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Abstract

This paper claims that knowledge-relatedness is a key factor in affecting firms’ technological diversification. The hypothesis
is tested that firms extend the range of their innovative activities in a non-random way. Specifically, we test the extent to which
firms diversify their innovative activities across related technological fields, i.e. fields that share a common knowledge base
and rely upon common heuristics and scientific principles. The paper proposes an original measure of knowledge-relatedness,
using co-classification codes contained in patent documents, and examines the patterns of technological diversification of the
whole population of firms from the United States, Italy, France, UK, Germany, and Japan patenting to the European Patent
Office from 1982 to 1993. Robust evidence is found that knowledge-relatedness is a major feature of firms’ innovative activities.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is about the extent and the nature of the
range of firms’ innovative activities and the role of
knowledge-relatedness in affecting firms’ technologi-
cal diversification.

Most of the times in their innovative activities
firms span over more than one technology, i.e. they
are ‘technologically diversified’. The literature on
innovation and technical change has evidenced some
robust stylised facts about firms’ technological diver-
sification. First, technological diversification is usu-
ally greater than product diversification. Firms have
to manage a wide number of technologies in order
to develop and produce products and services. Thus,
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most firms could be labelled multi-technology corpo-
rations, even if they are specialised in just one line
of business (Granstrand, 1998). Second, most of the
times technological diversification anticipates product
and market diversification (Pavitt, 1998). This is so
because technological exploration in a wide range of
technologies is a prerequisite for production. Third,
the profile of technological diversification of firms is
rather stable. It changes slowly over time as a con-
sequence of the inertia of specialisation, incremental
changes in knowledge production and modifications in
firms’ competencies (Cantwell and Andersen, 1996).
Fourth, the profile of technological diversification dif-
fers across large firms, as a consequence of the history
of the corporations, initial conditions, the specialisa-
tion of the companies, the market incentives and the
specific institutional setting in which companies are
embedded. Fifth, the profile of technological diversi-
fication is very similar among large firms producing
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similar products, particularly in high technology and
technology-based industries (Patel and Pavitt, 1995).

Based upon such evidence, a question that has re-
cently gained the attention of several scholars in the
field of industrial organisation and technical change
concerns the nature and the determinants of firms’
productive and technological diversification. There
is emerging evidence that the range of firms’ tech-
nological and productive activities, far from being
driven by short-term quest for profits, follows some
‘purposiveness’ (Scott, 1993). Relatedly, it has been
shown that firms exhibit some coherence in the tech-
nological and productive activities they are engaged
in (MacDonald, 1985; Teece et al., 1994). However,
the notion, determinants and measurement of the co-
herence of firms are still to be fully developed. In this
respect, much work has still to be done at both the
conceptual and the empirical levels.

This paper goes in this direction, by exploring
the extent and the nature of firms’ technological
diversification and by linking it to a key factor:
knowledge-relatedness. In order to do that, the pa-
per first tests whether firms’ technological activities
are not distributed randomly across technological
fields (random hypothesis) and confirmsTeece’s et al.
(1994)seminal findings.

In addition, the paper tests (more directly than ever
before) theknowledge-relatedness hypothesis, claim-
ing that firms follow a coherent pattern of technolog-
ical diversification, which clusters around groups of
technologies that share a common or complementary
knowledge base, rely upon common scientific princi-
ples or have similar heuristics of search.

The concept of knowledge-relatedness is very broad
and encompasses several dimensions of knowledge.
They can be grouped into three categories: proximity,
commonality and complementarity.

a. Knowledge proximity
Knowledge proximity may be the result of learn-

ing processes, which could be conventionally con-
sidered either unintended (learning spillovers, as
emphasised by the traditional literature on produc-
tivity growth) or intended (local learning).

Learning spilloversrelate to the fact that knowl-
edge coming from activities in one technology may
spill over to other technologies that are related in
various ways. A firm active in one technology may

find itself engaged into another technology because
there are ‘knowledge externalities and spillovers’
(Griliches, 1979; Henderson and Cockburn, 1996).
According to this explanation, the presence of a
firm in more than one technological field is the un-
intended outcome of its innovative activities.

In particular, local learning relate to the fact
that firms may focus (often intentionally) on new
technologies that are rather similar to the ones the
firm is currently developing in terms of knowledge
base (such as scientific fields, search procedures—
such as R&D and learning by doing—sources of
knowledge-such as universities, public research
institutes, users, suppliers, and so on). Thus, firms’
innovative search takes place in the neighbourhood
of the technologies currently developed and innova-
tive activities proceed incrementally (Atkinson and
Stiglitz, 1969; David, 1975; Malerba, 1992;
Antonelli, 1995). According to this explanation,
because of uncertainty and change, firms are not
able to find the best and most promising or prof-
itable technologies. Rather, they are boundedly ra-
tional actors that focus on technological domains,
which present similarity in problem solving and
knowledge bases (Nelson and Winter, 1982; Dosi,
1997). In this case, the presence of a firm in more
than one technological field has to be interpreted
as the intended outcome of its innovative activities.

b. Knowledge commonalities
Firms’ innovative activities may span over more

than one technologies because the same type of
knowledge is used in more than one technology.
Therefore, firms have economies of scope in the
‘use of one piece of knowledge’.Penrose (1959)
andTeece (1982)have discussed the role of com-
mon resources in relation to firms’ business diver-
sification. Here, the same type of knowledge is an
input for the innovative activity in two technolog-
ical fields.

c. Knowledge complementarities
Complementarities refer tocomplementary

knowledge and technologies. In order to introduce
new products and new processes, firms may have
to master together more than one technology. In
this case, the relatedness among two or more tech-
nologies is not due to their similarities, but to their
differences and to the need to use them together.
The relevance of complementarities have been
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emphasised by a wide range of authors with dif-
ferent focuses (Milgrom and Roberts, 1990; Scott,
1993, Pavitt, 1998).

Generic technologiesare an extension of the
previous explanation. When a complementary
technology is used in a wide range of other tech-
nologies for the development of different products
and processes, it may become a generic technol-
ogy (Arora and Gambardella, 1994; Bresnahan
and Trajtenberg, 1995). According to this view, a
generic technology is a highly pervasive comple-
mentary technology.

In sum, technological relatedness is due to learning
processes (unintended in terms of spillovers and in-
tended in terms of local learning) and knowledge links
(due to the scope, complementarity or generic nature
of knowledge).

Note that to the explanations of technological diver-
sification based on knowledge proximity and knowl-
edge commonality, more traditional ones related to
sunk costs and switching costs may be added. Firms
may find difficult to move away from current tech-
nologies because of organisation and R&D costs and
the presence of R&D equipment and human capital.
These are factors that lock firms in the neighbour-
hood of the technologies they are currently using. Due
to high switching costs, firms will move locally into
‘related technologies’ rather than into unrelated ones.
This cost side aspect, however, will not be discussed
in this paper.1

This paper will proceed in two steps. First, in
Sections 2 and 3, it will assess empirically the ex-
tent and direction of technological diversification for
the whole population of firms involved in innovative
activities. The aim is to provide a descriptive analy-
sis of the technological diversification of the whole
population of innovators, large as well as small, and
not just of the largest ones. Innovators will be ex-
amined in the six major-advanced countries—Unites
States, Japan, Germany, France, UK and Italy—for
the period 1982–1993. Second, inSections 4–6, it
will test the hypothesis that knowledge-relatedness is
a major driver of technological diversification against
the hypothesis that technological diversification pro-

1 We will not discuss either the presence of firms in technologies
that may look promising (opening up windows), which is common
in high technologies.

ceeds randomly. If the relatedness hypothesis holds, it
means that firms diversify technologically along cer-
tain directions that depend on the links and distance
among technological fields.

