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Abstract

Bond yields can be decomposed into two unobservable components: the expected se-
quence of short-term rates and term premia. The identification of these two compo-
nents is crucial to understand bond pricing and the effect of monetary policy on the
term structure of interest rates. This paper illustrates how M.H. Pesaran’s prescrip-
tion of congruency between the salient features of the data and the reduced form,
explicitly derived from stochastic dynamic optimization, effectively facilitates the rel-
evant decomposition. By examining the historical evolution of term structure models,
we demonstrate that the chosen specifications have not consistently aligned with the
data, presenting a missed opportunity. In fact, a data-congruent specification helps in
improving forecasts of the dynamics of US short-term rates and generates stationary
dynamics for the term premia.
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1 Introduction

The role of theory in applied econometrics is undeniably one of the many areas where M.H.

Pesaran’s research has made groundbreaking contributions(Pesaran, 1990). Shortly after

completing his PhD, one of us had the privilege of joining a research project led by Hashem,

focused on the exploration and extraction of North Sea oil(Favero et al., 1994). After just a

few days of working on the model specification, the young researcher approached Hashem,

questioning the need for a non-linear specification in the oil extraction cost function, which

linked costs to the residual reserves in the wells. Little did he know, he was about to receive

a lesson that would stick for years to come. In fact, as soon as the question was asked,

the young researcher immediately realized that it was the wrong question. Hashem, in his

characteristic assertiveness, responded, “That is a salient feature of the data. The reduced

form, explicitly derived from a stochastic dynamic optimization, must also account for the

physical constraints in the oil supply process”(Pesaran and Smith, 1995). In this paper, we

explore a similar line of inquiry: What salient features of the data must be considered when

specifying models of the term structure of interest rates?

The dynamics of nominal government bond yields at different maturities plays a central

role in shaping the response of the real economy to monetary and fiscal policy interventions.

Yields can be decomposed into two unobservable components: the sequence of expected

one-period rates and the term-premia (Campbell and Shiller, 1991; Duffee, 2002). The first

component reflects the future expected path of monetary policy rates, while the second

reflects macroeconomic fundamentals, economic policies, and the investors’ attitude toward

risk. Policymakers are fully aware that the market-based financing conditions that matters
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for the control of the business cycle and inflation depend on both components of yields

(Schnabel, 2022, 2023).

Term structure models are helpful in that they allow the identification of the two com-

ponents by forecasting the expected path of short-term interest rates and by then deriving

forecasts for yields and term-premia at all maturities.

Spanos (1990) introduced the difference between identification (unique mapping from the

reduced form to the structural form) and statistical adequacy (the validity of the reduced

form as a statistical model for the data). Diebold and Rudebusch (2013), in their important

book on yield curve modeling and forecasting, acknowledge the importance of the distinction

made by Spanos and focus their work on the observation that most yield curve models tend

to be either theoretically rigorous but empirically disappointing, or empirically successful

but theoretically lacking.

We focus on the importance of a statistically adequate, or data-congruent, modeling

strategy for the identification of the two unobservable components of yields.

The paper is organized as follows. Section 2 examines the US data from 1980 onward,

to establish the features of a statistically adequate model for the term structure. The data

show that yields are drifting, with a common drift, while both excess returns at all maturities

and term spreads at all maturities are stationary. In the light of this evidence, a statistically

adequate model of the term structure can be constructed by relating the drift in yields to

the future expected path of monetary policy to derive stationary term-premia.

Section 3 concentrates on the early literature on testing the Expectations Theory in

cointegrated VAR models (Campbell and Shiller, 1987, 1991). This literature specifies a

cointegrated model for the term spread and the change in the short-term interest rates,
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explicitly recognizing the stationarity of the term premium. However, statistical adequacy

is lost in forecasting over long-horizons, when the short-term is predicted by a deterministic

trend, and this trend, given cointegration with a (-1,1) cointegrating vector between the

long-term and the short-term rate, also drives the predictions for the long-term rates. This

is a problem that can only be solved by the inclusion of exogenous I(1) variables determining

the trend in the system (Pesaran and Smith, 1998; Pesaran et al., 2000).

Section 4 explores the statistical adequacy of dynamic factor models for the term structure

with a focus on Affine Term Structure (ATS) models (Diebold et al., 2005). These models

are originally designed for stationary processes in yields, as the yield dynamics is modeled

as a linear function vector autoregression (VAR) of a set of factors extracted from the term

structure partially, like Ang and Piazzesi (2003), or totally, like Kim and Wright (2005) and

Adrian et al. (2015); vector autoregression (VAR) models are then specified for the factors

and used for forecasting factors and yields. Importantly, the factor dynamics drives not only

yields but also the price of risk and holding period returns. The presence of a stochastic trend

in yields has several negative consequences for this approach. VAR models are inappropriate

for drifting data. OLS estimates of near-unit roots are notoriously biased downward, thus

overestimating the amount of mean reversion in yields, biased long-run forecasting of the

dynamics of short-term rates does affect the measurement of term premia. In fact, the non-

stationarity of factors often results in non-stationarity of term premia, which is not congruent

with the evidence of stationarity of holding period (excess) returns and term spreads.

Section 5 describes the specification of a novel ATS model in which yields drift, sharing

a common stochastic trend driven by the drift in short-term (monetary policy) rates and

excess returns are stationary as the compensation for risk depends on the cycle in yields.

3



Statistical adequacy of this specification follows in that it is consistent with the evidence

from the data that yields are non-stationary and driven by a common trend while excess

returns are stationary. The specification strategy also offers a solution for forecasting in

cointegrating models, where inversion in long-term trend projections cannot be allowed for.

This problem is solved by following the principle of relating macroeconomic trends to slow-

moving predictable exogenous variables (Aksoy et al., 2019). Following Favero et al. (2016),

Del Negro et al. (2019), and Lunsford and West (2019), short-term rates are decomposed in

a trend component, related to exogenous and predictable variables such as potential output

growth, the age structure of population and the inflation target of the central bank. The

variables not only model successfully the observed trend in short-term rates but they are

also predictable over a long-horizon, as the Bureau of Census produces forecasts for the age

structure of population for long-term ahead horizon, and so does the FRED database for

potential output, while the inflation target is proxied with inflation expectations at long-

horizon that converge to the Central Bank’s target . Given the availability of long-run

forecasts, the current and future trend components of the short-term rates are constructed.

A factor model is then built by extracting factors from the cyclical components of yields,

and by imposing no-arbitrage restrictions on the dynamics of holding period excess returns

and term-premia.

A VAR specification is kept for the factors, but, now, it is a VAR on stationary variables.

