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ABSTRACT. – The paper explores the role of inventors’ mobility and social networks in generating 
localized knowledge flows. Using a sample of Italian inventors, we replicate Jaffe’s, Trajtenberg’s, and 
Henderson’s [1993] test on patent citations and find similar results. We then control for the role of “cross-
firm inventors” (inventors who move across, or do research for different companies), who generate personal 
self-citations and help creating social links across companies by entering various teams of inventors, 
which in turn will cite each others’ patents. When controlling for personal self-citations, no localization 
of knowledge flows remains to be seen at the city or province level. What remains of localization effects 
at the regional level diminishes sensibly after controlling also for the social ties between inventors from 
cited, citing, and control patents. Knowledge flows thus appear to be localized to the extent that cross-
firm activity of inventors and the resulting social networks are also localized. The weight of personal 
self-citations suggests that frequent interpretations of localized knowledge flows as spillovers, that is 
externalities, may be misplaced. 2 3

« Inventeurs multi-firmes » et réseaux sociaux :  
un ré-examen des externalités de connaissance localisées?

RÉSUMÉ. – Cet article explore le rôle de la mobilité des inventeurs et de leurs réseaux sociaux 
en tant que producteurs de flux localisés de connaissance. À partir d’un échantillon d’inventeurs italiens, 
nous répliquons le test de Jaffe, Trajtenberg et Henderson’s [1993] sur les citations de brevet et nous 
obtenons des résultats similaires. Nous contrôlons ensuite pour le rôle des « inventeurs multi-firmes » 
(inventeurs changeant de firmes ou faisant de la recherche dans plusieurs firmes). Ils génèrent des 
auto-citations et permettent de créer des réseaux sociaux entre entreprises de part leur présence dans 
plusieurs équipes d’inventeurs, qui chacune citeront les brevets des autres équipes. En contrôlant pour 
les auto-citations, il ne reste plus d’effet de la localisation des flux de connaissance au niveau de la ville 
ou de la province. Les effets de localisation qui persistent au niveau régional diminuent sensiblement en 
tenant compte des liens sociaux entre inventeurs des brevets. Les flux de connaissance apparaissent 
ainsi comme localisés à l’étendue des activités « multi-firmes » des inventeurs et des réseaux sociaux qui 
en découlent. L’importance des auto-citations suggèrent que les interprétations fréquentes des flux de 
connaissances localisés comme spillovers peuvent être erronées.
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1  Introduction

The search for knowledge spillovers has permeated much of the recent literature 
addressing the spatial dimension of innovative activities. The idea that scientific 
and technological knowledge may escape its producer’s control, and yet diffuse 
only locally, has become the cornerstone of most explanations of the tendency for 
innovation activities to be spatially clustered. Yet, this idea has not gone entirely 
undisputed, the main counter-arguments being that knowledge spillovers are har-
dly measurable, as they are invisible and do not leave any paper trail, and that there 
is no compelling reason to conceive them as spatially bounded, as transport and 
communication technologies have dramatically reduced the costs of transmitting 
information (Krugman, [1991]).

Although a few indirect tests had already been produced within the knowledge 
production function approach (Griliches, [1992]; for a survey, Feldman, [1999]), 
the task of proposing a direct test for measuring the localization of knowledge spillo-
vers was first taken up Adam Jaffe, Manuel Trajtenberg and Rebecca Henderson 
(1993, hereafter JTH). In a path-breaking article, the three authors argued that 
knowledge spillovers may indeed leave a paper trail in the form of citations to 
prior art contained in patent documents. Accordingly, JTH set up an original expe-
riment to show that citations to prior art tend to come disproportionately from the 
same geographical area as the cited patents, therefore supporting the notion that 
knowledge spillovers are spatially localized.

The basic JTH methodology has become a classical reference for any empirical 
work on knowledge spillovers. When it comes to interpreting its results, however, 
the various authors have pointed at different knowledge diffusion mechanisms, not 
all of them compatible with the original definition of “spillover” as a pure exter-
nality. The mobility of R&D scientists and engineers within localized clusters of 
firms, the existence of advice exchange networks within communities of scientists 
and practitioners, or even localized markets for technologies and scientific/tech-
nical consultancy, have all been mentioned as possible explanations of the JTH 
findings.

In this paper we propose a refinement to the JTH methodology that may help 
telling these different mechanisms apart. We reclassify patents according to their 
inventors, and find that inventors who patent across different companies (“cross-
firm” inventors) contribute extensively to the observed citation patterns, both 
directly (through personal self-citations) and indirectly, by linking the various 
companies via a social network of inventors conducive to more citations.

To the extent that the geographical mobility of these “cross-firm” inventors is 
very limited, the resulting social networks and citations patterns are found to be 
bounded in space.

These results cast some doubts on the “spillover interpretation” of citation-based 
evidence on localized knowledge flows, as the cross-firm inventors’ contribution to 
knowledge diffusion may not entirely be seen as a pure externality.

The paper is organized as follows. In Section 2, we briefly summarize the origi-
nal experiment proposed by JTH. Section 3 discusses the role that social networks 
and the mobility of inventors across firms may play as drivers of knowledge dif-
fusion, and outlines our original methodology to measure their effects. Section 4 
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describes the data used and Section 5 illustrates our results. Section 6 concludes 
with a discussion of our main findings and some suggestions for future research.

2  The JTH’s experiment: methods and 
discussion of results

2.1  Methodology

The JTH’s experiment started with the selection of a sample of originating 
patents1. For each originating patent, the authors collected all subsequent patents 
citing it as prior art, with the exclusion of company self-citations, i.e. pairs of citing-
cited patents assigned to the same company2. The address of inventors recorded in 
patent documents was then used to assign patents to a geographical area and to 
match the locations of citing and cited patents3. Although one might be tempted 
to stop here and look at the frequency with which citing and cited patents match 
geographically, such a simple test would tell us little about the localization of 
knowledge spillovers, unless one controls for the pre-existing geographic concen-
tration of innovative activities. In other words, one might find that a very large 
share of citations come from the same area as the cited patents simply because the 
production of technological innovations (i.e. patents) happens to be agglomerated 
in that area. The production of innovations, in turn, may be spatially agglomerated 
for a number of reasons, which have nothing to do with the access to the local pool 
of knowledge (e.g. availability of skilled labour and specialized inputs, the infras-
tructure endowment of cities and regions, etc.).

