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Abstract
Based on longitudinal data for a matched sample of 592 Italian academic inventors and
controls, the paper explores the impact of patenting on university professors’ scientific
productivity, as measured by publication and citation counts. Academic inventors, that is,
university professors who appear as designated inventors on at least one patent
application, publish more and better quality papers than their non-patenting colleagues,
and increase their productivity after patenting. Endogeneity problems are addressed by
using instrumental variables and applying inverse probability of treatment weights. The
beneficial effect of patenting on publication rates last longer for serial academic inventors.
However, the positive effect of patenting on scientific productivity largely differs across
scientific fields, being particularly strong only in pharmaceuticals and electronics.
European Management Review (2008) 5, 91–109. doi:10.1057/emr.2008.9
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Introduction

T
he increasing involvement of US universities in
patenting and commercialization of research results
is a well-documented phenomenon (Mowery et al.,

2004), but recent studies have uncovered unexpected rates
of university patenting also in Europe. In particular, new
measurement efforts have highlighted that, although
university-owned patents are still a relatively rare phenom-
enon in Europe, there exists a sizable and growing number
of university-invented patents, that is inventions by one or
more academic scientists whose intellectual property rights
are assigned to business companies, governmental funding
agencies or individual scientists. The most convincing
evidence has been produced for Italy, France, Sweden,
Finland and Germany (Meyer et al., 2003; Schmiemann and
Durvy, 2003; Balconi et al., 2004; Lissoni et al., 2008), while
case studies and survey research have suggested that a
similar pattern could be found also in Spain, Belgium and
the UK (Azagra Caro et al., 2003; Saragossi and van
Pottelsberghe de la Potterie, 2003; Crespi et al., 2006).
Taken together, university-owned and university-invented
patents are now commonly referred to as ‘academic
patents’.

These findings have raised several concerns both in
society and among scholars and practitioners about the
potentially detrimental consequences of academic patenting
on the pace of scientific and technological progress that
might derive from (1) restrictions of access to the outcomes
of (publicly funded) research and (2) changes in the
academic scientists’ incentives to carry out fundamental
research. In this paper, we address in particular the second
type of concerns by investigating the following questions.
Does involvement in patenting affect academic scientists’
research effort and productivity? Does it affect the direction
of research, by diverting scientists’ attention away from
basic research and towards more applied fields of enquiry?
Is there any detectable difference in the impact of patenting
across technologies and disciplines? Does the nature of
patent owners (academic vs business vs individual) bear an
influence on how patenting affects research?

We attempt to provide an answer to such questions by
building on our own previous research on Italian academic
inventors (Balconi et al., 2004). Specifically, we examine the
scientific productivity for a large sample of Italian academic
inventors, that is, university professors who appear as
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designated inventors on patent applications at the Eur-
opean Patent Office (EPO), and compare it with a matched
sample of non-patenting academic scientists. Our findings
reveal that academic inventors tend to publish more and
higher quality papers than their non-patenting colleagues,
and increase further their productivity after patenting. The
beneficial effect of patenting on publication rates last longer
for serial inventors, that is, academic inventors with more
than one patent. Moreover, results suggest no evidence of a
shift away from basic towards applied research. However,
the positive effect of patenting on the rate of scientific
production seems to vary across disciplines, being parti-
cularly strong only in pharmaceuticals and electronics.

The paper is organized as follows. The next section
provides a discussion of the controversial relationship
between patenting and publishing, and puts forward some
testable propositions. In the subsequent section, we
describe the data set used and the procedures followed to
construct our sample, while in the further section we
introduce our basic econometric approach. The penulti-
mate section reports our main results, discussing in detail
the strategy used to cope with endogeneity issues and to
identify causality in the relationship between patenting and
publishing. The final section concludes.

Patenting–publishing: trade-off or complementarity?
The dramatic growth in academic patenting and licensing
that has occurred over the last two decades or so has raised
several concerns about the potentially negative effects that
the commercialization of scientific discoveries could have
on the conduct of academic research. In particular, it has
been argued that financial incentives from patenting and
licensing could shift the orientation of scientists away from
basic and towards applied research and could also under-
mine their commitment to the norms of open science,
thereby leading to undesirable behaviours, such as data
withholding, secrecy and publication delays. At the
opposite end of the spectrum, advocates of technology
transfer via commercialization of research results have
welcomed such trends, arguing that closer contacts between
industrial and academic research will also bring benefits to
the latter in the form of financial resources, access to costly
instrumentation and sources of ideas. In this section, we
discuss why and how patenting should be expected to affect
an academic scientist’s productivity. In particular, we try to
summarize the main arguments that have been proposed in
the literature on the detrimental or beneficial effects of
patenting on the rate, quality and direction of scientific
output, in order to derive a few empirically testable
hypotheses.

Patenting and the rate of scientific production
Most of the expected negative effects associated with
academic patenting and with a greater involvement of
academic scientists in the commercialization of research
findings are usually thought to derive from changes in the
traditional incentive system of science. Patents are the
results of an incentive system at odds with the one that has
governed the scientific community over the past three
centuries. Academic scientists build their careers chiefly
upon reputation gained by claiming priority over scientific

discoveries published on refereed journals (Merton, 1968;
Cole, 1992). Such a reward system encourages scientists to
disclose quickly and fully their research findings, via the
publication of data, intense codification efforts of theories
and methodologies, and repeated interaction and discus-
sion with peers (Dasgupta and David, 1994). While also
rewarding priority over technical inventions, the patent
system differs from the norms of open science in that it
promotes only incomplete and selective disclosure of
knowledge. The amount of knowledge disclosed is limited
to the minimum necessary for achieving patent protection
over patentable results, while secrecy is heavily used to
appropriate the returns from the non-patentable aspects of
the invention (Cohen et al., 2000). This incentive mechan-
ism entails the possibility of a trade-off between patenting
and publishing. In its mildest form, the trade-off can appear
as a publication delay dilemma: researchers concerned with
patenting may be forced to wait before publishing any news
on their discoveries, and keep them secret until the patent
application has been filed, in order to avoid burning the
novelty step of the application. Not only submitting a paper
to a journal but also discussing it at conferences and
workshops could invalidate the effort to obtain a patent.1

Yet, to the extent that publication delay is the only potential
adverse effect of academic patenting on the rate of
publication, one should not be too worried. Any negative
impact is likely to be only temporary, with no persistent
change in the overall publication trend of a scientist.
However, the trade-off between patenting and publishing
can also show up in a stronger and potentially more
negative way. As long as the patent holder imposes
restrictions on the diffusion of related non-patentable
knowledge assets, academic inventors may be forced to
avoid publishing and keep secret those research results that
contribute to such assets. Evidence on these restrictions is
well established for sponsored research in the life sciences
(Blumenthal et al., 1996; Bekelman et al., 2003). Moreover,
Thursby and Thursby’s (2002) survey of businesses who
license from universities shows that 50% of the respondents
reported that their contract contained clauses requiring
delays of publication and rights to delete information.
Walsh and Hong (2003) also show an increasing tendency
for scientists to become more secretive and less willing to
discuss and disseminate openly their research results in
view of their perspective commercial exploitation. This line
of arguments leads therefore to the following testable
hypothesis:

H1A: Publication restrictions will determine a decline in
the academic inventor’s rate of publication as a
consequence of patenting, especially when the patent
holder is a private for-profit organization concerned with
secrecy.

Despite such concerns, however, there are several
reasons to expect that, on the contrary, academic scientists
who contribute to patenting will not sacrifice their
publishing activity. In the first place, in many cases
patenting is no more than an occasional event in an
academic career, one from which no persistent impact is
expected. Informal interviews with Italian academic in-
ventors suggest that scientists are primarily devoted to the
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production of scientific papers, and treat patent matters
as a secondary and rather infrequent issue. They consider
patenting first and foremost as an incidental obligation
arising from research or consultancy contracts or sponsor-
ship agreements, especially with business companies.
Moreover, scientists who do not entertain strong rela-
tionships with industry may also end up patenting, but
only when they foresee potential applications of specific
results arising from research, also when the latter is
funded by public agencies or university block grants.
Scientists of this kind will sometimes patent in their own
name or in the name of either the funding agency or
their university, depending on the provisions of the
funding scheme. As long as patenting responds to this
logic, we would expect a patenting–publishing trade-off to
occur only for those scientists who are heavily and
systematically committed to patenting with industry (i.e.
serial inventors), whereas no significant effect should be
found for scientists with one or very few patents and/or
with patents held by public research organizations. In this
respect, the previous hypothesis should be modified as
follows:

H1B: Patenting will determine a decline in the rate of
publication only for serial academic inventors, especially
those strongly involved in patenting with industry.

There are also several reasons to expect a positive impact of
patenting on the scientific productivity of individual
scientists. First, several studies have shown that interaction
with industry may be a source of fertile research questions.
Solutions to technical problems posed by industry may
involve original scientific work, up to the point of opening
up entirely new research avenues and provide the basis for
the establishment of new scientific disciplines (Rosenberg,
1982; Mansfield, 1995, 1998; Siegel et al., 2003). Second,
collaboration with industry allows scientists to gain access
to data and instruments that may reduce the cost of
conducting research or increase its productivity. More
generally, Owen-Smith and Powell (2001) suggest that
academic scientists may choose to engage in patenting
for a variety of reasons, many of which positively feed
back on their scientific production: increasing the odds
of receiving financial funds from deans and firms, thanks
to increased visibility and prestige; attracting Ph.D. and
post-doctoral students by helping them to get jobs as
developers of the patented inventions; or using patents as
bargaining chips to enter research fields where other
scientists or firms may have strong IPR positions. At the
same time, one may argue that the positive effect arising
from the access to such resources will be stronger when the
relationship between scientists and industry develops over
a long time, and it is not just the result of an occasional
research contract. In other words, one may expect a
positive association between patenting and publishing
particularly for serial inventors, that is, inventors signing
several related patents, rather than a single occasional
patent.