Predictions for short-term rates at any future dates are then derived by combining the

predictions for the trends (not based on the VAR for factors and therefore forward-looking )

and the predictions for the cyclical components (based on the VAR for factors and, therefore,

backward-looking). Bonds at any maturities are priced via pricing equations that imposes
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no-arbitrage restrictions. Term premia are derived as the difference between bond yields

projected when the price of risk is estimated in the affine specification and when the price

of risk is restricted to zero. Bond yields are non-stationary, their trend being is the average

trend of short-term rates over the maturity of the bonds, while term-premia are determined

by the stationary state variables.

The empirical results will show that the specification strategy statistically adequate dom-

inates standard models in terms of forecasting performance for returns and yields at any

maturity and it leads to a very different measurement of term-premia.

2 The Data on the US Term Structure

At any given moment in time, bond yields vary across different maturities. This cross-

sectional information is captured by the yield curve, which illustrates the relationship be-

tween bond yields and their respective maturities. However, yield curves are not static; they

evolve dynamically over time. Therefore, modeling yield curves requires addressing both

the cross-sectional variation in yields and their time-series evolution. Furthermore, bond

yields do not fluctuate independently of each other. There exists a fundamental relationship

between bond yields and one-period holding returns. Under the principle of no-arbitrage,

the risk-adjusted one-period holding returns on bonds of all maturities must be equal. This

implies that yields across maturities are interconnected and cannot move independently.

Term structure models are used to efficiently describe the cross-section of bond yields by

employing a small number of factors. These factors allow for a parsimonious representation

of yield variations. By forecasting these factors using time-series models, it becomes possible
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to predict with parsimonious models the entire term structure of interest rates. Addition-

ally, the no-arbitrage condition imposes further restrictions on the parameters governing

both the time-series and cross-sectional dynamics of bond yields. These restrictions ensure

consistency between the model’s predictions and the absence of arbitrage opportunities in

the market.

To illustrate the evidence from the data that it is relevant to specify statistically adequate

term structure models, consider the quarterly time-series observations on the zero-coupon US

Treasury yield curve estimates of the Federal Reserve Board made available by Gürkaynak

et al. (2007) over the period 1980-2023.

Continuously compounded yield to maturities r
(n)
t for bonds with residual life of n periods

are related to log of bond prices, p
(n)
t , as follows

p
(n)
t = −nr

(n)
t .

The data reported in Figure 1 show that yields from the 3-month to the 15-year maturity

have been trending from 1980 till the end of 2023 and they shared a common trend.

One-period holding excess returns are then defined as the difference between the returns

of holding for one-quarter bonds with maturity n longer than 3-month and the yield to

maturity of the 3-month bonds. Under no-arbitrage their expected value is equal to the

risk-premia associated to holding for one period bonds with maturity n, ϕn
t,t+1.

rx
(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t − r

(1)
t ,

Etrx
(n−1)
t+1 = ϕn

t,t+1
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Common Trends in Yields

Figure 1. Quarterly observations on the time-series of (annualised)
yields from the 3-month to the 15-year maturity. We use the same colour
palette for all maturities (blue). Darkest blue indicates the highest
maturity, i.e., 15 years.

The data reported in Figure 2 show that ex-post observed excess returns for bonds at all

maturities are stationary.
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Common Cycles in Excess Period Holding Returns

Figure 2. Quarterly observations on the time series of 1-quarter
holding period returns for bonds at maturities between 6-months and
15 years in excess of the return on three-month Treasury Bills

By solving forward the no-arbitrage relationship, taking into account that the price of all

bonds at maturity converges to one, yields at any maturities can be expressed as the sum

of the average of the yields of the 1-period (3-month in our case) bonds over the life of the

bonds and the term premia, i.e. the average of the risk premia over the residual life of the

bonds. Term-spreads can then be expressed as a weighted sum, with declining weights, of
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future changes in the 3-month rates and the term premia.

Et(p
(n−1)
t+1 − p

(n)
t ) = r

(1)
t + ϕn

t,t+1, (1)

r
(n)
t =

1

n

n−1∑
i=0

Et

(
r
(1)
t+i + ϕn

t+i,t+i+1

)
, (2)

r
(n)
t − r

(1)
t =

n−1∑
i=1

(
1− i

n

)
Et∆r

(1)
t+i +

1

n

n−1∑
i=0

ϕn
t+i,t+i+1. (3)

The data reported in Figure 3 show that term-spreads are stationary. This evidence, under

no-arbitrage, can only be consistent with stationarity of term premia; in fact, the weighted

sum of future changes in the three month rates is stationary, as differencing removes the

drift in yields.
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Stationary Term Spreads

Figure 3. Quarterly observations on the time series of spreads of
yields on bonds at maturities between 6-months and 15 years in excess
of the return on three-month Treasury Bills

To sum up, the relevant features of the data are that yields are non-stationary and

co-drifting while excess returns, term spreads, risk-premia and term-premia are stationary.
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3 The Expectations Theory in Cointegrated VARs

Campbell and Shiller (1987) (CS) specify a term-structure model for the case of the risk-free

rate r
(1)
t and a single very long term bond, in the original paper the US Treasury 20-year,

with yield r
(n)
t , that takes several features of the data into explicit account. After providing

evidence for stationarity of the term spread, St = r
(n)
t − r

(1)
t they specify a stationary VAR

in the (demeaned) first difference of the short-term rate and the spread:

∆r
(1)
t = a(L)∆r

(1)
t−1 + b(L)St−1 + u1t

St = c(L)∆r
(1)
t−1 + d(L)St−1 + u2t

to show that the Expectations Theory imposes the following set of testable restrictions on

on the individual coefficients of VAR:

{ci = −ai,∀i} , {d1 = −b1 + 1/γ} , {di = −bi,∀i ̸= 1}

These restrictions are tested via a Wald test and rejected, thus evidence emerges for the

existence of a term-premium. However, when this premium is derived as the difference

between the observed term spread and that obtained by imposing the (rejected) restrictions

implied by the Expectations Theory, it is shown to be small.
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3.1 Are Cointegrated VAR for the Term Structure Statistically

Adequate?