The important contribution of the JTH paper was to develop a methodology, 
which allows one to separate the effects of pure knowledge spillovers from the 
impact of other agglomeration forces. Specifically, JTH built a control sample of 
patents in the following way. Each citing patent was matched to a randomly drawn 
patent, which had the same technology class and application date as its matched 
citing patent, but did not cite the same originating patent4. JTH’s test consisted then 

1	I n particular, JTH selected two cohorts of patents, one consisting of 1975 patent applications and the 
other of 1985 applications. The choice of two cohorts allowed to control for possible changes over 
time in the geographical reach of spillovers.

2	T he exclusion of company self-citations was motivated by the fact that these do not represent spill-
overs. Originating patents with no citations received were similarly excluded from the analysis, since 
they do not provide any information on the localization of knowledge spillovers.

3	T he rules followed by JTH to locate patents in space are indeed to complex to be summed up here. 
Two full paragraphs of their article are devoted to explain them (p. 585). JTH locate patents at three 
different levels: country (US vs. non-US), states and Metropolitan Areas.

4	P atent offices classify applications according to very detailed technological codes, which should 
reflect the technological contents of the inventions. JTH used patent data from the United States 
Patent Office (USPTO), which classifies patents according to the Unites States Classification System 
(USCS). JTH matched patents according to 3-digit patent classes of the USCS. Thompson and Fox-
Kean [2005] have criticized the selection process proposed by JTH. Their main argument is that the 
level of technology aggregation adopted by JTH to match citing and control patents is likely to induce 
spurious localization effects. Although their results are surely important, we will stick to the original 
JTH methodology, in order to allow easier comparisons of results.
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in comparing the frequency with which citing and cited patents match geographi-
cally, with the frequency with which control and cited patents match geographi-
cally. If the former turns out to be significantly greater than the latter, this should 
be interpreted as evidence of localization effects (i.e. spillovers) over and above 
the agglomeration effects arising from other sources. More specifically, the JTH 
exercise consisted in comparing

“the probability of a patent matching the originating patent by geographic area, 
conditional on its citing the originating patent, with the probability of a match not 
conditioned on the existence of a citation link. This noncitation-conditioned proba-
bility gives a baseline or reference value against which to compare the proportions 
of citations that match” (JTH, 1993, p. 581).

The evidence reported by JTH shows indeed that citations are highly localized. 
Citing patents are up to two times more likely than the control patents to come from 
the same state, and up to six times more likely to come from the same metropolitan 
area.

2.2  Interpretation issues and developments

The mobility of R&D scientists and engineers within a localized labour market, 
the free exchange of information within the cross-company social networks created 
by that mobility, and the existence of localized markets for technologies have all 
been reported by various authors as potential explanations of JTH results. Not all 
of these explanations are compatible with the “spillover” interpretation of localized 
knowledge flows as measured by patent citations; others have so far proved to be 
quite elusive to measurement efforts.

As for labour mobility, Almeida and Kogut [1999] have replicated the JTH 
exercise for each US state. They find evidence of localized knowledge flows only 
in those few regions (most notably, the Silicon Valley) where the intra-regional 
mobility of inventors across companies is high. It is hard to tell to what extent the 
“labour mobility” explanation is compatible with the “spillover” interpretation of 
localized patent citations: there seems to be no way to tell how much knowledge 
moves from company to company along with the inventor (and remains the inven-
tor’s private asset) and how much it is spread across all the companies the inventor 
works for (in which case externalities may be generated).

Regarding the role of social networks as drivers of localized knowledge diffu-
sion, the typical argument is that agents who are co-located in the same region or 
city are more likely to be embedded in a thick web of social ties through which tacit 
knowledge may easily flow (Audretsch, [1998]). Geographical proximity is said to 
reduce the cost for scientists and engineers to meet personally, and to increase the 
chances of serendipitous encounters at workshops, conferences and various social 
gatherings. Unfortunately, geography is a very broad proxy for social cohesion: 
within the same city or region, a scientist or an engineer may belong to many dif-
ferent networks, only a few of which provide him with the knowledge necessary 
to his research (such as professional contacts, friendship ties with former fellow 
students, professors or colleagues). Besides, the geographical reach of the various 
networks may vary, as some contacts may be retained and used over long distances, 
while others need to be nurtured by frequent contacts, which are only possible if 
they are geographically proximate. Any step toward a direct measurement of the 
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social networks of inventors may be of great help in opening the “black box” of 
geography as proxy of social cohesion.

Markets for technologies may explain the JTH results to the extent that techno-
logy users need to consult frequently with suppliers. Research contracts signed by 
the same independent inventor with different companies may produce patents that 
appear to be unrelated in terms of ownership, but very close in terms of technolo-
gical contents and geographical distance; to the extent that the inventor builds on 
her previous works, the patents will also exhibit a citation link. Some evidence in 
this direction exists for the case of technology licensing (Arora, [1996]; Zucker, 
Darby and Armstrong, [1998]; Mowery and Ziedonis, [2001]).

In the remainder of the paper, we build on these developments and insights. We 
propose that it is possible to make further use of patent and citation data to assess 
the role of inventors moving across firms (or consulting for different firms), and of 
social networks of inventors, as derived from co-invention data. The next section 
illustrates in detail our methodology.

