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Abstract

We introduce random graphs with exchangeable hidden colours and prove
an asymptotic result on the number of times a fixed graph appears as a
subgraph of such a random graph. In particular, we give necessary and
sufficient conditions for the number of subgraphs isomorphic to a given graph
to converge, under a negligibility assumption on the frequencies of colours.
Moreover, we prove that the limiting law, when it exists, is a mixture of
Poisson distribution. Our proofs rely on Stein-Chen method for Poisson
approximations of sums of weakly dependent random variables. Finally, we
discuss an application of the asymptotic result in Bayesian modeling.
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Keywords and phrases. Exchangeability, Poisson approximation, random
graphs, subgraph enumeration.

1 Introduction

The systematic study of random graphs was started by Erdős and Rényi
in a series of seminal papers in 1950s and 1960s. In its simplest version, the
classical (finite, undirected, loopless) random graph G(n, p), is defined by
taking a finite set of vertices {1, . . . , n} and then randomly selecting each of
the

(
n
2

)
possible edges with probability p independently of all other edges.

As pointed out in Newman (2003), Erdős-Rényi model fails to describe many
real-world networks, due to its intrinsic lack of edge correlation. In many
different fields like molecular biology, ecology or information-technology, ob-
served network structures frequently show clustering, i.e. vertices are more
likely to be connected when they have a common neighbour. Hence in the
last decade, an increased interest in random graph theory, has produced
generalizations of the Erdős-Rényi model allowing correlation between edges
(see Penman, 1998, Biggins, 2002, Biggins and Penman, 2003, Cannings
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and Penman, 2003 and Söderberg, 2003). One of the most appealing is ob-
tained by randomly colouring vertices according to a colour distribution and
realizing edges independently with colour dependent probabilities.

An interesting class of results in random graph theory concerns the prob-
lem of counting the number of times a fixed subgraph H appears in a ran-
dom graph. (For a general introduction to random graphs see e.g., Bollobas,
1985). Let G(n, p) be the Erdős-Rényi model, and let W be the number of
copies of H in G(n, p). Barbour et al. (1992) establish an upper bound for
the total variation distance between the law of W and a Poisson law with
a suitable mean. Their proofs rely upon the Stein-Chen method, which is a
general method to establish Poisson approximations for the sum of weakly
dependent indicator random variables, with small occurrence probabilities.
The main virtues of the Stein-Chen method is that it gives explicit upper
bounds on the total variation distance.

In randomly coloured random graphs, subgraph enumeration was origi-
nally introduced by Janson (1986, 1987) as an alternative formulation of the
famous birthday problem (Von Mises, 1939). Let Γ be a randomly coloured
random graph obtained by colouring the vertices of a complete graph G, at
random and independently, and then deleting the edges with different colours
at the endpoints. If vertices represent people and colours represent people’s
birthdays, then an edge arises in Γ for every pair of people sharing the same
birthday, so that the number of edges W corresponds to the number of pairs
of people born in the same day. In Barbour et al. (1992), Theorem 5.G, the
Stein-Chen method is used to approximate W by a Poisson random variable
with mean λ =

(
n
2

)∑
r p2

r , where pr is the probability of being born on day
r, and n is the number of people.

Here we extend the above result in two different directions. First we relax
the hypothesis that vertices colours are independent by assuming that they
are exchangeable. This extension is motivated by potential applications in
Bayesian statistics (see Section 4). Actually, in order to exploit de Finetti’s
representation theorem, we make the stronger assumption that the sequence
of colours can be extended to an infinite exchangeable sequence. Moreover
we consider the number W of occurrences of a general connected subgraph H.
In this framework we prove that, under suitable negligibility assumptions,
the probability distribution of W can be well approximated by a mixture of
Poisson laws, if the order of G is large.

The above mentioned results can be applied in a Bayesian perspective to
model the number of coincidences arising in large networks. Consider a large
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network in which a random characteristic is associated to each node, in such
a way that different nodes are homogeneous with respect to it. It may be, for
example, a particular choice or interest in a social network. Suppose that
we want to fix a model for the number of coincidences among connected
nodes in the network. In a Bayesian approach, if the distribution of the
characteristic is not known, a prior distribution is assigned to it. According
to de Finetti’s representation theorem, this is equivalent to assume that the
nodes are exchangeable with respect to the above mentioned characteristic.
Our asymptotic results on random graphs with exchangeable colours imply
that, if coincidences can be considered as exceptional events, a Poisson model
with a random mean can be employed.