The CS specification is consistent with the evidence of trending yields, stationary term

spreads and stationary term premia, however, it has two important limitations. First, it

implies that the long-horizon short-term rate is predicted via a trend that does not allow

for inversions, being determined by the estimated constant in the equation for the difference

of short-term rates. Second, as a consequence of the stationarity of the spread, the long-

horizon forecasts for short-term rates do ”contaminate” the long-horizon forecast for the

long-term rates. Figure 4 illustrates the point by reporting the out-of-sample forecasts, from

2006 onward of a cointegrated CS VAR for the the 3-month rates and the 10-year yields

estimated over the sample 1980-2005. The VAR forecasts for the 3-month rates converge

rather rapidly to a trend with the slope determined by the estimated constant in the first

equation of the VAR. No inversion of the downward sloping trend that emerged in the latter

part of the sample is possible. As the predictions for the 10-year yields are constrained

by their cointegrating relationship with the 3-month rates, they also converge to the trend

predicted for the 3-month rates.
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Figure 4. Forecasting with a CVAR
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4 Dynamic Factor Models of the Term Structure

The Cointegrated VAR approach discussed in the previous section provides a useful bench-

mark to illustrate the main issues in taking models to the data but it focuses on only two

variables: a long-term yield and a short-term rate. Dynamic factor models of the term struc-

ture parsimoniously describe both the cross-sectional and the time-series dimensions of the

entire yield curve by using a few factors as state variables. (Diebold et al., 2005).

Several approaches have been proposed to the identification of factors, that can be ob-

served or unobserved or a mixture of the two types (see, for example, Nelson and Siegel

(1987), Chen (1993), Ang and Piazzesi (2003), Kim and Wright (2005) and Adrian et al.

(2015)). The common baseline for all models is the specification of a VAR for the factors
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(state variables),Xt, which are assumed to be stationary:

Xt+1 = µ+ ΦXt + vt+1, (4)

vt+1| {Xs}ts=0 ∼ N (0,Σ), (5)

This general specification encompasses a wide range of models, including those based on

cross-sectional curve fitting in the popular Dynamic Nelson-Siegel approach 1. We concen-

trate on Affine Term Structure Models in which the variables in Xt determine the market

price of risk,λt in the following affine form:

λt = Σ−1/2(λ0 + λ1Xt), (6)

No-arbitrage, is then assumed and there exists a pricing kernel Mt such that:

P
(n)
t = Et

(
Mt+1P

(n−1)
t+1

)
, (7)

for every n > 0 and t ≥ 0. Where P
(n)
t = exp

[
−nR

(n)
t

]
is the price of a zero coupon bond

with maturity n.

The pricing kernel is taken as exponentially affine, i.e.,

mt+1 = −R1
t −

1

2
λ′
tλt − λ′

tΣ
−1/2vt+1, (8)

1see, Diebold and Li (2006), Diebold et al. (2005); no arbitrage restrictions can also been imposed in
these models (Christensen et al., 2011)
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where R1
t = log(P

(1)
t ) = p

(1)
t is the continuously compounded risk-free rate, and mt = logMt.

Finally, excess period returns for bonds at all maturities
(
rx

(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t −R1

t

)
and (vt+1) are jointly normally distributed with constant covariance matrix.

Under this set of assumptions, the process for excess returns is then derived as:

p
(n−1)
t+1 − p

(n)
t −R1

t = β(n−1)′(λ0 + λ1Xt)︸ ︷︷ ︸
Expected Return

− 1

2

(
β(n−1)′Σβ(n−1) + σ2

)
︸ ︷︷ ︸

Convexity Correction

+ β(n−1)′vt+1︸ ︷︷ ︸
Return Innovation

+e
(n−1)
t+1 ,

Bond prices are derived from the process for excess returns by recursive forward substi-

tution as,

pnt = An +B′
nXt + un

t ,

where, as a consequence of no-arbitrage, recursive restrictions apply to An and Bn. In

fact, if for the one-period yield we have:

R1
t = δ0 + δ′1Xt + ϵt,

so A1 = −δ0 and B1 = −δ1.

We then have:

An = An−1 +B′
n−1(−λ0) +

1

2
(β(n−1)′Σβ(n−1) + σ2)− δ0,

B′
n = B′

n−1(Φ− λ1)− δ′1,

β(n) = B′
n,
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4.1 Are ATS Models Statistically Adequate?

The main divergence between the evidence from the data and the specification strategy of

ATS model emerges as the same factors , modeled by a Vector Autoregressive Process, are the

common drivers of the dynamics of both yields and excess returns, while the evidence from

the data is that excess-returns are stationary while yields are (co-)drifting. Factors, extracted

from drifting yields by using Principal Components, are by construction orthogonal to each

other and the first ones typically capture the persistence with a near unit root. Despite

this persistence, a VAR in levels is estimated for factors and the VAR-based forecasts of

future one-period rates slowly converge to the mean of the sample used for estimation. As

one period rates are drifting in the data, ATS models tend to generate term premia that

are a-cyclical and parallel to the secular trend in yields. These features of the term-premia

are not congruent with the evidence from the data. Bauer et al. (2014) observe that, as

a consequence of the very high persistence in yields, term premia implied by maximum

likelihood estimates of affine term structure models are misleading because of small-sample

bias. They confirm that ATS models, such as that estimated by Wright (2011), tend to

produce cyclical risk premium estimates, often just parallel to the secular trend in interest

rates, while bias corrected term-premia show strong (counter-)cyclical behaviour. However,

the bias-correction for the VAR coefficient does not address the problem that term-premia

that are stationary in the data are specified as function of highly persistent state variables.

This divergence becomes more important when, as in Christensen and Rudebusch (2012), the

problem of non-stationarity of yields is solved by imposing a unit root in the factor capturing

the level of the term structure. As a matter of fact,Christensen and Rudebusch (2012), show
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that this restriction produces a clear improvement in the forecasting performance of the

model. However, as in the case of the CS models, first differencing of the level and projecting

it with a VAR has the limitation that the level is projected as a trend with constant slope

and the model cannot capture fluctuations and inversions that are observed in the data.

Several papers have documented the existence of a slow-moving component common

to the entire term structure (see, for example, Bakshi and Chen, 1994 and Fama, 2006).

An important and growing literature has modeled Treasury yields using shifting endpoints

(Kozicki and Tinsley, 2001), near-cointegration (Jardet et al., 2013) or long memory (Golinski

and Zaffaroni, 2016), vector autoregressive models (VAR) with common trends (Del Negro

et al., 2019), slow-moving averages of inflation (Cieslak and Povala, 2015) and consumption

(Jørgensen, 2018), or an (unobserved) stochastic trend common across Treasury yields (Bauer

and Rudebusch, 2020).

In particular, Bauer and Rudebusch (2020), in their model that allows for a trend in

yields and returns, note that the loading of returns on the unobserved common stochastic

trend is an order of magnitude smaller than the loading of prices and they also report that

predictive regressions of returns on de-trended yields and trend proxies lead to coefficients

on the trend that are not significantly different from zero.