3  Methodology and data

3.1  Social networks: methodology and definitions

Our methodology exploits information recorded in patent documents regarding 
the names, surnames, address and company affiliation of each inventor. This infor-
mation can be used to track the existence of a social linkage between the citing and 
the cited patents and to identify instances of mobility of inventors across compa-
nies. The following hypothetical example illustrates the main idea (see Figure 1). 
Let’s consider five patents (1 to 5) and four assignees (α, β, γ, δ). Assignee α owns 
two patents (1 and 2), while assignees β,  γ and δ own one each. Patents have been 
produced by thirteen distinct inventors (A to M). For example, patent 1 assigned to 
company α has been produced by a team comprising inventors A, B, C, D and E. It 
is reasonable to assume that, due to the collaboration in a common research project, 
these five inventors are socially linked by some kind of knowledge sharing. The 
existence of such a linkage can be graphically represented by drawing an undirec-
ted edge between each pair of inventors, as in the bottom part of Figure 1.
Repeating the same exercise for each team of inventors, we end up with a map 
representing the network of all inventors5. Using the graph just described, we can 

5	 In the language of graph theory, the top part of the figure reports the affiliation network of patents, 
applicants and inventors. An affiliation network is a network in which actors (e.g. inventors) are 
joined together by common membership to groups of some kind (e.g. patents). Affiliation networks 
can be represented as a graph consisting of two kinds of vertices, one representing the actors (e.g. 
inventors) and the other the groups (e.g. patents). In order to analyze the patterns of relations among 
actors, however, affiliation networks are often represented simply as unipartite (or one-mode) graphs 
of actors joined by undirected edges – two inventors who participated in the same patent, in our case, 
being connected by an edge (see bottom part of Figure 1). Please note that the position of nodes and 
the length of lines in the graph have no specific meaning.
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measure how connected two patents are. In order to see how, we first give a few 
definitions:

i) For any pair of inventors, one can measure the distance between the two by 
calculating the so-called geodesic distance. The geodesic distance is defined as the 
minimum number of edges that separate two distinct inventors in the network6. In 
Figure 1, for example, the geodesic distance between inventors A and C is equal 
to 1, whereas the same distance for inventors A and H is 3. While A and C shared 
directly their knowledge while working on patent 1, A and H are more likely to 
have exchanged some word-of-mouth technical information through the mediation 
of other actors (such as B and F).

ii) Inventors may belong to the same social component or they may be located 
in socially disconnected components. A component of a graph can be defined as a 
subset of the entire graph, such that all nodes included in the subset are connected 
through some path. In Figure 1, for example, inventors A to K belong to the same 
component, whereas inventors L and M belong to a different component. A pair of 
inventors belonging to two distinct components have distance equal to infinity (i.e. 
there is no path connecting them).

iii) We define a cross-firm inventor any inventor whose name has been reported 
in patent documents assigned to different organizations. This kind of inventors play 
a fundamental role in connecting teams of inventors belonging to different orga-
nizations. For example, in Figure 1, inventor F worked for both company α and 

6	 For technical terms from social network analysis, see Wasserman and Faust [1994].

Figure 1
Bipartite Graph of Patents and Inventors

Top: Bipartite graph of assignees (α, β, γ, δ), patents (1 to 5) and inventors (A to M), with lines linking 
each patent to the respective inventors and assignees.
Bottom: the one-mode projection of the same network onto just inventors
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β, thus connecting the team of inventors (B, D) with the team of inventors (H, I). 
Similarly, inventor G worked both for company α and γ, thus connecting the team 
(B, D, F) with the team (I, J, K).

In addition, cross-firm inventors are of great interest for their own merits. They 
may be either mobile R&D employees who move across companies, or indepen-
dent inventors (such as academic scientists) selling their output to different compa-
nies7. At this stage of our research, we can not distinguish between the two kinds of 
inventors. (Besides, we are possibly underestimating the role of employee mobility 
since a potentially important part of mobility is unobserved8.)
Using these definitions, we may now turn to illustrate how the existence of a link-
age between patents can be ascertained. Three possible relations exist between any 
pair of patents from different firms:

1) The two patents exhibit no social connection, such as when the inventors 
behind them belong to socially disconnected components9.

2) The two patents are linked by a social connection, such as when their inven-
tors belong to the same social component. We also calculate the social distance 
between patents as the geodesic distance between the two closest individuals from 
the two teams of inventors (minimum geodesic distance)10. As such, the social dis-
tance between two socially connected patents may vary from 1 to any positive 
discrete value.

3) The two patents are linked by a personal connection, such as when at least one 
inventor belongs to both patents’ teams. The social distance between two person-
ally connected patents is zero11.

3.2  Implementation on EPO patents by italian 
inventors

To implement the methodology just described, we have relied on EP-INV, a bio-
graphical dataset on 21,526 Italian inventors and their 26,898 patent applications 
at the European Patent Office (EPO), filed between 1978 and 1999. EP-INV is a 

7	I n Balconi, Breschi and Lissoni [2004] we estimate that roughly 3% of patents by Italian inventors 
come from academic scientists on active duty in 2000. Most of these patents belong to business com-
panies.

8	 This is the case when an inventor leaves a firm, but he does not patent in his new company, or con-
versely when an inventor who did not patent with the former employer starts patenting in his new 
company. We wish to thank an anonymous referee for drawing our attention on this point.

9	W ith reference to Figure 1, this is the case, for example, of patent 5 and patent 1.
10	 When two patents are socially connected, all of their inventors belong necessarily to the same social 

component, but not all them are at the same geodesic distance. For example, in Figure 1 patents 4 
and 1 are socially connected, but inventor K (from patent 4) and inventor A (from patent 1) exhibit 
a geodesic distance of 3, while inventors G (patent 4) and B (patent 1) have a geodesic distance of 
just 1. G and B are the closest inventors, and it is the geodesic distance between them that we pick 
up as the social distance between patents 4 and 1. In other words, the social distance between the 
two patents is the minimum geodesic distance between their inventors. See Breschi and Lissoni 
[2004] for further details, and a discussion of this choice.

11	 For example, inventors G, K and J (from patent 4) and H and F (from patent 3) belong to the same 
social component; in addition, inventor I appears both in patent 4 and 3. In the absence of I, pat-
ents 4 and 3 would be socially connect at distance 1 (the geodesic distance between G and F). The 
presence of I reduces this distance; we capture this reduction by setting the distance to zero.
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subset of EP-CESPRI, a much larger database that classifies all EPO patent appli-
cations from 1978 (EPO’s first year of activity) to the current year, by company12.

The EP-INV database allowed us to track the overall affiliation network of patents, 
applicants and inventors, as well as the one-mode projection of the same network 
onto just inventors (see Figure 1 above). The resulting network of inventors has 
then been used to derive measures of social linkage between citing (control) and 
cited patents. Specifically, for each citing (control) patent with application year T 
we have constructed the network of inventors taking all patent applications from 
1978 to year T-113. For example, in the case of a patent issued in 1995 citing a 
patent issued in 1987, we constructed the network of inventors on the basis of all 
patent applications from 1978 to 1994. On the basis of the network of inventors 
at time T-1, we have then categorized each pair of citing(control)-cited patents at 
time T as non-connected, socially connected, and personally connected, as from 
the definitions in the previous section.