H2: Cognitive, technological and financial resources will
determine an increase in the rate of publication of
academic inventors, in particular of serial ones.

Patenting and the direction of scientific research
Even conceding that positive resource effects could
counterweigh any negative impact deriving from an
increased propensity to secrecy, some critics argue that a
greater involvement of scientists in patenting could still
bring detrimental consequences by diverting the allocation
of time from basic towards applied research. This diversion
would be especially likely to occur when the patented
invention is no more than a prototype or proof of concept.
In this case, after the patent filing, the academic inventor
would be called or tempted to devote time and efforts to
solve the many technical problems that stand in the way of
a successful commercial application. While basic research
can be portrayed as the unconstrained exploration of
nature and theory, the focus of applied research is closer to
industrial and potentially patentable applications. Lower
levels of commitment towards basic research might there-
fore result either in a lower rate of publications in journals
dedicated to fundamental research or in less ambitious
publications, which will receive less citations from sub-
sequent articles because of their narrower focus or lack of
depth. Despite the intuitive appeal of this kind of
arguments, there is still little empirical and theoretical
research on the relationship between patenting and
licensing, on the one hand, and the direction of research
efforts, on the other. Thursby and Thursby (2007) examine
the research profile of 3241 faculty members from six major
US universities from 1983 to 1999, and find that the fraction
of research that is published in ‘basic’ scientific journals has
remained fairly constant, notwithstanding a tenfold in-
crease in the probability of patenting. Moreover, they also
show that both patenting and publishing rise and fall with
age, following a life cycle such as the one envisaged by
Stephan and Levin (1992). On the theoretical side, Thursby
et al. (2007) propose a dynamic model of faculty behaviour
consistent with these findings. In their model, scientists
choose the amount of time to devote to applied and basic
research and the amount of time to take as leisure, facing a
fixed teaching load, in order to maximize (the net present
value of) utility over their entire career. Utility is a positive
function of scientific research output, market goods, leisure
and the net present value of financial assets at retirement.
In turn, the dynamics of financial assets is governed by
current salary, which depends positively on the stock of
knowledge, that is, the cumulated research output, and
license income, which depends positively on the time spent
on applied and basic research and on the stock of
knowledge. Basic and applied research efforts may be
either complementary or substitutes in the production of
publications, while they are assumed to be complementary
among each other and with the stock of knowledge in the
production of licensable inventions. Time paths of research
efforts and productivity are obtained through simulations
of different scenarios. In particular, three basic scenarios
are simulated. At one end of the spectrum, a scenario is
simulated in which the only input in the production of
publications is represented by basic research, while license
output requires only applied research. Under these rather
extreme assumptions, results show the presence of real
effects of patenting and licensing: scientists divert time
from basic to applied research and, as a consequence, the
publication rate decreases compared to the case in which
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academic scientists do not derive any income from
licensing. At the other end of the spectrum, a scenario is
simulated in which applied research also produces publish-
able output, and basic and applied research are comple-
ments in both the research and license production
functions. In this case, the ratio of applied to basic research
effort increases in the presence of licensing compared to the
case in which academic scientists do not derive any income
from patenting; the level of basic and applied research, and
therefore total research effort and output, are higher with
licensing than without it. The intuition of this apparent
paradox is that, since applied and basic research are
complements in the production of both licensing and
research, financial incentives associated with licensing
induce researchers to shift the allocation of time from
leisure to both types of research activities. Finally, a third
scenario is also simulated in which basic and applied
research are complements in the production of license
output, but they are substitutes in the production function
of publications. In this case, basic research efforts are
always higher than applied ones regardless the licensing
regime, and total research output does not decrease in a
licensing regime compared to the case in which no income
from licensing is allowed. In other words, the effect of
patenting and licensing on the level of basic research effort
and on the total research output seems not depend on the
assumption that applied and basic research are either
complements or substitutes in the production function of
publications. The crucial point is whether or not applied
research involved in patenting leads also to publishable
output and thus adds to the stock of knowledge of a
scientist. Overall, the model shortly outlined above suggests
two alternative hypotheses with respect to the effect of
patenting on the rate and direction of publication output.

H3A: To the extent that applied research does not
contribute to the stock of knowledge of a scientist (but
is simply spent to develop licensable inventions),
patenting will have a negative effect on the production
of ‘basic’ scientific publications and on total research
output.

H3B: If both basic and applied research contribute to the
stock of knowledge of a scientist, patenting will have a
positive effect on the production of ‘basic’ scientific
publications and on total research output.

Data and methodology
The data used in this paper come from the combination of
two data sets: the EP-INV data set and the list of Italian
professors provided by the Ministry of Education (MIUR).
The EP-INV database contains all patent applications to the
EPO signed by at least one inventor with an Italian address,
from 1980 to 2000. Overall, the EP-INV database contains
information on 30,243 inventors and 38,868 patent
applications. The MIUR data set contains the names, age,
affiliation, academic ranking (assistant, associate and full
professor) and scientific discipline of all Italian professors
who, in 2000, held a tenured position in the hard sciences
(27,844 individuals).2 By matching the two data sets at the
level of individual researchers, we were able to identify what

we call ‘academic inventors’, namely university professors
whose name appears among the inventors on one or more
patent applications. Overall, the matching procedure
returned a total of 919 academic inventors responsible for
1475 patents and active in various scientific disciplines. For
this paper we selected 296 scientists responsible for 729
patents and active in four scientific disciplines: chemical
engineering, biology, pharmacology and electronic engi-
neering. The reasons for focusing on this subset are
twofold. First, collecting publication data at the individual
level is a very time-consuming exercise, which requires
frequent manual checks of the records; resource constraints
suggested us to limit the sample at a manageable size, in
order not to compromise data quality. Second, the four
selected disciplines are those with the highest intensity of
academic patenting, as measured by the percentage of
academic inventors over all university professors in the
discipline (Table 1).

The distribution of patents across the 296 selected
academic inventors is highly skewed; most professors in
our sample have signed only one patent, and very few more
than five (Table 2). Moreover, most patents signed by
academic inventors belong to business companies, as a
result of contractual funding, with little meaningful
differences across disciplines. The only exception is
represented by biology, which records a higher number of
both individual patents and patents owned by ‘open
science’ institutions, namely universities and public fund-
ing agencies or labs (Table 3).

The next step of our methodology involved the
construction of a control sample of non-patenting scien-
tists. To this end, each academic inventor was matched to a
control professor in the same scientific discipline, with the
same academic ranking and of a similar age.3 Controls were
selected among professors who were never designated as
inventors of patents applied for either at the EPO or at the
United States Patent and Trademark Office (USPTO).
Moreover, controls were chosen among the academic
inventors’ department colleagues or from universities of
similar size and importance, or from the same region.4

Table 1 Italian academic inventors, selected scientific fields

Professors
active in 2000

Of which academic
inventors

(percentage)

Chemical engineering 355 63 (17.7)
Pharmacology 613 83 (13.5)
Biology 1359 78 (5,7)
Electronic engineering 630 72 (11.4)

Total 2957 296 (10.0)

Academic inventors are university professors who appear as
designated inventors of patent applications by universities,
business companies and individuals. The academic disciplines
listed in the table are those with the highest number of academic
inventors. The second column reports the total number of Italian
professors active in 2000 in the selected scientific fields. The third
column reports the number and fraction (in brackets) of
professors who have signed patents over the period 1980–2000.
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For academic inventors and their controls we then
collected data on scientific publications from 1975 to 2003
using the ISI Science Citation Index (SCI). For each article,
we also collected the number of citations received up to
2003, which we used for weighing the quality of each
professor’s publications. Finally, we classified articles
according to their level of ‘basicness’ by using a reclassi-
fication of ISI-SCI journals proposed by CHI Research Inc.
(Hamilton, 2003), which assigns them to four categories
ranging from very basic to very applied research.5 The
publication data set we assembled following these criteria
has two main characteristics, which we addressed with a
few rules of thumb. First, it is left-censored: we do not have
information on when our professors started their research
careers, as we do not know when they completed their
studies or got their first academic job.6 Thus, a zero
publication record in a given year can be explained either

by a low productivity, or because the scientist had not
started her research career yet. To solve this problem, we
decided to include in each year’s sample only those
inventors who were already 25 or older, and the related
controls (e.g. a professor born in 1965 is included, with its
control, in the sample in 1990). Italian students leave high
school at 19 and most degrees requires 5 years of courses,
and a final dissertation; this makes 24 the earliest possible
graduation age. We also set an upper age limit at 70: this is
because a few professors active in 2000 were already near
that age, and we presume them not to be any more active
later on. It is important to point out that these rules bear no
relationship with the inventor/control status, therefore they
should not affect the conclusions we reach. A second issue
is related to the use of ISI-SCI as a source of information,
both at a general level and for the Italian case. In general,
we may expect the number of publications per-capita to
change over time, simply because the number and
composition of journals included in the ISI-SCI database
change. For Italy, until recently the academic career system
used to put a low prize on high publication rates, and even
less on publications in international journals; in addition,
until the 1980s it was still a rare event for Italian scientists
to complete their Ph.D. abroad, and publish their first
papers there. These two facts conjure up to make the ISI-
SCI data quite a reliable source of information on the
scientific productivity of later cohorts of professors, but not
so much for the early ones.

