strategy.

[Insert Figure 3 and Table 4 about here]
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3.3.1 Robustness

We provide a robustness tests for the performance of our mispricing portfolio along four

main dimensions.

First, we investigate the effect of a more frequent rebalancing on our strategy. In partic-

ular, we repeat our analysis when we rebalance our portfolio at monthly frequency, rather

than annual. In this case, an investment strategy using price deviations from the FF5

mean-variance portfolio achieve an annualized return and Sharpe ratio of 4.8% and 0.69,

respectively. Table D.1 quantifies the performance of our strategy. We continue to see

statistically significant alphas even after controlling for the Daniel, Hirshleifer, and Sun

(2020) behavioral and Stambaugh and Yuan (2016) mispricing models, and independently

of the candidate mean-variance portfolios. Since increasing the rebalancing frequency leaves

largely unaffected the magnitude of alphas, while it would likely increase transtaction costs,

our recommendation is to rebalance the mispricing strategy once per year.

Second, we investigate the effect of using alternative estimates for the time-varying betas.

Specifically, Appendix Table E.1 shows the performance of our strategy when the price

deviations ui,t are computed using a shorter length for the rolling window of 2-years (i.e.,

24-months), as in, e.g., Hasler and Martineau (2023). In general, we see that our strategy

continues to deliver statistically significant alphas. In Table E.2, we also verify that our

results continue to hold when we use an even shorter window of 1-year together with daily

returns. Table E.3, instead, shows the performance of our strategy when the time-varying

exposures are computed with the non-parametric approach of Ang and Kristensen (2012).

Note that this approach adjusts the length of the window (over which to compute betas)

based on how much variation there is in portfolio betas. For example, the growth portfolio

does not exhibit much variation in beta so the window estimation procedure picks a long

bandwidth, corresponding to (a windows of about) 60 months. In contrast, we find significant

time variation in beta for the value portfolio and the procedure picks a relatively tighter

windows that allow this variation to be picked up with greater precision. Despite this more

challenging set-up, we confirm the presence of statistically significant alphas for our strategy

that longs portfolio with negative price deviations, and shorts portfolio with positive price

deviations even after controlling for those behavioral and mispricing models proposed in

the literature. In fact, quite surprisingly, we find that the shorter 2-year windows leaves
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the economic value of our mispricing strategies almost unaffected, whereas the use of non-

parametric betas leads to larger gains relative to the benchmark case of betas estimated with

a 5-year window.

Third, we show in Table F.3 the performance of our strategy when the price deviations are

computed relative to either an SDF that employs the q-factors of Hou, Xue, and Zhang (2015)

(Panel (a)) or a volatility-timed version of the same q-model (Panel (b)), or five principal

components plus the market extracted from the underlying test assets. The annualized

return and Sharpe ratio of the strategy which uses deviations of prices from the q-factors are

4.1% and 0.65. When we instead use principal components as (statistical) factors, we obtain

an average return of 6.3% and a Sharpe ratio of 0.86. The table shows that the alpha from

these strategies remains significant even after controlling for benchmark models featuring

behavioral or mispricing factors.

Fourth, DeMiguel, Garlappi, and Uppal (2009) show that measurement error in the mean-

variance weights has a nontrivial impact on the the portfolio performance. Thus, a concern

is that our results are due to a mismeasurement of the factor weights in the SDF. To address

this concern, we replicate our main results using the unconstrained FF5 model, i.e., using the

five-Fama and French (2015) factors instead of the implied mean-variance portfolio. Table

D.2 reports results for our strategy in this case. This strategy generates a Sharpe ratio

of 1.15 with an alpha that is statistically significant even after controlling for benchmark

models. Thus, measurement errors in SDF is not a concern for a real-time investor who uses

price deviations to time anomaly portfolios.

So far we have used a cross-section of 45 characteristics, and the underlying 90 portfolios

from the long and short sides of these strategies. In our last robustness check we instead

employ an even larger cross-section of anomaly portfolios obtained from Chen and Zimmer-

mann (2021). A rank-weighted investment strategy using this large cross-section generates

an annualized performance of 7.2% with an associated Sharpe ratio of 1.13, an increase of

more than 40% with respect the our benchmark case with 90 test assets. This is perhaps

not surprising given that a larger cross-section features more possibilities to find highly over-

and under-priced portfolios. Table G.2 reports results for our strategy when we use this

larger universe of tests assets. The table shows large abnormal returns of a strategy that

buys underpriced anomaly portfolios and sells overpriced portfolios (independently of the
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factors used to construct the mean-variance portfolio). Importantly, in each panel we see

a statistically significant alpha, even after controlling for the Stambaugh and Yuan (2016)

or the Bartram and Grinblatt (2018) mispricing factors, and for the Daniel, Hirshleifer, and

Sun (2020) behavioral model. This evidence suggests that increasing the universe of test as-

sets leads to even larger economic gains for an investor who uses price deviations to predict

anomaly returns.

Overall, our analysis suggests that the deviations of a portfolio price from its long-term

level implied by the mean-variance contain timely information to predict anomaly returns

out-of-sample. Our conclusions is robust to alternative factors used to construct the SDF

(HXZ or FF5-factor models, and their timed version), to the use of non-parametric procedure

for the computation of the time-varying exposures, to the universe of test assets used, and

to alternative ways to construct the strategy.

3.4 Improving Factor Models Using Price Deviations

A unique feature of our approach is that conditional mispecification tests are based on a

predictive framework that uses only information about test assets and the factor model one

wants to test. We explore the idea that price deviations—our endogenous portfolio-specific

predictors—convey aggregate information potentially useful to improve factor models, in a

similar spirit to Stambaugh and Yuan (2016). As shown in the previous Section 3.3, the price

deviations-based portfolios implied by different mean-variance portfolios are unspanned by

existing factor models. Thus, we use these portfolios together with their respective mean-

variance portfolios to re-examine the documented risk-adjusted return predictability.

Specifically, for every candidate stochastic discount factor, we compute a new set of price

deviations—ũt—in a similar way as in (10) but including both the mean-variance and the

price deviations-based portfolios. We then use ũt to re-test equation (13). Table 5 show

the results from the pooled predictive regression (14) that use price deviations computed as

described above. Comparing the result with those in Column (1) of Table 2, it is evident

that the magnitude of the δ estimates is significantly reduced. Furthermore, for FF5 and

DMRS, there is no evidence of risk-adjusted returns predictability associated with the new

price deviations. Thus, for these cases, we cannot reject the null (H0).
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Finally, we also consider a more general approach to construct a mispricing portfolio.

Specifically, we exploit the fact that the price deviations are an effective signals for the time-

series dynamics of anomaly returns (c.f., Section 3.2), and use them as instruments in the

IPCA framework developed by Kelly, Pruitt, and Su (2019). Using price deviations as an

observable anomaly characteristic in IPCA enables us to construct a price deviations-based

latent factor for a given factor model. Then, we consider this latent factor together with the

mean-variance portfolio to compute price deviations and again test equation (13). Appendix

Table D.3 shows the results. Similarly to Table 5, we find no evidence of predictability

for both FF5 and DMRS. Furthermore, when using this improved mispricing portfolio, we

cannot reject the null (H0) also for FF5 with factor timing.

Overall, we find that portfolio-specific components unrelated to the mean-variance port-

folio convey important information about return dynamics and can be used to improve a

given factor model. This finding complements recent evidence by Dello Preite, Uppal, Zaffa-

roni, and Zviadadze (2023) in an unconditional setting. ALE ho aggiunto portfolio specific

compoennt per fare una associazione con idiosyncratic component in Zaffaroni. Il risultato

di Roll mi sembra si applichi sempre quindi l’ho rimosso.