The paper is organized as follows. In Section 2 we fix some notations
and introduce basic definitions. Moreover we state a property of random
graphs with independent hidden colours exploited in the subsequent section.
In Section 3 we present the asymptotic result with some examples, remarks
and comments. In Section 4 we apply the asymptotic result to discuss a
Bayesian version of the birthday problem.

2 Notations and Preliminary Results

Before introducing the definition of random graph with exchangeable
hidden colours, we fix some notations. For basic definition on graph theory
see e.g. Diestel (2000). Let G = (V,E) be a graph: we can always take
V = {1, . . . , n}. Let |G| denote the number of vertices of G. Subgraphs of a
graph G will often be denoted by Greek letters α, β, etc. We write α ⊂ G
to denote α being a subgraph of G. If a subgraph α of G is isomorphic to
a fixed graph H, α is called a copy of H in G. The set of copies of H (in
a fixed graph G) is denoted by AH . We use Bα,r to denote the number of
copies of H in G having r vertices in common with α, a particular copy of
H:

Bα,r = {β ∈ AH : |β ∩ α| = r}. (2.1)

Let
mr =

1
|AH |

∑
α∈AH

|Bα,r|. (2.2)

Suppose G is a graph with n vertices, and each vertex i receives a random
colour Xi from a list of k < ∞ colours, where (X1, . . . , Xn) have some joint
distribution. A random subgraph Γ of G with hidden colours is the graph
with vertex set V (G) and edges those edges ij of G for which Xi = Xj .
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More generally, if (Gn) is a sequence of graphs, with |Gn| = n, suppose
each vertex of Gn is coloured with one of kn < ∞ colours, the colour of
vertex i being Xi,n in Gn. We form a sequence (Γn) of random subgraphs
with hidden colours in the same way.

The key case for us is when the (Xi,n), 1 ≤ i ≤ n, are i.i.d. conditional
on a random probability Qn:

P (X1,n ∈ A1, . . . , Xn,n ∈ An|Qn) =
n∏

i=1

Qn(Ai). (2.3)

Then de Finetti’s theorem (see e.g., Aldous, 1985) implies that the joint
distribution of the sequence of vertex colours is exchangeable:

P (X1,n ∈ A1, . . . Xn,n ∈ An) = P (X1,n ∈ Aπ(1), . . . Xn,n ∈ Aπ(n))

for all subsets As of the set of k colours for Gn, all π a permutation of
{1, . . . , n}. Moreover, the finite sequence can be extended to an infinite ex-
changeable sequence. Note Qn is defined by a kn-vector (Qn(1), . . . , Qn(kn))
which we write as Qn = (Q1,n, . . . , Qkn,n). In this case we call the resulting
random graphs (Γn) random graphs with exchangeable hidden colours. A
special case is when the colours are independent: these are a particular case
of the random randomly coloured graphs introduced in Penman (1998) and
Söderberg (2003) independently.

Let Γ be a random graph on an underlying graph G and let H be a
graph. The number of copies of H in Γ is the random variable

W =
∑

α∈AH

Iα,

where
Iα = 1{α ⊂ Γ}.

Here, for every B, 1(B) is the indicator function of B.

If Γ is a random graph with hidden colours and (Xi) is its sequence of
random colours, then

W =
∑

α∈AH

1(∩ij∈V(α){Xi = Xj}).

Let the Poisson distribution with parameter λ > 0 be denoted by Poλ.
We include in the last class the degenerate distribution on 0 as the Po 0

distribution.
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The asymptotic results of next section are based on the following theo-
rem.

Theorem 1. Let Γ be a random graph on G with independent and
identically distributed colours X1, X2, . . . and colour space {1, . . . , k}. Let
H be a connected graph with |H| > 1. Then the number of copies of H in
Γ satisfies

dTV (L(W ), Poλ) ≤ 1∧(1−e−λ)

∑|H|−1
r=1 mr + 1

AH
λ +

|H|−1∑
r=1

mr

∑k
i=1 q

2|H|−r
i∑k

i=1 q
|H|
i

 ,

where dTV denotes the total variation distance, qi = P (X1 = i) for every i,
and λ = |AH |

∑k
i=1 q

|H|
i .