Piazzesi et al. (2015) use survey data on interest rate forecasts to construct subjective

bond risk premia to find that subjective premia are less volatile and not very cyclical. They

explain this evidence by pointing out that survey forecasts of interest rates are consistent

with the view that both the level and the slope of the yield curve are more persistent than

under common statistical models. Zhao (2020) and Feunou and Fontaine (2023) propose

structural models of trends and cycles in the term-structure capable of explaining several
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features of the data. However, these models rely on statistical trend-cycle decomposition

that are difficult to exploit for long-term forecasting purposes.

5 A Statistically Adequate ATS model

The analysis of the data and the historical evolution of term structure models highlights

several distinctive features for statistically adequate models. Co-trending yields are naturally

modeled by decomposing the risk-free rate into a stochastic trend and a cyclical component.

The common drift would then be captured by the stochastic trend in the short-term rates.

The problem of long-horizon out-of-sample predictions of this stochastic trend could be

solved by following the proposal by Aksoy et al. (2019) to introduce some slow-moving

variables, exogenous and predictable, driving the trend in the short-term rates. Factors can

be extracted from the stationary cyclical components of yields at all maturities obtained

by the difference between actual yields and their common stochastic trend. These factors

would be effectively modeled with a VAR and by applying the usual ATS assumptions

excess returns would then be modeled as function of stationary factors. Finally, yields at all

maturities could be derived by using no-arbitrage restrictions, and by combining stationary

and cyclical risk-premia with trends consistent with the no-arbitrage restrictions.

As illustrated in detail in the Appendix, all these features can be explicitly included in

a model. First, the one-period rate is decomposed in trend and cycle using the following
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specification:

r
(1)
t = r

∗,(1)
t + u

(1)
t

r
∗,(1)
t = γ1MYt + γ2∆ypott + γ3π

LR
t

The trend, i.e. long-run risk free rate, is made of two components: the natural rate of

interest, r∗t , and a component that reflects long-term inflation expectations. The inclusion

of (log) growth rate of potential output, ∆ypott , as a variable explaining the trend come from

the standard Ramsey model (Laubach and Williams, 2003).

r =
1

σ
g + θ. (9)

However, Jordà and Taylor (2019) and Mian et al. (2021) illustrate that fluctuations in

output growth (per capita) of the economy cannot fully explain the drift in natural rate,

therefore, other time-varying determinants of the rate of time preference of the agents in the

economy should be considered. On the one hand, we follow Favero et al. (2016), Lunsford

and West (2019), and Favero et al. (2022), and consider the age structure of the population

as the driver of changing preferences, in particular MYt, the ratio of middle-aged (40-49)

to young (20-29) population. On the other hand, Gürkaynak et al. (2005) convincingly

argue that private agents views of long-run inflation are subject to fluctuations. In line with

this evidence we use the survey-based measure of long-run inflation expectations, πLR
t , also

considered in the Fed’s FRB/US model2 as the proxy for long-run inflation expectations.

2Available at https://www.federalreserve.gov/econres/us-models-package.htm.
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This is a reasonable proxy under the assumption that the central bank is credible. The

yield’s cyclical part can thus be identified with the residual after regressing the short rate

on those three variables, ∆ypott , MYt, and πLR
t .

Yields at all maturities are then decomposed in trends and cycles using the following

strategy:

r
(n)
t = r

(1)
t +

n−1∑
i=1

(
1− i

n

)
Et∆r

(1)
t+i +

1

n

n−1∑
i=0

ϕn
t+i,t+i+1

r
(n)
t = r

∗,(1)
t + u

(n)
t

u
(n)
t = u

(1)
t +

n−1∑
i=1

(
1− i

n

)
Et∆r

(1)
t+i +

1

n

n−1∑
i=0

ϕn
t+i,t+i+1

K factors are then be extracted by obtaining the principal components of the N cycles

of the yield curve u
(j)
t , for j = 1, . . . , n, which are then stacked into a T ×N matrix, U. This

procedure ensures the stationarity of Xt to specify a VAR, i.e.,

Xt+1 = µ+ ΦXt + vt+1 (10)

vt+1| (Xs)
t
s=0 ∼ N (0,Σ), (11)

where µ ∈ RK , Φ ∈ RK×K and Σ ∈ RK×K .

With the usual assumptions in ATS models stacked excess returns across N maturities

and T time-periods can be represented as:

rx =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ2

1K×1

)
1

T

T×1 +VTB+ E (12)
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where 1l×m is a matrix of ones for each l,m ∈ N, and

1. rx ∈ RT×N .

2. λ0 ∈ RK , λ1 ∈ RK×K ,

3. X− = [X1 | X2 | · · · | XT−1]
T ∈ RT×K ,

4. B ∈ RK×N ,

5. B∗ = [vec (B1B
T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK×N2
,

6. V ∈ RT×K and E ∈ RT×N .

After the estimation of all parameters of interest from the stacked representation of

excess returns, bond prices at any maturity can be obtained by adding the trend and the

cycle components.

The cyclical component of the one-period bond r1t , i.e., u
(1)
t := r

(1)
t −r

∗,(1)
t , can be expressed

as a linear function of the underlying factors, i.e.,

r
(1)
t = r

∗,(1)
t + δ0 + δ1 ·Xt + e

(1)
t , (13)

p
(1)
t = −r

(1)
t , p1,∗t = r

∗,(1)
t ,

Where parameters δ̂0 and δ̂1 can be estimated by projecting the cycle u
(1)
t on the stationary

factors Xt.

No-arbitrage implies that bond prices at all maturities depend linearly on a trend com-

ponent and on a stationary component:

pnt = pn,∗t + An +B′
nXt + un

t ,
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where pn,∗t captures the trend component of bond prices. The model also implies cross-

equation restrictions on the parameters An, Bn and on the trend pn,∗t .

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)
− δ0

Bn = (Φ− λ1)
T Bn−1 − δ1

p
(n),∗
t = p

(n−1),∗
t+1 − r

∗,(1)
t

5.1 A Statistically Adequate ATS model: The Empirical Results

Estimation and simulation3 is performed by using the zero coupon yields provided by the

FED4 (Gürkaynak et al., 2007), data on MYt, the ratio of middle-aged (40-49) to young

(20-29) obtained from the Bureau of Census, the survey-based measure of long-run inflation

expectations, used in the Fed’s FRB/US model5 and the measure of potential Gross Domestic

Product available from the FRED database.6 Quarterly data over the period 1980:1-2023:2

are considered. The statistical adequacy of ATS models is illustrated by comparing the

results of estimation of a standard ATS model via the 3-step procedure proposed by Adrian

et al. (2013), Adrian et al. (2015) (ACM) with those obtained by a 4-step procedure (FF)

illustrated above and detailed in the Appendix. The three-step procedure begins after the

extraction of k factors (by using principal components) from the entire term structure; in

the first step a VAR for factors is estimated by OLS to obtain contemporaneous pricing

factor innovations, in the second step excess returns are regressed on a constant,lagged