3.3  Geographic assignment of patents

A major problem in measuring the frequency of geographic matching between 
cited and citing (control) patents relates to the way patents are assigned to loca-
tions. Patent documents report the town/city and postal address of each inventor14. 
However, patents can have multiple inventors, each one with a different address. 
Therefore, the location of patents in geographic space cannot be resolved in an 
unequivocal way. In case of multiple inventors, JTH assigned each patent to the 
country/state in which pluralities of inventors resided, with ties assigned arbitrarily. 
Here, we take a slightly different approach and argue that two patents match geo-
graphically to the extent that they share at least one inventor’s location.

3.4  Data sampling

Following as closely as possible the methodology developed by JTH, we have 
selected for this study three cohorts of originating patents, consisting respectively 

12	 Companies in the EP-CESPRI database are identified by name and address. Groups and companies 
with multiple names and addresses are identified, for 40% of the applications, by matching names 
to Dun&Bradstreet codes. As for EP-INV, inventors are identified by checking raw names for mis-
spellings, use of initials and second names. Moreover, a round of e-mailing and phone calls helped 
identifying homonyms. Ad hoc checks have been made on multiple names and the group structure 
of applicant of patents by cross-firm inventors. For a fuller description of EP-INV and for some 
more descriptive statistics on the resulting network of inventors, see Balconi, Breschi and Lissoni 
[2004]. For more information on an early version of EP-CESPRI see Breschi et al. [2003].

13	 Two points have to be remarked. First, the network of inventors has been constructed in a cumulative 
way by adding each year new nodes (i.e. inventors) and new linkages (i.e. patents). To the extent 
that the importance of linkages among inventors decays over time, one could alternatively think to 
remove old patent applications in order to construct the network of social linkages among inven-
tors. Second, when considering a citing patent at year T the existence of a social linkage among the 
inventors behind that patent and the inventors behind the cited patent has been evaluated on the basis 
of the network of inventors as at year T-1, i.e. without including patent applications at year T. The 
reason for this choice is that if social linkages matter as vehicles for transmitting knowledge then the 
existence of a linkage among inventors should be evaluated at some time before the date of applica-
tion of the citing patent. We think that one-year lag is a reasonable window of time for that purpose.

14	 The Nomenclature of Statistical Territorial Units (NUTS) has been used here to define the spatial 
units of analysis. The city level corresponds to the so-called “comuni” (NUTS4), of which there are 
8,100. Moreover, there are 95 provinces (NUTS3) and 20 regions (NUTS2).
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of the 1987, 1988 and 1989 patent applications15. For each cohort, we considered 
all patent applications in the EP-INV database that received at least one subsequent 
citation by the end of 1996. The 1987 originating cohort contains 699 patents that 
had received a total of 1,631 citations by the end of 1996. The 1988 originating 
cohort contains 843 patents that had received a total of 1,784 citations by the end 
of 1996. The 1989 originating cohort contains 779 patents that had received a total 
of 1,615 citations by the end of 1996.

For each cohort of originating patents, we eliminated all applications that either 
received citations only from foreign organizations, or whose applicant was an 
Italian organization, but did not report any Italian inventor16. It must be pointed 
out that the choice of excluding citations from foreign companies implies that our 
study investigates the extent of intra-national localization of patent citations, and it 
is unable to say anything about the extent of international localization. This choice 
has been mainly dictated by data constraints, as the inclusion of citations coming 
from foreign organizations would have implied the construction of the worldwide 
network of inventors. At the same time, given that the basic intuition behind the 
notion of localized knowledge spillovers is that the strength of spillovers should 
fade with distance, our choice should not have major effects upon the results.

For each originating patent, we then took all patents that subsequently cited them 
as prior art. For the construction of the citing sample, we considered only patent 
applications made before 1996 included. Moreover, since we are interested in 
knowledge spillovers, we removed all observations in which citing and originating 
patents have been assigned to the same organization (i.e. company self-citations).

Finally, for each citing patent we took the primary classification code at the 4-digit 
level of the International Patent Classification (IPC) and used this to construct 
a sample of control patents. Specifically, for each citing patent we identified all 
patents in the same patent class with the same application year. We then chose from 
that set a control patent whose application date was as close as possible to that of 
the citing patent, and that did not cite the same originating patent. The resulting 
data set therefore consists of all originating patents, for which there is a matching 
of citing and control patents. In turn, each citing patent is paired with a specific 
control patent within the same technological class and with (approximately) the 
same application date. The final sample consists of 366 originating patents, which 
have received 483 citations from other Italian organizations.

4  Descriptive statistics

This section reports a few descriptive statistics concerning our sample of citing, 
cited and control patents as well as the overall network of inventors from the EP-
INV database, which has been used to assess the degree of social connectedness 
between pairs of patents.

15	T he priority year has been used to date patent applications.
16	T he nationality of inventors has been derived by the address reported in patent documents. It is 

worth pointing out that the share of patent applications by Italian organizations made exclusively by 
non-Italian inventors is negligible (around 2% for each cohort of originating patents). On the other 
hand, the share of originating patents receiving citations only from foreign organizations is high 
(around 60% for each cohort of originating patents).
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4.1  Overall network

Table 1 reports some descriptive statistics for the one-mode network of inven-
tors. By construction, the size of the network grows as new inventors start paten-
ting (in the absence of more information, we are forced to assume that social ties 
arising from co-invention are never severed). At the same time, the average number 
of inventors in each component also grows, as previously disconnected inventors 
from different firms get in touch with cross-firm inventors, and each firm’s pools 
of inventors gets wider.

