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Abstract

Let X be a chain with discrete state space I , and V be the matrix of entries Vi;n, where Vi;n
denotes the position of the process immediately after the nth visit to i. We prove that the law
of X is a mixture of laws of Markov chains if and only if the distribution of V is invariant
under 7nite permutations within rows (i.e., the Vi;n’s are partially exchangeable in the sense
of de Finetti). We also prove that an analogous statement holds true for mixtures of laws of
Markov chains with a general state space and atomic kernels. Going back to the discrete case,
we analyze the relationships between partial exchangeability of V and Markov exchangeability
in the sense of Diaconis and Freedman. The main statement is that the former is stronger than
the latter, but the two are equivalent under the assumption of recurrence. Combination of this
equivalence with the aforesaid representation theorem gives the Diaconis and Freedman basic
result for mixtures of Markov chains. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of characterizing mixtures of distributions of Markov chains has been
studied in depth by Freedman (1962a, b, 1996), Diaconis and Freedman (1980a, b)
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and, in the case of 7nite sequences, by Zaman (1984, 1986). For processes on a
countable state space I , one of the major results attained is that the distribution of a
recurrent chain is a mixture of distributions of Markov chains if and only if the same
distribution satis7es a Markov invariance condition, i.e. is invariant with respect to all
permutations which do not alter the number of transitions from i to j, whatever i and
j in I may be. Kallenberg (1982) considers processes on more general state spaces
and obtains characterizations for mixtures of distributions of Markov chains in terms
of a condition of invariance under stopping times shifts.
The history of characterizations of mixtures of distributions of Markov chains dates

back to de Finetti (1959), who formulated the following conjecture (see also Chap-
ter V in de Finetti, 1937). Given any I -valued process, starting from a distinguished
state, assume that all states are to be visited in7nitely often. Let Vi;n be the posi-
tion of the process immediately after the nth visit to i. This random matrix is said
to be partially exchangeable if, and only if, its distribution is invariant under 7nite
permutations within rows (see de Finetti, 1938). De Finetti hinted at the possibility
of proving that partial exchangeability of the V -matrix is necessary and suIcient for
a recurrent process to be represented in law as a mixture of laws of Markov chains.
The subsequent characterizations—mentioned above—depart from the original formu-
lation of de Finetti’s conjecture, since they skip the relationship between mixture of
distributions of Markov chains and partial exchangeability of V . In order to avoid
terminological ambiguities, it is worth recalling that Diaconis and Freedman (1980a)
use the term partial exchangeability to designate their Markov invariance condition.
More recently, the matrix V has been considered in Zabell (1995). This author does
focus on a few properties of the Vi;n’s by resorting to the main result of Diaconis
and Freedman, but he does not actually linger on the possible connection mentioned
by de Finetti. For these reasons, we have thought it 7t to take up again the char-
acterization of mixtures of distributions of Markov chains according to de Finetti’s
original remarks. Thus, we have been induced to analyze the relationships between
partial exchangeability of V and Markov invariance in the sense of Diaconis and Freed-
man, on the one hand, and, on the other hand, to extend the analysis to general state
spaces.
The organization of the paper is as follows. Section 2 deals with the case of a

discrete state space. We 7rst provide a proof of de Finetti’s conjecture, and then
analyze the relationship between Freedman condition and partial exchangeability of
the V -matrix. The results contained in this section can also be used to reobtain the
main result in Diaconis and Freedman (1980a). In Section 3 we extend the results
of Section 2 to any state space, obtaining a complete characterization for mixtures of
laws of Markov chains having atomic kernels, i.e. kernels with countable range (in
some space of probability measures) (cf., e.g., Nummelin, 1984, Section 4.2). Sec-
tion 3 includes also some hints at the possibility of approximating any mixture of
laws of Markov chains with atomic kernels. Section 4 concludes the paper with a few
comments focusing on some interpretative statistical issues suggested by the previous
results.
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2. Mixtures of laws of Markov chains with discrete state space

2.1. Main result

Let (�;F; P) be a probability space, I be a countable set endowed with its power
set 
-algebra I, and let X = (Xn)n¿0 be a discrete time I -valued stochastic process
de7ned on �. To such a process one can associate its V -matrix V = (Vi;n)i∈I;n¿1,
where Vi;n is the value of the process (successor state) immediately after the nth
visit to state i. In order to avoid having rows of 7nite length, we introduce a new
symbol @ �∈ I and, if a state i is visited only a 7nite number of times m, we put
Vi;n = @ for n¿m. All the Xn, on the other hand, are I -valued. The main theorem
of the present section is that the law of X is a mixture of distributions of recurrent
Markov chains if and only if the V -matrix is partially exchangeable. It turns out that
to obtain uniqueness of the mixing measure one has to enlarge the state space I to
I∗= I ∪{@} and consider mixtures of laws of Markov chains on state space I∗. In any
case, it is assumed that P(X ∈ I∞) = 1. Let P∗ be the subset of transition matrices
on I∗ for which @ is an absorbing state, equipped with the Borel 
-algebra which
corresponds to the topology of elementwise convergence, and let us write p(i; j) for
the (i; j) element of the generic p in P∗. In order to avoid conditioning on the initial
state of the process, we assume that X starts in a speci7c state i0. In the common
treatments of Markov chains on a countable state space, it is customary to drop those
states which are not accessible from the initial state. In the present setting, this is
no longer feasible, since the diLerent transition matrices in the mixture may have
diLerent sets of accessible states. Yet, as far as the distribution of a Markov chain
or a mixture of Markov chains is concerned, the transition probabilities from any
inaccessible state are totally irrelevant (see also Example 2). Therefore, in order to
achieve uniqueness of the mixing measure, one needs to enforce some restrictions on
its support. Consider a measurable set K of P∗ such that for every p∈K there is a
set Ap ⊂ I∗ satisfying

KD(1): i0 ∈Ap; @ �∈ Ap;

KD(2): p(i; j) = 0 if i∈Ap and j �∈ Ap;

KD(3): p(i; @) = 1 if i �∈ Ap:
Within the setting of Theorem 1 below, Ap can be viewed as the set of the states

that are accessible to a Markov chain starting at i0 and whose evolution is regulated
by the transition matrix p.