2. Data sources

This paper is based upon the EPO-CESPRI
database. The data set contains all patent applica-
tions to the European Patent Office (EPO) from 1978
(EPO’s first year of activity) to 1993, by firms, in-
stitutions and individuals of all countries seeking
legal protection for their innovations in any of the
18 countries adhering to the Munich Convention
which established the EPO. In addition to measuring
innovation (with all the strengths and weaknesses
and the methodological problems associated to this;
seeGriliches, 1991), patent applicationsare a very
good indicator of firms’ technological competencies.
The fact that a firm applies for a patent in a given
technological field means that such a firm is at, or
close to, the technological frontier and has advanced
technological competencies in that field.

CESPRI has developed the basic EPO data in the
following two different ways:

• Patent applications have been processedat the firm
level, for all firms from France, Germany, Italy,
Japan, UK and United States. For each patent
document, therefore, the EPO-CESPRI database
contains information about: (a) the name and the
address of the patenting firm; (b) the date of filing
to the EPO; (c) the technological field which was
assigned by patent examiners.2

2 The EPO-CESPRI dataset contains 17,394 patents and 4802
firms for Italy, 124,626 patents and 10,459 firms for Germany,
39,582 patents and 7121 firms for the UK, 51,690 patents and
6835 firms for France, 164,790 patents and 14,395 firms for the
US and 113,629 patents and 5025 firms for Japan. Firms that are
part of business groups have been treated as individual companies.
In case of co-patenting, each co-patentee has been credited the
patent. Individual inventors have been excluded from the dataset.
Since individual inventors are mostly self-employed and owners
of small independent firms, their exclusion from the data set
could underestimate the contribution of smaller companies to the
innovative activities. However, the share of total patent applications
held by private individuals in the dataset is rather small (generally,
<3% of total patent applications). Finally, one must note that since
the EPO is located in Germany, German firms are over-represented
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Table 1
Technology classification (30 fields) based on the IPC

1. Electrical engineering 16. Chemical engineering
2. Audiovisual technology 17. Surface technology
3. Telecommunications 18. Materials processing
4. Information technology 19. Thermal processes
5. Semiconductors 20. Environmental technology
6. Optics 21. Machine tools
7. Control technology 22. Engines
8. Medical technology 23. Mechanical elements
9. Organic chemistry 24. Handling

10. Polymers 25. Food processing
11. Pharmaceutics 26. Transport
12. Biotechnology 27. Nuclear engineering
13. Materials 28. Space technology
14. Food chemistry 29. Consumer goods
15. Basic materials chemistry 30. Civil engineering

• Patent applications to the EPO have also been used
to measure theknowledge-relatednessbetween dif-
ferent technological fields. In this case,all patent
applications to the EPO have been considered, i.e.
not only those coming from the above-mentioned
countries, but also those coming from any other
country in the world.

For both types of elaboration a common technolog-
ical classification has been used. More specifically, we
adopted a technology-oriented classification that dis-
tinguishes 30 different fields of technology based on
the International Patent Classification (IPC). This clas-
sification has been elaborated jointly by Fraunhofer
Gesellschaft-ISI (Karlsruhe),Institut National de la
Propriété Industrielle(INPI, Paris) andObservatoire
des Sciences and des Techniques(OST, Paris) and it
is reported in theTable 1.3

Although the EPO database starts in 1978, our anal-
ysis will cover only the period from 1982 to 1993. In

in the sample. However, because the focus in this paper is not
on absolute technological performance, but on the patterns of
technological diversification, we think that this does not create too
serious a distortion in our results.

3 All patent documents are indeed assigned by patent examiners
of the EPO at least one classification code of the IPC. The IPC
is an internationally agreed, non-overlapping and comprehensive
patent classification system. Currently, the IPC refers to almost
60,000 individual codes (12 digits) and it may be used at different
hierarchical levels (WIPO, 1994). The concordance of IPC to our
30-field classification is available on request.

fact, the sample of patent applications from 1978 to
1982 could be biased by the fact that, when the EPO
started its activity and immediately afterward, only the
largest and established firms (and especially the Ger-
man ones) were likely to know it well enough to apply
for patents.

In the following section, we start exploring the
database at the firm level and offer some prelimi-
nary evidence on the relevance of the phenomenon of
technological diversification, as well as a collection
of stylised facts that suggest the existence of a close
connection between technological diversification and
persistence.

3. Technological diversification: a few stylised
facts

Using the EPO-CESPRI database, we can identify
the following two basic types of innovative firms:4

(i) Diversified innovators, i.e. those firms that took
patents in more than one technological field over
the period 1982–1993.

(ii) Specialised innovators, i.e. those firms that took
patents in only one technological field over the
period 1982–1993.5

For descriptive purposes, we can also identify a third
category of innovative firms, which comprises both
diversified and specialised innovators:

(iii) Persistent innovators, i.e. those firms that took
patents in all the three subperiods 1982–1985,
1986–1989 and 1990–1993, not necessarily in the
same technological field.6

4 In what follows, for sake of simplicity, we will use the terms
‘innovators’ and ‘innovative firms’ instead of ‘patenting firms’.
Note that this is a very restrictive use of those terms. A firm may
be quite innovative even without patenting its innovations.

5 Please note that the benchmarking used here to define diversi-
fied versus specialised innovators is rather narrow. However, it may
be considered a useful approximation for descriptive purposes.

6 The definition of ‘innovation persistence’ reported in the text
is admittedly crude. Various authors have recently measured in a
more accurate way the extent to which firms persistently innovate
(Geroski et al., 1997; Malerba et al., 1997; Cefis, 1996). However,
since the focus of this paper is not on innovation persistence, we
think that such definition is acceptable for descriptive purposes.



S. Breschi et al. / Research Policy 32 (2003) 69–87 73

Table 2
Relative weight of diversified vs. specialised innovators (six coun-
tries; percentage values, 1982–1993)

Diversified
innovators

Specialised
innovators

Total No. of
observations

Share offirms 30.2 69.8 100 44634
Share ofpatents 89.5 10.5 100 451772

Source: EPO-CESPRI database.

Based upon these definitions, the following few
stylised facts on technological diversification emerge
from the analysis of the data:

(a) Most patenting firms are specialised in only one
field of technology, but they are small innovators.
Table 2, which reports the relative importance
of specialised versus diversified innovators, in-
dicates that specialised innovators represent the
large majority (almost 70%) of all patenting
firms. However, diversified innovators weight
disproportionately in terms of patents, account-
ing for almost 90% of all patent applications

Fig. 1. Distribution of diversified innovators according to the number of technological fields in which they filed for patents (percentage
values, 1982–1993).

from the six countries examined here in the
period 1982–1993.