4 Price Deviations and Predictability: Discussion

4.1 A Statistical Interpretation

In their seminal contribution, Fama and French (1988) argue that the (log of) stock price,

lnPi,t, is composed of two parts: a permanent component qi,t, modeled as a random walk

with drift, and a temporary component ui,t, modeled as a stationary AR(1) process,

lnPi,t = qi,t + ui,t (15)

qi,t = qi,t−1 + αi + ηi,t

ui,t = ρiui,t−1 + vi,t

where ηi,t and vi,t are independent processes with zero mean and constant variance and

|ρi| < 1. Fama and French (1988) argue that the slowly mean reverting temporary component

induces predictability in returns.
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It is easy to map our alternative hypothesis (H1) in the Fama and French (1988) frame-

work: just assume that the permanent component for the (log of) stock price is qi,t =

βi lnPmv,t; i.e. the permanent component is common across assets, but the loadings are asset

specific. Thus, our analysis uncovers the return predictability induced by the deviation of

asset prices from their (common) permanent trend captured by the mean-variance portfolio.

4.2 An Economic Interpretation

In the introductory session of our paper we stated that the return predictablity from price

deviations could originate from either slow adjustment of prices to new information or the

presence of Diagnostic Expectations. In this section we develop these two alternative inter-

pretations in the light of our empirical results.

Consider first the case of slow adjustment of prices to new information as considered

in the model proposed by Amihud and Mendelson (1987). Let lnPt be the observed log

asset price, and lnVt+1 its intrinsic value. Prices adjust slowly towards their intrinsic value;

specifically, lnPt evolves according to the following dynamics:

lnPt+1 = lnPt + k(lnVt+1 − lnPt) (16)

where k is a parameter controlling the adjustment of prices towards the asset intrinsic value.

If the adjustment parameter satisfies 0 < k < 1, then the observed asset price lnPt adjusts

slowly to the fundamental price lnVt:

lnPt+1 = k lnVt+1 + (1− k) lnPt (17)

In our language, lnVt is the price of the CMVE portfolio and the difference lnVt+1− lnVt =

rVt+1 is the CMVE portfolio log return. For 0 < k < 1, Eq. (17) describes the dynamics of a

security that manifests temporary deviations from its intrinsic value.

We calibrate rVt to the CMVE portfolio return constructed using the Fama and French

(2015) five-factor model over the period 1967–2019. Specifically, rVt is normally distributed

with an annualized mean of 1.23% and an annualized volatility of 1.12%. The price vector

is constructed as lnVt+1 = lnVt + rVt+1. We then simulate a sample of 636 observations of
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lnPt+1 using equation (17). Using simulated prices, we construct returns. Then, we run

regressions (13) and store the estimated δ. We repeat the simulation 10’000 times.

Figure H.1 reports the distribution of δ for three different calibrations of the adjustment

parameter. For k = 0.5 (top panel), the simple partial-adjustment model features a signif-

icant and negative coefficient on price deviations. The average δ is about −0.25, which is

comparable to the mean value across the 90 anomaly portfolios reported in Table 2 Panel A.

As the adjustment parameter gets closer to one (i.e. full price adjustment to information),

price deviation loadings get closer to zero (c.f., bottom panel with k = .95). Indeed, the

extreme case of an economy without slow adjustments (i.e. k = 1), features a δ centered

exactly at zero.

Our empirical evidence could also be interpreted through the lens of an expectation for-

mation mechanism based on representativeness heuristic where temporary discrepancies are

a consequence of over-reaction to news (e.g., Bordalo, Gennaioli, Porta, and Shleifer, 2019).

Diagnostic Expectations have been proposed to model transitory deviations from Rational

Expectations for stationary univariate processes. Agents with Diagnostic Expectations ex-

trapolate into the future current news about the generic univariate process of interest, xt:

Eθ
t [xt+1] = Et [xt+1] + θ [Et [xt+1]− Et−1 [xt+1]] , (18)

where the parameter θ controls the size of the deviations from rational expectations. Expec-

tations are diagnostic when θ > 0, and are rational when θ = 0. Diagnostic Expectations

converge to Rational Expectations in the long-run but in the short-run current news in xt

(e.g., excess returns) are extrapolated into the future. Our framework in Section 2 is related

to this belief formation mechanism albeit with important differences. First, our framework

is bi-variate and, thus, it requires a description of the test asset and mean-variance portfolio

dynamics. Second, our framework requires non-stationary processes for the prices (of the

individual asset and of the mean-variance portfolio), consistent with the Fama and French

(1988) decomposition discussed in Section 4.1. In particular, time-t expectations of next pe-

riod asset returns depend on their expectations conditional upon the returns on the CMVE

portfolio and on the deviations of prices from their expectations conditional upon the price

of the CMVE portfolio at time t:
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Et [ri,t+1] = Et [ri,t+1|rmvt ] + δi (lnPi,t − E [lnPi,t| lnPmv,t]) , (19)

where negative values for δi imply that returns increase (decrease) when prices are below

(above) their conditional expectations at time t. In other words, while prices are non station-

ary, the deviations of prices lnPi,t from their projection on the minimum-variance portfolio

prices (E [lnPi,t | lnPmv,t]) are temporary (i.e. stationary); in this sense, the price deviations

play a similar role as the news term in the DE framework (18).

5 Conclusion

Standard asset pricing theory establishes that risk-adjusted returns should be unpredictable.

Instead, this paper documents that deviations of portfolio prices from the value dictated by

leading factor models predict future risk-adjusted portfolio returns with a negative sign.

This predictability is endogenous to the model, i.e. it does not need any conditioning

variables beyond those used in the construction of the conditional mean-variance efficient

portfolio. We also show how such a predictability can be used to test the conditional va-

lidity of any given SDF. The portfolio return predictability we documented translates into

large economic gains. In particular, a real-time strategy that exploits mean-reverting price

deviations generates Sharpe ratios between 0.7 and 1.2.

From a data generating process point of view, we show that our results are consistent

with a permanent-transitory decomposition of prices. From an economic standpoint, instead,

our empirical evidence can be rationalized within an economy featuring slow adjustment of

prices or where agents overweight “representative” events in reacting to incoming news.

Our results have implications for the practical implementation of asset allocation and risk

management based on the parsimonious factor representation of large cross-sections of assets.

Finally, we show that price deviations—our endogenous portfolio-specific predictors—convey

aggregate information potentially useful to improve factor models, as the price-devitions

based portfolios are unspanned by existing factor models.
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Table 1: Price Deviations: Summary Statistics

This table reports descriptive statistics for price deviations computed using different heuristic mean-variance
efficient portfolios. Price deviations û are computed as in equation (10). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020); see Appendix Table C.1 for
a description of the anomalies. To compute different heuristic mean-variance efficient portfolios, we employ
Fama and French (2015, FF5), its factor-timing and volatility-managed versions, and its characteristics-
efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. Panel A reports the half-life (in
months) distribution of price deviations for each factor model. Panel B reports the standard deviation (in
percentage) distribution of price deviations for each factor model. Panel C reports the average correlation
across price deviations for each factor model. Panel D reports the proportion of variance explained by the
first five principal components (PC). Monthly observations. The sample period is 1967 to 2019.