Descriptive statistics show that academic inventors in
our sample are more productive than their controls
(Table 4). The mean and median number of publications
of academic inventors over the period 1975–2003 is
significantly higher than the corresponding figures for
control professors. Moreover, the same results (not
reported here) hold when citations or publications in basic
science journals are considered. In the next section, we
provide a detailed description of our econometric ap-
proach.

Econometric approach
The main question addressed by this paper is whether
patenting activity increases or decreases the yearly number
of scientific publications of academic inventors. Empiri-
cally, we model the problem by including a variable that is
equal to zero in the years when the individual has not yet
patented and is equal to one for all the periods after the
year of the first patent. For example, if a scientist is present
in our database from 1980 to 1999 and his/her first patent is
in 1995, this variable is 0 in the period 1980–1994 and 1 in
the period 1995–1999. This type of variable is known in the
literature as a treatment and has been widely used for the
evaluation of policy programmes and, in medicine, for the
evaluation of the effect of specific prescriptions or doctor
visits (e.g. Wooldridge, 2002: Chapter 18). In our context,
patents represent a treatment given only to some indivi-
duals, that is, academic inventors, while control professors
are non-treated individuals. In order to evaluate the effect
of such a treatment we use a difference-in-difference (DID)
econometric estimation. The main intuition behind DID
estimation is the following. First, we calculate yearly
changes in the number of papers published by academic

Table 2 Distribution of academic inventors by number of patents

Number of patents

1 2–5 45

Chemical engineering 60.9 32.8 6.3
Pharmacology 63.1 28.6 8.3
Biology 70.5 23.1 6.4
Electronic engineering 56.2 31.5 12.3

Total 62.9 28.8 8.3

The table reports the percentage distribution of academic
inventors in the selected scientific fields by total number of
patents signed over the period 1980–2000 and scientific field.
The table shows that most academic inventors are listed on just
one patent application, while few appear on more than five.

Table 3 Ownership of academic inventors’ patents

Business Open
science

Individuals

Chemical engineering 127 (76.0) 22 (13.2) 18 (10.8)
Pharmacology 200 (75.2) 32 (12.0) 34 (12.8)
Biology 88 (48.6) 57 (31.5) 36 (19.9)
Electronic engineering 200 (78.1) 40 (15.6) 16 (6.3)

Total 615 (70.7) 151 (17.4) 104 (11.9)

Patents by academic inventors can be owned either by their
universities as well as public research organizations, business
companies or one or more individuals (among whom the
inventors themselves); co-ownership by two different organiza-
tions is also possible, although not frequent. The table reports the
number and fraction (in brackets) of the academic patents
considered in this paper across three different types of owners:
business companies, which include both Italian and foreign
companies, ‘open science’ institutions, which comprise universities,
public research organizations and government agencies, and
individuals. Patents by more than one applicant were counted more
than once. The table shows that: (i) the largest part of academic
patents is in the hands of business companies; (ii) some variance
exists across disciplines, with biology recording a larger-than-
average share of academic patents owned by ‘open science’
institutions and individuals, and electronics recording the lowest
share of individual ownership.
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inventors and their colleagues. Second, we compare
productivity changes for academic inventors after the filing
of their first patent with contemporary changes in the
productivity of their non-inventing colleagues (control
group). A significant difference between academic inven-
tors and the control group suggests that patenting has an
effect on the individual scientific productivity, which may
be positive or negative depending on the sign of the
coefficient. Since our data allow us to observe the same
individual for many years, we can tell apart the impact of
the treatment variable from whatever individual character-
istics affecting scientific productivity, which are constant
over time (such as the individual scientist’s biographical
details or unobservable skills). That is, under specific
conditions to be discussed below, the longitudinal nature of
our data helps us avoiding to confound the treatment effect
with unobserved individual effects constant in time.

Regressions
We estimate the following regression equation for the whole
sample of treated and control scientists (i¼ 1,y,592 refers
to individuals in the panel,7 t¼ 1980,y..1999 indexes
time):

yit ¼ xitbþ ziyþ Postpatitgþ ai þ uit ð1Þ

where yit is a measure of scientific productivity at time t, xit

is a vector of time-varying explanatory variables, including
time dummies and other time-varying covariates that may
account for heterogeneous dynamics, zi is a vector of

individual-specific time invariant variables, at is an
individual fixed effect and uit is an idiosyncratic (i.e. time
and individual specific) error term. Postpatit is the
treatment variable; it takes value 1 in the years after the
first patent (including the year of patenting) and 0
elsewhere. In order to assess the robustness of our results,
in some specifications we replace the Postpatit variable with
two other different variables that may capture a different
type of impact of patenting on the academic inventors’
publication activity:

1. Yearpatit, which takes value 0 in all periods except in the
year of patenting when the value is set to 1;

2. Stockpati,(t�1), which is the individual stock of patents at
time (t�1).

In the first case the impact of the patent is assumed to be
temporary and contemporaneous to publications; by using
it, we test whether, in the year of patenting, scientists
experience a productivity slowdown or increase. In the
second case, we try to capture the effect that the cumulative
patenting effort may have on the scientist’s productivity; in
particular, we expect that the existence of a substantial
complementarity (trade-off) between basic and applied
research to show up in a positive (negative) coefficient.

As far as the dependent variable yit is concerned, we used
three alternative indicators that describe different aspects
of a professor’s scientific productivity in any given year:
Pubit, which measures the total number of articles
published in year t; Citit, which measures the total number
of citations up to 2003 received by articles published in year
t; and Basicit, which measures the total number of articles in
‘basic’ scientific journals published in year t.8

All the regressions include a full set of year and age
dummies. Concerning in particular age, four dummy
variables have been used: Age30 if age is in the interval
[30, 39], Age40 if age is [40, 49], Age50 if age is [50, 59] and,
finally, Age60 if age [60, 70] (the base age is [25, 29]).9

Moreover, since patenting may signal a pre-existing
collaboration activity with industry, the variable Coauti,(t�1),
which measures the number of publications that each
individual professor has co-authored with researchers
affiliated to a private company at time (t�1) has been
included in all specifications to control for the individual
propensity to collaborate with industry.

Table 5 lists all the variables used in the subsequent
regression analysis along with descriptive statistics, while
Table 6 provides the correlation matrix for the same
variables. Overall, we have an unbalanced panel of 592
individuals (296 academic inventors and 296 controls) from
1980 to 1999. The panel is unbalanced since professors
enter and exit from the sample at different times. The total
number of individual-year observations is equal to 10,696.

Identifying assumptions and implementation
The key identifying assumption in the estimation of (1) is
that the average change in the scientific output of
professors is presumed to be the same for both the
inventors, if they had not been treated, and their controls.
This means that there are no other (time varying) factors
that we cannot control for and that affect differently the
dynamics of scientific publications of the patenting and

Table 4 Scientific productivity of academic inventors and controls

N Mean Std. dev. Median

Academic inventors
Chemical engineering** 63 2.0 1.75 1.5
Pharmacology * 83 2.2 1.21 2.0
Biology* 78 2.5 2.10 2.0
Electronic engineering 72 1.7 1.04 1.4
All fields 296 2.1 1.60 1.8

Control professors
Chemical engineering 63 1.3 1.10 1.1
Pharmacology 83 1.7 1.11 1.6
Biology 78 1.8 1.27 1.5
Electronic engineering 72 1.3 1.18 1.0
All fields 296 1.6 1.28 1.3

The table compares the number of publications authored by the
academic inventors in our sample with those authored by a
matched control sample of professors in the same disciplines and
institutions, and of similar age. It can be seen that: (i) in both
samples the distribution of publications is asymmetrical, as
suggested by the literature (the mean is always larger than the
median, which suggest a long right tail); (ii) academic inventors
are more productive than their colleagues (both the mean and the
median of their distribution are higher); (iii) both (i) and (ii) hold
across the four disciplines considered in the paper.
The * and ** symbols indicate that the distribution of publications
for academic inventors is significantly different from controls,
respectively, at the 90 and 95% levels using a Kolmogorov–
Smirnov test.
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non-patenting groups of professors. For example if, for any
reason different from patenting, an academic inventor
activates more research projects or increases her access to
research funds or to new equipment relatively to her
matched colleague, this would increase her publication
activity relative to her control. In this case we would
observe a positive impact of the patenting activity even if
the patent is not the factor determining the increase in the
number of yearly publications. Therefore, we have to

assume that time-varying unmeasured factors (e.g. new
ideas, new contacts with industry, new research funds, new
kids in the scientist family, etc.) should affect both treated
and non-treated individuals in similar ways. A violation of
this assumption is more likely if academic inventors and
controls are very different from each other. By using a
matched sample, we make sure that control scientists are
not much different from treated professors. In addition, we
include in specification (1) the interaction between year

Table 5 Variables used in regression analysis

Variable Description Obs Mean Std. dev. Min Max

Dependent variables
Pubit Number of scientific articles published

in year t
10,696 1.83 2.24 0 25

Citit Number of citations received by articles
published in year t

10,696 26.41 63.39 0 1459

Basicit Number of ‘basic’ scientific articles published
in year t

10,696 1.33 1.96 0 25

Treatment variables
Postpatit Year of the first patent and following years¼ l;

all other years¼ 0
10,696 0.26 0.44 0 1

Yearpatit Year of the first patent¼ l; all other years¼ 0 10,696 0.05 0.22 0 1
Stockpati, (t�1) Stock of patents in year (t�1) 10,696 0.57 1.76 0 29

Control variables
Coauti, (t�1) Number of scientific articles co-authored with

a private company in year (t�1)
10,696 0.19 0.63 0 12

Age30 If age¼ [30, 39] ¼ 1; else¼ 0 10,696 0.32 0.47 0 1
Age40 If age¼ [40, 49] ¼ 1; else¼ 0 10,696 0.32 0.47 0 1
Age50 If age¼ [50, 59] ¼ 1; else¼ 0 10,696 0.2 0.4 0 1
Age60 If age¼ [60, 69] ¼ 1; else¼ 0 10,696 0.05 0.21 0 1

The table reports the variables used in regression analysis. Dependent variables measure scientific productivity in terms of number of
publications, citations received by publications and number of publications in ‘basic’ scientific journals. Independent variables comprise
treatment and control variables. Three treatment variables have been considered to capture different impacts of patenting on the
publication activity of academic inventors: two dummy variables that capture, respectively, persistent and temporary effects of patenting,
and a continuous variable that capture the cumulative effect of patenting. Finally, control variables include year and age dummies, and
the number of publications that each individual professor has co-authored with researchers affiliated to a private company. The latter is
meant to control for the individual propensity to collaborate with industry.