(b) Most diversified innovators are active in a low
number of technological fields, and are relatively
small innovators. For the six countries pooled
together,Fig. 1 reports the distribution of diver-
sified innovators according to the number of dif-
ferent technological fields in which they applied
for patents in the whole period 1982–1993. More
than 50% of all diversified innovators are present
in just two technological fields, and around 20%
in three.Fig. 2 reports instead the distribution of
patents held by diversified innovators according
to the number of technological fields in which
those innovators applied for a patent in the whole
period 1982–1993. The distribution shows rather
clearly a U-shaped pattern. Firms diversified in
two and three technological fields hold, respec-
tively, only around 7.5 and 4.5% of all patents
held by diversified innovators in the period
1982–1993. These results taken together suggest
that while most diversified firms are present in
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Fig. 2. Distribution of total patents filed by diversified innovators according to the number of technological fields in which they later filed
for patents (percentage values, 1982–1993).

a relatively low number of technological fields
(e.g. slightly >70 and 80% of them hold patents
in less than three and four technological fields,
respectively), they are also relatively small inno-
vators (e.g. only around 12 and 17% of all patents
are accounted for by firms diversified in less than
three and four technological fields, respectively).

(c) Very few firms are diversified in most technolog-
ical fields, and these are the largest innovators.
Figs. 1 and 2suggest that very few firms are
present in most technological fields (e.g. only six
firms patented in all the 30 technological fields in
the period 1982–1993, and only seven patented
in 29 and 28 technological fields, respectively).
However, such firms are very large innovators.
For example, firms diversified in >23 technolog-
ical fields account for almost 30% of all patent
applications filed to the EPO by diversified inno-
vators in the period 1982–1993.

(d) Most persistent innovators are diversified
innovators. Table 3reports the share of diversi-
fied innovators among persistent ones. Diversi-
fied innovators represent >88% of all persistent

innovators. The share of diversified innovators is
even higher in terms of patents, accounting for
almost 99% of all patent applications by persis-
tent innovators in the period 1982–1993. This
result, thus, suggests that both in terms of firms
and patents, diversified innovators constitute the
large majority of persistent innovators.

Summing up, technological diversification is a
widespread phenomenon in Europe, the United States
and Japan. Generally speaking, only occasional in-
novators are not diversified. On the contrary, most
persistent innovators are diversified in at least two
technologies. This suggests that being technologically

Table 3
Share of diversified innovators among persistent innovators (six
countries; percentage values, 1982–1993)

Diversified
innovators

Specialised
innovators

Total No. of
observations

Share offirms 88.4 11.6 100 4775
Share ofpatents 98.8 1.2 100 345819

Source: EPO-CESPRI database.
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diversified (i.e. being able to master and use different
technologies) may represent a necessary requisite to
survive and grow as an innovator, and/or vice versa.
In the following section, we will start to examine
the nature of firms’ technological diversification by
analysing to what extent it follows a coherent pattern.
In particular, we will test the hypothesis that firms dis-
tribute their innovative activities across technological
fields in a random way.

4. A test of randomness in patterns of firms’
technological diversification

A major claim of this paper is that, whatever the
reason why firms have expertise in and choose to
master different technological fields, they should do
it in a relatively ‘coherent’ way. In this respect, a firm
can be said to have a coherent portfolio of innovative
activities, when the technological fields in which it is
engaged arerelated, in the sense that they share some
knowledge or scientific principles and/or enter as in-
puts into the production of specific foods or services.
By contrast, a firm fails to exhibit a coherent pattern
of technological diversification when its innovative
activities are randomly distributed across technologi-
cal fields (Teece et al., 1994). In this section, we show
that firms’ technological diversification can be hardly
seen as a purely random phenomenon, i.e. one driven
by random outcomes in firms’ innovative activities
(random hypothesis). To this purpose, we carry out
a test proposed byEngelsman and van Raan (1991)
andTeece et al. (1994).

Let us indicate withT the total number of firms hav-
ing patented at the EPO in 1982–1993in two or more
technological fields.7 Let Git = 1 if firm t patented in
technological fieldi andGit = 0 otherwise. The total
number of firms having patented in technological field
i in 1982–1993 is therefore given by:Ri = �tGit .
Using this notation, we can also indicate the number
of firms that have patented, i.e. are active in both tech-
nological fieldsi andj as follows:Oij = �tGitGjt . By
applying the latter to all possible pairs of technological

7 The analysis that follows is based upon diversified innovators
from six countries: Italy, France, Germany, UK, Japan and United
States. Moreover, since specialised innovators shed no light on the
issue examined here, they are omitted from the analysis.

fields we obtain a square (30× 30) symmetrical ma-
trix Ω, whose generic cellOij reports the number of
firms that in 1982–1993 were active in both techno-
logical fieldsi andj. Matrices likeΩ were calculated
for the whole population of diversified innovators,
and for particular subsets of them, such as the sample
of innovators which diversify in only two technolog-
ical fields, up to three fields, up to four fields and
so on.

A test of randomness can thus be performed by
comparing the observed value ofOij with the value
that would be expected under the hypothesis that tech-
nological diversification is random. More particularly,
let us assume that in a population ofT innovative
firms, Ri firms possess the characteristic of being ac-
tive in technological fieldi. This implies, of course,
that (T −Ri) firms do not possess such characteristic.
Now, an independent sample (without replacement)
of size Rj of firms is drawn from the population of
T innovative firms: these firms are assigned activities
in technological fieldj. Given this experiment, the
probability of obtaining exactlyx firms that are ac-
tive in both technological fieldsi and j is distributed
according to a hypergeometric random variable, with
populationT, i-field membersRi , and sample sizeRj :

P [Xij = x] =

(
Ri

x

) (
T − Ri

Rj − x

)
(

T

Rj

) (1)

The mean and the variance ofXij are, respectively,

µij = E(Xij ) = RiRj

T
(2)

σ 2
ij = µij

(
1 − Ri

T

) (
T

T − 1

)
(3)

A test of randomness in firms’ technological di-
versification can thus be based upon the following
statistic:

rij = Oij − µij

σij
, (4)

whereOij is the value of the generic cell of matrixΩ;
µij andσ ij are respectively the mean and variance of
the hypergeometric distribution that we would expect
to obtain under the random hypothesis. This statistic
measures, therefore, the extent to which the observed
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Table 4
Test of randomness in firms’ technological diversification (rij index) (number and percentage of cases with significantP-valuesa, six
countries, 1982–1993)

No. of fieldsb No. of firmsc Positived Negativee All Min Max Mean S.D.

# % # % # %

Up to 2 6986 2 4.60 211 48.50 231 53.10 −10.35 32.28 −2.58 3.67
Up to 3 9507 3 8.96 240 55.17 279 64.13 −12.77 42.18 −2.73 5.22
Up to 4 10804 5 11.95 234 53.79 286 65.74 −13.41 46.34 −2.50 6.33
Up to 5 11548 6 14.71 232 53.33 296 68.04 −13.44 49.82 −2.11 7.13
Up to 6 11977 7 16.78 222 51.03 295 67.81 −14.07 52.33 −1.66 7.76
Up to 30 13466 36 84.82 15 3.45 384 88.27 −11.14 61.68 11.63 10.29

Source: EPO-CESPRI database.
a Number of technological fields in which diversified innovators have patented.
b Total number of patenting firms in each frequency class.
c Number and percentage of cells with a positive and statistically significant index of relatedness.
d Number and percentage of cells with a negative and statistically significant index of relatedness.
e Total number of cases with a significantP-value.

association between two technological fields exceeds
what we expected if firms were assigned to techno-
logical fields randomly. If the actual number of firms
diversified in technological fieldsi and j (i.e. Oij )
greatly exceeds the expected numberµij , then there
must be a strong (non random) relationship between
the two technological fields. If, on the contrary,rij

takes a negative value, this means thatOij is even
lower than the number we would observe if firms
were to choose their technological fields randomly.