Proof. The random variables {Iα : α ∈ A} are dissociated (see Barbour
et al. (1992) p. 34). Theorem 2.N in Barbour et al. (1992) then implies

dTV (L(W ), Poλ) ≤ 1− e−λ

λ

∑
α∈AH

(EIα)2 +
|H|−1∑
r=1

∑
β∈Bα,r

((EIα)2 + (EIαIβ))

 .

Moreover E(Iα) =
∑k

i=1 q
|H|
i = λ/|AH | while E(IαIβ) =

∑k
i=1 q

2|H|−r
i if α

and β have r common vertices (1 ≤ r ≤ |H| − 1) 2

Let Xi be a sequence of i.i.d. random variables such that P (Xi = j) = qj

for all i and j.
Corollary 2. Let w : {1, . . . , k}n → {0, 1, . . . } be defined by

w(x1, . . . , xn) =
∑

α∈AH

∏
ij∈V(α)

1{xi = xj}.

and λ = |AH |
∑k

i=1 q
|H|
i . Then

|
∑

x1,...,xn∈{1,...,k}

1{w(x1, . . . , xn) ∈ A}
n∏

i=1

qxi − Poλ(A)|

≤ 1 ∧ (1− e−λ)

∑|H|−1
r=1 mr + 1

AH
λ +

|H|−1∑
r=1

mr

∑k
i=1 q

2|H|−r
i∑k

i=1 q
|H|
i

 ,

(2.4)
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3 Poisson Approximation

In this section we use Corollary 2 to show that, under a suitable neg-
ligibility assumption, the asymptotic distribution of (Wn) is a mixture of
Poisson laws.

Let µ be a probability distribution on the Borel sigma-algebra on [0,+∞).
A probability measure ν satisfying

ν(A) =
∫

[0,+∞)
Poλ(A)dµ(λ)

is called a mixture of Poisson laws with mixing measure µ. The following
theorem asserts that ν uniquely determines µ.

Theorem 3. Let ν ′ and ν ′′ be mixtures of Poisson laws with mixing
measures µ′ and µ′′, respectively. If ν ′′ = ν ′, then µ′′ = µ′.

The proof is obvious (see e.g., Kallenberg, 1986, Corollary 3.2).

In the following, we will assume that (Qn) satisfies the following negligi-
bility assumption:

(mr,n + 1)

∑kn
i=1 Q

2|H|−r
i,n∑kn

i=1 Q
|H|
i,n

P→ 0 as n →∞, for every r = 1, . . . , |H| − 1,

(3.1)
where P→ means convergence in probability,

mr,n =
1

|AH,n|
∑

α∈AH,n

|Bα,r,n| (3.2)

and
Bα,r,n = {β ∈ AH,n : |β ∩ α| = r}.

Remark 1. A sufficient condition for (3.1) is

(mr,n + 1)1/(|H|−r) max
i

Qi,n
P→ 0 for every r = 1, . . . , |H| − 1, (3.3)

as n →∞.
Remark 2. Assumption (3.1) implies that (Iα,n) are uniformly asymp-

totically negligible, that is maxα P (Iα.n = 1) goes to zero, as n → ∞. In
fact, since

∑kn
i=1 Qi,n = 1,

kn∑
i=1

Q
2|H|−r
i,n ≥

(
kn∑
i=1

Q
|H|
i,n

) 2|H|−r−1
|H|−1

≥

(
kn∑
i=1

Q
|H|
i,n

)2

.
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Moreover, if α is a fixed copy of H in Gn, E(Iα,n) =
∑kn

i=1 Q
|H|
i,n . Hence,

maxα∈AH,n
P (Iα,n = 1) = E(P (Iα,n = 1|Qn))

= E(
∑

i Q
|H|
i,n ) ≤ E

(∑kn
i=1 Q

2|H|−r
i,n∑kn

i=1 Q
|H|
i

)
If (3.1) holds, the last term in the inequality tends to zero, as n →∞. Notice
that the number of colours kn must go to infinity for (3.1) to hold.

On the other hand, the probability distribution of (Wn) might fail to con-
verge to a mixture of Poisson laws, if (3.1) does not hold, even under the hy-
pothesis that (Iα,n) are uniformly asymptotically negligible. See Example1.