Table 1
Evolution of the One-Mode Network of Italian Inventors (1978-95)

Year
Number  

of  
inventors

Number  
of  

edges(a)

Number of 
components  

of size 
≥ 2(b)

Average 
size of 

components(c)

Size 
of largest 

component(d)

1978-1986 6,670 5,203 1,084 3.7 (8.0) 164
1978-1987 8,058 6,534 1,287 3.8 (20.3) 723
1978-1988 9,554 7,912 1,487 3.9 (26.9) 1,032
1978-1989 11,117 9,557 1,661 4.1 (33.4) 1,359
1978-1990 12,951 11,474 1,878 4.2 (43.7) 1,885
1978-1991 14,613 13,294 2,100 4.3 (48.1) 2,194
1978-1992 16,412 15,421 2,329 4.4 (52.6) 2504
1978-1993 18,048 17,514 2,508 4.5 (58.0) 2,858
1978-1994 19,725 19,437 2,731 4.6 (61.7) 3,166
1978-1995 21,526 21,593 2,969 4.6 (64.8) 3,449

(a) Total number of edges in the one-mode network of inventors.
(b) Number of socially connected components including at least two inventors.
(c) Average number of inventors in components with at least two inventors (standard deviation).
(d) Number of inventors in the most numerous component.

In Table 2 we report a simple calculation on the extent of inventors’ cross-firm 
patenting activity over the period 1978-95. Specifically, the table reports the distri-
bution of all inventors included in the EP-INV database according to the number 
of different organizations for which they have signed at least one patent. As one 
can see, the distribution is highly skewed. The vast majority of inventors (85%) 
registered patents for only one organization. At the same time, we also note that the 
frequency of cross-firm inventors is not negligible: 2,350 inventors (around 11% of 
all) have signed patents for two different organizations, while more than 800 (4%) 
have signed patents for three or more organizations.

A key feature of our population of inventors is the extent of geographic mobility. 
In table 3, we report the percentage of cross-firm inventors that never changed 
location, at the levels of city, province and region. The striking result emerging 
from the table is the high degree of geographic immobility that characterizes the 
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population of Italian inventors. About 90% of all inventors that worked for two 
different employers never changed the city of residence. That percentage increases 
to 97% at the level of region. Even though the extent of geographic immobility 
is slightly lower for inventors that patented across more than two companies, the 
propensity to change location remains remarkably low.

An important consequence one may expect from the data in table 3 is the concen-
tration in space of social network of inventors. Inventor teams from different com-
panies are linked one another by cross-firm inventors. To the extent that the latter 
are found to be scarcely mobile in space, we expect a high percentage of the teams 
linked through them to be located in the same geographical areas. As calculations 

Table 2
Inventors’ Activity across Assignees (1978-1995)*

Number of different 
assignees

Number  
of inventors Percentage

1 18,353 85.3
2 2,350 10.9
3 549 2.6
4 161 0.7
5 65 0.3
6 25 0.1
7 11 0.1

>7 12 0.1
Total 21,526 100.0

*  The table reports the distribution of all Italian inventors according to the number of different assign-
ees for which they have recorded patents over the period 1978-1995. The calculation includes patents 
registered by individual inventors, i.e. not assigned to organizations. The calculation includes also 
patents that have been co-assigned to different organizations.

Table 3
Geographic Location of Cross-Firm Inventors (1978-1995)*

Percentage of cross-firm inventors that never 
changed geographic location

Number of different  
assignees City Province Region

 2 90.6 95.8 97.2
 3 84.6 92.7 94.5
 4 76.7 87.7 92.3
 5 70.3 87.5 95.3
 6 76.0 88.0 92.0
 7 63.6 72.7 81.8
>7 75.0 75.0 83.3
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of the spatial dispersion of social network of inventors prove to be quite complica-
ted, we will to check this intuition only on our sample data.

4.2  Sample data

First of all, we note that our sample of citing, control and cited patents includes for 
the most part patents assigned to private companies. Of the 483 citing and control 
patents, 472 and 473, respectively, come from business companies17. Similarly, of 
the 366 cited patents, 359 have been assigned to business companies. Secondly, 
we also note that the number of patents co-assigned to different companies is very 
low. Of the 483 citing and control patents, only 13 and 18, respectively, have more 
than one assignee. Similarly, of the 366 cited patents, only 14 have more than one 
assignee18.

Table 4 reports the composition of our final sample, as well as some summary 
statistics concerning the number of inventors included in it, and the distribution of 
citing-cited and control-cited pairs of patents according to their social connected-
ness. In particular, the table shows that the absolute number of personally connec-
ted patent pairs is much higher for the citing-cited sample than for the control-cited 
sample, while the opposite holds for socially connected pairs.

Table 4
Sample of Cited, Citing and Control Patents: 
Number of Inventors and Linkages

N. 
of  

patents

N. 
of 

inventors

N. of  
inv. per  
patent

N. of 
inventor 
pairs(a)

N. of connected patents

Total(b) Personal 
connection(c)

Social 
connection(d)

Cited 366 572 1.8 (1.2) -
Citing 483 721 2.0 (1.4) 1,789 132 76 56
Control 483 726 1.9 (1.2) 1,927 100 17 83
(a) The column reports the total number of pairs of cited inventors – citing (control) inventors summed 
up over all patents in the sample [Note: a patent signed by n inventors citing a patent signed by m 
inventors generate n × m pairs of inventors].
(b) The column reports the absolute number of citing (control)-cited patent pairs in which inventors 
from the two teams belong to the same component, i.e. are directly or indirectly linked in the social 
network. [minimum geodesic distance finite].
(c) The column reports the absolute number of citing (control)-cited patent pairs which are personally 
connected (the same inventor appears in both patents) [minimum geodesic distance = 0].
(d) The column reports the absolute number of citing (control)-cited patent pairs which are socially 
connected according to the social network of inventors [minimum geodesic distance finite and > 0].

17	T his is not surprising given the weakness of the Italian system of public research and the low 
propensity of Italian universities and public research organizations to file for patents. For the few 
patents in our sample that have not been assigned to private organizations, the largest applicants are 
the National Research Council and the Ministry for Research and Education.

18	 In case of co-assigned patents, the identification of company self-citations has been made by com-
paring all the assignees behind the citing and the cited patents.
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Socially connected patents within the control sample outnumber those in the citing 
sample. However, the two samples differ with respect to their social distance from 
the cited patents. As shown in table 5, citing patents host a much higher percent-
age of patents whose distance from cited patents is just one. As a consequence, the 
mean distance of citing patents from cited ones is much shorter than the distance 
of control patents19.