3A full replication package in R is available from the authors’ website
4https://www.federalreserve.gov/econres/feds/the-us-treasury-yield-curve-1961-to-the-present.htm
5https://www.federalreserve.gov/econres/us-models-package.htm.
6https://fred.stlouisfed.org/series/GDPPOT.
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pricing factors and contemporaneous pricing factor, finally, in the third-step the price of risk

parameters λ0 and λ1 are estimated via cross-sectional regressions. Bond prices are then

obtained recursively by imposing the no-arbitrage restrictions. Term-premia are derived by

the difference between bond prices based on the estimated risk parameters and counterfactual

bond prices obtained by setting λ0 = λ1 = 0. The four-step procedure begins with the

estimation of the stochastic trend driving the short-term rates, after this trend has been

identified and validated by the stationarity of the deviation of one-period rates from it, the

entire term structure is detrended and k stationary factors are extracted from the cyclical

components of yields. The three-step procedure is then applied on the stationary factors.

Bond prices are then obtained recursively by imposing no-arbitrage restrictions both on the

cyclical and on the trend components. Finally, term premia are obtained by the difference

between fitted yields and counterfactual yields simulated under the restrictions λ0 = λ1 = 0.

Table 1 reports the results of modeling the trend in three-month rates showing that the

ADF tests rejects the presence of a unit root in the residuals of the regression of three-month

rates on demographics, productivity and long-run expected inflation.7

7The long-run cointegrating coefficients are extracted by a static regression. In general, as we agreed in a
discussion with Ron Smith, long-run coefficients are better extracted by ARDL regressions (Smith, 2024), or
by the Johansen (1995) procedure. In the case at hand, the ARDL estimates were very close both to those
delivered by the static regression and to those delivered by the Johansen procedure, which rejected the null
of at most zero cointegrating vectors and did not reject the null of at most one cointegrating vector. The
uniqueness of the cointegrating relationship paired with the low persistence in the residual from the static
regression, produces a low correlation between the long run and the short-run components in the dynamic
models that justifies the result.
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Table 1. Modeling the Trend in three-month yields

Dependent variable:

r
(1)
t

MYt −0.037∗∗∗

(0.004)

∆ypott 1.418∗∗∗

(0.192)

πLR
t 1.315∗∗∗

(0.090)

Observations 174
Adjusted R2 0.907
ADF test on residuals -4.66∗∗∗

Residual Std. Error 0.017 (df = 171)
F Statistic 567.984∗∗∗ (df = 3; 171)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The estimated coefficients on the drivers of the drift on short-term rates are in line

with previous studies Favero et al. (2022), Bauer and Rudebusch (2020), with a negative

coefficients on MY capturing the effects of the age structure of the population on the supply

of savings, and positive, and slightly larger than one, coefficients on potential output growth

and long-run inflation expectations.

The stochastic trend produced by the model is plotted along with actual data in Figure

5. The model is naturally interpreted within a cointegration approach (Engle and Granger,

1987) to the stochastic drift in rates: if demographics, productivity and the inflation target

of the central bank successfully capture the trend in nominal rates, then u
(1)
t should be

stationary. Stationarity of u
(1)
t , paired with stationarity of the term premia8, implies that

8The term premium at time t and maturity n is given by 1
n

n−1∑
i=0

ϕn
t+i,t+i+1, which is the average of the
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u
(n)
t are stationary. Note also that, in this framework, the common stochastic trend in yields

at all maturities is that in one period rates.

Long-run forecast for MYt+i, ∆ypott+1, π
LR
t+i are readily available in that demographics and

potential output long-term forecast can be respectively downloaded from the Bureau of

Census and the Fred database, while credibility of the central bank implies that long forecast

for inflation cannot diverge from the CB target. Therefore, no VAR is needed to obtain r
∗,(1)
t+i ,

as these forecasts can be derived directly by using (9) with the appropriate scenario for the

exogenous variables MYt+i, ∆ypott+1, π
LR
t+i.

The implications of de-trending yields before the extraction of PC are highlighted by Fig-

ure 6 which compares the principal components extracted from detrended yields with those

extracted from yields. The first principal component extracted from yields shows a stochastic

trend which is removed from the first principal component extracted from detrended yields.

Figure 7 compares the fit and the out-of-sample forecasting performance of the two

specifications for 3-month rates showing the importance of modeling the stochastic trend

in one period rates. Figure 7 reports the results of a within-sample model simulation up to

2005:Q4, where current values of the factors are used to predict yields, and of out-sample

model simulation from 2006:Q1 onward, where n-step ahead forecasts of the factors (with n

going from 1-quarter to 70-quarters) are used to predict yields. The standard ATS model,

estimated in three steps, performs poorly out-of-sample, except for very short horizons.

In fact, the predicted path reverts to the sample mean, which is significantly higher than

the observed values of the three-month rates over the forecasting horizon. Conversely, the

model estimated in four steps successfully exploits cointegration and the predictability of the

expected one-period risk-premia over the residual maturity of the bond
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slow-moving components that drive the trend in yields, making it more effective for long-

term forecasting. The out-of-sample simulation reveals that over short-forecasting horizon

standard models can do better, from Figure 7 it is evident that ACM model outperforms the

FF model for a forecasting horizon up to one-year ahead. To provide further evidence on

this issue we have implemented an out-of sample forecasting exercise for the 1-period rate

comparing the performance of the FF and the ACMmodels at different horizons. The results,

reported in Table 2, confirms that the FF model outperforms the ACM at all forecasting

horizons and the difference between the forecasting performance of the two model becomes

more relevant the longer the forecasting horizon. A possible interpretation of this evidence

is that the problems related to using a stationary representation for drifting data is of minor

relevance for short-term forecasting. However, it is important to remark that the derivation

of term-premia does always require long-run forecasts of the one period rates. Up to a

(small) correction for convexity, the term premium on bonds at all maturities is derived as

the difference between the observed ten-year yield and the average three-month yields over

the residual life of the bonds. for example, in our data set the relevant forecasting horizon

to derive the current term premium on 10-year bonds is forty steps ahead.

Model h = 1 h = 4 h = 8 h = 20

ACM 0.083004 0.079403 0.076938 0.075291

FF 0.049388 0.046596 0.044645 0.039070

RMSFE ratio 0.59 0.58 0.58 0.52

OOS Obs. 40 40 37 25

Table 2. RMSFE for ACM and FF models at different forecast
horizons when predicting the one period yield. Estimation period:
1980Q1-2012Q4.OOS Simulation 2013:1-2023:4
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Finally, term premia for the 10-year maturity from the two specifications are compared

in Figure 8. The known evidence of trending term premia in the three-step approach is

confirmed while the four-step approach produces very different and cyclical term premia.