Panel A: Half-Life

Model Mean Min Pctl(25) Median Pctl(75) Max

FF5 30.1 14.4 23.6 27.4 36.1 62.7
FF5 with factor-timing 34.3 17.0 24.4 32.7 40.4 76.7
Volatility-managed FF5 30.4 16.6 23.6 28.5 34.3 86.3
FF5-DMRS 30.3 14.1 25.3 28.5 34.3 53.0

Panel B: Standard Deviation

Model Mean Min Pctl(25) Median Pctl(75) Max

FF5 21.0 13.2 17.8 20.5 23.6 33.2
FF5 with factor-timing 26.3 18.6 23.3 25.9 28.6 34.6
Volatility-managed FF5 23.6 10.7 20.0 22.9 27.1 39.7
FF5-DMRS 25.2 15.1 21.6 25.2 27.8 40.4

Panel C: Correlation Matrix

FF5 factor-timing vol-timing FF5-DMRS

FF5 1 0.797 0.593 0.841
FF5 with factor-timing 1 0.272 0.851
Volatility-managed FF5 1 0.553
FF5-DMRS 1

Panel D: Principal Component Analysis

Model PC1 PC2 PC3 PC4 PC5 cumulative

FF5 0.542 0.169 0.111 0.037 0.028 0.888
FF5 with factor-timing 0.756 0.065 0.055 0.030 0.020 0.926
Volatility-managed FF5 0.669 0.134 0.055 0.029 0.020 0.908
FF5-DMRS 0.736 0.076 0.061 0.032 0.017 0.922
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Table 2: Predicting Anomaly Returns with Price Deviations

This table reports pooled estimates for δi from predictive regression (14). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10). We report results for price deviations computed using different heuristic mean-variance
efficient portfolios. Panel A reports results for the Fama and French (2015, FF5) factor model, Panels B
and C report results for its factor-timing and volatility-managed versions, and Panel D reports results for its
characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. Our panel features:
n = 565, T = 90, N = 50850. Values in parenthesis are Driscoll and Kraay (1998) robust standard errors
for panel models with cross-sectional and serial correlation. ***, **, and * indicates respectively 1%, 5%,
and 10% level of significance. Monthly observations of annual returns. The sample period is 1967 to 2019.

Panel A: FF5

(1) (2) (3) (4) (5)

δ −0.222∗∗∗ −0.183∗∗∗ −0.229∗∗∗ −0.217∗∗∗ −0.223∗∗∗

(0.029) (0.028) (0.033) (0.028) (0.028)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.097 0.131 0.098 0.102 0.128

Panel B: FF5 with factor-timing

(1) (2) (3) (4) (5)

δ −0.218∗∗∗ −0.173∗∗∗ −0.202∗∗∗ −0.202∗∗∗ −0.197∗∗∗

(0.031) (0.033) (0.029) (0.027) (0.028)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.112 0.143 0.116 0.119 0.131

Panel C: Volatility-managed FF5

(1) (2) (3) (4) (5)

δ −0.273∗∗∗ −0.258∗∗∗ −0.279∗∗∗ −0.285∗∗∗ −0.307∗∗∗

(0.059) (0.053) (0.056) (0.058) (0.052)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.125 0.219 0.125 0.151 0.203

Panel D: FF5-DMRS

(1) (2) (3) (4) (5)

δ −0.265∗∗∗ −0.188∗∗∗ −0.267∗∗∗ −0.252∗∗∗ −0.245∗∗∗

(0.040) (0.042) (0.041) (0.039) (0.037)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.118 0.173 0.118 0.125 0.169
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Table 3: Out-of-Sample Predictability

This table reports the out-of-sample R2 (R2
OOS) for the predictive regression r̃i,t+1 = ai + biûi,t + εi,t,

where r̃i,t+1 is the test asset i log risk-adjusted return at time t + 1 and price deviations û are computed
as in equation (10). Test assets are the long legs for the 45 anomalies constructed in Kozak, Nagel, and
Santosh (2020). We report results for price deviations computed using different heuristic mean-variance
efficient portfolios. Panel A reports results for the Fama and French (2015, FF5) factor model, Panels B
and C report results for its factor-timing and volatility-managed versions, and Panel D reports results for its
characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. The R2

OOS is computed
as in Campbell and Thompson (2008); p-values for R2

OOS are computed as in Clark and West (2007). The
burn-in sample starts in Jan 1967 and ends in Dec 1987, we then use an expanding window for estimating
the predictive regressions. Monthly observations of annual returns.

Panel A: FF5

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 17.02∗∗∗ indmom 2.87∗∗∗ price −19.42
age 5.21∗∗∗ indmomrev 6.55∗∗∗ prof −17.56
aturnover −7.48 indrrev 12.00∗∗∗ roaa −12.00
betaarb −11.68 indrrevlv −0.56 roea −11.01
cfp 0.49∗∗∗ inv 16.10∗∗∗ season 8.94∗∗∗

ciss −1.32 invcap 10.65∗∗∗ sgrowth 18.28∗∗∗

divg 13.49∗∗∗ ivol −14.82 shvol −10.73
divp 1.38∗∗∗ lev −6.82 size 7.48∗∗∗

dur 7.35∗∗∗ lrrev 12.02∗∗∗ sp 18.31∗∗∗

ep 9.61∗∗∗ mom 5.88∗∗∗ strev 9.75∗∗∗

exchsw −3.44 mom12 7.16∗∗∗ valmom 11.3∗∗∗

fscore 2.03∗∗∗ momrev 12.60∗∗∗ valmomprof 7.82∗∗∗

gmargins −14.57 nissa −5.53 valprof 20.24∗∗∗

growth 11.78∗∗∗ nissm 1.69∗∗∗ value 0.97∗∗∗

igrowth 8.70∗∗∗ noa −18.42 valuem −1.6
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Panel B: FF5 with factor-timing

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 5.93∗∗∗ indmom −9.04 price −15.97
age 10.68∗∗∗ indmomrev −10.2 prof −13.76
aturnover −6.23 indrrev 4.17∗∗∗ roaa −21.12
betaarb −10.55 indrrevlv −15.69 roea −18.27
cfp 15.24∗∗∗ inv 3.14∗∗∗ season −10.99
ciss 3.75∗∗∗ invcap 3.46∗∗∗ sgrowth 7.85∗∗∗

divg −8.55 ivol −5.43 shvol −0.53
divp −1.52 lev −2.02 size 8.17∗∗∗

dur 11.2∗∗∗ lrrev −3.49 sp 12.91∗∗∗

ep −5.49 mom 1.31∗∗∗ strev 3.94∗∗∗

exchsw −9.81 mom12 −5.81 valmom −1.35
fscore −5.61 momrev −3.79 valmomprof −8.12
gmargins −22.75 nissa −16.46 valprof 14.95∗∗∗

growth 9.10∗∗∗ nissm −4.38 value 16.51∗∗∗

igrowth −2.34 noa −17.56 valuem −3.04

Panel C: Volatility-managed FF5

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 4.49∗∗∗ indmom 12.74∗∗∗ price 9.1∗∗∗

age 9.28∗∗∗ indmomrev 3.37∗∗∗ prof 16.11∗∗∗

aturnover −5.07 indrrev 2.89∗∗∗ roaa 12.5∗∗∗

betaarb 12.36∗∗∗ indrrevlv −5.41 roea 12.19∗∗∗

cfp −0.24 inv 8.79∗∗∗ season 7.74∗∗∗

ciss 15.23∗∗∗ invcap 16.45∗∗∗ sgrowth 14.11∗∗∗

divg 15.27∗∗∗ ivol 10.58∗∗∗ shvol 6.58∗∗∗

divp −0.01 lev −4.73 size 9.28∗∗∗

dur −10.07 lrrev 7.85∗∗∗ sp 2.31∗∗∗

ep 2.30∗∗∗ mom 18.06∗∗∗ strev 5.25∗∗∗

exchsw 15.9∗∗∗ mom12 15.05∗∗∗ valmom 1.76∗∗∗

fscore 18.9∗∗∗ momrev 15.39∗∗∗ valmomprof 10.15∗∗∗

gmargins 8.65∗∗∗ nissa 6.19∗∗∗ valprof −2.7
growth 11.62∗∗∗ nissm 8.27∗∗∗ value −1.43
igrowth 13.84∗∗∗ noa 6.37∗∗∗ valuem 5.78∗∗∗
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Panel D: FF5-DMRS