Table 6 Correlation matrix

Pubit Citit Basicit Postpatit Yearpatit Stockpati, (t�1) Coauti, (t�1) Age30 Age40 Age50

Pubit 1.00
Citit 0.54 1.00
Basicit 0.87 0.55 1.00
Postpatit 0.19 0.05 0.12 1.00
Yearpatit �0.02 �0.01 0.01 0.4 1.00
Stockpati, (t�1) 0.22 0.08 0.14 0.48 0.38 1.00
Coauti, (t�1) 0.42 0.32 0.35 0.16 �0.03 0.23 1.00
Age30 �0.06 �0.03 �0.06 �0.12 �0.002 �0.12 �0.04 1.00
Age40 0.07 0.06 0.06 0.05 0.02 0.05 0.05 �0.48 1.00
Age50 0.13 0.04 0.12 0.21 0.02 0.16 0.06 �0.34 �0.33 1.00
Age60 0.03 �0.02 0.03 0.18 �0.002 0.10 �0.01 �0.15 �0.15 �0.11

The table reports the correlation matrix for the dependent and independent variables used in regression analysis.
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dummies and time invariant variables such as professors’
date of birth, gender, disciplinary field and size of the
department (relative both to other departments in the same
discipline in Italy and to other departments in the same
university). Conditioning on these variables makes scien-
tists even more similar and reduces the probability of
violating the identifying assumption.

A non-random treatment would also violate the identify-
ing assumption. In particular, if the likelihood to have a
patent depends upon the previous publication activity this,
in turn, would bias the estimated impact of patenting
activity on publication activity. We deal with the resulting
endogeneity issue at length in the section Treatment of
endogeneity.

Results

The effects of patenting on publication activity
Tables 7–9 show the main results of the effects of patenting
on the rate and direction of scientific publications. Each
table corresponds to one of the three different dependent
variables described in the section Regressions. In addition,
each table contains estimates for the three different
specifications of the treatment variable. Since publications
are non-negative integers and the distribution of individual
publications is highly skewed, with significant overdisper-
sion and a large number of zeros, a Fixed Effects Negative
Binomial model has been used to estimate (1) (Hausman
et al., 1984). As a robustness check, for each measure of

Table 7 Fixed effects negative binomial and linear regressions of the number of publications (Pubit)

Dependent variable: Pubit Dependent variable: log(Pubit+1)

Fixed effects negative binomial Within Within+
interactions

Yearpatit 0.04 0.05**
(0.035) (0.02)

Postpatit 0.14*** 0.14*** 0.14***
(0.03) (0.02) (0.03)

Stockpati, (t�1) 0.06*** 0.06***
(0.012) (0.008)

Stockpat2
i , (t�1) �0.001*** �0.001**

(0.0006) (0.0004)
Coautii, (t�1) 0.03*** 0.03** 0.02* 0.06*** 0.05*** 0.05*** 0.05***

(0.01) (0.01) 0.01) (0.009) (0.009) (0.009) (0.009)
Age30 0.77*** 0.76*** 0.78*** 0.32*** 0.32*** 0.33*** 0.19***

(0.05) (0.05) (0.05) (0.02) (0.02) (0.02) (0.04)
Age40 0.77*** 0.76*** 0.78*** 0.29*** 0.29*** 0.29*** 0.16***

(0.07) (0.07) (0.07) (0.04) (0.03) (0.03) (0.05)
Age50 0.69*** 0.69*** 0.70*** 0.21*** 0.21*** 0.21*** 0.18***

(0.09) (0.09) (0.09) (0.05) (0.05) (0.05) (0.06)
Age60 0.6

0.68*** 7*** 0.14** 0.68*** 0.14** 0.14** 0.14*
(0.12) (0.12) (0.12) (0.07) (0.07) (0.07) (0.08)

# of observations 10,673 10,673 10,673 10,969 10,696 10,696 10,696
# of researchers 590 590 590 592 592 592 592
R2-within 0.14 0.15 0.15 0.50
F-test 67.77** 69.87*** 68.27***
Degrees of freedom 25, 10,079 25, 10,079 26, 10,078 269, 591
Log-likelihood �14470.2 �14460.5 �14451.3
Wald w2 1547.4*** 1571.6*** 1571.6***
Degrees of freedom 29 29 30

The table reports results of regression estimates where the dependent variable is the number of publications. Symbols *, **, and ***
indicate coefficients statistically significant, respectively at the 10, 5 and 1% levels. Standard errors are in brackets. The first four columns
provide estimates of a fixed effects negative binomial model, whereas the last three columns provide results based on linear fixed effects
within estimators. The specification in the last column also contains interactions between year dummies and dummies that group
individuals according to their dates of birth, gender, disciplinary field, and size of the department. It also includes robust standard errors
and the regression is clustered on individuals. Year dummies included in all specifications. The results show that the estimated treatment
effect Postpatit is always significantly positive, indicating a positive impact of patenting activity on the number of publications. The size of
the estimated coefficient suggests that an academic inventor may expect a 16% higher increase in her publication activity after the first
patent relative to their colleagues who do not patent. This result implies rejection of hypothesis H1A and support to hypothesis H2.
Different treatment variables lead to similar results. In particular, the impact of the individual stock of patents Stockpati, (t�1) is positive and
statistically significant, suggesting once again the existence of a substantial complementarity between publishing and patenting, also for
serial academic inventors (rejection of hypothesis H1B). However, there is also a weak quadratic effect, which suggests that if the stock
of patents grow substantially the marginal benefits in terms of publications could eventually decrease.
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scientific productivity, we have also reported linear fixed
effects within estimators, using as dependent variable the
log of publications, citations and publications in basic
scientific journals.

Our results show that the estimated treatment effect
Postpatit is always significantly positive. In fact, there is a
positive impact of patenting activity on the number of
publications (Table 7), on the number of citations received
(Table 8) and on the number of publications in basic
science (Table 9). This suggests that academic scientists
who turn into inventors do not suffer a decline in their
scientific output (rejection of hypothesis H1A) and do not
see a decline in the citation impact of their publications,
nor they divert their efforts towards more applied research
(rejection of hypothesis H3A; support to H3B). The size of
the estimated coefficient in Table 7 suggests that an

academic inventor may expect a 16% higher increase in
her publication activity after the first patent relative to their
colleagues that do not patent.10 Estimated coefficients do
not change much when using citation or publication counts
as dependent variables, although the size of the coefficient
is slightly smaller when the dependent variable is the count
of publications in basic science journals (Table 9) and
slightly higher when we use citations (Table 8). For linear
fixed effects within estimators, we have also included
a specification which contains the interactions between
time dummies and dummies that group individuals
according to their dates of birth, gender, disciplinary fields
and relative size of the department in the disciplinary
field and in the university.11 Allowing for different time
effects across groups of individuals reduces the probability
of violating the identifying assumption. This comprehen-

Table 8 Fixed effects negative binomial and linear regressions of the number of citations (Citit)

Dependent variable: Citit Dependent variable: log(Citit+1)

Fixed effects negative binomial Within Within
+interactions

Yearpatit 0.17*** 0.19***
(0.047) (0.06)

Postpatit 0.15*** 0.30*** 0.31***
(0.03) (0.05) (0.08)

Stockpati, (t�1) 0.06*** 0.10***
(0.012) (0.02)

Stockpat2
i , (t�1) �0.002** �0.002**

(0.0006) (0.001)
Coauti, (t�1) 0.13*** 0.12** 0.11*** 0.10*** 0.09*** 0.09*** 0.10***

(0.15) (0.15) (0.01) (0.02) (0.02) (0.02) (0.02)
Age30 0.91*** 0.90*** 0.91*** 0.76*** 0.75*** 0.77*** 0.38***

(0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.09)
Age40 0.90*** 0.89*** 0.89*** 0.68*** 0.67*** 0.68*** 0.35***

(0.06) (0.06) (0.06) (0.09) (0.09) (0.09) (0.13)
Age50 0.80*** 0.79*** 0.80*** 0.53*** 0.52*** 0.53*** 0.39***

(0.07) (0.07) (0.07) (0.13) (0.13) (0.13) (0.16)
Age60 0.71*** 0.80*** 0.70*** 0.44** 0.44** 0.44** 0.30**

(0.09) (0.09) (0.09) (0.18) (0.18) (0.18) (0.2)
# of observations 10,613 10,613 10,613 10,696 10,696 10,696 10,696
# of researchers 587 587 587 592 592 592 592
R2-within 0.09 0.09 0.09 0.50
F-test 40.22 41.43 39.53
Degrees of freedom 25, 10,079 25, 10,079 26, 10,078 269, 591
Log-likelihood �32133.7 �32129.5 �32125.7
Wald w2 1209.7*** 1218.29*** 1236.39***
Degrees of freedom 29 29 30

The table reports results of regression estimates where the dependent variable is the number of citations received by publications.
Symbols *, ** and *** indicate coefficients statistically significant, respectively at the 10, 5 and 1% levels. Standard errors are in brackets.
The first four columns provide estimates of a fixed effects negative binomial model, whereas the last three columns provide results based
on linear fixed effects within estimators. The specification in the last column also contains interactions between year dummies and
dummies that group individuals according to their dates of birth, gender, disciplinary field and size of the department. It also includes
robust standard errors and the regression is clustered on individuals. Year dummies included in all specifications. The results show that
the estimated treatment effect Postpatit is always significantly positive, indicating a positive impact of patenting activity on the number of
citations received. This suggests that academic scientists who turn into inventors do not see a decline in the quality of publications as
measured by their citation impact (rejection of hypothesis H3A; support to H3B). Similar results are obtained using different treatment
variables. In particular, the impacts of the individual stock of patents Stockpati, (t�1) and of the 1-year dummy Yearpatit are both positive and
statistically significant. Moreover, the size of coefficients is slightly larger than the one found in the regression for the number of
publications.
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sive linear specification includes also robust standard
errors. We have also corrected the standard errors
using clustered regressions in order to allow residuals
to be correlated within each individual block. The esti-
mated treatment effect remains significantly positive
with similar size. The goodness of fit is considerably
improved.

