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ABSTRACT We present applications of the concentration function in
bath global and local sensitivity analyses, along with its connection with
Choquet capacities.
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6.1 Introduction

In this paper, we expose the main properties of the concentration function,
defined by Cifarelli and Regazzini (1987), and its application to Bayesian
robustness, suggested by Regazzini (1992) and developed, mainly, by For-
tini and Ruggeri (1993, 1994, 1995a, 1995b, 1997).

The concentration function allows for the comparison between two prob-
ability measures II and Iy, either directly by looking at the range spanned
by the probability, under II, of all the subsets with a given probability
under IIy or by considering summarising indices. Such a feature of the
concentration function makes its use in Bayesian robustness very suitable.

Properties of the concentration function are presented in Section 2. Some
applications of the concentration function are illustrated in the paper; in
Section 3 it is used to define classes of prior measures, whereas Sections
4 and 5 deal with global and local sensitivity, respectively. An example in
Section 6 describes how to use the results presented in previous sections.
Finally, Section 7 illustrates connections between the concentration func-
tion and 2-alternating Choquet capacities, described in Wasserman and
Kadane (1990, 1992).

6.2 Concentration function

Cifarelli and Regazzini (1987) defined the concentration function (cf.) as
a generalisation of the well-known Lorenz curve, whose description can be
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found, for example in Marshall and Olkin (1979, p. 5): “Consider a popula-
tion of n individuals, and let z; be the wealth of individual 7,7 =1,... ,n.
Order the individuals from poorest to richest to obtain T(1)s- -+ »T(n)- Now
plot the points (k/n, Sk /Sn),k =0,... ,n, where S = 0 and Sy, = Elem(i}
is the total wealth of the poorest k individuals in the population. Join these
points by line segments to obtain a curve connecting the origin with the
point (1,1).... Notice that if total wealth is uniformly distributed in the
population, then the Lorenz curve is a straight line. Otherwise, the curve
is convex and lies under the straight line.”

The classical definition of concentration refers to the discrepancy between
a probability measure II (the “wealth”) and a uniform one (the “individ-
uals”), say Ily, and allows for their comparison, looking for subsets where
the former is much more concentrated than the latter. The definition can
be extended to non-uniform discrete distributions; we use data analysed by
DiBona et al. {1993), who addressed the issue of racial segregation in the
public schools of North Carolina, USA. The authors proposed a method to
check if students tend to be uniformly distributed across the schools in a
district or, otherwise, if they tend to be segregated according to their race.
The proposed segregation index allowed the authors to state that segrega-
tion was an actual problem for all grades (K-12) and it had increased from
1982 to 1992. Lorenz curves are helpful in analysing segregation for each
grade in a school.

Native Americans Asians Hispanics Blacks Whites

Durham (82) 0.002 0012 0002  0.332  0.652
School 332 0.011 0.043 0022 0403 0521
Ratio (S/D) 5.500 3580  11.000  1.210  0.799
Durham (92) 0.002 0026 0009 0345 0618
School 332 0.007 0106  0.013  0.344  0.530
Ratio (S/D) 3.500 4070 1440 0997  0.858

TABLE 1. Public Kindergartens in Durham, NC

In Table 1 we present the distribution of students, according to their
race, in a school (labelled as 332) in the city of Durham and compare it
with the race distribution in the city public school system. We consider the
ratios between percentages in the school (5;) and the city (D;), ordering
the races according to their (ascending) ratios. Similarly to Marshall and
Olkin, we plot (Fig. 1) the straight line connecting (0,0) and the points

(Ejle(j),Ej-:lS(j)) ,i=1,...,5, where DU} and S correspond to the

race with the jth ratio (in ascending order). The distance between the
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.straight line and the other two denotes an unequal distribution of students
in the school with respect to (w.r.t.) the city, and its largest value is one
of the proposed segregation indexes. Moreover, the 1992 line lies above the
1982 one up to 0.9 (approx.), denoting an increase in adherence to the
city population among the kids from the largest groups (White and Black)
and, conversely, a decrease among other groups. Therefore, segregation at
school 332 is decreasing over the 10 year period, in contrast with the general

tendency in North Carolina, at each grade (see Di Bona et al., 1993, for
more details). ’