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 11.55∗∗∗ indmom 1.22∗∗∗ price −13.99
age 6.76∗∗∗ indmomrev −1.87 prof −17.42
aturnover −5.7 indrrev 18.94∗∗∗ roaa −19.36
betaarb 4.69∗∗∗ indrrevlv −0.56 roea −16.73
cfp 17.1∗∗∗ inv 15.95∗∗∗ season 1.2∗∗∗

ciss 0.9∗∗∗ invcap 14.27∗∗∗ sgrowth 12.52∗∗∗

divg 8.49∗∗∗ ivol −12.15 shvol −5.88
divp 5.21∗∗∗ lev 7.29∗∗∗ size 9.28∗∗∗

dur 12.10∗∗∗ lrrev 6.71∗∗∗ sp 17.18∗∗∗

ep 13.08∗∗∗ mom 8.61∗∗∗ strev 18.87∗∗∗

exchsw −2.54 mom12 10.07∗∗∗ valmom 10.29∗∗∗

fscore 0.84∗∗∗ momrev 6.59∗∗∗ valmomprof −2.63
gmargins −16.49 nissa −10.15 valprof 8.23∗∗∗

growth 14.67∗∗∗ nissm −0.43 value 21.74∗∗∗

igrowth 13.17∗∗∗ noa −19.09 valuem 13.4∗∗∗
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Table 4: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90
top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-
based strategy. Price deviations û are computed as in equation (10). We report results for price deviations
computed using different heuristic mean-variance efficient portfolios. Panel A reports results for the Fama
and French (2015, FF5) factor model, Panels B and C report results for its factor return and volatility timed
versions, and Panel D reports results for its characteristics-efficient version computed in Daniel et al. (2020),
dubbed FF5-DMRS. We control for the following factor models: Carhart (1997) (C4), Fama and French
(2018) (FF6), Hou, Xue, and Zhang (2015) (q), Stambaugh and Yuan (2016) (SY4), Daniel, Hirshleifer, and
Sun (2020) (DHS3), Bartram and Grinblatt (2018) (BG3). Values in parenthesis are Newey and West (1987)
robust standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly
observations. The sample period is 1967 to 2019.

Panel A: FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.39∗∗∗ 0.29∗∗∗ 0.28∗∗∗ 0.23∗∗∗ 0.33∗∗∗ 0.51∗∗∗

(0.07) (0.07) (0.09) (0.07) (0.10) (0.11)

Adjusted R2 0.62 0.67 0.49 0.55 0.41 0.26

Panel B: FF5 with factor-timing

C4 FF6 q SY4 DHS3 BG3

Constant 0.50∗∗∗ 0.42∗∗∗ 0.43∗∗∗ 0.33∗∗∗ 0.39∗∗∗ 0.64∗∗∗

(0.09) (0.08) (0.09) (0.07) (0.09) (0.12)

Adjusted R2 0.54 0.57 0.38 0.46 0.34 0.16

Panel C: Volatility-managed FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.32∗∗∗ 0.27∗∗∗ 0.20∗∗ 0.25∗∗∗ 0.28∗∗∗ 0.34∗∗∗

(0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

Adjusted R2 0.40 0.43 0.28 0.32 0.31 0.20

Panel D: FF5-DMRS

C4 FF6 q SY4 DHS3 BG3

Constant 0.51∗∗∗ 0.41∗∗∗ 0.40∗∗∗ 0.34∗∗∗ 0.42∗∗∗ 0.58∗∗∗

(0.11) (0.10) (0.10) (0.08) (0.11) (0.13)

Adjusted R2 0.49 0.53 0.37 0.46 0.32 0.18
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Table 5: Improving Factor Models Using Price Deviations

This table reports pooled estimates for δi from predictive regression (14). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations ũ are com-
puted as described in Section 3.4. We report results for price deviations computed using different heuristic
mean-variance efficient portfolios. Column (1) reports results for the Fama and French (2015, FF5) factor
model, Columns (2) and (3) report results for its factor-timing and volatility-managed versions, and Col-
umn (4) reports results for its characteristics-efficient version computed in Daniel et al. (2020). Values in
parenthesis are Driscoll and Kraay (1998) robust standard errors for panel models with cross-sectional and
serial correlation. Constant estimates are not tabulated ***, **, and * indicates respectively 1%, 5%, and
10% level of significance. Monthly observations of annual returns. The sample period is 1967 to 2019.

(1) (2) (3) (4)

δ −0.025 −0.031∗∗ −0.078∗∗∗ −0.012
(0.018) (0.015) (0.029) (0.013)

Observations 28,170 28,170 28,170 28,170
Adjusted R2 0.006 0.010 0.026 0.002
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Panel A: FF5
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Figure 1: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10). We report results for price deviations computed using different heuristic mean-variance
efficient portfolios. Panel A reports results for the Fama and French (2015, FF5) factor model, Panle B
and C report results for its factor return and volatility timed versions, and Panel D reports results for its
characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. Standard errors for δ̂
are computed as in Hodrick (1992). Monthly observations of annual returns. The sample period is 1967 to
2019.
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Panel B: FF5 with factor-timing
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Panel C: Volatility-Managed FF5
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Panel D: FF5-DMRS

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

lrrev

strev

indmomrev

indrrev

indrrevlv

(a) reversal

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

valmom

valmomprof

valprof

(b) value interaction

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

mom mom12

indmom

momrev

(c) momentum

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

value

valuem

divp ep

cfp
sp

lev

sgrowth
dur

(d) value

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

inv

invcap

igrowth
growth

noa

ciss

nissa

nissm

(e) investment

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

prof
roaa

roea gmargins

(f) profitability

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

ivol

shvol

aturnover

size

price
betaarb

(g) trading frictions

52



0 10 20 30 40 50 60

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

month

δ̂

(a) FF5

0 10 20 30 40 50 60

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

month

δ̂
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(c) Volatility-managed FF5
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Figure 2: Price Deviations and Horizon of Predictability. This figure shows pooled
regression estimates of δi for equation (13) for h-period ahead monthly returns (h = 1, . . . , 60). Test assets
are the 90 top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price
deviations û are computed as in equation (10). We report results for price deviations computed using
different heuristic mean-variance efficient portfolios. Panel A reports results for the Fama and French (2015,
FF5) factor model, Panle B and C report results for its factor return and volatility timed versions, and Panel
D reports results for its characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS.
Standard errors are computed as in Newey and West (1987) with automatic bandwidth selection procedure
as described in Newey and West (1994). Non-overlapping monthly observations. The sample period is 1967
to 2019.
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(d) FF5-DMRS

Figure 3: Anomaly Portfolios Rotation using Real-Time Price Deviations. Once
per year, we sort the 90 top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh
(2020) using a zero-cost rank-based strategy. Long (short) portfolio corresponds to the cumulative gains of
a dynamic strategy that goes long on the 45 portfolios associated with the highest (lowest) expected return
implied by the portfolio-specific price deviation. MKT is the performance of a static buy-and-hold strategy
on the market portfolio in excess of the risk-free rate. Price deviations û are computed as in equation (10).
We report results for price deviations computed using different heuristic mean-variance efficient portfolios.
Panel A reports results for the Fama and French (2015, FF5) factor model, Panle B and C report results
for its factor return and volatility timed versions, and Panel D reports results for its characteristics-efficient
version computed in Daniel et al. (2020), dubbed FF5-DMRS. Shaded areas are NBER recessions. Monthly
observations.
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Appendix

A Mean-variance efficient portfolio and the SDF

Define Σt = Vt
[
Re
t+1

]
and µt = Et

(
Re
t+1

)
and consider the following portfolio:

RC
t+1 = wᵀ

tR
e
t+1 (A.1)

wt = k−1
t Σ−1

t µt (A.2)

Next, we show that the SDF

MC
t+1 = 1− kt

(
RC
t+1 − Et

[
RC
t+1

])
prices all assets conditionally:

Et
[
MC

t+1R
e
t+1

]
= Et

[
1− kt

(
RC
t+1 − Et

[
RC
t+1

])
Re
t+1

]
= Et

[
Re
t+1

]
− ktEt

[(
wᵀ
tR

e
t+1 − w

ᵀ
tEt

[
Re
t+1

])
Re
t+1

]
= Et

[
Re
t+1

]
− ktwᵀ

tEt
[(
Re
t+1 − Et

[
Re
t+1

])
Re
t+1

]
= Et

[
Re
t+1

]
− ktk−1

t µᵀ
tΣ
−1
t Σt

= 0 (A.3)

The parameter kt is found by pricing the portfolio RC
t+1 itself:

Et
[
MC

t+1R
C
t+1

]
= Et

[
1− kt

(
RC
t+1 − Et

[
RC
t+1

])
RC
t+1

]
= Et

[
RC
t+1

]
− ktEt

[(
RC
t+1 − Et

[
RC
t+1

])
RC
t+1

]
= Et

[
RC
t+1

]
− Vt

[
RC
t+1

]
kt

= 0⇔ kt =
(
Vt
[
RC
t+1

])−1
Et
[
RC
t+1

]
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B Price deviations when factor returns are i.i.d.