The a-cyclicality of term premia estimated by standard ATS models and their parallelism

to the secular trend in long-term interest rates has been already noted by Bauer et al. (2014)

in commenting on the estimates provided by Wright (2011). Bauer et al. (2014) attribute

the acyclicality to small sample bias caused by the very high persistence in the VAR model

for factors; they show that biased-adjusted estimates produce instead countercyclical term

premia. In fact, adjusting for small sample-bias produces estimates that are much closer

to the unit root, preventing the sequence of predicted one-period rate to converge to a

biased estimate of their level. Christensen and Rudebusch (2012) build a model all (three:

level, slope, curvature) unobservable latent factors but one indeed follow a mean-reverting

Ornstein-Uhlenbeck process. However, they force a unit root in the first factor, letting it

being a standard Brownian Motion. These generates the problem in out-of-sample forecasting

that we have highlighted for the in discussing the Campbell-Shiller approach to modeling the

short-term rate and the term spread. Our approach is different. Since the one-period rate’s

trend is captured by the long-term drivers, factors are then extracted from the deviations

of yields from their drift explained by productivity demographics and long-term inflation

forecasts. Our VAR for factors is much less persistent and the parameters’ estimates do not

require a small sample adjustment. As a result, the sequence of predicted one-period rates

features much smaller forecast errors than the equivalent in standard ATS models and also

our estimates of the term premia show some counter-cyclical behaviour. This evidence is in

line with the empirical and theoretical research that has found support for countercyclical
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risk premia, including, among many others, Campbell and Shiller (1987), Cochrane and

Piazzesi (2005),Campbell and Cochrane (1999), and Wachter (2006).

Figure 5. Three month yield time series against its trend.
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Figure 6. This graph reports the time-series of the five first
principal components extracted respectively from yields, as in the
ACM model, and from the cyclical components of yields, as in the
FF model.

(a) ACM

−0.8

−0.4

0.0

0.4

1980 1990 2000 2010 2020
Date

V
al

ue

PC1

PC2

PC3

PC4

PC5

(b) FF

−0.2

−0.1

0.0

0.1

0.2

1980 1990 2000 2010 2020
Date

V
al

ue

PC1

PC2

PC3

PC4

PC5

26



Figure 7. This graph reports the fitted (1980Q1:2005Q4) and
the forecasted (2006Q1:2023Q2) time series of 3-month yields
given by the standard ACM model (red) and FF model (green)
against the actual values (blue).
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6 Conclusions

This paper begins by arguing that the evidence from the data implies that a statistically

adequate model of the term structure should relate the drift in yields to the drifting future

expected path of monetary policy and derive stationary term-premia.

We then provide an evaluation of the historical evolution of term structure models in

the light of their statistical adequacy, in the sense of (Spanos, 1990). Early models, which

adopted a cointegration based approach, were capable of separating trend yields from cycle

from spreads. However, they suffered from a limitation in out-of-sample predictions as

they did not predict the stochastic nature of the trend in yields. Affine Term Structure

(ATS) models have abandoned the cointegration based approach to model the yield dynamics

in terms of factors that are assumed to follow a stationary vector autoregression (VAR).

However, factor extracted from yields tend to reflect their non-stationarity. As the factor

dynamics not only drives yields but it also determines the price of risk and holding period

returns, the presence of a stochastic trend in yields produces biased long-run forecasts of

the dynamics of short-term rates and, the non-stationarity of factors often results in non-

stationarity of term premia. This is not a feature congruent with the data.

The historical analysis of the discrepancies between the data and the adopted specifi-

cations naturally leads to the adoption of a statistically adequate Affine Term Structure in

which i) the factor structure adopted to explain holding period excess returns is extracted

from de-trended yields; ii) the drift in short-term rates is not predicted by a VAR but it is

rather related to long-term forecast for slow-moving exogenous variables, such as the demo-

graphic structure of the population, potential output growth and long-term inflation forecast;
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iii) excess returns are stationary as the compensation for risk depends on the cycle in yields.

We provide evidence that the statistically adequate model dominates standard models in

terms of forecasting performance and produces stationary risk premia, very different from

those produced by the standard approach.

We conclude that Hashem Pesaran’s indication that the reduced form, explicitly derived

from a stochastic dynamic optimization imposing no-arbitrage restrictions, must take also

account of the physical constraints in the data, is of crucial importance also for building a

valid empirical model of the term structure of interest rates.
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A Online Appendix

A.1 Derivations

As Adrian et al. (2013), we assume that the systematic risk is represented by a stochastic
vector, (Xt)t≥0, that follows a stationary vector autoregression

Xt = µ+ ΦXt−1 + vt (A.1)

with initial condition X0 and whose residual terms, (vt)t≥0 follow a Gaussian distribution
with variance-covariance matrix, Σ, i.e,.

vt
∣∣ (Xs)0≤s≤t ∼ N (0,Σ) . (A.2)

Let’s denote the zero coupon treasury bond price with maturity n at time t by P
(n)
t . We

take the following assumptions:
Assumption 1. No-arbitrage condition holds (Dybvig and Ross, 1989), i.e.,

P
(n)
t = Et

[
Mt+1P

n−1
t+1

]
. (A.3)

Assumption 2. The pricing kernel, mt+1 := logMt+1, is exponentially affine

mt+1 = −r
(1)
t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, (A.4)

where r
(1)
t := −p

(1)
t is the continuously compounded risk-free rate, and λt ∈ RK .

Assumption 3. Market prices of risk are affine

λt = Σ− 1
2 (λ0 + λ1Xt) , (A.5)

where λ0 ∈ RK and λ1 ∈ RK×K .

Assumption 4.
(
xr

(n−1)
t , vt

)
t≥0

are jointly normally distributed for n ≥ 2.