Theorem 1. The V -matrix of X is partially exchangeable if and only if there is a
random element p̃ of P∗ such that
(a) P(X1 = i1; : : : ; Xn = in | p̃ ) = p̃ (i0; i1) · · · p̃ (in−1; in) a.s.-P;
(b) P(Xn = i0 i:o: | p̃ ) = 1 a.s.-P;
(c) P(p̃∈K) = 1 for a measurable set K satisfying KD(1)–KD(3).
Moreover; p̃ is unique in distribution.
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Roughly speaking, the theorem says that X is a recurrent Markov chain, conditionally
on its random transition matrix, if and only if its V -matrix is partially exchangeable.
The proof of Theorem 1 can be deduced from Theorem 7 in Diaconis and Freedman
(1980a), applying the results of the next section, which state the equivalence between
partial exchangeability of V and the assumptions made by Diaconis and Freedman.
However, we think that a more elementary and direct proof, as the one given be-
low, may be of some interest. Given any (i; i1; : : : ; in) and (i′; i′1; : : : ; i

′
n) in I

n+1, write
(i; i1; : : : ; in) ∼ (i′; i′1; : : : ; i

′
n) if i = i

′ and the two vectors contain the same number of
transitions from j to k for any j and k in I . Lemma 1 given below will be used in
the proof of Theorem 1. Its meaning is clari7ed by the following example.

Example 1. Let I = {0; 1} and (j0; : : : ; j10) = (0; 0; 1; 0; 1; 0; 0; 1; 1; 0; 1). Consider the
set of all sequences (i0; i1; : : :)∈ I∞ such that (i0; : : : ; i10) = (j0; : : : ; j10); and observe
that a matrix V is consistent with this set if and only if V0;1 = 0; V0;2 = V0;3 =
1; V0;4 = 0; V0;5 = V0;6 = 1; V1;1 = V1;2 = 0; V1;3 = 1; V1;4 = 0. Interchange V0;4 and
V0;6 and describe the set of all sequences (0; i1; : : :)∈ I∞ which are consistent with the
new matrix. This set consists of all sequences (0; 0; 1; 0; 1; 0; 1; 1; 0; 1; i10; i11; : : :) and the
longest string (j′0; : : : ; j

′
9) determined in a unique manner by the new matrix belongs to

I 10: (j′0; : : : ; j
′
9) � (j0; : : : ; j10). On the other hand; all permutations of any row; which

leave V0;6 and V1;4 unchanged; behave otherwise. For instance; the set of all sequences
(0; i1; : : :) which are consistent with a matrix V ′ such that V ′

0;1=1; V
′
0;2=V

′
0;3=0; V

′
0;4=

V ′
0;5 =V

′
0;6 = 1; V

′
1;1 = 0; V

′
1;2 = 1; V

′
1;3 =V

′
1;4 = 0 is the set of all sequences satisfying

(0; i1; : : : ; i10) = (0; 1; 0; 0; 0; 1; 1; 0; 1; 0; 1); and this vector is apparently equivalent to
(j0; : : : ; j10).

Lemma 1. Let j1; : : : ; jk be the distinct elements of (i0; : : : ; im−1)∈ Im; with m¿ 2.
(a) There are unique nr and vjr ;1; : : : ; vjr ;nr in I (r = 1; : : : ; k) such that

{X0 = i0; : : : ; Xm = im}= {X0 = i0} ∩
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;u}:

(b) For each permutation 
r of (1; : : : ; nr) with 
r(nr) = nr (r = 1; : : : ; k); there is a
unique vector (i′1; : : : ; i

′
m) for which

{X0 = i0} ∩
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;
r(u)}= {X0 = i0; X1 = i′1; : : : ; Xm = i′m}

and (i0; i1; : : : ; im) ∼ (i0; i′1; : : : ; i
′
m).

Proof. It suIces to prove (b); since (a) is obvious. No generality is lost by assuming
that im=b; where b could be diLerent from each jr . De7ne �=(i0; i′1; : : : ; i

′
t+1) to be the

longest string determined by the array {(vjr ;
r(1); : : : ; vjr ;
r(nr)): r=1; : : : ; k}. See Example 1.
First we prove that i′t+1=b. In fact, if i

′
t+1=ju �=b, we would have �=(i0; : : : ; ju; vju;
u(1);

: : : ; vju;
u(nu); : : : ; ju) with vju;
u(nu) = vju;nu �= ju since im = b �= ju. Thus, � would contain
(nu+1) terms ju, a Pagrant contradiction when im= b �= ju. Then i′t+1 = b, and vectors
�; (i0; : : : ; im) have the same number of b’s.
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Now we have to extend the last assertion to all jr �= b. To this aim de7ne A to be the
set of all jr �= b satisfying

∑t
�=0 I{jr}(i

′
�)=nr with i

′
0= i0. Thus, if some jr �= b does not

belong to A, there is q in {0; : : : ; m− 1} such that q=max{u: 06 u6m− 1; iu �∈ A},
which entails iq+1=viq;niq ∈A. Since there is u such that iq=ju �∈ A, then iq+1=vjn;nu �∈ A,
a contradiction. Therefore, jr ∈A for any jr �= b, too. Thus, t+1=m and (i0; i′1; : : : ; i′m) ∼
(i0; i1; : : : ; im).

Proof of Theorem 1. Let us prove the “if” part of the theorem 7rst. Consider the events

E =
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;u};

E′ =
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;
r(u)};

with k ∈N; j1; : : : ; jk ∈ I; n1; : : : ; nk ∈N; vjr ;u in I∗; 
r a permutation of (1; : : : ; nr); (r=
1; : : : ; k). Since (a) and (b) imply that no state can be visited by X a 7nite number of
times only; for every i∈ I⋃

n¿1

{Vi;n = @}=
⋂
n¿1

{Vi;n = @} a:s:-P

and we can limit ourselves to consider vjr ;u in I for all r and u. Moreover; there is
no loss of generality in assuming that 
r(nr) = nr (r =1; : : : ; k). In this case there is a
countable set of pairwise disjoint events E‘ of the type {X0= i0; X1= i1; ‘; : : : ; X�‘= i�‘;‘}
such that E=

⋃
E‘ and; by (a) of Lemma 1; each E‘ admits an expression G‘ in terms

of elements of the V -matrix. Let 
(G‘) be the result of the application to G‘ of the
permutations 
r which map E into E′. Then E′ =

⋃

(G‘); with 
(G‘)∩ 
(Gm) = ∅ if

‘ �=m. From (b) of Lemma 1; each 
(G‘) admits a unique representation of the type
E′‘ = {X0 = i0; X1 = i′1; ‘; : : : ; X�‘ = i′�‘;‘} with (i0; i1; ‘; : : : ; i�‘;‘) ∼ (i0; i′1; ‘; : : : ; i

′
�‘;‘). Thus

P(E) =
∑
‘

P(E‘)

=
∑
‘

P(E′‘)

=
∑
‘

P(
(G‘)) = P(E′):

To prove the “only if” part; let �i be the degenerate probability measure de7ned by
�i({i}) = 1; i∈ I∗. By de Finetti’s representation theorem for partially exchangeable
random variables we have that; for every i∈ I ;

lim
n→∞

1
n

n∑
r=1

�Vi; r = �i a:s:-P;