This example is inspired by Section 2.4 in Chernov, Lochstoer, and Lundeby (2021).

Suppose that the true model is given by:

Mt+1 = 1− bᵀ (ft+1 − E[ft+1]) , b = V (ft+1)−1E [ft+1]

where the factors ft+1 are excess returns to traded portfolios.

Suppose also that the factor returns are i.i.d. Thus, the model prices the factors both

conditionally and unconditionally.

Despite the factors being i.i.d., our predictive model (6) implies that test assets’ returns

are not, since their dynamics feature the (persistent) ui,t term:

rei,t+1 = β′ift+1 + ∆ui,t+1︸ ︷︷ ︸
δiui,t+εi,t+1

.

ui,t = (lnPi,t − lnPf,t)− βi lnPf,t,

ui,t = ρiui,t−1 + εi,t

where δi = 1− ρi and for simplicity we have omitted the constant.

Note that the SDF prices rit+1 unconditionally:

E
[
Mt+1r

e
i,t+1

]
= E [(1− bᵀ (ft+1 − E[ft+1])) (β′ift+1 + ∆ui,t+1)]

= (β′iE [(1− bᵀ (ft+1 − E[ft+1])) ft+1]︸ ︷︷ ︸
=0 using the definition of b

+E [(1− bᵀ (ft+1 − E[ft+1])) ∆ui,t+1]

where the last term is zero given our assumption of factors being independent over time

and the price deviations ui,t being zero mean. However, the SDF does not prices rei,t+1
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conditionally:

Et
[
Mt+1r

e
i,t+1

]
= Et [(1− bᵀ (ft+1 − E[ft+1])) (β′ift+1 + ∆ui,t+1)]

= β′i Et [(1− bᵀ (ft+1 − E[ft+1])) ft+1]︸ ︷︷ ︸
=0 using the definition of b and factors being iid

+ Et [(bᵀ (ft+1 − E[ft+1])) ∆ui,t+1]︸ ︷︷ ︸
=0 since factors are i.i.d and property of ui,t

+ Et [∆ui,t+1]

= δiui,t

where in the last step we exploit the AR(1) dynamics for ui,t.

Furthermore, we have that

Cov (ui,t−1, ui,t) 6= 0

In words, through our predictive system we document that test assets feature persistent

pricing errors.22

22In the notation of Chernov, Lochstoer, and Lundeby (2021), δiui,t is the conditional pricing error at
horizon h = 1.
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C Test Assets

Table C.1: Categories

We group anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) following Lettau and Pelger
(2020). This table lists the categories and the portfolios that we include in each category. Differently
from Lettau and Pelger (2020), we allocate some of the portfolios in the category “others” across the other
categories. In total, we consider 8 categories and 45 anomaly portfolios. Anomalies are defined in Kelly,
Kozak, and Giglio (2020), Haddad, Kozak, and Santosh (2020), and Kozak, Nagel, and Santosh (2020).

Category Anomaly Portfolios

reversal indmomrev, indrrev, indrrevlv, lrrev, strev
value interaction valmom, valmomprof, valprof
momentum indmom, mom, mom12, momrev
value cfp, divp, dur, ep, lev, sgrowth, sp, value, valuem
investment ciss, inv, invcap, igrowth, growth, nissa, nissm, noa
profitability gmargins, prof, roaa, roea
trading frictions aturnover, betaarb, ivol, price, shvol, size
others accruals, age, divg, exchsw, fscore, season

Notes: lrrev is long-term reversal calculated as in De Bondt and Thaler (1985). strev is short-term rever-
sal calculated as in Jegadeesh (1990). indmomrev is industry momentum-reversal reversal calculated as in
Moskowitz and Grinblatt (1999). indrrev is industry relative reversal calculated as in Da, Liu, and Schaum-
burg (2014). indrrevlv is industry relative reversal low volatility calculated as in Da, Liu, and Schaumburg
(2014). valmom is value-momentum calculated as in Novy-Marx (2013). valmomprof is value-momentum-
profitability calculated as in Novy-Marx (2013). valprof is value-profitability calculated as in Novy-Marx
(2013). mom is 6-months momentum calculated as in Jegadeesh and Titman (1993). mom12 is 12-months
momentum calculated as in Jegadeesh and Titman (1993). indmom is long-term reversal calculated as in
Moskowitz and Grinblatt (1999). momrev is momentum-reversal calculated as in Jegadeesh and Titman
(1993). value is annual value calculated as in Fama and French (1993). valuem is monthly value calculated
as in Asness and Frazzini (2013). divp is dividend yield calculated as in Naranjo, Nimalendran, and Ryngaert
(1998). ep is earnings/price calculated as in Basu (1977). cfp is cash-flow/market value of equity calculated
as in Lakonishok, Shleifer, and Vishny (1994). sp is sales-to-price calculated as in Barbee Jr, Mukherji,
and Raines (1996). lev is leverage calculated as in Bhandari (1988). sgrowth is sales growth calculated
as in Lakonishok, Shleifer, and Vishny (1994). inv is investment calculated as in Chen, Novy-Marx, and
Zhang (2011). invcap is investment-to-capital calculated as in Xing (2008). igrowth is investment growth
calculated as in Xing (2008). growth is asset growth calculated as in Cooper, Gulen, and Schill (2008). noa
is net operating asset calculated as in Hirshleifer et al. (2004). ciss is composite issuance calculated as in
Daniel and Titman (2006). prof is ross profitability calculated as in Novy-Marx (2013). roaa is annual return
on assets calculated as in Chen, Novy-Marx, and Zhang (2011). roea is annual return on equity calculated
as in Haugen, Baker et al. (1996). gmargins is gross margins calculated as in Novy-Marx (2013). ivol is
idiosyncratic volatility calculated as in Ang et al. (2006). shvol is share volume calculated as in Datar, Naik,
and Radcliffe (1998). aturnover is asset turnover calculated as in Soliman (2008). size is size calculated as
in Fama and French (1993).
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D Fama and French (2015): Further Results

D.1 Bottom Deciles
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Figure D.1: Anomaly Portfolios and Price Deviations. This figure shows estimates for
δi from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the
45 bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are
computed as in equation (10). We report results for price deviations computed using the Fama and French

(2015) factor model to calculate the mean-variance efficient portfolio. Standard errors for δ̂ are computed
as in Hodrick (1992). Monthly observations of annual returns. The sample period is 1967 to 2019.
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D.2 Monthly (Non-Overlapping) Observations
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Figure D.2: Anomaly Portfolios and Price Deviations – Top Deciles. This figure
shows estimates for δi from regression (13) with respective confidence intervals at 5% level of significance.
Test assets are the 45 top anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). We report
results for price deviations computed using the Fama and French (2015) factor model to calculate the mean-

variance efficient portfolio. Standard errors for δ̂ are computed as in Hodrick (1992). Monthly observations
of annual returns. The sample period is 1967 to 2019.
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Table D.1: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. The price deviations are relative
to the mean-variance efficient portfolio implied by the Fama and French (2015) factor model. Once per
month, we sort the 90 top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020)
using a zero-cost rank-based strategy. Price deviations û are computed as in equation (10). Values in
parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.35∗∗∗ 0.25∗∗∗ 0.25∗∗ 0.19∗∗ 0.32∗∗∗ 0.49∗∗∗