A major advantage of therij index is that it is
possible to calculate theP-values for each element
rij under the null hypothesis of independence be-
tween technological fields and therefore to evaluate
the statistical significance of the observed relationship
among them. Using these properties, we have cal-
culated therij index and the associatedP-values for
various subsets of diversified innovators, thus taking
into account the possibility that the degree of associ-
ation among technological fields could vary with the
number of fields in which innovators are diversified.
Table 4 reports the main results of this analysis by
showing summary statistics on the absolute number
and percentage of cases (i.e. pairs of technological
fields) with statistically significantP-values (10%
level). The results reject the random hypothesis. In
fact, the observed diversification patterns appear to be
significantly more linked (or not linked) than it would
happen under the random hypothesis. The percentage
of cases with non-random (negative or positive) re-
lationships among technological fields is always well

above 50% and it increases by including firms with
a wider portfolio of innovative activities. Moreover,
as one would expect, the percentage of technologi-
cal fields strongly (i.e. positively) associated sharply
increases when we consider highly diversified firms.8

On the basis of these results, one could be tempted
to conclude that there is a tendency for firms to
innovate in clusters ofrelated technologies, in the
sense defined above. In our view, this conclusion is
not warranted without making further assumptions.
For example,Teece et al. (1994)invoke thesurvivor
principle, according to which economic competition
will lead to the disappearance of relatively inefficient
organisational forms, and assume that (industrial) ac-
tivities which are more frequently combined within
the same firm must therefore be more related. Our ar-
gument is that this kind of inference should be based
only upon an objective and direct measure of knowl-
edge or technological relatedness among industries or
technological fields. In the following section, we will
propose a measure of knowledge-relatedness among
technological fields that allow to test directly to what
extent firms’ technological diversification takes place
acrossrelatedtechnological fields.

8 Please note that the analysis carried out in this section does not
tell anything about theoverall degree of diversification of firms.
In a related paper (Breschi et al., 2002), we measure the overall
degree of firms’ technological coherence by adopting two indices
of weighted-average-relatedness originally proposed byTeece et al.
(1994).
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5. Measuring knowledge-relatedness

In recent years there have been various attempts to
conceptualise relatedness among technological fields
and to find appropriate measures for it.9 For long,
the most influential approach has beenScherer’s
(1982) method for measuring inter-industry technol-
ogy flows.10 This was based upon a classification of
R&D outlays by industry of origin and industry of use
of the resulting products and processes. According
to this method, two industries are consideredclose
to each other if a rather high share of the R&D per-
formed in one sector is actually embodied and used in
the other one. More recently, an alternative approach
has been proposed byJaffe (1986, 1989), who mea-
sured technological relatedness among a sample of
US firms by looking at the distribution of their patents
over 49 technology fields (each field representing a
collection of 12-digit IPC codes). In particular, Jaffe
employed the so-calledcosine indexto measure the
correlation between a number of vectors represent-
ing the distribution of firms’ patents over the various
fields.11

Still more recently, this issue has been tackled upon
by bibliometrics. According to this approach, the relat-
edness between fields of technology can be measured
analysing the co-occurrence of classification codes
assigned to individual patent documents (Engelsman
and van Raan, 1991, 1992).12 As described above, all
patent documents are classified at least by one (mainor

9 In a parallel way, a great deal of work has been also devoted
to measure corporate diversification and inter-industry relatedness
(Caves, 1981; Lemelin, 1982).
10 Notably, this approach has been recently adopted to build the

so-called ‘Yale-matrix’ from Canadian Patent Office data (Putnam
and Evenson, 1994).
11 It is worth pointing out that efforts to conceptualise and mea-

sure knowledge or technological relatedness among firms or tech-
nological fields have been intimately related to the attempts to
capture and assess the impact of spillover phenomena (Jaffe, 1986;
Griliches, 1995; Grupp, 1996). A thorough discussion of this issue
is, however, beyond the scope of this paper.
12 For Engelsman and van Raan (1991), this approach produces

meaningful results particularly at a ‘macro’ level, i.e. for mapping
the entire domain of technology. In order to map relationships at
the meso and micro levels (i.e. for individual technology fields
or combinations of related fields of technology), they suggest to
adopt the so-calledco-word analysis, i.e. analysis based on the
co-occurrence of all indexed keywords contained in patent titles
and patent abstracts.

primary) classification code of the International Patent
Classification (IPC), but usually more classification
codes (secondaryor supplementary) are assigned to
the documents by the patent examiners of the issuing
patent offices. The assumption which is made is that
the frequency by which two classification codes are
jointly assigned to the same patent document can be in-
terpreted as a sign of the strength of the knowledge re-
lationship, in terms of knowledge links and spillovers,
between the technological fields which the codes refer
to, i.e. as an inverse measure of the distance between
the knowledge bases of the two fields.13 Verspagen
(1997)has recently suggested a method which is based
upon the distinction between themain classification
code assigned to a patent document, and thesupple-
mentaryclassification codes that the examiners of the
issuing patent office usually add to it to specify in
detail the technical content of the novelty claim. Ac-
cording to Verspagen, the main code refers to the ob-
ject of claimed and appropriable knowledge, while the
supplementary code refers to some non-appropriable
additional knowledge, i.e. knowledge that is not new
and upon which no discovery claim is made. Follow-
ing this distinction,Verspagen (1997)assumes that the
main classification code “provides a good proxy of the
producing sector of knowledge and that the listed sup-
plementary IPC codes (taken as partially unintended
“by-products” of the main goal of the invention) give
an indication for technology spillovers to other indus-
trial sectors.”

In this paper, we also make use of the different
classification codes assigned to patents, but take a

13 A problem with this interpretation has to do with the fact that
classification codes are assigned to patents for ‘search’ purposes.
A related criticism against the use of classification codes to mea-
sure knowledge relatedness is that, since they are assigned by
patent examiners, they do not necessarily reflect the way firms ac-
tually perceive knowledge relatedness among technological fields.
A possible way to answer these two criticisms is as follows. IPC
codes are used by patent examiners to classify all relevant tech-
nical features of a patent application (WIPO, 1994). If different
technical aspects are addressed, multiple classification codes are
necessary. Of course, the codes are also used for search purposes.
So patent examiners scan other documents with the same code
for identifying documents with similar features. If a document has
several codes, a broader area of search has to be covered. There-
fore, a frequent co-classification of two codes, indeed, indicates
a technological or knowledge relatedness (since technology in-
cludes technical knowledge). We are indebted to Ulrich Schmoch
for these observations.
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different position. Contrary to Verspagen we make
no assumption about the meaning of the main clas-
sification codes as opposed to the supplementary
ones. As explained byHinze et al. (1997), and con-
firmed by a number of WIPO documents,14 the two
kinds of codes cannot be used to distinguish between
knowledge-producing and knowledge-incorporating
fields. In fact, although the main classification code
describes the central characteristics of the main
claim of the patent, the supplementary codes in-
dicate further features of the main claim as well
as of the remaining claims of the patent, i.e. they
also refer to knowledge creation. Therefore,nothing
can be said about the direction of knowledge flows.
Following these remarks, we do not distinguish be-
tween main and supplementary codes, and weigh
equally all classification codes assigned to a patent
document.15