152 S. Fortini et al. / Stochastic Processes and their Applications 100 (2002) 147–165

where the limit appearing in the left-hand side is in the topology of weak convergence.
Moreover; conditionally on �= (�i)i∈I ; the random variables Vi;u are independent with

P

(
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;u}
∣∣∣∣∣ �
)
=

k∏
r=1

nr∏
u=1

�jr (vjr ;u);

for every k ∈N; j1; : : : ; jk ∈ I; n1; : : : ; nk ∈N; and vjr ;u in I∗. De7ne p̃ by setting p̃ (i; ·)
= �i for every i in I . Then; a.s.-P;

P(X1 = i1; : : : ; Xn = in | p̃ )

=P

(
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;u}
∣∣∣∣∣ p̃
)

=
k∏
r=1

nr∏
u=1

p̃ (jr ; vjr ;u)

= p̃ (i0; i1) · · · p̃ (in−1; in);
where j1; : : : ; jk are the distinct elements of (i0; : : : ; in). To prove (b); it is enough to
show that if V is partially exchangeable; then i0 is a recurrent state. We have the
inclusions {Xn = i0 i:o:}c ⊂ {�i0 = �@} ⊂ {�i0 (@)¿ 0}.
Therefore,

P(X1 ∈ I) = E(P(X1 ∈ I | �i0 ))
= E(�i0 (I))

= 1− E(�i0 (@))¡ 1

unless E(�i0 (@)) = 0. Hence, �i0 (@) = 0 almost surely. In order to prove (c), de7ne K
to be the intersection of the three sets{

p :
∑
n

pn(i0; i0) =∞
}
;

⋂
i∈I; j∈I∗

{
p : if

∑
n

pn(i0; i) =∞ and
∑
n

pn(i0; j)¡∞; then p(i; j) = 0
}
;

⋂
j∈I

{
p : if

∑
n

pn(i0; j)¡∞; then p(j; @) = 1
}
;

where pn is the n-step transition. The set K is measurable and, with Ap = {i∈ I :∑
n p
n(i0; i) =∞}, it satis7es KD(1)–KD(3). From the de7nition of p̃ and part (b),

one can easily see that p̃ belongs to K almost surely.

Since in Theorem 1 the distribution of X is determined by the values of p̃ (i; j) for
i; j∈ I only, one may wonder if it would be possible to obtain an analogous result
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considering a random transition matrix from I to I (instead of I∗). The example below
shows that uniqueness is not guaranteed in that case.

Example 2. Let I = {1; 2}; P(X0 = 1) = 1 and let q̃ be a random transition matrix on
I∗; whose distribution is de7ned by

P({q̃ (1; 1)∈ dx; q̃ (2; 1)∈ dy}) = #�1(dx)�1(dy) + (1− #)�2(dx dy);
where #∈ (0; 1) and the support of �2 is included in [a; b]× [0; 1] with 0¡a¡b¡ 1.
Suppose that

P(X1 = i1; : : : ; Xn = in | q̃ ) = q̃ (1; i1)q̃ (i1; i2) · · · q̃ (in−1; in) a:s:-P

for every n and i1; : : : ; in in I . One can de7ne another random transition matrix q̃1 as
follows:

q̃1(i; j) =

{
Z if i = 2; j = 1 and q̃ (1; 1) = 1;

q̃ (i; j) otherwise;

where Z is any random variable de7ned on (�;F; P) with range included in [0; 1].
The distribution of q̃1 is

P({q̃ (1; 1)∈ dx; q̃1(2; 1)∈ dy}) = #�1(dx)�Z1 (dy) + (1− #)�2(dx dy);
where �Z1 is the distribution of Z . Consider two Borel sets B1 and B2 of R and the
events A1 = {q̃1(1; 1)∈B1} and A2 = {q̃1(2; 1)∈B2}. Denoting with nij the number of
transitions from i to j in the string (1; i1; : : : ; in); one has∫

A1∩A2
q̃1(1; i1)q̃1(i1; i2) · · · q̃1(in−1; in) dP

=
∫
A1∩A2∩{q̃ (1;1)=1}

∏
i; j

(q̃1(i; j))
nij dP +

∫
A1∩A2∩{q̃ (1;1) 
=1}

∏
i; j

(q̃1(i; j))
nij dP

=P(A1 ∩ A2 ∩ {q̃ (1; 1) = 1})I{0}(n12)

+
∫
{q̃ (1;1)∈B1}∩{q̃ (2;1)∈B2}∩{q̃ (1;1) 
=1}

∏
i; j

(q̃ (i; j))nij dP

=P({X1 = i1; : : : ; Xn = in} ∩ A1 ∩ A2 ∩ {q̃ (1; 1) = 1})I{0}(n12)

+P({X1 = i1; : : : ; Xn = in} ∩ A1 ∩ A2 ∩ {q̃ (1; 1) �=1})

=P({X1 = i1; : : : ; Xn = in} ∩ A1 ∩ A2):
This proves that

P(X1 = i1; : : : ; Xn = in | q̃1) = q̃1 (1; i1)q̃1 (i1; i2) · · · q̃1(in−1; in) a:s:-P:

Note that almost surely P(Xn=i0 i:o: | q̃ )=P(Xn=i0 i:o: | q̃1)=1. Hence the representation
of X as a recurrent Markov chain conditionally on its transition matrix is not unique.
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The unique random transition matrix p̃ on I∗ of Theorem 1 is in this case

q̃ (1; 1) q̃ (1; 2) 0

q̃ (2; 1) q̃ (2; 2) 0

0 0 1




if q̃ (1; 1) �=1; and

1 0 0

0 0 1

0 0 1




if q̃ (1; 1) = 1.

2.2. On the relationship between partial exchangeability and Freedman condition

The I -valued process X , de7ned on (�;F; P), is said to obey Freedman condition if

P(X0 = i0; : : : ; Xn = in) = P(X0 = i′0; : : : ; Xn = i
′
n)

whenever (i0; : : : ; in) ∼ (i′0; : : : ; i
′
n); n = 1; 2; : : : . In the present subsection we give a

detailed account of the relationships between Freedman condition and partial exchange-
ability of the V -matrix of X . The main result is that the latter is a stronger condition
than the former, but the two are equivalent under the assumption of recurrence. Before
proceeding we need another de7nition. For any i∈ I , let 'i={Xn= i i:o:}. We say that
X is strongly recurrent if

P

(
n⋂
u=0

{Xu = iu}
)
= P

(
n⋂
u=0

({Xu = iu} ∩ 'iu)
)

a:s:-P

for every n and i0; : : : ; in in I . Any state is visited by a strongly recurrent process either
in7nitely many times, or never. The term recurrent will denote a process satisfying the
weaker condition P('X0 ) = 1, which under our assumptions can also be written as
P('i0 ) = 1.