FIGURE 1. Lorenz curve for races at school 332 vs. Durham schools

As an extension of the Lorenz curve, Cifarelli and Regazzini (1987) de-
fined and studied the c.f. of IT w.r.t. Iy, where IT and I1; are two probability
measures on the same measurable space (0, F )- According to the Radon-
Nikodym theorem, there is a unique partition {N, NC Cc Fof © and a
nonnegative function A on NC such that

H(E) =I.(ENN®) +I,(ENN), VE € F,

where II, and I, are, respectively, the absolutely continuous and the sin-
gular part of IT w.r.t. Iy, that is, such that

IL,(ENNC) = f

EnnNe

h(8)To(dB), TTo(N) = 0, TL,(N) = I, (O).

f.j‘et h(8) = oo all over N and define H(y) =1 ({# € © : h(8) < y}), ¢z =
inf{y € R : H(y) > z} and e =tlim ct. Finally, let L, = {§ € © :
-z~

h(6) <c;}and Ly = {6 € © : h(f) < o).
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Definition 1 The function on : [0, 1] — [0, 1] is the concentration function
of Il with respect to Ilg if pn(z) = I(L]) + cz[z — H(c;)] for z € (0,1),
e (0) =0 and pn(1) = [,(0).

Observe that wn(z) is a nondecreasing, continuous and convex function,
such that ¢n(z) =0 =11 L Iy, ¢u(z) = z,Vz € [0,1] <= II = Iy, and

ol == /Dc’{z _ H(®)dt = /ﬂ &, (1)

It is worth mentioning that ¢ (1) = 1 implies that II is absolutely con-
tinuous w.r.t. IIy while pr(z) = 0,0 < z < «, means that II gives no mass
to a subset A € F such that IIy(A) = a. _

We present two examples to illustrate how to compute c.f.s. Consider the
c.f. of a normal distribution A(0,1) w.r.t. a Cauchy C(0,1). The Radon-
Nikodym derivative h(f) is plotted in Fig. 2, a horizontal line is drawn and
the subset of ©® with Radon-Nikodym derivative below the line becomes
L, (for an adequate z). This procedure is equivalent to c?mputipg and
ordering ratios as in the example about school 332. The c.f. is obtzfgqe.ad by
plotting the points (z, v (z)), where z and ¢pn(z) are the probablhtxes of
L. under the Cauchy and the normal distributions, respectively.
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FIGURE 2. Radon-Nikodym derivative of M(0,1) vs. £(0,1)

As another example, consider a gamma distribution II ~ G(2,1) and an
exponential one Iy ~ £(1). Their densities on R* are, respectively, 7(6) =
0e? and mo(8) = e~?, so that h(@#) =8, § > 0. For any z € [0, 1], we com-
pute the c.f. by finding the value y such that z =IIo ({# € © : R(8) < y}).
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It follows that y = —log(1 — z) since & = Js e %d8 = 1 — e=v. Finally, we
get

en(z) = I({0€6:h(0) < —log(l —z)})
_ f—log(l—m) Ge—gde

= 1-(1-z)(1-log(l-x)).

The comparison of probability measures in a class is made possible by
the partial order induced by the c.f. over the space P of all probability mea-
sures, when considering c.f.s lying above others. Total orderings, consistent
with the partial one, are discussed in Regazzini (1992); they are achieved
when considering synthetic measures of concentration as Gini’s (1914) con-
centration index Cpy, (II) = 2f01{a: — ¢n(z)}dz and Pietra’s (1915) index
G illy= SUD,e0,1)(% — wn(z)). The latter coincides with the total vari-
ation distance between IT and II, as proved by Cifarelli and Regazzini
(1987).

The following theorem, proved in Cifarelli and Regazzini (1987), states
that ¢mn(z) substantially coincides with the minimum value of II on the
measurable subsets of @ with ITg-measure not smaller than z.

Theorem 1 If A € F and Iy (A) = z, then en(z) <Il,(A). Moreover, if
z € [0,1] is adherent to the range of H, then there exists a B, such that
o(B;) = z and

en(z) = . (B;) = min{II(A) : A € F and Iy (A) > z}. (2)
If Iy is nonatomic, then (2) holds for any € [0,1].