The procedure we followed to build a measure
of knowledge-relatedness was originally proposed
by Engelsman and van Raan (1992). Formally, let
us indicate withM the universe being studied, e.g.
all patent applications to the EPO in a certain pe-
riod of time. Each of theM patent applications has
been assigned by patent examiners to one or more
classification codes. LetFim = 1 if patent document
m contains the classification codei (i = 1, . . . , 30)
and Fim = 0 otherwise. The number of patents
with classification codei is, therefore, given by
Ni = �mFim. We can, thus, indicate the number
of patents that are classified in both technological

14 See, for example,WIPO (1999).
15 A further possible approach to the measurement of knowledge

relatedness between technological fields is to use the information
contained in the patent citations given in patent documents. In
the official patent search reports the state-of-the-art related to the
legal claims of each patent application is described using patent
citations. By taking patent citations as units of analysis, the tech-
nological area of the cited patent is seen as the source from which
technology spillovers originate, while the area of the citing patent
is seen as the area absorbing the spillovers. However, investiga-
tions have shown that there are hardly any differences between
the distribution of the cited and citing patents across technolog-
ical areas. This is due to the fact that the classification of a
patent document has the primary function to determine the areas
of novelty for search purposes. Thus, the cited documents have
almost always the same classification as the citing ones. There-
fore, the use of patent citations does not provide additional infor-
mation about knowledge spillovers or relatedness between areas
of technology.

fields i and j as:Cij = �mFimFjm. By applying this
count of joint occurrences to all possible pairs of
classification codes, we obtain a square (30× 30)
symmetrical matrix of co-occurrences(C), whose
generic cellCij reports the number of patent docu-
ments classified in both technological fieldsi and j.
This matrix of co-occurrences can then be used to de-
rive a measure of relatedness between technological
fields. Since we argued that no distinction ought to
be made between primary and secondary classifica-
tion, our measure of knowledge-relatedness has to be
symmetricwith respect to the direction linking tech-
nological fields. Moreover, such measure ought not
to depend on the absolute size of the technological
field (in terms of patent applications), otherwise we
would over-estimate the knowledge links involving
the larger fields.16 A measure that fully meets these
criteria is thecosine index Sij (wherei and j are two
generic technological fields), which measures the an-
gular separation between the vectors representing the
co-occurrences of technological fieldsi and j with all
the other fields:

Sij =
∑30

k=1CikCjk√∑30
k=1C

2
ik

√∑30
k=1C

2
jk

(5)

As the simple correlation coefficient, the cosine in-
dex provides a measure of the similarity between two
technological fields in terms of their mutual relation-
ships with all the other fields, with the advantage of
being symmetric.17 Sij is the greater the more the
two fields i and j co-occur with the same techno-

16 It is easy to note that the observed value of co-occurrences
Cij is likely to increase withNi andNj , i.e. the number of patent
applications in fieldsi and j, respectively. This implies that, if
the size of the two technological fields is large (becauseNi and
Nj are large), one can expect to observe a fairly large number of
patents co-classified in the two technological fields, even though
the cognitive closeness among the two is very low. Conversely, if
the size of the two technological fields is small (becauseNi and
Nj are small), one can expect to observe a relatively low number
of co-occurences even though the two technologies are cognitively
very close to each other.
17 Of course, the cosine index is not the only measure of distance

that could have been used. Among alternative methods, there is
the absolute distance and the calculation of clusters. Regarding the
former, the results one obtains are nearly the same when comparing
relative indices (like the Revealed Comparative Advantage index),
whereas they are most likely to be biased when (as in our case)
comparing absolute patent numbers. Concerning the latter, cluster
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logical fields. It is equal to one for pairs of technologi-
cal fields with identical distribution of co-occurrences
with all the other technological fields, while it goes
to zero for pairs of technological fields that do not
overlap.

Applying the cosine index calculation to a 30× 30
matrix of the joint occurrences, we can generate a
new matrix of the same size, whose elements are the
variousSij (i = 1, . . . , 30; j = 1, . . . , 30), which we
call theknowledge-relatedness matrix. This matrix has
been constructed usingall patent applications to the
EPO over the whole period 1982–1993, i.e. 721,260
observations (WORLD 1982–1993,Table 5).18,19 The
knowledge-relatedness matrix thus built will be used
in the following section to test whether and to what
extent firms extend their innovative activities across
related technological fields. Here, we just point that
most values are<20, with four outliers in between
20 and 30, four more between 30 and 50, and just
one over 50. In addition, we notice that most of these
outliers relate to technological classes related to the
Chemical Sciences.

analysis allows to identify focal areas, but loose information about
regular distributions. For these reasons, we chose to use the cosine
index as an appropriate measure of distance.
18 Searches and elaborations of data to calculatethe knowledge

relatedness matrices, as well as the methodology, were origi-
nally provided by the Fraunhofer Institute for Systems and In-
novation Research (FhG-ISI—Karlsruhe), within the framework
of the TSER-funded project “Innovation Systems and European
Integration” (ISE), using the on-line version of the EPO database
offered by the French database host Questel (EPAT). The delimi-
tation of the time periods was done by the priority year as given
in the patent application. The inventor country was used to dis-
tinguish between countries.
19 In addition to that, since it was intended to examine whether

knowledge relatedness remains stable or changes over time, and
whether it is affected by differences among countries and the kind
of technology produced there or whether it is relatively invariant
across countries, we have also calculated six additional matrices.
A first subset of three matrices is based on all patent applications
to the EPO and refer each to one out of three subperiods (WORLD
1982–1985, WORLD 1986–1989 and WORLD 1990–1993). A
second subset of three matrices refer instead to the three largest
industrialised countries for the period 1990–1993 (US 1990–93,
GERMANY 1990–1993 and JAPAN 1990–1993). No major differ-
ence emerges using world-wide patent data compared to individual
country data. Furthermore, the relationships among technological
fields remain highly stable over time. Therefore, in what follows,
we will always make use of the matrix WORLD 1982–1993.

6. Knowledge-relatedness in the patterns
of firms’ technological diversification

In this section, we test the relative importance of
knowledge-relatedness as an explanatory variable of
individual firms’ diversification choices, as compared
to other patent-based indicators. To do so, we employ
a logistic regression, where the dependent variable is a
dichotomous one (presence versus absence in a certain
technological class), and the key independent variable
is our measure of knowledge-relatedness.20

Let hPi �=j be the probability that firmh, whose
“core” technological field isj, is also active in tech-
nological field i (we define the “core” technological
class below). Then a possible model of technological
diversification pattern can be written as:

hPi �=j = f (CTh, Ti, Tj )

whereCTh is a vector of technological characteristics
of firm h; Ti a vector of characteristics of the target
technologyi; Tj a vector of characteristics of firmh’s
main technologyj.

CTh should accommodate for all of those variables
that reflect one firm’s propensity and/or opportunity
to diversify its technological efforts, on the basis of
some internal strategy or sheer size of its research ef-
fort (from which the chance to enjoy some research
spillover). Two proxies could be derived from the
EPO-CESPRI dataset, respectively,

SIZECLASS: number of technological classes in
which firm h was reported to have at least one
patent application, from 1982 to 1994; it ranges
from 1 to 30.

SIZEPAT: overall number of patent applications held
by firm h throughout the time interval 1982–1994;
it ranges from 2 to over 9000, although most firms
do not have >5 patents (seeSection 2above).