Different treatment variables lead to similar results. The
impact of the individual stock of patents Stockpati,(t�1) is
always positive on all measures of scientific productivity.
This result shows once more the existence of a substantial
complementarity between publishing and patenting, also
for serial academic inventors (rejection of hypothesis H1B).
However, there is also a weak quadratic effect, which
suggests that if the stock of patents grow substantially the
marginal benefits in terms of publications could eventually
decrease. The 1-year dummy Yearpatit bears always a

positive effect, although this is significant only when
citations are used. Therefore, our scientists do not
experience a productivity slowdown due to legal or time
constraints in the year of patenting.

Our results, however, vary across disciplinary fields.
Table 10 reports the outcome of separate regressions for the
four disciplines covered by our data and shows that the
results we described above hold only for two disciplines,
namely electronics and pharmacology. The estimated
coefficient of Postpatit is particularly high for electronics,
but does not differ significantly from zero for biology and
chemical engineering. It is worth noting also that more than
one-third of the patents by electronic engineers are owned
by ST microelectronics. This is the largest semiconductor
company in Italy with a long lasting cooperation record
with the University of Pavia (Balconi et al., 2004; Breschi
et al., 2007).

Table 9 Fixed effects negative binomial and linear regressions of the number of publications in ‘basic’ scientific journals (Basicit)

Dependent variable: Basicit Dependent variable: log(Basicit+1)

Fixed effects negative binomial Within Within
+interactions

Yearpatit 0.04 0.05**
(0.03) (0.02)

Postpatit 0.10*** 0.09*** 0.10***
(0.04) (0.01) (0.03)

Stockpati, (t�1) 0.05*** 0.04***
(0.014) (0.014)

Stockpat2
i , (t�1) �0.0002 �0.0003

(0.0007) (0.0003)
Coauti, (t�1) 0.03** 0.03** 0.02 0.05*** 0.05*** 0.04*** 0.05***

(0.01) (0.01) (0.1) (0.008) (0.008) (0.008) (0.009)
Age30 0.72*** 0.71*** 0.73*** 0.21*** 0.21*** 0.21*** 0.12***

(0.05) (0.05) (0.05) (0.02) (0.02) (0.02) (0.03)
Age40 0.71*** 0.71*** 0.73*** 0.19*** 0.19*** 0.19*** 0.12***

(0.08) (0.08) (0.08) (0.03) (0.03) (0.03) (0.05)
Age50 0.67*** 0.67*** 0.68*** 0.16*** 0.16*** 0.16*** 0.15***

(0.10) (0.10) (0.10) (0.05) (0.05) (0.05) (0.06)
Age60 0.68*** 0.67*** 0.69*** 0.14** 0.14** 0.14** 0.13**

(0.13) (0.13) (0.13) (0.06) (0.06) (0.06) (0.07)
# of observations 9338 9338 9338 10696 10696 10696 10696
# of researchers 510 510 510 592 592 592 592
R2-within 0.09 0.09 0.09 0.57
F-test 40.21 41.32 40.87
Degrees of freedom 25, 10,079 25, 10,079 26, 10,078 269, 591
Log-likelihood �11231.8 �11228.4 �11217.0
Wald w2 1004.78*** 1031.45*** 1041.65***
Degrees of freedom 29 29 30

The table reports results of regression estimates where the dependent variable is the number of publications in ‘basic’ scientific journals.
Symbols *, ** and *** indicate coefficients statistically significant, respectively at the 10, 5 and 1% levels. Standard errors are in brackets.
The first four columns provide estimates of a fixed effects negative binomial model, whereas the last three columns provide results based
on linear fixed effects within estimators. The specification in the last column also contains interactions between year dummies and
dummies that group individuals according to their dates of birth, gender, disciplinary field and size of the department. It also includes
robust standard errors and the regression is clustered on individuals. Year dummies included in all specifications. The results show that
the estimated treatment effect Postpatit is always significantly positive, indicating a positive impact of patenting activity on the number of
publications in basic science. This suggests that academic scientists who turn into inventors do not divert their efforts towards more
applied research (rejection of hypothesis H3A; support to H3B). This result is broadly confirmed if we use different treatment variables.
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Treatment of endogeneity
As argued above, a major limitation of the approach
followed so far is that it requires us to assume that the
treatment is randomly assigned to individuals in our
sample. However, this is hard to believe, because the
selection into treatment (the decision to patent) is the
outcome of a deliberate choice by the scientists, which can
be explained by both time variant and invariant variables.
In particular, highly productive individuals may sometimes
find themselves with enough material at hand to pursue
both one or more publications and a patent; on the
contrary, less productive scientists may have often hardly
enough material for a single publication. In this case,
patents would occur along with an increase in publication
activity, but would not explain the latter. Past works have
tried to solve this problem in different ways. Stephan et al.
(2003) use a cross-section of individual researchers with
instrumental variables. Fabrizio and DiMinin (2005) use
fixed effect estimations. Azoulay et al. (2004) borrow from
epidemiology a new class of marginal structural models,
which makes use of the inverse probability of treatment
weights (IPTW). Goldfarb et al. (2006) use a wide array of
instrumental variables, among which the amount of venture
capital investment in a scientist’s research area, to be
interpreted as an exogenous shift in the demand for
commercial research. Each approach has some drawbacks.
Stephan et al. (2003) may incur in difficulties with
accounting for individual heterogeneity in the cross-
sectional setting. Fabrizio and DiMinin (2005), by using
fixed effects, eliminate the impact of time invariant
individual heterogeneity but do not consider time-varying
confounders that could violate the crucial identifying

assumption. Goldfarb et al. (2006) are forced to use a
limited number of observations.

In order to address this issue, we have first of all tested
whether and to what extent pre-patent scientific productiv-
ity affects differently the post-patent publication activity of
academic inventors and controls. To this purpose, we have
cross-tabulated the average number of publications of
academic inventors and their controls in the 3 years after
the inventors’ first patent by the number of publications of
the same individuals before the first patent (Table 11). The
descriptive evidence shows that the post-patent perfor-
mance of the academic inventors is always higher than their
controls. However, the difference between the average post-
patent performance of the inventors relatively to their
controls does not increase with the pre-patent individual
productivity. In other words, pre-patent individual pro-
ductivity does not seem to be a strong predictor of the
average publication gap between academic inventors and
controls.

Second, we checked the consistency of our identifying
assumption by plotting the yearly average estimated
residuals from the regression in Table 7, for the control
group and for the academic inventors before their first
patent. This has been done for the most comprehensive
specification which includes all the interaction terms (last
column of Table 7). We expect these residuals to be similar
across the two groups. Figure 1 shows that the residuals are
indeed similar up to 1993. The difference between the two
groups of residuals is particularly evident at the end of the
time span covered by the sample; after 1994 few non-treated
inventors are left (82 in 1995, 73 in 1996, 52 in 1997, 16 in
1998 and just 1 in 1999). Here, we find that the residuals of

Table 10 Treatment effects in different scientific fields, Fixed effects negative binomial, dependent variable: number of publications (Pubit)

Pharmacology Biology Chemical engineering Electronic engineering

Postpatit 0.18*** 0.04 0.02 0.45***
(0.0562) (0,051) (0.076) (0.077)

Coauti, (t�1) 0.001 0.04*** 0.00 0.05
(0.0231) (0,014) (0.028) (0,034)

Age30 0.96*** 0.36*** 0.72*** 0.91***
(0.089) (0.080) (0.120) (0.103)

Age40 0.89*** 0.35*** 0.69*** 1.01***
(0.123) (0.112) (0.165) (0.149)

Age50 0.83*** 0.25 0.55** 0.91***
(0.163) (0.154) (0.221) (0.208)

Age60 0.72*** 0.40** 0.41 0.88***
(0.213) (0.194) (0.288) (0.324)

# of observations 2992 2918 2296 2467
#. of researchers 166 156 125 143
Log-likelihood �4261.0 �4294.0 �2913.5 �2902.9
Wald w2 576.9 345.9 246.2 493.3
Model degrees of freedom 26 26 26 26

The table reports the outcome of separate regressions for the four scientific disciplines considered in the paper. The dependent variable
is the number of publications and a fixed effects negative binomial model has been estimated. The results show that the positive impact of
patenting on publication activity found for the whole sample holds only for two scientific disciplines, namely electronic engineering and
pharmacology. The estimated coefficient of Postpatit is particularly high for electronic engineering, but does not differ significantly from zero
for biology and chemical engineering. Symbols *, ** and *** indicate coefficients statistically significant, respectively at the 10, 5 and 1%
levels. Standard errors are in brackets. Year dummies included.