This theorem is relevant when applying the c.f. to robust Bayesian anal-

ysis: for any « € [0,1], the probability, under I, of all the subsets A with
measure r under Iy, satisfies

en(z) <I(A) <1 - (1l —z). (3)

As an example, we can consider the c.f. of I ~ G(2,2) wrt. Iy ~ £(1),
showing that [0.216, 0.559] is the range spanned by the probability, under
II, of the sets A with IIp(A) = 0.4 (see Fig3).

Finally, we mention that the c.f., far from substituting other usual dis-
tribution summaries, e.g. the mean, furnishes different information about
probability measures. As an example, consider two measures concentrated
on disjoint, very close sets in R: their means are very close, their variances
might be the same, but their c.f. is 0 in [0,1).
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FIGURE 3. Range of II(A) spanned by A4 s.t. [Io(A) = .4 (G(2,2) vs. £(1))
6.3 Classes of priors

Fortini and Ruggeri (1995a) presented a method, based upon the c.f., to
define neighbourhoods of probability measures and applied it in robust
Bayesian analyses in Fortini and Ruggeri (1994). Their approach allows
the construction of probability measures IT with functional forms close to a
nonatomic baseline measure Ily. In particular, they defined neighbourhoods
of IIy by imposing constraints on the probability of all measurable subsets,
such as requiring |IIp(A4) — II(A)| < Ig(A)(1 — (A)), for any A € F. By
observing that the above relation can be written II(4) > g(IIo(4)), with
g(z) = =%, Fortini and Ruggeri gave the following definitions.

Definition 2 A function g : [0,1] — [0, 1] is said to be conpatible if g is a
monotone nondecreasing, continuous, convez function, with g(0} = 0.

Definition 3 If g is compatible, then the set
Ky = {I1: II(A) 2 g(Ilp(4)), VA€ F}
will be a g-neighbourhood of .

Observe that, if IT € K, then g(IIo(A4)) <II(A) < 1—g(1-1Iy(A4)), for any
A € F. The requirement g(0) = 0 is needed to avoid II{(@) <1 -g(0) < 1,
while monotonicity, continuity and convexity are thoroughly discussed in
Fortini and Ruggeri (1995).

As proved in Fortini and Ruggeri (1995), {K,} generates a topology since
it becomes a fundamental system of neighbourhoods of I, when g belongs
to an adequate class G of compatible functions.
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The definition of a g-neighbourhood of II can be reformulated by means
of the c.f. w.r.t. Ily, as stated in the following,

Theorem 2 The set K, = {II : cpn(a;) > g(z),Vz € [0,1]} is a g-neigh-
bourhood of Ilg.

Fortini and Ruggeri (1995) proved that any compatible gisact

Theorem 3 Given a function g : [0,1] — [0,1], there exzists at least one
measure I such that g is the c.f. of Il w.r.t. Iy if and only if g is compatible.

6.3.1 Main results

Consider the space P of all probability measures on © endowed with the
weak topology. P can be metrized as a complete separable metric space.
Consider the set F, of extremal points of K, that is, the probability mea-
sures II € K, such that

OD=olli + (1-a)ll;,I; € K, Il € K;,0<a< 1= =1; =I,.

The following results were proved by Fortini and Ruggeri (1995).

Theorem 4 F, C Ey, where E; = {II : pn(z) = g(x),Yz € [0,1)}. If
g(1) =1, then F comczdes with Ey.

Furthermore, every probability measure whose c.f. is greater than g can
be represented as a mixture of probability measures having g as c.f., ap-
plying Choquet’s Theorem (Phelps, 1966).

Theorem 5 Let the functign g : [0,1] — [0,1] be compatible. Then, for
any probability measure I1 € K, g, there exists a probabilily measure M on
P such that py(Fy) =1 and I = Jp My (dII).