Theorem 4. Let (Γn) be a sequence of random graphs with exchangeable
hidden colours on a sequence of graphs (Gn), with |Gn| = n. Let H be a
connected graph with |H| > 1 and let AH,n, mr,n and Qn be defined as above
with |AH,n| → ∞ as n →∞. Suppose that (3.1) holds and let

Λn = |AH,n|
∑

i

Q
|H|
i,n . (3.4)

Then (Wn) converges in distribution if and only if (Λn) converges in dis-
tribution. In this case, the limiting distribution of (Wn) is a mixture of
Poisson laws, the mixing measure being the limiting law of (Λn). Moreover
the representation is unique.

Proof. Let

wn(x1, . . . , xn) =
∑

α∈AH,n

∏
i,j∈α

1{xi = xj}.

Then Wn = wn(X1,n, . . . , Xn,n). Moreover

P (Wn ∈ A|Qn) =
∑

x1,...,xn

1{wn(x1, . . . , xn) ∈ A}
n∏

i=1

Qxi,n P-a.s.

It follows from (2.3) and (2.4) that, for every Borel set A,

|P (Wn ∈ A|Qn)−PoΛn(A)|

≤ 1 ∧
((∑|H|−1

r=1 mr,n + 1
)∑kn

i=1 Q
|H|
i,n +

∑|H|−1
r=1 mr,n

∑kn
i=1 Q

2|H|−r
i,n∑kn

i=1 Q
|H|
i,n

)
≤ 1 ∧

(∑|H|−1
r=1 (mr,n + 1)

∑kn
i=1 Q

|H|
i,n +

∑|H|−1
r=1 mr,n

∑kn
i=1 Q

2|H|−r
i,n∑kn

i=1 Q
|H|
i,n

)
P-a.s.

(3.5)
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By (3.1) and Remark 2, we see that the random vector(
(m1,n+1)

kn∑
i=1

Q
|H|
i,n , . . . , (m|H|−1,n+1)

kn∑
i=1

Q
|H|
i,n ,

m1,n

∑kn
i=1Q

2|H|−1
i,n∑kn

i=1Q
|H|
i,n

, . . . ,m|H|−1,n

∑kn
i=1Q

|H|+1
i,n∑kn

i=1Q
|H|
i,n

)
converges in distribution to the zero vector, as n →∞. Since

1 ∧

|H|−1∑
r=1

(mr,n + 1)
kn∑
i=1

Q
|H|
i,n +

|H|−1∑
r=1

mr,n

∑kn
i=1 Q

2|H|−r
i,n∑kn

i=1 Q
|H|
i,n


is a bounded, continuous function of it,

|P (Wn ∈ A)− E(PoΛn(A))| ≤ E|P (Wn ∈ A|Qn)− PoΛn(A)| → 0 (3.6)

as n →∞.

If Λn converges in distribution to a random variable Λ, then

|E(PoΛn(A))− E(PoΛ(A))| → 0

and, therefore the probability distribution of Wn converges, as n → ∞, to
E(PoΛ).

Conversely, suppose that

Wn
d→ W,

as n → ∞. For every n, let µn denote the probability distribution of Λn.
Let us prove that (µn) is tight. By Chebyshev’s inequality, for every λ > 0,

Poλ[0, λ/2) ≤ 4
λ

.

Suppose that (µn) is not tight and let a < 1 be such that, for every R > 4,
there exists an increasing sequence of integers (nm), depending on R, such
that, for every m, pnm = P (Λnm ≤ 2R) < a. Then

PoΛnm
[0, R] ≤ PoΛnm

[0, R]1{Λnm < 2R}+ PoΛnm
[0, R]1{Λnm ≥ 2R}

≤ 1{Λnm < 2R}+ PoΛnm
[0,Λnm/2]1{Λnm ≥ 2R}

≤ 1{Λnm < 2R}+ 4/Λnm1{Λnm ≥ 2R})
≤ 1{Λnm < 2R}+ 2/R1{Λnm ≥ 2R}
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Since R > 4,

E(PoΛnm
[0, R]) ≤ pnm + 2/R(1− pnm) ≤ (a + 1)/2.

From (3.6),
P (Wnm ≤ R)− E(PoΛnm

[0, R]) → 0,

as m →∞. Let m0 be such that, for every m ≥ m0,

|P (Wnm ≤ R)− E(PoΛnm
[0, R])| ≤ 1/4− a/4.