20 It is quite important to point out that we are not testing any
causal relationship going from knowledge relatedness to corporate
technological diversification. It may be, in fact, that relatedness
among technological fields is forged by firms’ diversification ac-
tivities. The purpose of our exercise is to assess to what extent
firms’ technological diversification tends to take place across re-
lated technological fields, whatever determines the degree of re-
latedness among these fields. We thank an anonymous referee for
drawing our attention on this point.
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We expect bothSIZEPAT and SIZECLASS to af-
fect positivelyhPi �=j . A cursory glance at the names
of the largest innovators in the EPO-CESPRI dataset
shows that the largest innovators are also the largest
and eldest firms in each country. The role we give
both toSIZEPAT andSIZECLASS is that of control
variables (especiallySIZECLASS). In particular, we
expect knowledge-relatedness to affect less the larger
(higherSIZEPAT) and more diversified (higherSIZE-
CLASS) firms, due to the possibility that such firms
will host a number of relatively independent business
units. These provide alternative departure points for
reaching a given technological class, rather than a sin-
gle one, as we assume when positing the existence of
just one “core” technological field for each firm (see
below).

Ti contains all variables that may represent the op-
portunity to patent in target technologyi, as well as
the barriers to entry in such technology. Such barriers
may derive from the existence of some indivisibility
of research efforts at the firm level, or from the exis-
tence of national innovation system effects that favour
firms from some countries. The variables we consid-
ered are:

TOTPAT ( C, W): total number of patents in classi,
1982–1994, in firmh’s country (TOTPAT C; range
of values is 26–12038) and in all the six countries
(TOTPAT W; range of values is 2485–36626);

C4 ( C, W): concentration index (share of patents
in classi held by the largest four innovators), cal-
culated both at the level of firmh’s country (C4 C)
and for all the six countries (C4 W), 1982–1994; it
varies between 0 and 1;

VTRS: revealed technological advantage of firmh’s
country in classi, 1982–1994.VTRS is a country
specialisation index and it is calculated as the log of
the share of world patents held by firmh’s country
in classi over the same country’s share ofall world
patents; it varies between−1 and 1.

Technological opportunity conditions are repre-
sented byTOTPAT ( C, W). A positive sign is
expected.

Barriers to entry and indivisibilities are represented
by C4 C andC4 W. A negative sign of eitherC4 C
or C4 W (which are highly collinear) is expected.

Finally, the role of national innovation systems is
represented byVTRS. A positive sign of VTRS is

expected: we suppose specialisation (VTRS > 0) to
imply the existence of localised knowledge sources
or institutional assets at the country level, which
favour firms from that country that aim to access
technologyi.

Tj is exclusively composed byRELATEDNESS,
our measure of knowledge-relatedness, between target
class i and firm h’s core technological classj. The
concept and measurement of knowledge-relatedness
have been already discussed inSection 3; here, only
normalised values from matrix world 1982–1993 have
been used, so thatRELATEDNESS ranges from 0 to
1. We expectRELATEDNESS to have a significant
positive sign.

The definition of “core” technological class de-
serves some comments. We ought to find out in which
class firmh first started innovating, and then map the
firm’s innovation efforts outside that class. However,
EPO patents have to be regarded as left-censored
innovation proxies, since none of them was granted
before 1978, well after most firms in our dataset
had started innovating. In addition, it may well be
that some firms which have started innovating in
some technological area then focus on a new one,
and depart from there for their further diversification
efforts. So, any “chronological” definition of core
technological class is empirically unfeasible and, at
the same time, not necessarily sound from a theo-
retical viewpoint. Therefore, we have identified as
firm h’s core technological class the one in which the
firm is relatively more specialised in its technolog-
ical activities. However, this cannot be identified as
the one that records the highest number of firmh’s
patents, because patents represent an appropriability
instrument whose effectiveness differs widely across
technologies. Innovation in some technologies is bet-
ter protected by other appropriability means (e.g.
secrecy or time-to-market), so that similar innovation
efforts in two different technologies may result in a
widely different number of patents in the correspond-
ing technological classes. By comparing the number
of patents one could end up electing as a firm’s “core”
technological class simply the one with the higher
“patent:innovation” ratio, for the same amounts of
innovative activity. A better criterion is that of com-
paring firmh’s sharesof patents in the various tech-
nological classes (i.e. the number of patents held by
the firm in each class, over total number of patents at
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the world level in that class). We have then chosen the
class with the highest share as the firm’s “core” one.21

Due to our a priori on the role ofSIZECLASS (see
above), we expected relatedness to interact negatively
with it, or to reduce its impact onhPi �=j , if tested on
subsamples of firms with high values ofSIZECLASS.

We run two different sets of regressions. In the first
set each firm appears 29 times, i.e. as many times
as many technological classes exist which are dif-
ferent from its core one (i.e. the dependent variable
is hPi �=j , with i = 1, . . . , 30). A basic regression
(with alternative model specifications) has been run,
which was based on the whole sample of firms (as
described inTables 2 and 3above), as well as a
number of additional ones, each of them referred
to a different subsample, based upon the values of
SIZECLASS. Table 6reports the results for the basic
regression (all firms), and for four of the additional
ones, namely those that refer to firms diversified in
2–5 classes (SIZECLASS[2,5]), 6–10 classes (SIZE-
CLASS[6,10]), 11–20 classes (SIZECLASS[11,20]),
and 21–30 classes (SIZECLASS[21,30])22. In partic-
ular, Table 6 refers to a model specification which
employs TOTPAT W and C4 C rather thanTOT-
PAT C and C4 W (no relevant differences emerged
when adding the latter, or using them as substitutes
to the former).SIZEPAT and TOTPAT W appear in
logarithmic form to allow for non-linearity in their
relationship withhPi �=j .

When testing for the existence of interaction ef-
fects we discovered a great number of them to be
significant. The stepwise procedure we employed for
their identification always pointed at the interaction

21 However, even this measure is not immune from drawbacks.
In particular, the share of patents in a given class may be in-
versely related to the number of firms and/or patents in the small
class. Indivisibilities exist, such that niche technologies can host
a relatively small number of firms and patents, so that innovators
have high shares, even if their engagement in those technologies
represent just a minimal part of their whole innovation effort.
Our 30-class classification scheme, however, does not contain very
small classes, with the possible exceptions of classes 27 (nuclear
technology) and 28 (space technology). Notice that similar re-
marks may apply also to other share-based variables, such asc4
and VTR.
22 Other regressions refer to subsamples forSIZECLASS equal

to 2, 3, 4 and 5, respectively, as well fro each of the siz countries
in the EPO-CESPRI database (allSIZECLASS). All of them give
results which are very similar to those reported inTable 6.

betweenSIZECLASS andRELATEDNESS as a key
one, but also included different interaction effects
depending on the chosen subsamples. The number
and variability of such interaction effects pose in-
terpretation problems beyond our current reach, so
Table 6reports (along with the Main Effect models)
only the models withSIZECLASS-RELATEDNESS
interaction effects. The profile ofhPi �=j , as a func-
tion of RELATEDNESS resulting from these limited
interaction models, however, resembles very closely
the profile obtained from both the full interaction
ones and the model specification that includes only
the SIZECLASS–RELATEDNESS interaction effect,
but does not resemble the profile resulting from any
model which allow for the main effects only (see
comments toFig. 3 below).23

In the Main Effect model inTable 6all the signs
of the independent variables are as expected. The
role of knowledge-relatedness is positive and highly
significant. In addition, the positive sign ofVTRS
indicates that firms tend to diversify in those tech-
nologies in which a country has advantages. On the
other hand, firms face difficulties to enter in those
classes in which technological activities are already
highly concentrated and therefore barriers to entry of
various types are high (negative sign ofC4 C).