Remark 1. If either one of the conditions
(a) V is partially exchangeable;
(b) X is strongly recurrent;
is satis7ed; then for every i∈ I⋃

n¿1

{Vi;n = @}=
⋂
n¿1

{Vi;n = @} a:s:-P:

Theorem 2. The V -matrix of the process X is partially exchangeable if and only if
X is recurrent and satis?es Freedman condition.

The proof of the theorem is set out as a sequence of lemmas: the 7rst two prove
the “only if” part, while the remaining two prove the “if” part.



S. Fortini et al. / Stochastic Processes and their Applications 100 (2002) 147–165 155

Lemma 2. If V is partially exchangeable; then X is strongly recurrent.

Proof. Consider the event {X0 = i0; X1 = i1; : : : ; Xn+1 = in+1}. On this event; almost
surely; the rows of V corresponding to i0; : : : ; in contain no @; hence those states are
visited in7nitely many times. Marginalization over the value of Xn+1 gives the result.

Lemma 3. If V is partially exchangeable; then X satis?es Freedman condition.

Proof. Consider (i0; i1; : : : ; in) ∼ (i0; i′1; : : : ; i
′
n) and let j1; : : : ; jk be the distinct elements

of (i0; i1; : : : ; in−1). Then there exist n1; : : : ; nk ; vjr ;u in I and permutations 
1; : : : ; 
k such
that

{X0 = i0; X1 = i1; : : : ; Xn = in}=
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;u};

{X0 = i0; X1 = i′1; : : : ; Xn = i′n}=
k⋂
r=1

nr⋂
u=1

{Vjr ;u = vjr ;
r(u)}:

Since the probability of the events on the right-hand sides are equal; the claim follows.

Lemma 4. If X is strongly recurrent and satis?es Freedman condition; then V is
partially exchangeable.

Proof. Using Remark 1; the main argument used in the proof of the “if” part of
Theorem 1 carries over to the present setting.

Lemma 5. If X is recurrent and satis?es Freedman condition; then it is strongly
recurrent.

Proof. Since P(X0=i0)=1; the proof of the “if” part of Theorem 1 can be paraphrased
to show that the random elements (Vi0 ;n)n¿1 are exchangeable. Thus; letting A

+ =
{�̃i0 (i1)¿ 0} and using Cantelli lemma; we can write

P(X1 = i1) = P(Vi0 ;1 = i1)

= E(�̃i0 (i1)IA+)

= E(IA+P({Vi0 ;1 = i1} ∩ {Vi0 ;n = i1 i:o:} | �̃i0 ))

= E(P({Vi0 ;1 = i1} ∩ {Vi0 ;n = i1 i:o:} | �̃i0 ))
= P({Vi0 ;1 = i1} ∩ {Vi0 ;n = i1 i:o:});

which implies {X1 = i1} ⊂ {Vi0 ;n = i1 i:o:} ⊂ 'i0 ; a.s.-P. Therefore; the de7nition of
strong recurrence is satis7ed with n=1. Suppose; inductively; that it holds for a 7xed
but arbitrary positive integer �. Consider i1; : : : ; i�+1 such that P(X1=i1; : : : ; X�=i�)¿ 0.
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Let P(�)(·) = P(· ∩ {X1 = i1; : : : ; X� = i�})=P(X1 = i1; : : : ; X� = i�) and X (�)n = X�+n. Then
under P(�) the process X (�) starts at i� at time zero and

P(�)(X (�)n = i� i:o) =
P({Xi = i1; : : : ; X� = i�} ∩ 'i�)
P(Xi = i1; : : : ; X� = i�)

= 1

by the inductive hypothesis. Moreover; if (i�; : : : ; i�+n)∼(i′�; : : : ; i′�+n); then (i0; : : : ; i�; : : : ;
i�+n) ∼ (i0; : : : ; i′�; : : : ; i

′
�+n) and P

(�)(X (�)0 =i�; : : : ; X
(�)
n = i�+n) = P(�)(X

(�)
0 = i′�; : : : ; X

(�)
n =

i′�+n). Hence; under P
(�); X (�) is recurrent and satis7es Freedman condition. From the

7rst part of the proof; one has that {X (�)1 = i�+1} ⊂ {X (�)1 = i�+1} ∩'i�+1 ; a.s.-P(�). This
implies that P(X1 = i1; : : : ; X�+1 = i�+1) = P({X1 = i1; : : : ; X�+1 = i�+1} ∩ 'i�+1).

It is not diIcult to show that without recurrence, partial exchangeability of V is
stronger than Freedman condition. For example, let I={0; 1; 2}; i0=0, and let P satisfy
P(Xn=2)=1 for n¿ 4 and P(X1=1; X2=0; X3=0)=P(X1=0; X2=1; X3=0)= 1

2 . Then
Freedman condition is satis7ed, but the V -matrix of X is not partially exchangeable,
since

1
2 = P(V0;1 = 1; V0;2 = 0; V0;3 = 2) �=P(V0;1 = 1; V0;2 = 2; V0;3 = 0) = 0:

From Theorem 1 and the equivalence result of the present subsection, one can easily
reobtain the following result of Diaconis and Freedman (1980).

Theorem 3 (Diaconis and Freedman). The process X satis?es Freedman condition and
P(X0 = i0 i:o:) = 1 if and only if there is a probability measure ) on the set of all
transition matrices on I such that
(a) )({p : i0 is recurrent w:r:t: p}) = 1;
(b) for every n¿ 1 and i1; : : : ; in in I ;

P(X1 = i1; : : : ; Xn = in) =
∫
p(i0; i1) · · ·p(in−1; in)) (dp):

3. Mixtures of laws of Markov chains with uncountable state space

3.1. Mixtures of laws of Markov chains with atomic kernels

A representation theorem analogous to the one presented in Section 2 can be given
also in the case of a process with continuous state space. We start by reviewing the
de7nitions contained in the beginning of that section, modifying them as needed in
the more general setting. Let S be a Polish space with Borel 
-algebra S. Moreover,
let S∗ = S ∪ {@}, with @ �∈ S, and let S∗ be the 
-algebra generated by S ∪ {@}.
X =(Xn)n¿0 is an S-valued discrete-time stochastic process de7ned on (�;F; P), with
X0 = x0 for some x0 ∈ S. If S is more than countable, the concept of successor state
can be vacuous, since, even in the case of a recurrent process, X may visit almost
surely a sequence of distinct states. Hence in order to exploit de Finetti’s theorem for
exchangeable random variables, we consider a countable partition of the state space
and we de7ne V as the matrix whose rows represent the sequence of the values of
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X following the successive visits to a 7xed element of the partition. More precisely
consider a countable measurable partition of S∗;E={Ei}i¿0, with E0={@}, and assume,
without loss of generality, that x0 ∈E1. For any positive integer j, consider the sequence
(�j;n)n¿1 of visiting times of X to Ej and, for j and n in N, de7ne the (j; n) element
of the V -matrix of the process X , relative to E, to be the value of X immediately after
the nth visit to Ej:

Vj;n = X�j; n+1:

As we did in Section 2, we put Vj;n = @ whenever �j;n =∞. Let T ∗ be the set of all
kernels from N0 =N∪ {0} to S∗, endowed with the smallest 
-algebra that makes all
the maps t �→ t(j; A); j∈N0; A∈S∗, measurable. One can associate to any element
t of T ∗ a transition kernel on S∗ by setting

kt(x; A) =
∑
j¿0

IEj (x)t(j; A):

In order to achieve uniqueness of the mixing measure in Theorem 4, we restrict its
support to the set K ⊂ T ∗ of all the transition kernels t for which there is a set
At ⊂ N0 satisfying

KC(1): 1∈At; 0 �∈ At ;

KC(2): t(k; Ej) = 0 ifk ∈At and j �∈ At ;

KC(3): t(j; {@}) = 1 if j �∈ At:
It is an easy task to verify that K is measurable.

Theorem 4. The V -matrix of X is partially exchangeable if and only if there is a
random element t̃ of T ∗ such that
(a) P(X1 ∈B1; : : : ; Xn ∈Bn | t̃ )

=
∫
B1
· · · ∫Bn kt̃ (x0; dx1)kt̃ (x1; dx2) · · · kt̃ (xn−1; dxn) a.s.-P;

(b) P(Xn ∈E1 i:o: | t̃ ) = 1 a.s.-P;
(c) P(t̃ ∈K) = 1 for a measurable set K satisfying KC(1)–KC(3).
Moreover; t̃ is unique in distribution.

The proof of the theorem is based on three lemmas, essentially dealing with various
properties of the discretized version of the process X de7ned by

Yn =
∑
j¿0

jIEj (Xn); n= 0; 1; : : : :

Note that the results of Section 2 apply to Y , and the sequences of visiting times of
X to Ej and of Y to state j coincide for every j. It is worth recalling that, in gen-
eral, discretization destroys the Markov property. In the present case the (conditional)
Markov property is preserved thanks to the particular de7nition of kt .
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Lemma 6. Let i; j∈N0; B∈S and A∈ 
{X1; : : : ; Xn−1; Yn; Xn+1; : : :}.
If (a) of Theorem 4 holds then, on the set {! : t̃ (i; Ej)¿ 0},

P(A ∩ {Yn−1 = i} ∩ {Yn = j} ∩ {Xn ∈B} | t̃ )

= t̃ (i; B |Ej)P(A ∩ {Yn−1 = i} ∩ {Yn = j} | t̃ )

almost surely, where t̃ (i; B|Ej) = t̃ (i; B ∩ Ej)=t̃ (i; Ej).

Proof. It is enough to consider A = {(X1; : : : ; Xn−1)∈C} ∩ {(Xn+1; : : : ; Xn+k)∈D}.
We have

P((X1; : : : ; Xn−1)∈C; Yn−1 = i; Yn = j; Xn ∈B; (Xn+1; : : : ; Xn+k)∈D | t̃ )

=
∫
C×D
kt̃ (x0; dx1) · · · kt̃ (xn−2; dxn−1)IEi(xn−1)t̃ (i; B ∩ Ej)t̃ (j; dxn+1)

kt̃ (xn+1; dxn+2) · · · kt̃ (xn+k−1; dxn+k)

= t̃ (i; B |Ej)
∫
C×D
kt̃ (x0; dx1) · · · kt̃ (xn−2; dxn−1)IEi(xn−1)t̃ (i; Ej)

t̃ (j; dxn+1)kt̃(xn+1; dxn+2) · · · kt̃(xn+k−1; dxn+k)

= t̃ (i; B |Ej)P(A ∩ {Yn−1 = i} ∩ {Yn = j} | t̃ ):

Lemma 7. Let j; n; k ∈N and B∈S∗. Then; if (a) of Theorem 4 holds;

{Vj;n ∈B} ∩ {�j;n �= k}∈ 
{X1; : : : ; Xk ; Yk+1; Xk+2; : : :}:

Proof. Write the event above as

⋃
l
=k

{Xl+1 ∈B; X‘ ∈Ej;
∑

06m6l

IEj (Xm) = n}:

Lemma 8. Let j; n1; : : : ; nj ∈N; Ai;k ∈S (i=1; : : : ; j; k=1; : : : ; ni); ‘ :N2 → N. If (a)
of Theorem 4 holds then; on the set {! : t̃ (i; E‘(i; k))¿ 0; i = 1; : : : ; j; k = 1; : : : ; ni};

P(V1;1 ∈A1;1 ∩ E‘(1;1); : : : ; Vj;nj ∈Aj;nj ∩ E‘( j;nj) | t̃ )

=P(V1;1 ∈E‘(1;1); : : : ; Vj;nj ∈E‘( j;nj) | t̃ )
j∏
i=1

ni∏
k=1

t̃ (i; Ai;k |E‘(i; k))

almost surely.
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Proof. Using Lemmas 6 and 7; we have that

P(V1;1 ∈A1;1 ∩ E‘(1;1); : : : ; Vj;nj ∈Aj;nj ∩ E‘( j;nj) | t̃ )

=
∞∑
k=1

P(V1;1 ∈A1;1 ∩ E‘(1;1); : : : ; Xk ∈Ej; Xk+1 ∈Aj;nj ∩ E‘( j;nj); �j;nj = k | t̃ )

=t̃ (j; Aj;nj |E‘( j;nj))P(V1;1 ∈A1;1 ∩ E‘(1;1); : : : ; Vj;nj ∈E‘( j;nj) | t̃ ):

The result is obtained by iterating the procedure.

We are now ready to prove Theorem 4.