Then, for every m ≥ m0,

P (Wnm ≤ R) ≤ (3 + a)/4 < 1.

Concluding, if µn is not tight, there exists b < 1 such that, for every R > 4,
P (Wn ≤ R) ≤ b for some n. Hence Wn fails to converge in distribution,
which contradicts the hypothesis.

We have thus proved that (µn) is tight. Recall (Billingsley, 1995, The-
orem 25.10) that this implies every subsequence has a subsequence which
converges to a probability measure, and the corollary that, if (µn) is tight,
with each subsequence that converges weakly at all converging weakly to the
probability measure µ, then (µn) converges in distribution to µ. Let (µn′)
and µn′′ be subsequences converging to µ′ and µ′′, respectively. Then, by
the first part of the proof, the limiting distributions of Wn′ and Wn′′ are∫

Poλµ′(dλ) and
∫

Poλµ′′(dλ), respectively. Since Wn converges in distribu-
tion, ∫

Poλµ′(dλ) =
∫

Poλµ′′(dλ).

It follows from Theorem 1 that µ′ = µ′′. 2

Assumption (3.1) of Theorem 4 can not be suppressed, as proved in
Example 1.

Example 1. For every n, let Kn be the complete graph with n vertices
and kn = n3. For every n, let Γn be a random graph on Gn with independent
and identically distributed colours X1,n, . . . , Xn,n, taking values 1, . . . , n3

with probabilities, 1/n, 1/(n3+n2+n), 1/(n3+n2+n), . . . , 1/(n3+n2+n), re-
spectively. Let H be an edge. Then |AH,n| =

(
n
2

)
and Λn =

(
n
2

)∑n3

j=1 Q2
j,n →

1, as n →∞. On the other hand, (3.1) does not hold in this case, since

(m1,n + 1)

∑n3

i=1 Q3
i,n∑n3

i=1 Q2
i,n

= (2n− 3)
n−3 + (n3 − 1)(n3 + n2 + n)−3

n−2 + (n3 − 1)(n3 + n2 + n)−2
6→ 0,
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as n → ∞. We show the limiting distribution, if it exists, is not a mixture
of Poisson laws by showing that, as n →∞,

P (Wn = 1) → e−1/2, P (Wn = 2) → 0. (3.7)

To prove (3.7), let Cn be the number of vertices with colour 1 in Γn. Then
Cn ∼ Bin(n, 1/n) so asymptotically Cn ∼ Po1. Now, for w ≤ 2

P (Wn = w) =
2∑

c=0

P (Wn = w|Cn = c)P (Cn = c)

Let W
(c)
n be the number of edges in a random graph with independent

colours, on a complete graph with n − c vertices, with all n3 − 1 colours
being equally likely. It is easy to check directly (or by Theorem 3) that W

(c)
n

has a limiting Po0 distribution so

P (Wn = w|Cn = c) = P (W (c)
n = w) → 0 for w = 1, 2, c = 0, 1

P (Wn = 1|Cn = 2) = P (W (c)
n = 0) → 1

P (Wn = 2|Cn = 2) = P (W (c)
n = 1) → 0,

as n →∞.
Example 2. Let Gn be the complete graph with n vertices and let Γn be

a random graph with exchangeable hidden colours taking values 1, . . . , n2.
Let (an) be a sequence of real numbers such that∑n2

i=1
ai
n2 → λ1 > 0∑n2

i=1
a2

i
n2 → λ2 > 0

 as n →∞. (3.8)

Suppose that the random vector (Q1,n, . . . , Qn2,n) has Dirichlet distribution
with parameters (a1, . . . , an2) (see e.g. Wilks, 1962). We prove that the
distribution of number of edges in Γn, Wn, converges to the Po(λ1+λ2)/2λ2

1
.

This will follow from Theorem 4, if we can prove that

(m1,n + 1)

∑n2

i=1 Q3
i,n∑n2

i=1 Q2
i,n

P→ 0 (3.9)

and

|AH,n|
n2∑
i=1

Q2
i,n

P→ λ1 + λ2

2λ2
1

(3.10)
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as n →∞. (3.9) and (3.10) will follow from the fact that there is a sequence
(Yi,n)i=1,...,n2,n=1,2,... of i.i.d. random variables with Gamma distribution
such that Qi,n = Yi,n/

∑n2

i=1 Yi,n (see Wilks, 1962, Theorem 7.7.1). Hence

(m1,n + 1)

∑n2

i=1 Q3
i,n∑n2

i=1 Q2
i,n

=
2(n− 2) + 1

n2
·

∑n2

i=1 Y 3
i,n

n2∑n2

i=1 Yi,n

n2 ·
∑n2

i=1 Y 2
i,n

n2

and

|AH,n|
n2∑
i=1

Q2
i,n =

n− 1
2n

·

∑n2

i=1 Y 2
i,n

n2(∑n2

i=1 Yi,n

n2

)2 .