(0.09) (0.09) (0.10) (0.08) (0.12) (0.14)

MKT −0.13∗∗∗ −0.08∗∗∗ −0.11∗∗∗ −0.06∗∗ −0.10∗∗∗ −0.22∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.03) (0.05)

SMB 0.13∗∗∗ 0.17∗∗∗ 0.24∗∗∗ 0.10∗∗

(0.04) (0.04) (0.05) (0.04)

HML 0.43∗∗∗ 0.27∗∗∗

(0.06) (0.04)

Mom 0.18∗∗∗ 0.16∗∗∗

(0.02) (0.03)

RMW 0.13∗

(0.08)

CMA 0.23∗∗∗

(0.05)

ME 0.21∗∗∗

(0.05)

IA 0.45∗∗∗

(0.10)

ROE 0.22∗∗∗

(0.06)

Mgmt 0.45∗∗∗

(0.09)

Perf 0.14∗∗∗

(0.05)

PEAD 0.11
(0.10)

FIN 0.19∗

(0.10)

BG 0.10∗∗∗

(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.58 0.62 0.46 0.49 0.28 0.23

61



D.3 Unconstrained FF5

Table D.2: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. The price deviations are relative
to the Fama and French (2015) factor model. Once per year, we sort the 90 top and bottom anomaly
portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-based strategy. Price
deviations û are computed as in equation (10). Values in parenthesis are Newey and West (1987) robust
standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly
observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.45∗∗∗ 0.34∗∗∗ 0.34∗∗∗ 0.30∗∗∗ 0.35∗∗∗ 0.53∗∗∗

(0.06) (0.06) (0.06) (0.05) (0.06) (0.09)

MKT −0.09∗∗∗ −0.04∗ −0.07∗∗∗ −0.03 −0.05∗∗ −0.15∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.04)

SMB 0.00 0.05∗∗ 0.08∗∗∗ −0.03
(0.02) (0.02) (0.03) (0.03)

HML 0.30∗∗∗ 0.16∗∗∗

(0.04) (0.02)

Mom 0.10∗∗∗ 0.09∗∗∗

(0.02) (0.01)

RMW 0.17∗∗∗

(0.03)

CMA 0.23∗∗∗

(0.03)

ME 0.06∗∗

(0.03)

IA 0.40∗∗∗

(0.05)

ROE 0.16∗∗∗

(0.03)

Mgmt 0.35∗∗∗

(0.05)

Perf 0.09∗∗∗

(0.03)

PEAD 0.08∗∗∗

(0.03)

FIN 0.21∗∗∗

(0.04)

BG 0.08∗∗∗

(0.02)

Observations 384 384 384 384 384 384
Adjusted R2 0.59 0.68 0.55 0.58 0.49 0.25
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D.4 Improving Factor Models: IPCA
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Table D.3: Improving Factor Models Using Price Deviations

This table reports pooled estimates for δi from predictive regression (14). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations are computed
as described in Section 3.4. We report results for price deviations computed using different heuristic mean-
variance efficient portfolios. Column (1) reports results for the Fama and French (2015, FF5) factor model,
Columns (2) and (3) report results for its factor-timing and volatility-managed versions, and Column (4)
reports results for its characteristics-efficient version computed in Daniel et al. (2020). Values in parenthesis
are Driscoll and Kraay (1998) robust standard errors for panel models with cross-sectional and serial corre-
lation. Constant estimates are not tabulated ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. Monthly observations of annual returns. The sample period is 1967 to 2019.

(1) (2) (3) (4)

δ −0.014 0.007 −0.131∗∗∗ −0.026
(0.016) (0.027) (0.036) (0.018)

Observations 45,360 45,270 45,360 45,360
Adjusted R2 0.001 0.000 0.061 0.007
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E Alternative Conditional Betas: Robustness

E.1 24-Months Estimation Window
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Figure E.1: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10) using a 2-year rolling window to calculate time-varying parameters. We report results for
price deviations computed using the Fama and French (2015) factor model to compute the mean-variance

efficient portfolio. Standard errors for δ̂ are computed as in Hodrick (1992). Monthly observations of annual
returns. The sample period is 1967 to 2019.
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Table E.1: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-based
strategy. Price deviations û are computed as in equation (10) using a 2-year rolling window to calculate
time-varying parameters. We report results for price deviations computed using the Fama and French (2015)
factor model to calculate the mean-variance efficient portfolio. Values in parenthesis are Newey and West
(1987) robust standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance.
Monthly observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.37∗∗∗ 0.27∗∗∗ 0.23∗∗∗ 0.22∗∗∗ 0.33∗∗∗ 0.39∗∗∗

(0.08) (0.06) (0.07) (0.07) (0.09) (0.11)

MKT −0.07∗∗∗ −0.03∗ −0.03 −0.01 0.00 −0.11∗∗

(0.02) (0.02) (0.03) (0.03) (0.03) (0.05)

SMB 0.01 0.09∗∗∗ 0.09 −0.05
(0.03) (0.03) (0.06) (0.05)

HML 0.43∗∗∗ 0.34∗∗∗

(0.06) (0.04)

Mom 0.03 0.01
(0.03) (0.02)

RMW 0.22∗∗∗

(0.04)

CMA 0.08
(0.05)

ME 0.06
(0.05)

IA 0.47∗∗∗

(0.10)

ROE 0.13∗

(0.07)

Mgmt 0.43∗∗∗

(0.06)

Perf −0.01
(0.04)

PEAD −0.12∗∗∗

(0.05)

FIN 0.26∗∗∗

(0.05)

BG 0.19∗∗∗

(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.60 0.68 0.39 0.51 0.46 0.26
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E.2 Using Daily Returns for Calculating Betas
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Figure E.2: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10) using daily returns to calculate time-varying betas over an estimation window of one
year. We report results for price deviations computed using the Fama and French (2015) factor model to

calculate the mean-variance efficient portfolio. Standard errors for δ̂ are computed as in Hodrick (1992).
Monthly observations of annual returns. The sample period is 1967 to 2019.
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Table E.2: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the
90 top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost
rank-based strategy. Price deviations û are computed as in equation (10) using daily returns to calculate
time-varying betas over an estimation window of one year. We report results for price deviations computed
using the Fama and French (2015) factor model to calculate the mean-variance efficient portfolio. Values in
parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.53∗∗∗ 0.43∗∗∗ 0.40∗∗∗ 0.34∗∗∗ 0.42∗∗∗ 0.52∗∗∗

(0.13) (0.11) (0.11) (0.08) (0.12) (0.13)

MKT −0.04 0.00 0.01 0.04∗ 0.04 −0.07
(0.03) (0.02) (0.04) (0.03) (0.04) (0.06)

SMB −0.05 0.00 0.04 −0.13∗∗

(0.04) (0.05) (0.07) (0.05)

HML 0.43∗∗∗ 0.32∗∗∗

(0.09) (0.05)

Mom −0.01 −0.02
(0.05) (0.04)

RMW 0.17∗∗

(0.08)

CMA 0.18∗

(0.10)

ME −0.02
(0.06)

IA 0.56∗∗∗

(0.13)

ROE 0.05
(0.08)

Mgmt 0.49∗∗∗

(0.08)

Perf −0.02
(0.06)

PEAD −0.05
(0.08)

FIN 0.29∗∗∗

(0.07)

BG 0.23∗∗∗

(0.05)