Proof of Theorem 4. We prove the “only if” part 7rst. By de Finetti’s representation
theorem for partially exchangeable random variables we have that; for every i∈N;

lim
n→∞

1
n

n∑
u=1

�Vi; u = �i a:s:-P:

Moreover; conditionally on �=(�i)i∈N; the random variables Vi;r are independent with

P

(
k⋂
r=1

nr⋂
u=1

{Vir ;u ∈A(ir)u }
∣∣∣∣∣ �
)
=

k∏
r=1

nr∏
u=1

�ir (A
(ir)
u );

for every k; i1; : : : ; ik ; n1; : : : ; nk in N; and A(ir)u in S∗. De7ne t̃ by setting t̃ (i; ·)= �i for
every i in N. To prove (a) assume; without real loss of generality; that Br ⊂ Eir for
some integers i1; : : : ; in. If j1; : : : ; jk are the distinct-elements of (1; i1; : : : ; in); the event
{X1 ∈B1; : : : ; Xn ∈Bn} can be expressed as

⋂
r=1; :::; k

⋂
u=1; :::; nr{Vjr ;u ∈Bm(r;u)} for some

integers n1; : : : ; nk and m :N×N→ N. Therefore;

P(X1 ∈B1; : : : ; Xn ∈Bn | t̃ )

=
k∏
r=1

nr∏
u=1

t̃ (jr ; Bm(r;u))

=
∫
B1
· · ·
∫
Bn
kt̃ (x0; dx1)kt̃ (x1; dx2) · · · kt̃ (xn−1; dxn)

almost surely. This proves (a). Parts (b) and (c) can be obtained from (b) and (c) of
Theorem 1 applied to the discretized process Y .
To prove the “if” part, observe that, given t̃; Y is a recurrent Markov chain with

transition probabilities given by p̃ (i; j) = t̃ (i; Ej); i; j∈N. Theorem 1 can be invoked
to show that the V -matrix of Y is partially exchangeable. This, together with Lemma
8, concludes the proof of the “if” part.
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3.2. Mixtures of laws of Markov chains with atomic kernels. A few additional
results

The results proved in the previous subsection can be extended to a more general
setting, where one considers a stochastic sequence (X; Y ) = ((Xn; Yn))n¿0 de7ned on
(�;F; P), and Xn; Yn take values in S∗ and N0, respectively. Here, (�j;n)n¿1 is meant
as a sequence of visiting times of Y to j, and the (j; n) element of the V -matrix
of (X; Y ) is the value of X immediately after the nth visit of Y to j: Vj;n = X�j; n+1,
with the usual proviso that X∞ = @. For the sake of simplicity, we keep the hy-
pothesis that X0 = x0, and we will focus on probabilities P satisfying the following
conditions:
(i) P(X ∈ S∞) = 1;
(ii) Yn and (X0; Y0; : : : ; Xn−1; Yn−1; V ) are conditionally independent given Xn, for every
n¿ 1, and Y0 and V are conditionally independent given X0;

(iii) there is a kernel s from S∗ to N0 such that P(Yn = y |Xn) = s(Xn; y) holds a.s.-P
for each n¿ 0, with s(x;N) = 1 for every x∈ S and s(@; ·) = �0(·).

Preserve the de7nition of T ∗ given in Section 3.1 and, for each t ∈T ∗ introduce the
following transition kernel on S∗:

k∗t (x; A) =
∑
j∈N0
s(x; j)t(j; A):

To pave the way for an extension of Theorem 4, assume that there is a T ∗-valued
random element t̃ such that

P{Y0 = j0; : : : ; Yn = jn; X1 ∈A1; : : : ; Xn ∈An | t̃ = t}

=s(x0; j0)
n∏
r=1

∫
Ar
s(xr; jr)t(jr−1; dxr)

holds for every t in T ∗; A1; : : : ; An in S∗ and j0; : : : ; jn in N0. It can be shown that there
is a countable class of measurable, pairwise disjoint subsets of S∗: E1; t ; E2; t ; : : : and a
countable class of pairwise disjoint subsets of N0: R1; t ; R2; t ; : : : such that: t(j; Ei; t) =
1 for each j in Ri; t and t(j; @) = 0 for all j∈⋃k¿1 Rk; t ; s(x; Ri; t) = 1 for every
x∈Ei; t .
In view of these remarks and in order to achieve uniqueness once again, for each
j0 ∈N we de7ne K∗

j0 ⊂ T ∗ by saying that any element t of T ∗ belongs to K∗
j0 if

there are a measurable subset Et of S∗ and a subset Rt of N0 satisfying

KG(1): x0 ∈Et; @ �∈ Et; j0 ∈Rt; 0 �∈ Rt ;
KG(2): t(j; Et) = 1 for every j in Rt ;

KG(3): t(j; {@}) = 1 if j �∈ Rt:
By paraphrasing the arguments employed in the previous subsection, we obtain the
following proposition.
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Theorem 5. Let P obey (i). If the V -matrix of (X; Y ) is partially exchangeable and
P satis?es (ii) and (iii); then there is a T ∗-valued random element t̃ such that
(a) P(X1 ∈B1; : : : ; Xn ∈Bn | t̃ )

=
∫
B1
· · · ∫Bn k∗t̃ (x0; dx1)k∗t̃ (x1; dx2) · · · k∗t̃ (xn−1; dxn) a.s.-P;

(b) P(3Y0 = +∞) = 1;
(c) P(t̃ ∈K∗

j0 |Y0 = j0) = 1 for a measurable set K∗
j0 satisfying KG(1)–KG(3); and

for any j0 ∈N.
Moreover; t̃ is unique in distribution.
Conversely, assume that (a) holds for k∗t̃ with s such that s(x;N) = 1 if x∈ S,

and s(@; ·)= �0(·). Then, there is a stochastic sequence (Yn)n¿0 of N0-valued random
elements for which

P(Y0 = j0; : : : ; Yn = jn; X1 ∈B1; : : : ; Xn ∈Bn | t̃ )

= s(x0; j0)
n∏
r=1

∫
Br
s(xr; jr)t̃ (jr−1; dxr):

Moreover, if (b) and (c) are valid for these Yn, then the resulting V -matrix is partially
exchangeable and s satis?es (ii) and (iii).

We omit the proof of this result. It is provided in the unpublished 7rst draft of the
present paper. See Fortini et al. (1999).
Suppose that the assumptions of the second part of Theorem 5 are in force. It is

easy to verify that a possible choice of the N0-valued random sequence (Yn) is the
following. Let Z0; Z1; : : : be a sequence of independent random variables on (�;F; P)
with common uniform distribution on [0; 1]. For every n de7ne

Yn(!) =

{
j if Zn(!)∈ Ij(Xn(!); Xn+1(!); t̃ (!));
0 otherwise

where Ij; j = 1; 2; : : : , are intervals de7ned by

Ij(x; y; t) =

( j−1∑
i=1

s(x; i)fi;x(y);
j∑
i=1

s(x; i)fi;x(y)

]
; j∈{2; 3; : : :};

I1(x; y; t) = [0; s(x; 1)f1; x(y)]

and fi;x is a version of the Radon–Nikodym derivative t(i; dy)=k∗t (x; dy) taking values
in [0; s(x; i)−1] whenever s(x; i) �=0.