In addition, the main effect of relatedness increases
when moving from theSIZECLASS[2,5] subsample
up to theSIZECLASS[21,30] one. This suggest that
the influence of relatedness on the probability for a
firm to diversify in a given fieldincreaseswith the
extent of the firm’s diversification. That is, some
knowledge-related coherence appears in firms’ diver-
sification patterns, which does not fade away with the
extent of diversification. In particular, it is possible
that firms which diversify in two or a few more tech-
nological classes, although reaching close classes, do
not necessarily reach the closest one. At the same
time, firms which diversify in a higher number of
classes do not leave any “gap” in the relatedness hi-
erarchy that separates their core technological class

23 In particular, interpretation is made easier by the absence of
changes in the sign of the main effect parameters (in particular
RELATEDNESS), due to the insertion of too many interaction
effects. Notice that such changes did not affect the overall profile
of hPi �=j , as a function ofRELATEDNESS, but simply made
it more difficult to see the relationship between the two, without
plotting it on a complex graph like the one inFig. 3.
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Fig. 3. Firmh’s probability to diversify into classi �= j as a function of knowledge-relatedness betweeni and j (j = firm h’s core class).

from the furthest they reach. These firms do not jump
from their core class to the farther ones: rather they
fill in all the classes in between.

Signs of the independent variables do not change
when moving to the Interaction Effect model. The in-
teraction of relatedness withSIZECLASS is a positive
one.

These results are confirmed byFig. 3, which
plots the probability of patenting outside one’s
core technological field (hPi �=j ,) as a function of
knowledge-relatedness. Two sets of four curves are
plotted: the white-dotted curves are based on the esti-
mated parameters of the Main Effect model inTable
6, while the black-dotted curves illustrate the Inter-
action Effect model. The horizontal axis reports the
values of relatedness from 0 to 0.28 in a continuous

fashion, and then three of the few extreme values
pointed out inSection 5. Each curve within a group
is based on a different value ofSIZECLAS (2, 5,
10 and 20, respectively), while all curves are based
on average values of the other control variables. For
example, the curve labelled Main2 represents the
probability to patent in any classi other than one’s
core classj, for all firms active in no more than two
fields, on the basis of the estimates of the Main Effect
model: as expected the probability to be active ini
increases with the relatedness ofi–j. If we compare
Main2 with Main5, the latter lies above the former
for all values of knowledge-relatedness. Both curves
tend to one as knowledge-relatedness tends to one.

More interestingly, we notice that adding the
SIZECLASS–RELATEDNESS interaction effects to



S. Breschi et al. / Research Policy 32 (2003) 69–87 85

the main ones change significantly the profile of
hPi �=j , compared to the Main Effect model. In par-
ticular, firms with SIZECLASS over 5 appear to
increase their chances to diversify more than the other
ones. Similar plots, which report the results of regres-
sions carried on the subsamples described inTable 6,
suggest similar conclusions.

The latter are also confirmed by the second set of
logistic regressions. Rather than pooling all values of
hPi �=j , for each firm, in this second set separate regres-
sions for each technological class are run, for a total
of 30. In all casesRELATEDNESS and SIZECLAS
are significant and interact positively, (although, in-
evitably,C4 C rather thanTOTPAT C24 are often non
significant). We do not report the results in full for
sake of brevity (they are available on request).

6.1. Possible extensions and applications

The results reported above provide support to the
notion that firms are coherent in terms of the technolo-
gies they are active in, and identifies knowledge as a
key factor at the base of this coherence. The analysis
carried out in this paper allows several potential ap-
plications and extensions, both at the theoretical and
at the empirical level.

At the theoretical level, our findings point to the
need for more research aimed at disentangling the pos-
sible determinants and dimensions of ‘relatedness’.
As argued above, relatedness may be the result of
quite different factors: proximity, commonality or
complementarity. A finer grained analysis should
therefore be directed to clarify the relationship be-
tween the possible sources of knowledge-relatedness,
on one hand, and the properties of the knowledge base
and the characteristics of firms’ product lines, on the
other. In addition, more theoretical (and empirical)
efforts should be devoted to exploring the extent to
which relatedness derives from intrinsic properties of
the knowledge base and products underpinning firms’
innovative activities, as opposed to the possibility that
relatedness is purposively shaped by firms attempting
to broaden the scope of their activities. Relatedly, re-
search aimed to model firms’ diversification choices

24 Notice thatTOTPAT W and C4 W could not be used in this
second exercise, their value not changing within the same techno-
logical class.

would also help to disentangle theunintendedver-
sus theintended learning processes that are at the
base of diversification, and the relationship between
knowledge-relatedness, sunk costs and switching
costs of moving away from established technologies.

On the empirical side, further research is needed
to validate and extend our analysis. In the first place,
other measures of knowledge-relatedness should
be tested and compared to the one used here, i.e.
co-classification codes of patent documents. Among
them, one can think of patent citations, non-patent
literature citations (scientific publications), and teams
of co-inventors. In the second place, other indices and
metrics should be also adopted in order to assess the
robustness of our results. At a more substantial level,
we believe that the basic methodology developed in
this paper could be fruitfully applied to shed light on a
rather important issue, namely, thetechnological tra-
jectories followed by firms over time. Two contrast-
ing hypotheses have been put forward in the recent
literature. One suggests that persistently innovative
firms increasinglyfocustheir research on an increas-
ingly smaller number of technologies, thus narrowing
down their patterns of specialisation. By contrast,
other authors claim that (large) firms are constantly
engaged in opening up windows on new technologies,
or entering into technologies that are complemen-
tary, or in closely related in terms of knowledge, or
subject to spillover effects. According to this second
hypothesis, awideningprocess is at work, with firms
broadening the number of technologies they need or
wish to master (Granstrand, 1998; Granstrand et al.,
1997). Although it goes beyond the objectives of this
paper to enter into this debate, we believe that map-
ping the relationships and measuring the extent of
technological relatedness, along the ways proposed in
this paper, would greatly contribute to discriminating
among competing hypotheses (see also,Breschi and
Malerba, 2000; Breschi et al., 2002).

7. Conclusions

The paper has proposed that relatedness in knowl-
edge is a key factor in affecting firms’ technological
diversification. First, in a descriptive fashion it has
examined the extent of technological diversification
in six major advanced countries. It has found that
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technological diversification is quite widespread
among small as well as major innovators. Second,
the paper has tested the hypothesis that relatedness in
technologies is a major driver of firms’ technological
diversification (knowledge-relatedness hypothesis)
versus the hypothesis that technological diversifica-
tion occurs randomly (random hypothesis). It has
found evidence in favour of the relatedness hypoth-
esis: firms extend their innovative activities across
knowledge-related technological fields as a conse-
quence of learning processes (either unintended in
terms of spillovers or intended in terms of local learn-
ing) and of knowledge features and links (due to scope,
complementarity or the generic nature of knowledge).
Even the most technologically diversified firms patent
in closely related fields. A particularly interesting re-
sult is that larger diversifiers are more “coherent” in
terms of knowledge-relatedness of their technologi-
cal activities than smaller diversifiers. This could be
due to the fact that, as firms expand their activities,
they gradually increase their knowledge coherence by
filling systematically all the classes that are related to
those classes they started with, thus filling all the pos-
sible “technological gaps” between classes. We be-
lieve that our results pave the way for further research,
both in terms of methodological perspectives (how
to measure knowledge and productive relatedness?),
and for a better understanding of firms’ technological
strategies.