University patenting and scientific productivity Stefano Breschi et al

101



the inventors are regularly above the controls’ ones.
Table 11 suggests that pre-patent scientific productivity is
not a strong predictor of the differences in the post-patent
publication gap between the inventors and the control

group. At the same time, Figure 1 shows that in recent years
there is an increase in the pre-patent residuals of the
inventors relatively to their controls. In a related publica-
tion, we show that publication counts may affect subse-
quent patenting and future publication activity (Breschi
et al., 2005) and similar results are obtained by Azoulay
et al. (2004). These results suggest that the lagged number
of individual publications may act as a time-varying
confounder. This problem seems to be more relevant than
a possible sample selection bias due to individual
productivity.

In order to solve this problem, we follow Azoulay et al.
(2004) in using the IPTW, a technique first introduced in
biostatistics (Hernan et al., 2000; Robins et al., 2000). A
limitation of this methodology is the need to assume that
there are no unmeasured confounders. Therefore, in the
absence of a unique solution to the issue of endogeneity, we
decided to run also a sets of regressions based on
instrumental variables and to compare the ensuing results
with those obtained by using IPTW.

Instrumental variables
The appreciative theory of individual professors’ behaviour
outlined in the second section can be used to come up with
one or more instrumental variables that may affect the
treatment choice, but not the outcome. The instrument
should be a variable that does not belong to model (1) and
therefore should not affect the scientific productivity of
individual scientists, but should be correlated with the
patenting activity (our suspected endogenous explanatory
variable); it should also be uncorrelated with the error term
(otherwise the instrument would have the same problem as
the original predicting variable). In this paper, we used two
different instruments: Shareinvi,(t�1), which measures the

Table 11 Publications of inventors and controls in the 3 years after the first patent by their pre-patent scientific productivity

Number of publications of individual inventors and controls before the first
patent of the inventors

0–9 10–19 20–29 30–39 X40

Total number of publications of academic
inventors in the 3 years after the first
patent (a)

537 474 384 291 578

Number of academic inventors (b) 105 78 42 30 41
Average number of publications (a/b) 5.11 6.08 9.14 9.7 14.1

Total number of publications of controls in
the 3 years after the first patent (a)

372 418 197 209 271

Number of controls (b) 123 85 42 24 22
Average number of publications (a/b) 3.02 4.92 4.69 8.71 12.32

The table splits the sample of academic inventors and controls into five categories according to the level of scientific productivity before
the first patent of inventors. For example, the first category refers to individuals with a pre-patent number of publications between 0 and
19, while the fifth category refers to individuals with a pre-patent number of publications greater than or equal to 40. For each category of
individuals, the average scientific productivity after the first patent is then calculated, separately for academic inventors and their controls.
The table shows whether previous scientific productivity affects differently the post-patent publication activity of the academic inventors
and their controls. The evidence reported shows that the post-patent performance of the academic inventors is always higher than their
controls. However, the difference between the average post-patent performance of the inventors relatively to their controls does not
increase with the pre-patent individual productivity. Thus, pre-patent individual productivity does not seem to be a strong predictor of the
average publication gap between inventors and controls.
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Figure 1 Estimated residuals for academic inventors and controls before the
first patent. Note: The figure plots the yearly average estimated residuals from
a regression where the dependent variable is the number of publications (see
last column of Table 7), separately for the control professors and for the
academic inventors before their first patent. To the extent that our identifying
assumption, that is, that selection into treatment is randomly assigned to
individuals in our sample, is correct, we would expect these residuals to be
similar across the two groups. The plot shows that the residuals are indeed
similar up to 1993. Yet, the plot also reveals that after 1994 there is an
increase in the pre-patent residuals of the academic inventors relatively to
their controls. Although few non-treated inventors are left after 1994 (82 in
1995, 73 in 1996, 52 in 1997, 16 in 1998 and just 1 in 1999), this result
indicates a potential violation of our identifying assumption.
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share of professors at time (t�1) within the department of
scientist i that are inventors, and Stockcompi,(t�1), which
captures the stock of patents at time (t�1) of the
organization that owns scientist i’s first patent. Both
variables may affect the individual scientist’s propensity
to patent and have no direct effect on her scientific
publications and citations (other than through patents):
colleagues who already have signed one or more patents
may set an example or provide the would-be inventor with
clues and help when it comes to drafting an application;
likewise, applicants with a large stock of patents are more
likely to file patents on inventions by the academic
scientists they have sponsored, thus affecting the prob-
ability that those scientists will turn into academic
inventors. These variables are correlated with Postpatit

but they are not significantly different from zero when
included in specification (1). This suggests that they are
suitable instruments. Instrumental variable estimation is
implemented through 2SLS and therefore the dependent
variable is re-calculated as kit¼ log(1þ yit), where yit is
either the number of scientific articles published at time t
or the number of forward citations received by them.12

Inverse probability of treatment weights
The IPTW methodology is taken from the clinical and
epidemiological studies where researchers are often inter-
ested in testing the impact of a treatment at improving
survival. It happens often that the treatments are not
randomly assigned. The treated group may be sicker, older
or poorer than the non-treated group and may behave
differently. Therefore differences in survival rates might
depend upon different characteristics and behaviours of the
groups that confound the effects of the treatment. The
IPTW is a method to give a different importance to each
observation in order to take into account that individuals
have different probabilities of being treated. Intuitively, in
our case, weights are built in such a way that scientists with
a high predicted probability of patenting receive a lower
weight, compared with other scientists with a low predicted
probability of patenting. In doing so, the scientist with a
low predicted probability of patenting, who actually
patents, will have a more important role in the comparison
with the group of professors that do not patent. In
particular, we suspect that past publications affect the
probability to patent and we observe that academic
inventors publish more than their controls. Therefore, we
want to give more weight to the academic inventors who
have a lower probability to patent because they are more
‘representative’ of the control group.

IPTW methodology is implemented in two stages. First,
estimates of the probability of patenting at time t are used
to build weights. Second, a weighted fixed effect linear
regression is used to estimate specification (1). In the
Appendix, we explain in detail how the weights are
calculated. Intuitively, IPTW corrects for endogeneity by
making use of information on the probability that each
observation has to be treated. If the value of Postpatit

depends on the individual’s past publications it follows that
professors who have been more productive in the past have
a higher probability to sign a patent at time t, that is to turn
into academic inventors. Informally, therefore, the denomi-

nator of the weights is built as the probability to receive the
observed treatment. Robins et al. (2000) show that under
the assumption that all the confounding variables are
correctly observed, the weights create a pseudo-population
that is unconfounded by past publications. We estimate the
probability of patenting by using a logit model (see the
Appendix for more details):

logitprob Postpatit ¼ 1½ � ¼ aþ xitbþ Pubi;ðt�1Þg

þ dt þ vit

ð2Þ

where the number of individual publications at time (t�1)
– that is, Pubi,(t�1) – is the confounding variable that creates
the endogeneity problem. The set of other covariates xit

includes: Stockpubi,(t�2), which is the stock of individual
publications at time (t�2); Coauti,(t�1), which is the number
of publications with a co-author from industry at time
(t�1); Shareinvi,(t�1), which is the share of inventors in the
same department at time (t�1); and Cumpatuni,(t�1), which
is the stock of patents held by scientist i’s university at time
(t�1). Moreover, a full set of dummy variables are included:
time dummies (dt), gender and disciplinary fields. Table 12
shows the results of this auxiliary regression and confirms
that individual publications at time (t�1), co-authorship

Table 12 Estimation of the probability of patenting

Dependent variable: Postpatit, Logit estimation

Pubi, (t�1) 0.09***
(0.005)

Stockpubi, (t�2) 0.003
(0.005)

Coauti, (t�1) 0.41***
(0.09)

Shareinvi, (t�1) 0.04***
(0.008)

Cumpatunii, (t�1) 0.0007
(0.001)

Intercept �4.15***
(0.3)

# of observations 8262
# of researchers 592
�2 Log-likelihood 2416
LR w2 122.92***
Model degrees of freedom 27
Pseudo R2 0.05

The table reports the estimates of a logit model for the probability
of patenting. The results of this auxiliary regression suggest that
the number of publications at time (t�1), that is, Pubi, (t�1), the
number of papers co-authored with industry, that is, Coauti, (t�1),
and the share of other professors within the same department
that have signed patents, that is, Shareinvi, (t�1), affect in a positive
and statistically significant way the probability of patenting. In
particular, the fact that the lagged value of the outcome variable,
that is, Pubi, (t�1), significantly affects selection into treatment seems
to confirm our suspects of potential endogeneity problems in
regression estimates reported before. Symbols *, ** and ***
indicate coefficients statistically significant, respectively at the 10,
5 and 1% levels. Standard errors are in brackets. Dummy
variables included (not reported here): time, gender and
disciplinary fields.
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with industry and the presence of other inventors within
the same department affect significantly the probability of
becoming a patenter. In particular, it is important to stress
that the lagged value of the outcome variable (publications)
significantly affects selection into treatment. Accordingly, it
is legitimate to suspect that regressions in Tables 7–9 fail to
account for the dynamics of the selection process into
patenting.