Table 5
Socially Connected Citing (Control) Patents: 
Geodesic Distances from the Cited Patent

Geodesic dist. N. of citing patents (%) N. of control patents(%)
1 23 (41.1) 17 (20.5)
2 8 (14.3) 9 (10.8)
3 4 (7.1) 9 (10.8)
4 5 (8.9) 10 (12.0)

> 4 16 (28.6) 38 (45.8)
Total 56 (100) 83 (100)

Mean (sd)§ 3.30 (2.960) 4.59 (3.044)
§ t-test of mean difference = -2.4881.

This sampling outcome is consistent with the results obtained in a companion 
paper, which shows that the probability to observe a citation tie between two patents 
declines with the social distance between them (Breschi and Lissoni, [2004]). The 
citation probability is highest for personally connected patent pairs, and it is much 
higher for socially connected pairs than for unconnected ones. However, as the 
social distance between patents increases, the citation probability declines sharply: 
for paths longer than four geodesic steps, no meaningful difference is any more 
observed between socially connected and un-connected patents.

Finally, we have calculated the geographical distribution of both the citing and 
the control patent samples, with respect to the originating patents. As expected, per-
sonally connected patent pairs, both in the citing and the control sample, are highly 
co-localized with the cited ones, up to 100% at the regional level (table 6, box 6.1).

Socially connected patent pairs are also highly localized, but co-location percen-
tages are higher for citing patents, especially at the regional level (table 6, box 6.2). 
These differences are explained by reading jointly table 7, which reports the geo-
graphic matching between cited patents and their socially connected patents (cited 
and controls), and table 5. Table 7 suggests that connected patent pairs separated by 
just one geodesic step are much more likely to be co-located than other connected 
pairs; table 5, as we said, indicate that patent pairs at such short geodesic distance 
are more frequent in the citing sample.

19	 We also notice that 33 out of 83 socially connected control patents match as many personally linked 
citing patents, that is are more weakly linked to the same originating (cited) patent. On the contrary, 
only 3 out of 56 socially connected citing patents are matched to personally linked controls. If we 
drop from our sample all patent pairs where either the control or the cited patent are personally 
linked, the citing and control sample turn out to host pretty much the same number of socially con-
nected patents (54 and 50 respectively), and the differences in the mean distance to cited patents 
increase further.
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5  Results

As a first step in our analysis, we simply replicate the JTH’s exercise on our data. 
Box 8.1 in table 8 reports the percentage of citing patents that are co-located with 
the cited ones, at the city, province and regional level. The second column reports 
the same percentage for the control sample. The third column reports the value of 
a z test for the difference between the two proportions, which is distributed accor-
ding to a standard normal; a 1-tail test is performed, on the hypothesis that pc > pnc 

Table 6
Geographic Matching: % Frequency for Personally/Socially Connected 
Patents

Matching by Citing 
(n. of patents)

Control 
(n. of patents)

6.1 Personal connections
City 92.1 88.2

(70) (15)
Province 98.9 100.0

(75) (17)
Region 98.9 100.0

(75) (17)
6.2 Social connections

City 35.7 34.9
(20) (29)

Province 60.7 50.6
(34) (42)

Region 73.2 62.6
(41) (52)

Size of samples for personally connected patents: 76 citing/17 controls.
Size of samples for socially connected patents: 56 citing/83 controls.

Table 7
Geographic Matching for Socially Connected Patents, by Geodesic Distance

Geodesic  
distance

Total patents 
(citing + controls)

Geographic match % 
(regional level)

 1 40 77.5
 2 17 64.7
 3 13 61.5
 4 15 60.0
>4 54 63.0

Total connected inventors: 139 obs (56 citing + 83 controls).
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(where pc is the co-location probability of citing patents, and pnc the co-location 
probability of controls). Finally, the fourth column reports the 95% confidence 
interval for the estimated odds ratio20.

Our results successfully replicate those found by JTH with reference to the United 
States. The proportion of citing patents co-located with cited ones is significantly 
greater than the proportion of control patents, at all geographical levels. As sug-
gested by the odds ratio confidence interval, citing patents are at least 15% more 
likely then the control ones to be co-localized with the cited patents; the same value 
for the regional level is 31%. The upper bound values suggest that citing patents 
may even be as twice more likely than controls to come from the same area of the 
originating (cited) patent.

The descriptive statistics we presented in section 4, however, suggest that the 
different composition of the citing and control sample may be responsible for this 
result. We know that the citing patents are much more likely than the control ones 
to be personally connected to the cited ones, and that the cross-firm inventors res-
ponsible for the connection are most often immobile in space. Hence we expect 
that controlling for personal connections may reduce the observed differences in 
co-location rates between citing and control patents.

As the citing patent sample contain a higher number of socially connected patents 
at geodesic distance 1 (which we know to be highly co-located with cited ones), we 
expect to observe a similar result when controlling for social connections.

Box 8.2 of table 8 shows that by excluding all the personally connected patents 
from both the citing and the control samples, the observed differences in the co-
location percentages of the citing and control samples disappear at the city and 

20	W e define:
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where colocatedc and colocatednc are the number of co-located citing patents and controls, respecti-
vely.
The 1-tail test of our interest calculates the probability attached to values higher than z from a standard 
normal distribution (in table 8: P > z). As z2 is distributed as a Chi-square with one degree of freedom, 
a similar test can be performed using that distribution.
The odds of co-location for a citing patent are defined as Oc = pc/(1 - pc). Let Onc to be the correspon-
ding odds of co-location for a non-connected citing patent. The odds ratio is defined as OR = Oc/Onc, 
and it is also distributed according to a Chi-square with one degree of freedom, from which confidence 
intervals can be derived (Fleiss, [1981]). OR values higher than 1 suggest a higher colocation probabi-
lity of citing patents, as opposed to non-citing ones.
JTH’s test of proportion is slightly different, as it is based on a t-distributed statistic (JTH, p. 589):
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where cp  and ncp  have the same meaning as above, and n is the size of both the citing and the cited 
samples (n = nc = nnc).
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Table 8
Geographic Matching % Frequency and Test of Proportions (citing vs 
control)

Matching 
by

Citing 
(n. of patents)

Control 
(n. of patents)

z-statistic 
(P > z)