Observations 384 384 384 384 384 384
Adjusted R2 0.44 0.47 0.30 0.43 0.30 0.22
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E.3 Nonparametric Conditional Betas (Ang and Kristensen, 2012)
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Figure E.3: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10) using the methodology proposed by Ang and Kristensen (2012) to calculate time-varying
parameters. We report results for price deviations computed using the Fama and French (2015) factor model

to calculate the mean-variance efficient portfolio. Standard errors for δ̂ are computed as in Hodrick (1992).
Monthly observations of annual returns. The sample period is 1967 to 2019.
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Table E.3: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90
top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-
based strategy. Price deviations û are computed as in equation (10) using the methodology proposed by Ang
and Kristensen (2012) to calculate time-varying parameters. We report results for price deviations computed
using the Fama and French (2015) factor model to calculate the mean-variance efficient portfolio. Values in
parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.61∗∗∗ 0.57∗∗∗ 0.58∗∗∗ 0.51∗∗∗ 0.50∗∗∗ 0.73∗∗∗

(0.09) (0.09) (0.11) (0.09) (0.10) (0.11)

MKT −0.14∗∗∗ −0.12∗∗∗ −0.14∗∗∗ −0.09∗∗∗ −0.10∗∗∗ −0.20∗∗∗

(0.03) (0.03) (0.04) (0.03) (0.03) (0.03)

SMB 0.02 0.05 0.09∗∗ 0.01
(0.04) (0.04) (0.04) (0.05)

HML 0.24∗∗∗ 0.19∗∗∗

(0.04) (0.05)

Mom 0.14∗∗∗ 0.14∗∗∗

(0.02) (0.02)

RMW 0.08
(0.05)

CMA 0.07
(0.05)

ME 0.07
(0.04)

IA 0.24∗∗∗

(0.07)

ROE 0.14∗∗∗

(0.05)

Mgmt 0.28∗∗∗

(0.05)

Perf 0.11∗∗∗

(0.03)

PEAD 0.17∗∗∗

(0.06)

FIN 0.18∗∗∗

(0.06)

BG 0.03
(0.03)

Observations 384 384 384 384 384 384
Adjusted R2 0.43 0.44 0.31 0.37 0.36 0.22
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F Alternative Factor Models: Robustness

F.1 Predictive regressions

Table F.1: Pooled Regressions for Alternative Factor Models

This table reports pooled estimates for δi from predictive regression (14). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020). Price deviations û are computed
as in equation (10). We report results for different heuristic mean-variance efficient portfolios. Panel A
reports results for the Hou, Xue, and Zhang (2015, HXZ) factor model, Panel B reports results for its
volatility timed version, and Panel C reports results for the principal component model employed in Haddad,
Kozak, and Santosh (2020). Our panel features: n = 565, T = 90, N = 50850. Values in parenthesis are
Driscoll and Kraay (1998) robust standard errors for panel models with cross-sectional and serial correlation.
***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly observations of annual
returns. The sample period is 1967 to 2019.

Panel A: HXZ

(1) (2) (3) (4) (5)

δ −0.347∗∗∗ −0.300∗∗∗ −0.352∗∗∗ −0.332∗∗∗ −0.340∗∗∗

(0.049) (0.052) (0.046) (0.046) (0.046)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.159 0.185 0.159 0.167 0.183

Panel B: Volatility-managed HXZ

(1) (2) (3) (4) (5)

δ −0.377∗∗∗ −0.316∗∗∗ −0.405∗∗∗ −0.371∗∗∗ −0.365∗∗∗

(0.065) (0.066) (0.063) (0.063) (0.059)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.176 0.226 0.181 0.198 0.227

Panel C: PCA

(1) (2) (3) (4) (5)

δ −0.261∗∗∗ −0.207∗∗∗ −0.268∗∗∗ −0.247∗∗∗ −0.242∗∗∗

(0.044) (0.050) (0.045) (0.043) (0.041)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.115 0.144 0.115 0.124 0.152
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F.2 Out-Of-Sample R2

Table F.2: Out-of-Sample Predictability for Alternative Factor Models

This table reports the out-of-sample R2 (R2
OOS) for the predictive regression r̃i,t+1 = ai + biûi,t + εi,t, where

r̃i,t+1 is the test asset i log risk-adjusted return and price deviations û are computed as in equation (10).
Test assets are the long legs for the 45 anomalies constructed in Kozak, Nagel, and Santosh (2020). See
Appendix Table C.1 for a description of the anomalies. We report results for different heuristic mean-variance
efficient portfolios. Panel A reports results for the Hou, Xue, and Zhang (2015, HXZ) factor model, Panel
B reports results for its volatility timed version, and Panel C reports results for the principal component
model employed in Kelly, Kozak, and Giglio (2020). The R2

OOS is computed as in Campbell and Thompson
(2008); p-values for R2

OOS are computed as in Clark and West (2007). The burn-in sample starts in Jan 1967
and ends in Dec 1987, we then use an expanding window for estimating the predictive regressions. Monthly
observations of annual returns.

Panel A: HXZ

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 14.71∗∗∗ indmom 11.64∗∗∗ price −2.61
age 10.88∗∗∗ indmomrev 1.96∗∗∗ prof 3.17∗∗∗

aturnover 10.12∗∗∗ indrrev 18.07∗∗∗ roaa −3.22
betaarb 12.37∗∗∗ indrrevlv −7.58 roea −3.4

cfp 16.86∗∗∗ inv 27.41∗∗∗ season 5.49∗∗∗

ciss 18.04∗∗∗ invcap 15.59∗∗∗ sgrowth 29.52∗∗∗

divg 18.59∗∗∗ ivol 2.59∗∗∗ shvol 15.42∗∗∗

divp 21.39∗∗∗ lev 4.26∗∗∗ size 12.32∗∗∗

dur 3.01∗∗∗ lrrev 20.48∗∗∗ sp 32.9∗∗∗

ep 21.87∗∗∗ mom 11.89∗∗∗ strev 17.54∗∗∗

exchsw 9.17∗∗∗ mom12 17.12∗∗∗ valmom 11.31∗∗∗

fscore 9.67∗∗∗ momrev 19.18∗∗∗ valmomprof 10.83∗∗∗

gmargins −3.67 nissa 6.63∗∗∗ valprof 32.43∗∗∗

growth 24.42∗∗∗ nissm 16.87∗∗∗ value 24.63∗∗∗

igrowth 20.3∗∗∗ noa −1.29 valuem 6.74∗∗∗

72



Panel B: Volatility-managed HXZ

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals −1.78 indmom 18.46∗∗∗ price 0.75∗∗∗

age 8.06∗∗∗ indmomrev −0.6 prof 15.01∗∗∗

aturnover 17.93∗∗∗ indrrev 6.16∗∗∗ roaa 4.33∗∗∗

betaarb 3.15∗∗∗ indrrevlv −19.48 roea 6.09∗∗∗

cfp 23.58∗∗∗ inv 19.8∗∗∗ season 3.03∗∗∗

ciss 18.64∗∗∗ invcap 3.96∗∗∗ sgrowth 25.54∗∗∗

divg 19.11∗∗∗ ivol −2.24 shvol −0.75
divp 19.83∗∗∗ lev 11.16∗∗∗ size 19.7∗∗∗

dur 6.17∗∗∗ lrrev 23.44∗∗∗ sp 29.72∗∗∗

ep 15.09∗∗∗ mom 22.99∗∗∗ strev 15.72∗∗∗

exchsw 12.82∗∗∗ mom12 21.83∗∗∗ valmom 5.54∗∗∗

fscore 14.66∗∗∗ momrev 30.72∗∗∗ valmomprof 17∗∗∗

gmargins −1.85 nissa 9.77∗∗∗ valprof 23.06∗∗∗

growth 22.26∗∗∗ nissm 14.98∗∗∗ value 21.95∗∗∗

igrowth 25.88∗∗∗ noa 3.58∗∗∗ valuem 25.64∗∗∗

Panel C: PCA

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 9.93∗∗∗ indmom 6.71∗∗∗ price −6.26
age 12.02∗∗∗ indmomrev 1.43∗∗∗ prof −13.45

aturnover −19.47 indrrev 7.60∗∗∗ roaa −11.37
betaarb −1.27 indrrevlv 1.48∗∗∗ roea −17.9

cfp 18.92∗∗∗ inv 17.85∗∗∗ season −4.2
ciss 4.77∗∗∗ invcap 5.43∗∗∗ sgrowth 19.30∗∗∗

divg 5.46∗∗∗ ivol −6.66 shvol 3.42∗∗∗

divp 12.95∗∗∗ lev −3.95 size 10.27∗∗∗

dur 8.8∗∗∗ lrrev 9.97∗∗∗ sp 19.42∗∗∗

ep 14.96∗∗∗ mom 10.16∗∗∗ strev 7.91∗∗∗

exchsw −3.09 mom12 10.55∗∗∗ valmom 18.42∗∗∗

fscore −3.68 momrev 9.05∗∗∗ valmomprof 16.55∗∗∗

gmargins −11.36 nissa 3.24∗∗∗ valprof 23.20∗∗∗

growth 16.50∗∗∗ nissm 4.97∗∗∗ value 18.72∗∗∗

igrowth 18.41∗∗∗ noa −8.28 valuem −8.96
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F.3 Anomaly Rotation using Price Deviations