Instrumental variables and IPTW results
Tables 13 and 14 compare the results of the within
estimations reported in Tables 7–9 with the results of
IPTW and instrumental variables regressions. In both
tables the dependent variable is defined as kit¼ log(1þ yit),
where yit is, respectively, the number of scientific
publications and the number of citations at time t. The
estimated treatment effect (Postpatit) is always signi-
ficantly positive. Different methods do not produce
different estimated coefficients for Postpatit, both when
the dependent variable consists of publication counts
and when it consists of citations received. The only
exception is regression IV(a), which produces a slightly
higher coefficient than the others. Co-authorship with
industry appears again to improve significantly the amount
of publications and citations received by the academic
inventors relative to controls.

Treatment effect varying over time and individual patterns
As a final step in our analysis, we try to open the black box of
the estimated positive treatment effect on the basis of the
following considerations. It is highly implausible that the
effect of the treatment is instantaneous and constant as
modelled by the variable Postpatit. It is more likely that any
positive or negative effect starts some time before the actual
date of patenting, and fades away after some years. In fact,
the publication rate may start increasing before the first
patent is applied for, peak somewhere close to the patenting
year, and then display different patterns depending on
whether the scientist files more patents or not. Since a single-
step variable is not sufficiently flexible to capture these
effects, we add in the regression a set of dummies that are
meant to capture the variation in the scientific publication in
the three years before and after the first patent.13

It is also important to take into account that, as shown in
Table 2, the distribution of patents across academic
inventors is highly skewed. Therefore, we expect the
treatment effect to vary with the number of patents signed
by the inventor. For example, we expect that the impact on
scientific publications could be negligible for inventors who
patent once in their life and possibly more pronounced for
serial inventors. To take this variation into account, we
classified academic inventors in two distinct categories:
occasional and serial inventors. The former are defined as
those inventors who have signed just one patent, whereas

Table 13 Instrumental variable (IV) and inverse probability of treatment weights (IPTW) estimations of the number of publications (Dependent variable: log(Pubit +1))

Within IPTW with FE IV(a) IV(b)

Postpatit 0.14*** 0.13*** 0.17*** 0.13***
(0.02) (0.02) (0.06) (0.05)

Coaututi, (t�1) 0.05*** 0.05** 0.05*** 0.05***
(0.01) (0.01) (0.009) (0.009)

Age30 0.32*** 0.32*** 0.32*** 0.32***
(0.02) (0.02) (0.02) (0.02)

Age40 0.28*** 0.28*** 0.28*** 0.29***
(0.04) (0.04) (0.04) (0.04)

Age50 0.21*** 0.20*** 0.20*** 0.21***
(0.05) (0.05) (0.05) (0.05)

Age60 0.14*** 0.14*** 0.14*** 0.14***
(0.07) (0.07) (0.07) (0.07)

# of observations 10,696 10,696 10,696 10,696
# of researchers 592 592 592 592
R2 0.51
R2-within 0.14 0.15 0.15
Wald w2 28,044*** 28,051***
F-test 69.87*** 27.9***
F-test on excluded instruments F1,10,078¼ l050.18*** F2,10,078¼ 711.68***
Model degrees of freedom (25, 10,079) (616, 10,079) 25 25

The table compares the results of linear fixed effects within estimates with the results of IPTW and IV regressions where the dependent
variable is the (log of) number of publications in year t. The first column replicates results reported in Table 7 (sixth column). The second
column refers to IPTW estimates, while the third and fourth columns refer to IV estimates. Two IV estimates have been reported: (a) the
instrument used is Shareinvi, (t�1), that is the share of professors at time (t�1) within the department of scientist i that are inventors; (b) in
addition to Shareinvi, (t�1), Stockcompi, (t�1), that is, the stock of patents at time (t�1) of the organization that owns scientist i’s first patent, is
also used as an instrument. The results show that the estimated treatment effect Postpatit is always significantly positive and that different
estimation methods do not produce significantly different estimated coefficients. The only exception is regression IV(a), which produces a
slightly higher coefficient than the others. Overall, these results confirm the beneficial effect of patenting on scientific productivity.
Symbols *, ** and *** indicate coefficients statistically significant, respectively at the 10, 5 and 1% levels. Standard errors are in brackets.
Year dummies included in all specifications.
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the latter have produced a stream of related patents after
the first one. As a result we estimate the following
specification by means of a fixed effects negative binomial
model:

yit ¼ xitbþ ziyþ Di;�3g�3 þ Di;�2g�2 þ Di;�1g�1 þ Di;�0g�0

þ Di;þ1gþ1 þþDi;þ2gþ2 þ Di;þ3gþ3 þ ai þ uit

ð3Þ
The variables included in the regression are the same as in
specification (1). The treatment variable Postpatit is
substituted with seven indicator variables where Di,þ j

(Di,�j) is equal to 1 in the jth year after (before) the year
of the first patent and 0 elsewhere. Moreover, the effects
captured by Di,þ j (Di,�j) are estimated for the two groups of
serial and occasional inventors. Table 15 illustrates the
results from specification (3). In column (1) we notice that
the dummy variables are negative until 2 years before the
patenting event (even if they cannot be considered
significantly different from zero), and positive afterward,
with a peak on years, �1, þ 1 and þ 3. These results
suggest that the regressions presented in sections The
effects of patenting on publication activity and Treatment
on endogeneity tend to overestimate academic inventors’
publication activity until 2 years before the patenting event,

and underestimate it 1 year before, 1 year after and 3 years
after the patent. They also suggest the existence of either a
publication delay effect, which causes the number of
publications to decrease in the year before the patent, and
to bounce back afterward, and/or a resource effect, which
would contribute to explain the publication increase
afterwards. In columns 3(a, b) and 4(a, b) estimations of
specification (3), respectively for occasional and serial
inventors, are presented. We examine more closely the
dummies around the patenting year by interacting them
with a dummy for ‘occasional’ inventors (for serial
inventors, we consider only their first patent). The
differences are quite relevant and suggest that the nature
of the relationship between patenting and publishing is
different in the two cases. Occasional inventors have a peak
in their publications 1 year before the patent; most likely,
their patents are a one-off by-product of a successful
research project. On the contrary, serial academic inventors
reach their publication peak at a later time, either 1, 2 or 3
years after the first patent. It looks as if the beneficial effect
of patenting on publication rates lasted longer in this case,
which is entirely consistent with the resource effect
explanation (hypothesis H2) and probably associated with
a continuous patenting activity over time. We also notice
that serial inventors’ estimated coefficients are significantly
negative 3 years before the patent.

Table 14 Instrumental variable (IV) and inverse probability of treatment weights (IPTW) estimations of the number of citations received (dependent variable:
log(Citit+1))

Within IPTW with FE IV(a) IV(b)

Postpatit 0.30*** 0.30*** 0.50*** 0.30***
(0.05) (0.05) (0.15) (0.14)

Coauti, (t�1) 0.09*** 0.09** 0.08*** 0.09***
(0.02) (0.02) (0.03) (0.02)

Age30 0.75*** 0.75*** 0.74*** 0.75***
(0.06) (0.06) (0.06) (0.06)

Age40 0.67*** 0.67*** 0.66*** 0.67***
(0.09) (0.10) (0.09) (0.09)

Age50 0.52*** 0.52*** 0.52*** 0.52***
(0.13) (0.14) (0.13) (0.13)

Age60 0.44*** 0.44*** 0.44*** 0.44***
(0.18) (0.18) (0.18) (0.18)

# of observations 10,696 10,696 10,696 10,696
# of researchers 592 592 592 592
R2 0.51
R2-within 0.09 0.09 0.09
Wald w2 23694*** 23729***
F-test 41.43*** 27.9***
F-test on excluded instruments F1,10,078¼ l050.18*** F2,10,078¼ 711.68***
Model degrees of freedom (25, 10,079) (616, 10,079) 25 25

The table compares the results of linear fixed effects within estimates with the results of IPTW and IV regressions where the dependent
variable is the (log of) number of citations received by articles published in year t. The first column replicates results reported in Table 8
(sixth column). The second column refers to IPTW estimates, while the third and fourth columns refer to IV estimates. Two IV estimates
have been reported: (a) the instrument used is that is the share of professors at time (t�1) within the department of scientist i that are
inventors; (b) in addition to Stockcompi, (t�1), that is, the stock of patents at time (t�1) of the organization that owns scientist i’s first patent, is
also used as an instrument. The results show that the estimated treatment effect Postpatit is always significantly positive and that different
estimation methods do not produce significantly different estimated coefficients. As found in the previous table, the only exception is
represented by regression IV(a), which produces a slightly higher coefficient than the others. Symbols *, **, and *** indicate coefficients
statistically significant, respectively at the 10, 5 and 1% levels. Standard errors are in brackets. Year dummies included in all
specifications.
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Conclusions
In this paper we have tested the impact of patenting activity
on academic inventors’ scientific productivity. We have
shown that academic inventors become more productive
after signing their first patent relatively to a matched
sample of professors with no patents. The result holds also
with citation-weighted publication data, and for publica-
tions on basic science journals. Yet, the positive effect of
patenting on scientific productivity largely differs across
disciplines, being particularly strong only in pharmacology
and electronic engineering. Serial inventors exhibit a
stronger and more persistent positive impact of patenting
on publishing. These inventors are more likely to be found
among those whose patents are held by business compa-
nies. Endogeneity problems arising from individual hetero-
geneity and the potential endogeneity of treatment have
been dealt with instrumental variables and IPTW, but do
not seem to affect significantly our estimates. We interpret
our results as evidence that any possible trade-off between
patenting and publishing, due to publication restrictions or
an induced bias away from basic research, tends to be
outweighed by complementarity effects, due to the in-

creased availability of financial and cognitive resources
accruing to scientists working on technologically relevant
topics. These results are extremely close to those obtained
very recently by Fabrizio and DiMinin (2005) and Azoulay
et al. (2004) for the US case. Such a coincidence of results
for the US and Italy suggests that scientists in the two
countries benefit similarly from patenting their research
results. Therefore, the well-known differences in university
patenting intensity between the two countries may depend
not so much on the scientists’ characteristics, but on the
institutional features of the two academic systems, and on
the economic conditions under which academic research is
undertaken, including the demand of science from the
national industry. Our results also contribute more
generally to the debate on the effects of patenting on the
progress of science. According to Heller’s and Eisenberg’s
(1998) anti-commons theory, extensive patenting of aca-
demic research results may interrupt the cumulative
process of science advancement. Many scientists could face
difficulties to conduct their research in areas where access
to research tools becomes more costly because of extensive
patenting and exclusive licensing, or where the danger of