Thanks to all these assumptions, we can continue our modeling by recalling the definition
of the excess holding return of a bond maturing in n periods, i.e.,

xr
(n−1)
t+1 := p

(n−1)
t+1 − p

(n)
t − r

(1)
t , (A.6)
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where n− 1 indicates the n− 1 periods remaining since time t+1 with respect to which the
return is computed. Now, (A.3) can be rewritten as

1 = Et

[
exp

{
mt+1 + p

(n−1)
t+1 − p

(1)
t

}]
= Et

[
exp

{
−r

(1)
t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1 + xr
(n)
t+1 + r

(1)
t

}]
= Et

[
exp

{
xr

(n)
t+1 −

1

2
||λt||2 − λT

t Σ
− 1

2vt+1

}]
= exp

{
Et [ξt+1] +

1

2
V [ξt+1]

}
,

(A.7)

where ξt+1 := xr
(n)
t+1 − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, and

Et

[
ξ
(n−1)
t+1

]
= Et

[
xr

(n−1)
t+1

]
− 1

2
||λt||2 (A.8)

Vt

[
ξ
(n−1)
t+1

]
= Vt

[
xr

(n−1)
t+1 − λT

t Σ
− 1

2vt+1

]
= Vt

[
xr

(n−1)
t+1

]
+ Vt

[
λT

t Σ
− 1

2vt+1

]
− 2cov

(
xr

(n−1)
t+1 , λT

t Σ
− 1

2vt+1

)
= Vt

[
xr

(n−1)
t+1

]
+ λT

t Σ
− 1

2Vt [vt+1] Σ
− 1

2λt − 2λT

t Σ
− 1

2 covt

(
xr

(n−1)
t+1 , vt+1

)
= Vt

[
xr

(n−1)
t+1

]
+ ||λt||2 − 2λT

t Σ
1
2β

(n−1)
t . (A.9)

where
β
(n−1)
t := Σ−1covt

(
xr

(n−1)
t+1 , vt+1

)
∈ RK . (A.10)

Therefore, no-arbitrage condition (A.3) is equivalent to

0 = Et

[
xr

(n−1
t+1

]
+

1

2
Vt

[
xr

(n)
t+1

]
− λT

t Σ
1
2β

(n−1)
t , (A.11)

which gives us the following expression for the expected returns:

Et

[
xr

(n−1)
t+1

]
= λT

t Σ
1
2β

(n−1)
t − 1

2
Vt

[
xr

(n)
t+1

]
. (A.12)

Assumption 5. β
(n)
t = β(n) for every t ≥ 0.

If we were to decompose the unexpected excess return, xr
(n−1)
t+1 −Et

[
xr

(n−1)
t+1

]
into a component

that is correlated with vt+1 and another component which is conditionally orthogonal, ε
(n−1)
t+1

(return pricing error), we could simply write the following OLS-wise form

xr
(n−1)
t+1 − Et

[
xr

(n−1)
t+1

]
= vT

t+1γ
(n−1) + ε

(n−1)
t+1 . (A.13)

A-2



and try to figure out who the γ(n−1) is. To do so, notice that

β
(n−1)
t = Σ−1

(
E
[
xr

(n−1)
t+1 vt+1

]
− E

[
xr

(n−1)
t+1

]
Et [vt+1]

)
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
and

γ(n−1) =
(
E
[
vT

t+1vt+1

])−1 E
[
vt+1xr

(n−1)
t+1

]
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
,

because E
[
vT
t+1vt+1

]
= Σ. Therefore, γ(n) = β(n) for every n ≥ 0. With this identity in our

hands,

V
[
xr

(n−1)
t+1

]
= Et

[(
xr

(n−1)
t+1 − Et

[
xr

(n−1)
t+1

])2]
= Et

[(
vT

t+1β
(n−1) + εn−1

t+1

)2]
= Et

[(
vT

t+1β
(n−1)

)2
+ 2vT

t+1β
(n−1)ε

(n−1)
t+1 +

(
ε
(n−1)
t+1

)2]
=
(
β(n−1)

)T Et

[
vt+1v

T

t+1

]
β(n−1) + σ2

=
(
β(n−1)

)T
Σβ(n−1) + σ2,

Finally,

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.14)

A.2 Estimation

We can then rewrite (A.14) as

xr
(n−1)
t+1 = (λ0 + λ1Xt)

T Bn−1 −
1

2

(
BT

n−1ΣBn−1 + σ2
)
+ vT

t+1Bn + e
(n−1)
t+1 (A.15)

and therefore have a vectorial form:

xr =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ2

1K×1

)
1

T

T +VTB+ E (A.16)

where
1. xr ∈ RT×N .
2. λ0 ∈ RK , λ1 ∈ RK×K ,
3. X− = [X1 | X2 | · · · | XT−1]

T ∈ RT×K ,
4. B ∈ RK×N ,
5. B∗ = [vec (B1B

T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK2×N ,
6. V ∈ RT×K and E ∈ RT×N .

So we take (A.16) as our reference point in the estimation process that we do in four stepsby
extending Adrian et al. (2013) procedure:

1. Construct the pricing factors (Xt)
T
t=1. First, model the trend in the one-period (three-

month) rate is captured by projecting it on the proxy for the age structure of the population,
potential output growth and the survey-based measure of long-run inflation expectations.
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Second, derive the cyclical components of yields at any maturity by considering the difference
between yields and the trend in the three-month rate. Third consider as price factors the
first k principal components of de-trended yields.

2. Model the pricing factors, (Xt)
T
t=1 via a VAR and estimate the VAR coefficients µ ∈ RK

and Φ ∈ RK in (A.1) using OLS. Then take (v̂t)
T
t=1 from v̂t := Xt − X̂t ∈ RK , where

X̂t = µ + ΦXt−1 for every t = 1, . . . , T . Stack the time series (vt)
T
t=1 into the matrix

V̂ ∈ RT×K . The variance-covariance matrix is thus

Σ̂ =
V̂

T

V̂

T
(A.17)

3. Perform the regression according to (A.16), i.e.,

xr = a1T×K1K×N + V̂b+X−c+ E (A.18)

where a ∈ R, b, c ∈ RK×N . Collect everything into single matrices

Z =
[
1T×1 | V̂ | X−

]
∈ RT×(2K+1) (A.19)

d = [a1K×1 | b | c]T ∈ R(2K+1)×N (A.20)

so we can write xr = Zd+ E and therefore

d̂ = (ZTZ)−1 ZTxr. (A.21)

Then, collect the residuals from this regression into the matrix

Ê = xr− Zd̂ ∈ RT×N . (A.22)

and estimate

σ̂2 =
tr
(
Ê

T

Ê
)

NT
. (A.23)

Finally, we construct B̂
∗
from b̂.