3.3. Approximations of arbitrary mixtures of laws of Markov chains. Partial results

Let A ⊂ S∗ denote a countable convergence-determining class (see Section 2 in
Billingsley, 1999) and let 5 denote a sequence of countable partitions of S∗: 6n =
{E0; n; E1; n; : : :}; n¿ 1, with Ej;n ∈A for every j¿ 0 and n¿ 1, such that 6n+1 is
a re7nement of 6n for every n. Choose xj;n ∈Ej;n for every j¿ 0 and n¿ 1. Now,
suppose that M is any mixture of distributions of S∗-valued Markov chains which have
initial state x0, i.e. M (·) =

∫
8 M�(·))(d�), where (8;G; )) is some probability space
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and, for any � in 8; M� is the distribution of a Markov chain with initial state x0 and
transition probability K� such that K�(x; S) = 1 for every x∈ S. In the sequel, we will
assume that x0 ∈E0; n and set x0; n= x0 for every n. Again, given any n¿ 1 and �∈8,
we will de7ne K (n)� (x; ·) = K�(xj;n; ·) whenever x∈Ej;n (j¿ 0; n¿ 1) and indicate by
M (n)
� the Markov distribution on ((S∗)∞; (S∗)∞) with initial state x0 and transition

probability K (n)� .
Theorem 6 proves that, in the presence of some additional conditions for {K� : �∈8};
M can be approximated by M (n):=

∫
8 M

(n)
� )(d�), in the topology of weak convergence.

Theorem 6. If; for )-almost all �;
(a) x → K�(x; A) is continuous for each A∈A;
(b) supj supx∈Ej; n |K�(x; A)− K�(xj;n; A)| → 0 as n→ ∞; for every A∈A;

then M (n) ⇒ M as n→ ∞. Moreover; for every n; let V (n) be the V -matrix of a
process with law M (n). If; in addition to (a) and (b);

(c)
∑
m¿1

∑
j1 ;:::; jm−1

K�(x0; Ej1 ;n) · · ·K�(x0; Ejm−1 ;n) = +∞ for )-almost all �;
then the elements of V (n) are partially exchangeable.

Thus, any mixture of distributions of Markov chains, which satisfy (a)–(c), can be
thought of as the limiting law of a sequence of processes X (n) which yield partially
exchangeable matrices V (n) (with respect to suitable partitions of S∗).
Before proving Theorem 6, we recall a simple fact about condition (c). If (:�)�¿0 is

a Markov chain with initial state x0 and transition probability K
(n)
� , then the sequence

(:′�)�¿0, de7ned by

:′� =
∑
j¿0

xj;nIEj; n(:�)

for any �¿ 0, is a Markov chain with state space {x0; x1; n; x2; n; : : :}, initial state x0
and one-step transition probabilities k(n)� (xi;n; xj;n) = K�(xi;n; Ej;n). Hence, condition (c)
is equivalent to recurrence of (:′�)�¿0.

Proof of Theorem 6. In view of well-known results on weak convergence on product
spaces; it suIces to prove that M (n)

� (A1×· · ·×Ar×(S∗)∞)→ M�(A1×· · ·×Ar×(S∗)∞)
as n → ∞; for every A1; A2; : : : in A; for every r and for )-almost all � (recall that
A is countable). In fact; for r = 1; the statement holds true. Now; suppose that it is
valid for some r¿ 1. Then;

|M (n)
� (A1 × · · · × Ar+1 × (S∗)∞)−M�(A1 × · · · × Ar+1 × (S∗)∞)|

6
∣∣∣∣
∫
A1×···×Ar

K (n)� (x0; dx1) · · ·K (n)� (xr−1; dxr){K (n)� (xr; Ar+1)− K�(xr; Ar+1)}
∣∣∣∣

+
∣∣∣∣
∫
A1×···×Ar

K (n)� (x0; dx1) · · ·K (n)� (xr−1; dxr)K�(xr; Ar+1)

−
∫
A1×···×Ar

K�(x0; dx1) · · ·K�(xr−1; dxr) K�(xr; Ar+1)
∣∣∣∣ :
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The former addend is majorized by supx∈S |K (n)� (x; Ar+1)−K�(x; Ar+1)|; which; by (b);
converges to 0 as n→∞; and the latter one converges to 0 from the inductive hypothesis
and condition (a). Thus; M (n)

� ⇒ M� by the induction principle.
To conclude the proof, it is enough to recall that (c) implies recurrence of E0; n, for

each n, and, then, invoke Theorem 4.

It is not diIcult to conceive diLerent versions of the previous proposition. For
example, suppose that there is a 
-7nite measure 3 on (S;S) such that K�(x·)�3(·)
for )-almost all � and for 3-almost all x, and indicate by g�(x; ·); g(n)� (x; ·) versions of
the derivatives of K�(x; ·); K (n)� (x; ·), with respect to 3, respectively. Then, assumptions
(a) and (b) in Theorem 6 could be replaced by the sole condition:
(a)′

∫
S | g�(x; s) − g(n)� (x; s)|3(ds) → 0 as n → ∞ for )-almost all � and 3-almost
all x.

In fact, suppose that the inductive hypothesis∫
Sr
| g�(x0; x1) · · · g�(xr−1; xr)− g(n)� (x0; x1) · · · g(n)� (xr−1; xr)|3(dx1) · · · 3(dxr)→ 0

is valid. Then,∫
Sr+1

|g�(x0; x1) · · · g�(xr; xr+1)− g(n)� (x0; x1) · · · g(n)� (xr; xr+1)|3(dx1) · · · 3(dxr+1)

6
∫
Sr
g�(x0; x1) · · · g�(xr−1; xr)

∫
S
|g�(xr; x)−g(n)� (xr; x)|3(dx)3(dx1) · · · 3(dxr)

+
∫
Sr
|g�(x0; x1) · · · g�(xr−1; xr)− g(n)� (x0; x1) · · ·

g(n)� (xr−1; xr)|3(dx1) · · · 3(dxr):
The former addend converges to 0 in view of (a)′ and the dominated convergence
theorem, while the latter goes to zero by virtue of the inductive hypothesis.