Table 15 Treatment effects varying over time

Dependent variable: log (Pubit+1) in columns 1, 3(a) and 3(b); Pubit in columns 2, 4(a) and 4(b)

Within
Fixed effects

negative binomial Within
Fixed effects

negative binomial Within
Fixed effects

negative binomial
1 2 3(a) 4(a) 3(b) 4(b)

D�3 �0.03 �0.07 �0.004 �0.03 �0.09 + �0.18+
(0.03) (0.06) (0.04) (0.07) (0.06) (0.10)

D�2 0.06 + 0.06 0.11** 0.10 + �0.04 �0.06
(0.03) (0.05) (0.04) (0.06) (0.05) (0.09)

D�I 0.10*** 0.11* 0.14** 0.16** �0.009 �0.004
(0.03) (0.05) (0.04) (0.06) (0.05) (0.08)

D0 0.06** 0.05w 0.08* 0.04 �0.02 �0.02
(0.02) (0.04) (0.04) (0.06) (0.05) (0.08)

D+1 0.10** 0.09* 0.10** 0.09w 0.11* 0.08
(0.03) (0.05) (0.04) (0.06) (0.05) (0.08)

D+2 0.08* 0.06 0.05 0.013 0.14** 0.13+
(0.03) (0.05) (0.04) (0.06) (0.05) (0.07)

D+3 0.09** 0.09+ 0.05 0.0003 0.16** 0.20**
(0.03) (0.05) (0.04) (0.07) (0.05) (0.07)

# of researchers 592 590 592 590 592 590
Years 1980–1999 1980–1999 1980–1999 1980–1999 1980–1999 1980–1999
# of observations 10,696 10,673 10,696 10,673 10,696 10,673

The table reports estimates of regressions where the dependent variable is the number of publications in year t. Compared to previous
estimates, the treatment variable Postpatit is substituted with seven pulse variables, which are meant to capture the variation in the scientific
publication in the three years before and after the first patent. The seven variables are indicated with Di, +j (Di,�j): each variable is equal to 1
in the jth year after (before) the year of the first patent and 0 elsewhere. Moreover, coefficients in 3(a), 3(b), 4(a) and 4(b) are obtained by
interacting the pulse variables with a dummy variable for occasional and serial inventors. The former are defined as those academic
inventors that have signed just one patent, whereas the latter are defined as those academic inventors that have signed a stream of
related patents after the first one. Columns 3(a, b) refer to occasional inventors, while columns 4(a, b) refer to serial inventors. The results
show that occasional inventors have a peak in their publications 1 year before the patent; most likely, their patents are a one-off by-
product of a successful research project. On the contrary, serial academic inventors reach their publication peak at a later time, either 1, 2
or 3 years after the first patent. It looks as if the beneficial effect of patenting on publication rates lasted longer in this case, which is
entirely consistent with the resource effect explanation (hypothesis H2) and probably associated with a continuous patenting activity over
time. Symbols: **99% significance level; *95%; +90%; w85%. Standard errors are in brackets.
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infringing patents is very high. If the anti-commons effect
were proved to be quantitatively relevant (as suggested by
Sampat, 2004; Murray and Stern, 2004), it may turn out to
be amplified by the positive feedbacks from patenting to
publishing at the individual level that we found in our
paper. This is because it is precisely the output of a group of
the most productive scientists, the academic inventors, that
fellow scientists would find it hard to access. Finally, the
evidence pointing at the superior productivity of academic
inventors before their first patent, and at the further
increase of their productivity afterward, suggests that
academic patenting may end up strengthening the Matthew
effect in science, as described by Merton (1968): according
to it, more productive scientists increase their productivity
over time thanks to increasing returns to reputation and
visibility. The positive link between patenting and publish-
ing could strengthen that effect for academic inventors. Our
future research will address precisely the issue of whether
the positive link between publishing and patenting at the
individual level may combine with the anti-commons and
the Matthew effects, and possibly result in a negative
relationship at the systemic level.

Notes

1 In the US and Japan, the publication delay may be mitigated
by the so-called ‘grace period’ rule. However, the European
Patent Office does not allow for any grace period, so that any
firm or inventor applying for a US or Japanese patent, but
foreseeing to extend it to Europe, cannot exploit the rule
(Kneller, 2001).

2 The MIUR list includes only those professors and researchers
with tenured position. Thus, our data miss fixed-term
appointees as well as all the Ph.D. students, post-doc fellows
and technicians. In the current Italian system, assistant
professor (called ‘researcher’) and associate professor positions,
despite being only the first two steps of the academic career, are
not offered as fixed-term appointments, but as tenured ones.
The main differences with the position of full professor lie in
wage and administrative power.

3 The choice of discipline, rank, and age as matching variables
follow the best-established results of quantitative studies in the
sociology of science (e.g. Long et al., 1993). In particular, for
academic inventors born in between 1950 and 1970, we allowed
for no more than 5 years of age difference with the controls.
For professors born before 1950 the maximum age difference
was 7 years. For academic inventors born after 1970 (just one)
the maximum age difference reduced to 3 years. Exceptionally
(no more than 10 cases) we matched a full professor (inventor)
with an associate professor (control), or an associate professor
with an assistant professor; in these cases the age criteria
were stricter (maximum age difference: 3 and 5 years,
respectively).

4 We decided not to adopt stricter matching rules at the level of
university/department (such as choosing controls only from the
same departments of the inventors), as they would have greatly
reduced the sample.

5 The classification distinguishes between biomedical fields and
all the other disciplines. In the first case, the scores correspond
to the following definitions of the journals’ contents: l¼ clinical
observation/2¼ clinical observation and investigation/
3¼ clinical investigation/4¼ basic biomedical research. In the

second case the correspondence is: l¼ applied technology/
2¼ engineering science -technological science/3¼ applied re-
search -targeted basic research/4¼ basic scientific research.

6 Note also that most Italian professors born before 1960 had
no Ph.D. at all: those pursuing an academic career simply served
as teaching and research assistants to their B.A. thesis super-
visors for a few years, while attending seminars and studying on
their own. Thus, we may expect that older professors started
publishing earlier than younger ones, who more frequently went
on taking a Ph.D. after completing their undergraduate studies.
In addition, the Italian system is such that young graduates may
hold a research assistant and post-doc position (often as
informal jobs) for a long while before securing an academic job
such as those listed in our database.

7 Our sample comprises 296 treated academic inventors and 296
non-treated control professors, for a total of 592 individuals.

8 The year of publication as reported in the ISI-SCI data set has
been used to date articles.

9 The use of dummy variables for age is necessary in order to
avoid collinearity with the dummy variables representing
calendar years. An alternative solution could be that of
controlling by the year of birth of the scientists, but this is
unfeasible in a DID estimation, the year of birth being a fixed
effect that would be cancelled out.

10 Marginal effects are calculated using STATA following Long
and Freese (2006).

11 Since we could not interact the time dummies with a dummy
for each department and a dummy for each year of birth, we
grouped departments in four categories according to the
relative size of the department in the disciplinary field (at
the national level) and according to its relative size in the
university. We also built four equal cohorts using intervals in
the years of birth.

12 A 1 is added since for a number of observations the number of
publications (citations) is equal to 0 and the log is not defined.

13 These variables are often called pulse variables (Laporte and
Windmeijer, 2005).
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Appendix

Inverse probability of treatment weights
In order to calculate the weights the following procedure
has been used (as in Azoulay et al., 2004). A logit equation
is estimated for the probability of patenting:

logitprob Postpatit ¼ 1½ � ¼ xitbþ Pubi;ðt�1Þgþ ai

þ dt þ vit ðA:1Þ
The above equation corresponds to the one reported in the
text and estimates the probability of patenting as a function
of a set of covariates and past publication activity. Let p̂it

denote the estimated probability. Under the strong
assumption that no unobservable confounding variables
exist, the weights can be simply calculated as

wit ¼
1Qt

k¼0 1� p̂ik

� � ðA:2Þ

if scientist i did not apply for any patent by year t, and

wit ¼
1

Qt�1
k¼0 1� p̂ik

� �
p̂ik

ðA:3Þ

if scientist i applied for his first patent in year t. However,
as suggested by Azoulay et al. (2004) and Robins et al.
(2000) to reduce the variance of the IPTW estimator due to
outliers, stabilized weights have to be computed. Such
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weights are defined as follows:

swit ¼
Yt

k¼0

Prob Postpatik ¼ 1jxikð Þ
Prob Postpatik ¼ 1jxik; Pubik�1ð Þ ðA:4Þ

The denominator of the stabilized weights is based on the
estimated probability of specification (4), while the

numerator of the stabilized weights is based on the
estimated probability of the following specification (i.e.
the same as (4) without the time-varying confounders
Pubi,(t�1)):

logitprob Postpatit ¼ 1½ � ¼ xitbþ ai þ dt þ vit ðA:5Þ
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