The supremum (and infimum) of ratio-linear functionals of II is found in
E,, as shown in

Theorem 6 Let f and m be real-valued functions on © such that
Jo 1£()|T1(dB) < o0 and 0 < [y m(8)II(df) < oo for any I € K. Then
F(8)I1(da)
sup fe I( - f@ (O)I1(d6)
ek, Jom(O)I(d8) ner, Jom(0)TI(dd)
Computations of bounds on prior expectations are simplified by taking in

account

Theorem 7 Let Hy(y) = HD({H € 0: f(@ } (z) = inf{y :
Hys(y) > z}. Then SUPrex, f@ II{dg) = fo Cf f :c)da:
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The result can be applied to find bounds on posterior expectations, too,
using the linearization technique presented by Lavine (1988) and Lavine
et al. (2000). Finally, the result was used in Ruggeri (1994) to compute
bounds on the posterior probability of sets.

Corollary 1
=

o (A)
_[ ¢, (z)e(z)dz
sup II{A|z) = { 14+ —2
Heks [ Gl ()l & e
IMo(AC)

where 14 is the indicator function of the subset A, 1.(0) is the likelihood
function and, for any 6 € ©, [;(0) = 1;(8)]4¢(6) and 15(8) = 1.(0)14(0).

6.8.2 Classes of priors as concentration function
neighbourhoods

Fortini and Ruggeri (1994) considered classes of prior measures K, such
that their c.fis w.r.t. a nonatomic base one, say Ilg, are pointwise not
smaller than a specified compatible function g. The function g gives the
maximum concentration of a measure w.r.t. a base one which is deemed
compatible with our knowledge. Note that, assuming Iy nonatomic, the
discrete measures can be ruled out or not by choosing g(1) = 1 or < 1,
respectively. The posterior expectation of any function f(f), say E*(f),
can be maximised all over K, applying Theorems 6 and 7. The results are
consistent with those found in the literature.

Here we review the collection of classes, including some that are well
known, defined by Fortini and Ruggeri (1994). Note that F, can be a proper
subset of E,, as in the cases of e—contamination and total variation neigh-
bourhoods.

£—CONTAMINATIONS. The e-contamination class I'; = {Ilg = (1 —&)IIp +
ell, 11 € P} is defined by g(z) = (1 — &)z, Vz € [0,1]. The sets E, and
F, are obtained, respectively, considering singular (w.r.t. ITp) and Dirac
contaminating measures. As shown in Berger (1990), E*(f) is maximised
by contaminating Dirac measures, i.e. over F.

DENSITY BOUNDED CLASS. Given a probability measure IIy and & > 0,
consider the class
TP = {I1: (1/k)To(4) < TI(A) < kTIo(A),VA € F},

studied by Ruggeri and Wasserman (1991). This class, a special case of the
density bounded classes defined by Lavine (1991), is a c.f. neighbourhood
K,, with g(z) = max {z/k, k(z — 1) + 1}.
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DENSITY RATIO CLASS. Density ratio classes were defined by DeRobertis
and Hartigan (1981); Ruggeri and Wasserman (1995) considered I'PX, the
density ratio neighbourhood around Ilp (with density mo(8)), given by all
the probability measures whose densities 7m(§) are such that there exists
¢ > 0 so that m(0) < en(6) < kmo(0) for almost all 6. It can be shown that
T'P® is the class of the probability measures such that their c.fs w.r.t. Il
are inside any triangle with vertices (0,0), (1,1) and a point on the curve
glz)==z/(k—(k—1)z),0 <z < 1.

TOTAL VARIATION NEIGHBOURHOOD. A class I'T is said to be a total vari-
ation neighbourhood of a probability measure Il if it contains all the prob-
ability measures Il that satisfy sup 4~ |[II(A) — Ig(A)| < €, given a fixed
£ € [0,1]. Assuming IIp nonatomic, then the class is a c.f. neighbourhood
K, with g(z) = max{0,z — ¢}.

OTHER NEIGHBOURHOODS. As discussed earlier, we can consider many
neighbourhoods, like the class of all the probability measures II satisfying

To(A) - TI(A)| < o (4)(1 — o (A)),VA € F.

In this case, the neighbourhood K, is given by g(z) = z2.