Table F.3: Long-Short Anomaly Portfolio Alphas for Alternative Factor Models

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90
top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-
based strategy. Price deviations û are computed as in equation (10). We report results for different heuristic
mean-variance efficient portfolios. Panel A reports results for the Hou, Xue, and Zhang (2015, HXZ) factor
model, Panel B reports results for its volatility timed version, and Panel C reports results for the principal
component model employed in Kelly, Kozak, and Giglio (2020). We control for the following factor models:
Carhart (1997) (C4), Fama and French (2018) (FF6), Hou, Xue, and Zhang (2015) (q), Stambaugh and Yuan
(2016) (SY4), Daniel, Hirshleifer, and Sun (2020) (DHS3), Bartram and Grinblatt (2018) (BG3). Values in
parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

Panel A: HXZ

C4 FF6 q SY4 DHS3 BG3

Constant 0.36∗∗∗ 0.29∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.32∗∗∗ 0.29∗∗∗

(0.09) (0.08) (0.09) (0.07) (0.11) (0.11)

Adjusted R2 0.54 0.57 0.25 0.46 0.31 0.28

Panel B: Volatility-managed HXZ

C4 FF6 q SY4 DHS3 BG3

Constant 0.29∗∗∗ 0.25∗∗∗ 0.19∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.21∗

(0.09) (0.07) (0.09) (0.08) (0.10) (0.11)

Adjusted R2 0.41 0.41 0.14 0.27 0.19 0.17

Panel C: PC6

C4 FF6 q SY4 DHS3 BG3

Constant 0.47∗∗∗ 0.33∗∗∗ 0.33∗∗∗ 0.25∗∗∗ 0.38∗∗∗ 0.57∗∗∗

(0.10) (0.11) (0.10) (0.09) (0.11) (0.15)

Adjusted R2 0.54 0.61 0.43 0.53 0.37 0.19
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G Alternative Test Assets: Robustness

G.1 25 Fama-French Portfolios Sorted on Size and Book-to-Market
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Figure G.1: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (13) with respective confidence intervals at 5% level of significance. Test assets are the 25
Fama-French portfolios sorted on size and B/M. Price deviations û are computed as in equation (10). We
report results for price deviations computed using the Fama and French (2015, FF5) factor model. Standard

errors for δ̂ are computed as in Hodrick (1992). Monthly observations of annual returns. The sample period
is 1967 to 2019.
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Table G.1: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90
top and bottom anomaly portfolios constructed in Kozak, Nagel, and Santosh (2020) using a zero-cost rank-
based strategy. Price deviations û are computed as in equation (10). We report results for price deviations
computed using the Fama and French (2015) factor model to calculate the mean-variance efficient portfolio.
Values in parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively
1%, 5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3 BG3

Constant 0.33∗∗∗ 0.23∗∗ 0.17 0.25∗∗∗ 0.26∗∗ 0.36∗∗

(0.09) (0.10) (0.14) (0.10) (0.12) (0.15)

MKT −0.08∗∗∗ −0.03 −0.02 −0.05 0.01 −0.14∗∗∗

(0.03) (0.03) (0.04) (0.04) (0.03) (0.04)

SMB 0.06 0.09 0.12 −0.05
(0.06) (0.07) (0.09) (0.09)

HML 0.63∗∗∗ 0.50∗∗∗

(0.05) (0.05)

Mom 0.04 0.03
(0.03) (0.04)

RMW 0.14∗∗∗

(0.05)

CMA 0.19∗∗∗

(0.07)

ME 0.09
(0.06)

IA 0.74∗∗∗

(0.09)

ROE 0.10
(0.07)

Mgmt 0.51∗∗∗

(0.05)

Perf −0.12∗∗

(0.05)

PEAD −0.08
(0.07)

FIN 0.33∗∗∗

(0.05)

BG 0.28∗∗∗

(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.59 0.61 0.39 0.42 0.32 0.24
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G.2 Evidence from Chen and Zimmermann Open-Source Library

Table G.2: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the
252 top and bottom anomaly portfolios constructed in Chen and Zimmermann (2021) using a zero-cost
rank-based strategy. Panel A reports results for the Fama and French (2015, FF5) factor model, Panels
B and C report results for its factor return and volatility timed versions, and Panel D reports results
for its characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. We control for:
Carhart (1997) (C4), Fama and French (2018) (FF6), Hou, Xue, and Zhang (2015) (q), Stambaugh and Yuan
(2016) (SY4), Daniel, Hirshleifer, and Sun (2020) (DHS3), Bartram and Grinblatt (2018) (BG3). Values in
parenthesis are Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Monthly observations. The sample period is 1967 to 2019.

Panel A: FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.58∗∗∗ 0.44∗∗∗ 0.45∗∗∗ 0.39∗∗∗ 0.45∗∗∗ 0.70∗∗∗

(0.10) (0.08) (0.08) (0.07) (0.08) (0.11)

Adjusted R2 0.62 0.70 0.58 0.65 0.55 0.32

Panel B: FF5 with factor-timing

C4 FF6 q SY4 DHS3 BG3

Constant 0.66∗∗∗ 0.55∗∗∗ 0.57∗∗∗ 0.48∗∗∗ 0.50∗∗∗ 0.79∗∗∗

(0.10) (0.09) (0.09) (0.07) (0.08) (0.10)

Adjusted R2 0.60 0.66 0.51 0.60 0.51 0.29

Panel C: Volatility-managed FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.48∗∗∗ 0.41∗∗∗ 0.35∗∗∗ 0.37∗∗∗ 0.35∗∗∗ 0.52∗∗∗

(0.09) (0.09) (0.09) (0.08) (0.08) (0.09)

Adjusted R2 0.48 0.52 0.41 0.45 0.44 0.30

Panel D: FF5-DMRS

C4 FF6 q SY4 DHS3 BG3

Constant 0.58∗∗∗ 0.45∗∗∗ 0.43∗∗∗ 0.37∗∗∗ 0.42∗∗∗ 0.68∗∗∗

(0.09) (0.08) (0.08) (0.07) (0.09) (0.12)

Adjusted R2 0.63 0.70 0.55 0.67 0.55 0.30
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H A Model of Slow Adjustment to Information
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Figure H.1: Predictability Using Price Deviations and Slow Adjustment to Infor-
mation. This figure shows ex-post densities for δ coefficients in specification (13) for different calibrations
of the adjustment parameter k in equation (17). We calibrate rVt to the CMVE portfolio log return over the
period 1967–2019, with an annualized (percentage) mean of 1.23% and an annualized volatility of 1.12%.
Prices are constructed as lnVt+1 = lnVt + rVt+1. We then simulate 10000 times a sample of 636 observations
of lnPt+1 using equation (17). The case k = 1 is full price adjustment to information.
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