Odds ratio 
95% conf. interval

8.1 All observations (JTH experiment)(a)

City 25.1 17.4 2.91 1.15-2.20
(121) (84) (0.00)

Province 38.7 29.8 2.92 1.13-1.96
(187) (144) (0.00)

Region 53.8 40.6 4.13 1.31-2.22
(260) (196) (0.00)

8.2 Excluding personal connections(b)

City 12.5 12.5 0.00 0.65-1.56
(50) (50) (0.50)

Province 27.8 25.8 0.64 0.80-1.53
(111) (103) (0.26)

Region 46.1 37.8 2.367 1.05-1.88
(184) (151) (0.01)

8.3 Excl. both personal & social connections(c)

City 8.5 10.9 -1.052 0.43-1.31
(28) (36) (0.85)

Province 21.8 22.7 -0.281 0.65-1.39
(72) (75) (0.61)

Region 40.2 33.8 1.690 0.95-1.83
(133) (112) (0.05)

8.4 Excl. personal conn. & social connections 
with geodesic ≤ 2(d)

City 8.8 12.1 -1.455 0.42-1.16
(32) (44) (0.92)

Province 23.1 24.8 -0.522 0.64-1.30
(84) (90) (0.70)

Region 42.2 36.9 1.517 0.92-1.71
(154) (134) (0.06)

(a) 483 obs. in both the citing and the control samples.
(b) 399 obs. in both the citing and the control samples. The new samples result from those in box 8.1, 
after dropping all personally connected citing-cited pairs (and the related controls) and all personally 
connected control-cited pairs (and the related citing patents).
(c) 331 obs. in both the citing and the control samples. The new samples result from those in box 8.2, 
after dropping all socially connected citing-cited pairs (and the related controls) and all socially 
connected control-cited pairs (and the related citing patents).
(d) 363 obs. both the citing and the control samples. The new samples result from those in box 8.2, after 
dropping socially connected citing-cited pairs (and the related controls) and socially connected control-
cited pairs (and the related citing patents) with geodesic distances ≤ 2.
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province level, and diminish sharply at the regional level21. Co-location at the city 
level is now exactly the same for the citing and control samples, while differences 
at the province level are no more significant. The lower bound of the odds ratio 
confidence interval at the regional level is still higher than one, but barely so (as 
one can expect from the sharp decrease of the z-statistic).

These figures suggest that the results obtained by applying the original JTH 
methodology can be largely explained by the importance of cross-firm inventors. 
Cross-firm inventors are responsible for a large number of citations, but are scar-
cely mobile in space: they move or diffuse their knowledge across different firms, 
but not across different localities. As we remove the patent pairs linked personally 
by those inventors, the JTH experiment does not confirm anymore that citations are 
localized at the city and province level; and it suggests much weaker localization 
effects at the regional level.

We then proceed in a similar fashion to check the effect of socially connected 
patents. When we exclude from our exercise also the socially connected patents 
(box 8.3, table 8), we observe that the co-location frequencies for both the citing 
and the control patents drop further at all geographical levels, but once again the 
effect is more visible for citing patents. Differences at the regional level diminish: 
significance of the observed difference in proportions drops from 99% to 95%, and 
the lower bound for the estimated odds ratio slips under one.

If we restrict our attention only to social connected patents with geodesic dis-
tance up to 2, we notice that co-location differences at the city level turn out to be 
significantly negative at 90% (P < z equals 0.08), and the confidence interval for the 
estimated odds ratio at the regional level slips further down (box 8.4, table 8)22.

These results show how also social links between inventors affect the original 
results obtained by applying the JTH methodology, through a combination of high 
citation probability and low geographical dispersion. Social networks of inventors 
spread knowledge across firms, but keep it quite bounded in space.

Once we drop personal self-citations, short social distances between inventors 
become the most likely origin of a citation link. At the same time, closely connec-
ted inventors are also more likely than others to be co-located at any geographical 
level. As we drop socially connected inventors from our samples, what remained of 
the original JTH results after excluding for personal self-citations receive a further 
blow. This effect is more visible if we drop only the most closely connected inven-
tors, such as those separated by no more than two geodesic steps.

In order to further test the effects associated to different types of social connec-
tedness, we have estimated a logit model in which the dependent variable is the 
geographic match/no match between the citing and the cited patents23. As indepen-
dent variables, we included three sets of dummy variables. First, we introduced two 
dummy variables to capture the type of connectedness existing between the citing 
and the cited patent: the variable “social“ takes value one if there is a social connec-
tion between the inventors in the two patent teams, and zero else; the variable 
“personal” takes value one if the same cross-firm inventor appears in both patent 
teams, and zero otherwise. The reference modality is therefore represented by the 

21	M ore precisely, we exclude all the citing patents that turn out to be personally connected, and the 
related controls; we also exclude all the control patents that turn out to be personally connected, and 
the citing patents they were meant to match.

22	 When removing all personally connected patent pairs from our samples, the citing patents turn out 
to host not only more patents at geodesic distance 1, but also more patents at distance 2.

23	T his exercise is once again similar to that performed by JTH (1993, p. 593).
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case of non-connected patents. We expect social and personal connectedness to 
predict accurately the probability of co-location of citing and cited patents. Second, 
in order to control for industry location effect, we included a dummy variable that 
takes value one if the control patent that corresponds to a given citing patent mat-
ches geographically the cited one. Third, we introduced dummies for the social 
connectedness between the control and the cited patents, to control for the possibi-
lity that similar technologies exhibit similar social network patterns.

One important reason for conducting this final exercise is that the geographic 
distribution of patents in Italy is rather asymmetric. In particular, of the 366 origi-
nating patents considered in our analysis, 165 (45%) are located in the Lombardy 
region, and 113 (31%) of them are located in the Milan province. Although the 
inclusion of control patents aims precisely to capture this pre-existing geographic 
concentration, in the regressions reported here we have further controlled for this 
peculiarity of the Italian innovation system. Specifically, for the analysis at the city 
and province levels, we also included a dummy variable that takes value one if the 
cited patent is located in the Milan province, while for the analysis at the region 
level we included a dummy variable that takes value one if the cited patent is loca-
ted in the Lombardy region.