Acknowledgements

This paper draws upon the research projectIn-
novation Systems and European Integration(ISE),
funded by the Targeted Socio-Economic Research
(TSER) programme of the European Commission
(DGXII) under the 4th Framework Program. (con-
tract no. SOE1-CT95-1004). Useful comments and
support from all the participants to the ISE project
are gratefully acknowledged.

References

Antonelli, C., 1995. The Economics of Localised Technological
Change and Industrial Dynamics, Kluwer Academic Publishers,
Dordrecht.

Arora, A., Gambardella, A., 1994. The changing technology of
technological change: general and abstract knowledge and the
division of innovative labour. Research Policy 23, 523–532.

Atkinson, A.B., Stiglitz, J.E., 1969. A new view of technical
change. Economic Journal 79, 573–578.

Breschi, S., Malerba, Fr., 2000. Diversification and Specialisation
in Innovative Activities. An Analysis of Patenting Activities of
Electronic Firms, WP TSER Dynacom, Scuola Sup. S. Anna,
Pisa.

Breschi, S., Lissoni, F., Malerba, F., 2002. The empirical
assessment of firms’ technological coherence: data and meth-
odology. In: Cantwell, J., Gambardella, A., Granstrand, O.
(Eds.), The Economics and Management of Technological
Diversification, Routledge.

Bresnahan, T.F., Trajtenberg, M., 1995. General purpose
technologies ‘Engines of growth’? Journal of Econometrics 65,
83–108.

Cantwell, J., Andersen, B., 1996. A statistical analysis of corporate
technological leadership historically. Economics of Innovation
and New Technologies 4, 211–234.

Caves, R.E., 1981. Diversification and seller concentration:
evidence from changes. The Review of Economics and Statistics
63, 289–293.

Cefis, E., 1996. Is there any persistency in innovative activities?
Working Paper, Department of Economics, University of Trento,
Trento.

David, P.A., 1975. Technical Choice, Innovation and Economic
Growth, Cambridge University Press, Cambridge, UK.

Dosi, G., 1997. Opportunities, incentives and the collective patterns
of technological change. Economic Journal 107, 1530–1547.

Engelsman, E.C., van Raan, A.F.J., 1991. Mapping of Technology,
A First Exploration of Knowledge Diffusion Amongst Fields
of Technology, Policy Studies on Technology and Economy
(BTE) Series, No. 15. The Hague.

Engelsman, E.C., van Raan, A.F.J., 1992. A patent-based
cartography of technology. Research Policy 23, 1–26.

Geroski, P., Van Reenen, J., Walters, C.F., 1997. How persistently
do firms innovate? Research Policy 26, 33–48.

Granstrand, O., 1998. Towards a theory of the technology-based
firm. Research Policy 27 (5), 467–491.

Granstrand, O., Patel, P., Pavitt, K., 1997. Multi-technology
corporations: why they have distributed rather than distinctive
core competencies. California Management Review 39 (4), 8–
25.

Griliches, Z., 1979. Issues in assessing the contribution of
research and development to productivity growth. Bell Journal
Economics 10 (1), 92–116.

Griliches, Z., 1991. Patent statistics as economic indicators: a
survey. Journal Economic Literature 28, 1661–1707.

Griliches, Z., 1995. R&D and productivity: econometric results
and measurement issues. In: Paul Stoneman (Ed.), Handbook
of the Economics of Innovation and Technological Change.
Blackwell, Oxford.

Grupp, H., 1996. Spillover effects and the science base of
innovations reconsidered: an empirical approach. Journal
Evolutionary Economics 6, 175–197.



S. Breschi et al. / Research Policy 32 (2003) 69–87 87

Henderson, R., Cockburn, I., 1996. Scale, Scope, and Spillovers:
the determinants of research productivity in drug discovery.
Rand Journal Economics 27, 32–59.

Hinze, S., Reiss, T., Schmoch, U., 1997. Statistical Analysis on the
Distance Between Fields of Technology, FhG-ISI (Karlsruhe):
ISE Working Paper.

Jaffe, A.B., 1986. Technological opportunity and spillovers of
R&D: evidence from firms’ patents, profits, and market value.
American Economic Review 76 (5), 984–1001.

Jaffe, A.B., 1989. Characterising the technological position of
firms, with application to quantifying technological opportunity
and research spillovers. Research Policy 18, 87–97.

Lemelin, A., 1982. Relatedness in the patterns of interindustry
diversification. The Review of Economics and Statistics 64,
646–657.

MacDonald, J.M., 1985. R&D and the directions of diversification.
The Review of Economics and Statistics 67, 583–590.

Malerba, F., 1992. Learning by firms and incremental technical
change. Economic Journal 102, 845–859.

Malerba, F., Orsenigo, L., Peretto, P., 1997. Persistence of
innovative activities, sectoral patterns of innovation and
international technological specialisation. International Journal
Industrial Organisation 15, 801–826.

Milgrom, P., Roberts, J., 1990. Modern manufacturing: technology,
strategy and organization. American Economic Review 80 (3),
511–528.

Nelson, R.R., Winter, S.G., 1982. An Evolutionary Theory of
Economic Change, Harvard University Press, Cambridge, MA.

Patel, P., Pavitt, K., 1995a. Technological Competencies in the
World’s Largest Firms: Characteristics, Constraints and Scope
for Managerial Choice, IIAASA WP-95-66, Laxenburg.

Pavitt, K., 1998. Technologies, products and organisation in
the innovating firm: what Adam Smith tells us and Joseph
Schumpeter does not. Industrial and Corporate Change 7 (3),
433–452.

Penrose, E., 1959. The Theory of the Growth of the Firm, Basil
Blackwell, Oxford.

Putnam, J., Evenson, R. E., 1994. Inter-sectoral Technology Flows:
Estimates from a Patent Concordance with an Application to
Italy, Mimeo, Yale University.

Scherer, F.M., 1982. Interindustry technology flows in the United
States. Research Policy 11, 227–245.

Scott, J.T., 1993. Purposive Diversification and Economic
Performance, Cambridge University Press, New York.

Teece, D.J., 1982. Toward an economic theory of the multiproduct
firm. Journal of Economic Behaviour Organization 3, 39–63.

Teece, D.J., Rumelt, R., Dosi, G., Winter, S.G., 1994. Under-
standing corporate coherence: theory and evidence. Journal of
Economic Behaviour Organisation 23, 1–30.

Verspagen, B., 1997. Measuring inter-sectoral technology
spillovers: Estimates from the European and US patent office
databases. Economic Systems Research 9 (1), 49–67.

WIPO, 1994. International Patent Classification: Guide, Survey of
Classes and Summary of Main Groups, 6th Edition, Vol. 9.
World Intellectual Property Organization, Geneva.

WIPO, 1999. IPC Reform Project File. Elaboration of Multiple
Classification in the IPC and Investigation of Possible
Bearing of Such Rules on General Principles of Classifying
Disclosed in the Guide to IPC, Document IPC/R 4/99 from:
http/www.wipo.int/eng/main.htm, World Intellectual Property
Organization, Geneva.

http/www.wipo.int/eng/main.htm

	Knowledge-relatedness in firm technological diversification
	Introduction
	Data sources
	Technological diversification: a few stylised facts
	A test of randomness in patterns of firms' technological diversification
	Measuring knowledge-relatedness
	Knowledge-relatedness in the patterns of firms' technological diversification
	Possible extensions and applications

	Conclusions
	Acknowledgements
	References