Since

E

(∑n2

i=1 Y 2
i,n

n2

)
=
∑n2

i=1 ai(ai + 1)
n2

→ λ1 + λ2

and

V

(∑n2

i=1 Y 2
i,n

n2

)
=
∑n2

i=1 ai(ai + 1)(4ai + 6)
n4

→ 0,

as n → ∞, then
∑n2

i=1 Y 2
i,n

n2 converges in probability to λ1 + λ2, as n → ∞.
Moreover

E

(∑n2

i=1 Yi,n

n2

)
=
∑n2

i=1 ai

n2
→ λ1

and

V

(∑n2

i=1 Yi,n

n2

)
=
∑n2

i=1 ai

n4
→ 0,

as n → ∞. Hence (
∑n2

i=1 Yi,n

n2 )2 P→ λ2
1, as n → ∞. Since

∑n2

i=1 Y 3
i,n

n2 is unlikely
to exceed the mean of Y 3

i,n by much, (3.9) follows as the 2(n − 2)/n2 term
pulls the expression to zero.

In the above example, the random parameter of the limiting Poisson law
has a degenerate probability distribution. Hence the mixture distribution
reduces to a Poisson law. The following example shows a situation in which
the limiting law of Wn is a proper mixture of Poisson laws.
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Example 3. Let s be a fixed positive integer and let Kn be the complete
graph with n vertices. Consider a sequence of random graphs (Γn) on Kn

with colours {1, . . . , scn}, where cn = bn2/sc. Let (Z1, . . . , Zs) be a random
vector with Zi ≥ 0 for every i and

∑s
i=1 Zi = 1 and let

Qi,n = Zj/cn for every i = (j − 1)cn + 1, . . . , jcn (j = 1, . . . , s).

Let Wn be the number of edges in Γn. Then |H| = 2, |AH,n| =
(
n
2

)
and

m1,n = 2(n− 2). Moreover (3.1) holds. In fact

(m1,n + 1)

∑scn
i=1 Q3

i,n∑scn
i=1 Q2

i,n

= (2(n− 2) + 1)
cn
∑s

j=1 Z3
j /c3

n

cn
∑s

j=1 Z2
j /c2

n

P→ 0

as n →∞. Since

Λn =
(

n

2

) scn∑
i=1

Q2
i,n =

(
n

2

) s∑
j=1

cn

Z2
j

c2
n

converges in distribution to Λ = s
∑s

j=1 Z2
j /2, as n → ∞, the limiting

distribution of the number of edges in Γn converges to a mixture of Poisson
laws, the mixing measure being the probability distribution of Λ.

4 A Bayesian Version of the Birthday Problem

As a variant of the birthday problem, consider a group of n people with
various social ties, and let W be the number of pairs who are acquainted and
share the same birthday. As suggested in Barbour et al. (1992), this problem
can be tackled by random graphs with hidden colours. In a graph G with N
edges, let vertices represent people and edges represent social ties. Consider
the random graph obtained by colouring vertices with people’s birthdays
and then deleting edges with different colours at the endpoints. The number
of remaining edges represents the number W of pairs of people who are
acquainted and have the same birthdays. If the birthday distribution is
uniform on k days, k and N are both large but

√
N/k is small, then W has

distribution approximately Poisson (N
k ) (see Barbour et al., 1992, pp. 104-

107). Hence P (no matches) .= e−λ, where λ = N/k. If k = 365, the chance
of a match is approximately 0.5 for N = 253. In the case of a complete
graph, 253 edges correspond to 23 vertices, which is the classical answer to
the birthday problem, i.e. 23 persons are required to obtain a probability 0.5
of a match. Diaconis and Holmes (2002) point out that, due to seasonal and
other effects, the probability Qi of a person being born on day i may differ
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from 1/k. Therefore, in a Bayesian approach, one should treat the Qi’s as
unknown and specify a prior distribution for the random vector (Q1, . . . , Qk).