4. Estimate the price of risk parameters, λ0 and λ1 via cross-sectional regression. Recall
from (A.16) that

a =
(
λ01

T

T×1

)T
B− 1

2

(
B∗vec (Σ) + σ2

1K×1

)
1

T

T (A.24)

c = λT

1B (A.25)

If we transpose them, we can estimate λ0 and λ1 via OLS, i.e.,

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
1T×1

(
B∗vec (Σ) + σ2

1N×1

)T]
(A.26)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT (A.27)
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A.3 Recursion for the Term Structure

Consider the generating process for log excess returns in our model:

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 . (A.28)

We need now to find two sequences of coefficients, (An)
N
n=1 and (Bn)

N
n=1, that allow us to

express bond prices as exponentially affine in the vector of state variables, Xt, plus a trend
term, p

∗,(n)
t , i.e.,

p
(n)
t = p

∗,(n)
t + An +XT

t Bn + e
(n)
t , (A.29)

where p
(n)
t := logP

(n)
t . Notice that

p
(1)
t = −r

(1)
t = −r

∗,(1)
t − δ0 −XT

t δ1, (A.30)

motivating that A1 = −δ0, B1 = −δ1, and p1,∗t = −r
∗,(1)
t . For any n > 1,

xr
(n−1)
t+1 = p

∗,(n−1)
t+1 + An−1 +XT

t+1Bn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t

= p
∗,(n−1)
t+1 + An−1 + (µ+ ΦXt + vt+1)

TBn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t (A.31)

= xr
∗,(n−1)
t+1 + (An−1 − An + A1 + µTBn−1)

+XT

t (ΦTBn−1 −Bn +B1) +
(
en−1
t+1 − e

(n)
t + e

(1)
t

)
+ vT

t+1Bn−1.

Hence, the following must hold

xr
∗,(n−1)
t+1 + (An−1 − An + A1 + µTBn−1)

+XT

t (ΦTBn−1 −Bn +B1) +
(
en−1
t+1 − e

(n)
t + e

(1)
t

)
=(λ0 + λ1)X

T

t β
(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vt+1β

(n−1) + ε
(n−1)
t+1

i.e.,

An−1 − An + A1 + µTBn−1 = λT

0β
(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
ΦTBn−1 −Bn +B1 = λT

1β
(n−1)

un−1
t+1 − u

(n)
t + u

(1)
t + vT

t+1Bn−1 = ε
(n−1)
t+1

xr
∗,(n−1)
t+1 = 0

vT

t+1β
(n−1) = vT

t+1Bn−1
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and therefore

An = An−1 + µTBn−1 − λT

0β
(n−1) +

1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ A1

Bn = ΦTBn−1 +B1 − λT

1β
(n−1)

p
∗,(n)
t = p

∗,(n−1)
t+1 − r

∗,(1)
t

β(n) = Bn

The last equation simplifies everything even more:

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)
− δ0 (A.32)

Bn = (Φ− λ1)
T Bn−1 − δ1 (A.33)

p
(n),∗
t = p

(n−1),∗
t+1 − r

∗,(1)
t (A.34)

Equation (A.34) for the price stochastic trend implies that

r
∗,(n)
t =

1

n

n−1∑
i=0

r
∗,(1)
t+i . (A.35)

On the other hand, these equations are fully deterministic, meaning that one can iterate all
the equations back to get expressions that depend only on the initial values, A1 and B1.
First,

Bn = (Φ− λ1)
T
(
(Φ− λ1)

T Bn−2 − δ1
)
− δ1

= · · ·

=
[
(Φ− λ1)

T
]n−1

B1 −
n−2∑
j=1

[
(Φ− λ1)

T
]j
δ1.

= −
n−1∑
j=1

[
(Φ− λ1)

T
]j
δ1

(A.36)

Second,

An = An−2 + (µ− λ0)
T (Bn−1 +Bn−2) +

1

2

(
BT

n−1ΣBn−1 +BT

n−2ΣBn−2

)
+ 2

(
1

2
σ2 − δ0

)
= An−2 + (µ− λ0)

T (Bn−1 +Bn−2)

+
1

2

(
[Bn−1 +Bn−2]

T Σ [Bn−1 +Bn−2]
)
+ 2

(
1

2
σ2 − δ0

)
= A1 + (Φ− λ1)

T

n−1∑
j=1

Bn−j +
1

2

(
n−1∑
j=1

Bn−j

)T

Σ

(
n−1∑
j=1

Bn−j

)
+ (n− 1)

(
1

2
σ2 − δ0

)
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It’s not difficult to see that

n−1∑
j=1

Bn−j =
n−1∑
j=1

n−j∑
k=1

[
(Φ− λ1)

T
]j
δ1 =

n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j
δ1. (A.37)

That allows us to write

An = (Φ− λ1)
T

n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j

+
1

2

(
n−1∑
j=1

(n− j) (Φ− λ1)
j

)
Σ

(
n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j)

+ n

(
1

2
σ2 − δ0

)
.

(A.38)

A.4 Recursion for Term Premia

Remember that

TP
(n)
t = u

(n)
t − 1

n

n∑
i=1

Et

[
u
(1)
t+i

]
, (A.39)

where u
(n)
t = r

(n)
t − r

∗,(n)
t . The affine model implies that

u
(n)
t = −n

(
An +XT

t Bn + e
(n)
t

)
. (A.40)

In particular, for n = 1,
u
(1)
t = −A1 −XT

t B1 − e
(1)
t . (A.41)

Hence,

Et

[
u
(1)
t+i

]
= −A1 − Et

[
XT

t+i

]
B1. (A.42)

Now, since Xt+i = µ+ ΦXt+i−1 + vt+i, then, we can iterate backwards to get

Xt+i = µ+ ΦXt+i−1 + vt+i

= µ+ Φ(µ+ ΦXt+i−2 + vt+i−1) + vt+i

= (1 + Φ)µ+ Φ2Xt+i−2 + Φvt+i−1 + vt+i

= · · ·

=

(
i−1∑
j=0

Φj

)
µ+ ΦiXt +

i−1∑
j=0

Φjvt+i−j.

(A.43)

Since Et [vs] = 0 for every s > t, then

Et [Xt+i] = Φ̃iµ+ ΦiXt, (A.44)
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where

Φ̃i =

(
i−1∑
j=0

Φj

)
. (A.45)

Hence,
1

n

n∑
i=1

Et

[
u
(1)
t

]
= −A1 −

1

n

n∑
i=1

(
Φ̃iµ+ ΦiXt

)T

B1

= −A1 −
1

n
BT

1

(
n∑

i=1

Φ̃i

)
µ− 1

n
BT

1

(
n∑

i=1

Φi

)
Xt

= −A1 −
1

n
BT

1

(
n∑

i=1

Φ̃i

)
µ− 1

n
BT

1 Φ̃nXt

= Ξn +ΨnXt

(A.46)

where

Ξn = − 1

n
A1 −

1

n
BT

1

(
n∑

i=1

Φ̃i

)
µ (A.47)

Ψn = − 1

n
BT

1 Φ̃i (A.48)

Hence,
TP

(n)
t = u

(n)
t + Ξn +ΨnXt (A.49)
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