Results of logit estimations are reported in Table 9. The importance of control-
ling for the localization of technological activities is confirmed: the co-location of 
control patents bears always a positive and statistically significant influence at all 
geographic levels. However, the personal and social connections between cited and 
citing patent are clearly the most important factor affecting the geographic mat-
ching between the citing and the cited patents. Parameters for these variables have 
a positive and statistically significant value at all geographic levels. Moreover, the 
magnitude of the coefficients is also remarkable.

Computing the odds-ratios from the estimated logit coefficients indicates that 
the odds of co-location for citing patents linked to cited ones through the same 
inventor are more than one hundred times larger than the same odds for non-con-
nected patents, other things being equal24. Although social connections bear less 
influence than cross-firm activity, they also matter a lot: citing patents connected to 
cited ones in this way exhibit co-location odds four to five times larger than non-
connected ones25. Controlling for the social connection of control patents gives 
instead mixed results. On the one hand, the social connection between the control 
and cited patents is never statistically significant. On the other hand, the parameter 
for personal connections of controls is significant only in regressions at the region 
and province levels and it presents a negative sign. This result suggests that when 
the control and the cited patents are connected because the same inventor appears 
in both patents it is quite unlikely that the citing and the cited patents match geo-
graphically.
Finally, the dummy variable for the Lombardy region is positive and statistically 
significant, suggesting that citations directed to patents from this region are twice 
more likely than others to be located in the same region. On the contrary, the dummy 
variable for the Milan province is only marginally significant in the regression at 
the province level, and it is not significant in the regression at the city level.

24	 The odds ratios can be computed from estimated coefficients produced by logit as follows: 
OR = exp(bsc), where bsc is the estimated coefficient of the variable for social connection. Odds-
ratios are not reported here, but can be easily computed from the data reported.

25	O ne can also calculate the odds-ratio for personal vs. social connection, and notice that the former 
kind of connection makes the co-location probability at least 20 times more likely than the other.
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6  Conclusions

This paper has brought JTH’s recommendation to use patent citations as a paper 
trail for tracking knowledge flows to some extreme consequences. Patent data have 
been used to control for the role of “cross-firm inventors”, who can both generate 
personal self-citations (by moving across companies, or by doing research for dif-
ferent companies) and help creating social links across companies, by entering the 
various teams of inventors.

Table 9
Probability of Geographic Matching between Citing and Cited Patents (logit 
estimates)

City Province Region
Intercept -2.637a) -1.716a) -0.931a)

(0.225) (0.170) (0.163)
Geographic matching control-cited 1.291a) 1.234a) 0.656a)

(0.362) (0.265) (0.224)
Connectedness citing-cited
	S ocial 1.728a) 1.725a) 1.173a)

(0.453) (0.413) (0.410)
	P ersonal 4.840a) 5.803a) 4.997a)

(0.525) (1.063) (1.089)
Connectedness control-cited
	S ocial -0.303 -0.294 0.210

(0.481) (0.447) (0.430)
	P ersonal -1.424 -2.114b) -2.165b)

(0.891) (1.005) (0.920)
Dummy for Milan (City and 
Province) / Lombardy (Region)

0.377 0.482c) 0.800a)

(0.326) (0.270) (0.215)
Number of observations 483 483 483
Number of geographic matches 121 187 260
Log-likelihood -154.8 -213.1 -259.1
Likelihood ratio statistic χ2 233.9 218.4 148.4
% of correctly classified cases* 87.1 76.6 61.5
The dependent variable takes value one when citing and cited patents match geographically, zero else.
Standard errors among brackets.
a) statistically significant at the 99% level;
b) statistically significant at the 95% level;
c) statistically significant at the 90% level.
* Cut-off probability value for determining whether an observation has a predicted positive outcome 
is 0.9.
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When controlling for personal self-citations, no localization of knowledge flows 
remains to be seen at the city or province level. This is because a disproportionate 
amount of patent citations (even after controlling for self-citations at the company 
level) come from inventors who may move across firms, but remain immobile in 
space.

At the regional level, what remains of the difference of co-location frequencies 
between citing and control patents diminishes sensibly after controlling also for 
the social ties between inventors from different companies. This happens because 
social networks of inventors are both localized in space and responsible for many 
patent citations.

Our results also raise a few substantive issues that deserve to be further discussed 
and investigated.

In the first place, our results qualify the original intuition of those economists 
and sociologists that first stressed the tacit content of technological knowledge: 
knowledge always travel along with people who master it. If those people move 
away from where they originally learnt, researched, and delivered their inventions, 
knowledge will diffuse in space. Otherwise, access to it will remain constrained 
in bounded locations. That is, knowledge flows are localized to the extent that 
cross-firm activity and the resulting social networks also are localized. Why Italian 
cross-firm inventors do not relocate in different regions is of course an important 
question, but one which goes beyond the scope of the present study. We will inves-
tigate it by applying our methodology to other countries.

In addition, our results suggest that, as far a large percentage of localized cita-
tions are personal self-citations, interpretations of localized knowledge flows as 
spillovers, that is externalities, ought to be regarded with more caution, and care-
fully checked. On the one hand, one may suspect that cross-firm inventors may not 
diffuse the knowledge they master, but move it around the companies they happen 
to work for. On the other hand, none of our cross-firm inventors is entirely respon-
sible for both the cited and the citing patent in any given pair, as the teams joined 
by our cross-firm inventors when moving across firms are never the same. This 
suggests that cross-firm inventors may indeed give up some of their knowledge 
assets to the companies they work for.

Finally, we deal with the natural objection that our definition of social network 
includes no more than a tiny subset of all the relevant contacts enabling inven-
tors to achieve their results. We reply to this by suggesting that the population of 
inventors is more than a tiny and unchecked sample of all the individuals who can 
influence inventors themselves. Rather, it is the most immediate and influential 
social environment from which inventors draw ideas and information, at least for 
the technical contents of their patents.

A limitation of our results comes from the tiny dimension of the Italian innova-
tion system: the patent samples and social networks we may derive from it are quite 
small, and may be disproportionately affected by a few highly influential indivi-
duals, such as our cross-firm inventors. Targeting larger countries, and in particular 
the US, would allow for a more direct evaluation of our methodological refinement 
against the original JTH test.� ■
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