Diaconis and Holmes (2002) give an explicit formula for the probability of
a match under a symmetric Dirichlet prior with parameters (c, . . . , c), when
the graph G is complete. If c is small, then the prior distribution assigns
high probability far from (1/k, . . . , 1/k), and this makes a match more likely.
For example, under a uniform prior, (c = 1), only 17 individuals are needed
for a 50-50 chance of a match.

Suppose now that G has N edges but is otherwise arbitrary. If the
assumptions of Theorem 4 hold, then the number of matches has an approx-
imate Poisson distribution with random parameter

Λ = N
∑

i

Q2
i =

N

k
+ N

∑
i

(
Qi −

1
k

)2

(4.1)

It is easily seen from (4.1) that Λ has both a deterministic component
λ = N/k, corresponding to the basic assumption of the classical birthday
problem, and a random component. It follows that we can write

Λ = λ(1 + V )

where V = k
∑

i(Qi− 1/k)2 is a non-negative random variable whose distri-
bution depends only on the prior and

Pr(no matches) = E(e−Λ) = e−λE(e−λV ).

For example if V has a Gamma (a, b, 0) distribution (see e.g. Johnson and
Kots, 1970)

Pr(no matches) = e−λ(1 + λb)−a.

In what follows, we construct a prior distribution which satisfies the hy-
potheses of Theorem 4, and such that V follows, approximately, a Gamma
(a, b, 0) distribution. Let

Qi =
Yi∑n

j=1 Yj
(i = 1, . . . , k)

with Y1, . . . , Yk i.i.d. Generalized Gamma(a/k, 2, 1/k,
√

b/k) (see e.g. John-
son and Kots, 1970), let N and k diverge in such a way that N/k → λ and
let (m1 + 1)/

√
N → 0 as N → ∞ (see (2) for the definition of m1). Then,

for k →∞,
k
∑

i

Q2
i

d→ 1 + V (4.2)
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with V ∼ Gamma(a, b, 0) and

(m1 + 1)
∑

i Q
3
i∑

i Q
2
i

P→ 0. (4.3)

In fact,

k
∑

i

Q2
i = k

∑
i Y

2
i

(
∑

i Yi)2
.

Moreover,
∑

i Yi
P→ 1 as k →∞, k

∑
i(Yi − 1/k)2 ∼ Gamma(a, b, 0) and

k
∑

i

Y 2
i = k

∑
i

(
Yi −

1
k

)2

+ 2
∑

i

Yi − 1,

proving (4.2). Now, (4.3) holds since

(m1 + 1)
∑

i

Q3
i = (m1 + 1)

k
∑

i Y
3
i

(
∑

i Yi)(k
∑

i Y
2
i )

and E(k
∑

i Y
3
i ) = o(1/(m1 + 1)), as k →∞.

The following table shows how varying a and b affects the N needed to
obtain probability 0.5 of a match.

b = 0.2 0.04 0.008 0.0016 0.00032

a = 1 213 243 251 253 253
2 183 234 249 252 253
5 129 211 243 251 253
10 86 181 234 249 252

Notice that the answer to the classical birthday problem is recovered for
b → 0.
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de Saint-Flour XIII - Lecture Notes in Mathematics 1117. Springer-Verlag, Berlin.



Random graphs with exchangeable colours 197

Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximations. Oxford
University Press, Oxford.

Biggins, J.D. (2003). Large deviations for mixtures. Tech. Rep. University of Sheffield,
U.K.

Biggins, J.D. and Penman, D.B. (2003). Large deviations in randomly colored random
graphs. Preprint, University of Sheffield, U.K.

Billingsley, P. (1995). Probability and Measure. Wiley, New York.

Bollobás, B. (1985). Random Graphs. Academic Press, New York.

Cannings, C. and Penman, D.B. (2003). Models of random graphs and their applica-
tions. In Handbook of Statistics 21. Stochastic Processes: Modelling and Simula-
tion. D.N. Shanbhag and C.R. Rao, eds. Elsevier, 51–91.

Chen, L.H.Y. (1975). Poisson approximations for dependent trials. Ann. Probab., 3,
534–545.

Diaconis, P. and Holmes, S. (2002) A Bayesian peek into Feller Volume I. Sankhyā
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