Example 3. As an application of the previous statements; consider the case of a mixture
of Markov laws with state space R; initial state x0 = 0 and transition probabilities:

K
(x; A) =
∫
A

1



√
26
exp

{
− (s− x)

2

2
2

}
ds

whenever x∈R and K
(@; ·)=�@(·) for every 
¿ 0. It is easy to verify conditions (a)′

and (c) when: E0; n = (−1=2n; 0]; E1; n = (0; 1=2n]; E2; n = (−2=2n;−1=2n]; : : : ; E2(n2n−1); n =
(−n;−n+1=2n]; En2n+1−1; n=(n−1=2n; n]; En2n+1 ; n=(−n; n]C ; x1; n=1=2n; x2; n=−1=2n; : : : ;
xn2n+1 ; n =−n. As a matter of fact; for any 7xed x and suIciently large n; there exists
k ¡n2n+1 such that x∈Ek;n. Therefore;∫

R

|g
(x; s)− g(n)
 (x; s)| ds

=(

√
26)−1

∫
R

∣∣∣∣exp
(
− s

2

2
2

)
− exp

(
− (s− (xk;n − x))

2

2
2

)∣∣∣∣ ds
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=2
{
<


(
xk;n − x
2

)
− <


(
−xk;n − x

2

)}

6 2(

√
26)−1(xk;n − x)6 (


√
26)−1=2n−1 → 0

as n→ ∞; where <
 is the cumulative distribution function of the Gaussian law with
mean zero and variance 
2.
Finally, to prove that (c) holds, de7ne :′� =

∑
j¿0 xj;nIEj; n(:�) and observe that, in

our present case, (:′�)�¿0 has a 7nite state space and strictly positive one-step transition
probabilities.

4. Concluding remarks

According to de Finetti, exchangeability and partial exchangeability play an important
role in the reconstruction of the Bayes–Laplace approach to induction and statistics
from the subjective standpoint. In de Finetti’s view, statistical inference must con7ne
itself to considering objective hypotheses on something that can actually be observed.
This condition is necessary for the phrase “to learn from experience” to have a real
meaning when applied to statistical methods. Therefore he suggests to replace the
notion of “conditionally independent and identically distributed observations, given the
unknown common marginal distribution” with that of exchangeability. In the same
spirit, the notion of “observations from a Markov chain, given the unknown transition
kernel” needs to be replaced by another involving observable events only, without
any reference to metaphysical entities such as unknown transition kernels or unknown
probability laws. Partial exchangeability of the V -matrix is such a condition. In fact
the elements of the V -matrix are observable and Theorems 1, 4 and 5 establish the
equivalence with the usual Bayesian formulation. Moreover, the theorems show that
the prior distribution of the transition kernel is determined by the limiting distribution
of the empirical processes associated to the rows of V . This suggests that to elicit a
prior distribution on the unobservable transition kernel one can think of the distribution
of the observable empirical processes when the number of observations is large. An
analogous appreciation could be expressed for the Freedman condition (see Section
2.2). However, comparing Theorems 1 and 3, note that partial exchangeability makes
possible to avoid the introduction of an explicit recurrence condition. As a matter of
fact, the role played by such a condition in Theorem 3 is rather technical and not
intrinsically related to the interpretation of mixture of Markov chains with which we
are dealing.
From a practical point of view, partial exchangeability of the V -matrix may be

assumed whenever one considers the last outcome before any observation as a relevant
attribute of the observation itself and, in addition, once observations are classi7ed
according to this attribute, time order becomes irrelevant. In particular, in the situation
discussed in Section 3, the inPuential attribute of each observation is not the actual
value of the preceding outcome, but: (a) its belonging to one of the elements of a
distinguished partition of the space state (see Section 3.1) or, alternatively, (b) the
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determination of some (random) element Yn associated with each observation Xn, for
every n, provided that each Yn has countable range (see Section 3.2).

Acknowledgements

The authors wish to thank an anonymous referee for comments and suggestions that
greatly improved the presentation of the paper.

References

Billingsley, P., 1999. Convergence of Probability Measures, 2nd Edition. Wiley, New York.
Diaconis, P., Freedman, D., 1980a. De Finetti’s theorem for Markov chains. Ann. Probab. 8, 115–130.
Diaconis, P., Freedman, D., 1980b. De Finetti’s generalizations of exchangeability. In: JeLrey, R.C. (Ed.),
Studies in Inductive Logic and Probability, Vol. II. University of California Press, Berkeley, pp. 233–249.

de Finetti, B., 1937. La prUevision: ses lois logiques, ses sources subjectives. Ann. Inst. H. PoincarUe 7, 1–68.
de Finetti, B., 1938. Sur la condition d’ “equivalence partielle”. ActualitUes Scienti7ques et Industrielles,
Hermann, Paris, Vol. 739, pp. 5–18.

de Finetti, B., 1959. La probabilitVa e la statistica nei rapporti con l’induzione secondo i diversi punti di
vista. In: Centro Internazionale Matematico Estiro (CIME), Induzione e Statistica. Cremonese, Roma, pp.
1–115. [English translation in B. de Finetti, 1972. Probability, Induction and Statistics. Wiley, New York,
pp. 147–227.]

Fortini, S., Ladelli, L., Petris, G., Regazzini, E., 1999. On mixtures of distributions of Markov chains.
Preprint del Dipartimento di Matematica “Francesco Brioschi” del Politecnico di Milano n.369=P.

Freedman, D., 1962a. Mixture of Markov processes. Ann. Math. Statist. 33, 114–118.
Freedman, D., 1962b. Invariants under mixing which generalize de Finetti’s theorem. Ann. Math. Statist. 33,
916–923.

Freedman, D., 1996. De Finetti’s theorem in continuous time. In: Ferguson, T.S., Sharpley, L.S., MacQueen,
J.B. (Eds.), Statistics, Probability and Game Theory. IMS Lecture Notes—Monograph Series, Vol. 30.

Kallenberg, O., 1982. Characterizations and embedding properties in exchangeability. Z. Wahrscheinli-
chkeitstheorie 60, 249–281.

Nummelin, E., 1984. General Irreducible Markov Chains and Non-Negative Operators. Cambridge University
Press, Cambridge.

Zabell, S., 1995. Characterizing Markov exchangeable sequences. J. Theoret. Probab. 8, 175–178.
Zaman, A., 1984. Urn models for Markov exchangeability. Ann. Probab. 12, 223–229.
Zaman, A., 1986. A 7nite form of de Finetti’s theorem for stationary Markov exchangeability. Ann. Probab.
14, 1418–1427.


	On mixtures of distributions of Markov chains
	Introduction
	Mixtures of laws of Markov chains with discrete state space
	Main result
	On the relationship between partial exchangeability and Freedman condition

	Mixtures of laws of Markov chains with uncountable state space
	Mixtures of laws of Markov chains with atomic kernels
	Mixtures of laws of Markov chains with atomic kernels. A few additional results
	Approximations of arbitrary mixtures of laws of Markov chains. Partial results

	Concluding remarks
	Acknowledgements
	References