6.4 Global sensitivity

As discussed by Moreno (2000), global sensitivity addresses the issue of
computing ranges for quantities of interest as the prior measure varies in
a class. Usually, quantities like posterior means and set probabilities have
been considered, whereas less attention has been paid to changes in the
functional form of the posterior measures {see Boratynska, 1996, for the
study of the “radius” in the class of posterior measures, endowed with the
total variation metric). C.f.s have been used in such a context, and the
main reference is the paper by Fortini and Ruggeri (1995b), who consid-
ered e—contaminations and compared the c.f.s of the posterior probability
measures w.r.t. a base posterior measure IT§. In computing, pointwise, the
infimum ¢ (z) of the c.f., their interest was twofold: providing a measure
of the distance between the distributions in the class and I} and checking
if the probability of all measurable sets would satisfy bounds like those
used in the previous section to define classes of measures.

Consider a class T of probability measures IT and a base prior Iy, as in
the e—contamination class given by

T ={llg =(1-¢)l +€Q,Q € 9},

where Q CPand 0 <e < 1.
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Let TI* denote the posterior measure corresponding to the prior II. Con-
sider the class

U = {¢n : ¢ is the c.f. of II* w.r.t. II§, Il € T'}.

From Theorem 1 and (3), it follows, for any II € T' and A € F with
II5(A) = =z, that

@(z) <T"(A) <1-p(1-2),

where $(z) = infner ¢n(z), for any z € [0, 1].

The interpretation of @, in terms of Bayesian robustness, is straightfor-
ward: the closest @(z) and 1 — (1 — z) are for all z € [0, 1], the closest the
posterior measures are. It is then possible to make judgments on robustness
by measuring the distance between @(z) and the line y = z, for example,
by Gini and Pietra’s indices as in Carota and Ruggeri (1994) and Fortini
and Ruggeri (1995b).

Fortini and Ruggeri (1995b) proved, for e-contaminations, the following:

Theorem 8 If ¢ and @y denote the c.f.’s of IIf) and Q° w.r.t. I, respec-
tively, then it follows that

@(z) = Mgz + (1 — Ag)po(z),
where
Aq = (1 —-€)Do/[(1 - €)Do +€Dq),

with Do = [, L(0)Io(d8) and Dg = i, l(6)Q(d6).

They were able to find e—contaminations of a nonatomic prior Il leading
to the lowest c.f., when considering arbitrary contaminations and those
given by generalised moment conditions; they found the lowest c.f. in the
unimodal case when supg Dg < I(p) holds.

A similar approach was followed by Carota and Ruggeri (1993), who
considered the class of mixtures of probability measures defined on disjoint
sets with weights known to vary in an interval. The class is suitable to
describe, with some approximation, the case of two (or more) populations,
depending on the same parameter ¢, which are strongly concentrated in
disjoint subsets.

Finally, it is worth mentioning that Fortini and Ruggeri (1995b) used
¢.f.s and compatible functions g in checking posterior robustness as well.
They considered g as a threshold function, denoting how much the posterior
set probabilities were allowed to vary (for example, I1*(A4) > (I (4)), for
any A € F). Therefore, robustness is achieved when @(z) > g(z) for all
z €[0,1].
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6.5 Local sensitivity

Fortini and Ruggeri (1997) studied functional derivatives of the c.f. and
mentioned they could be used in Bayesian robustness to perform local sen-
sitivity analysis (see Gustafson, 2000, on the latter). An example is pre-

sented in the next section. Here we present some results based on Gateaux
differentials.

Definition 4 Let X andY be linear topological spaces. The Géteaus differ-

ential in the direction of h € X and at a point 29 of a mapping f: X - Y
is given by

L flm+ M) - £(zo)
A—=0+ A

if the limnit exists.

Fortini and Ruggeri (1993) extended the definition of c.f. given by Ci-
farelli and Regazzini (1987), considering the c.f. between a signed measure

and a probability. The extended version of the c.f. allows for the computa-
tion of the limit

E(.’I; A) — }‘_}0 ((HQ + AA)*)’\:I‘.) - ‘P(Ha:z),

where (II,-) denotes the c.f. of IT w.r.t. a baseline measure and A is a
signed measure such that A(@) =0 and [|A|| < 1 for a suitable norm || - |].

This limit coincides with the differential 1y (Ilp, z) of the functional
P(II) = @(IT*(I),z) in Iy in the direction of A. The following theorem
gives an explicit expression for ) (Ilg, z).

Theorem 9
D
= 2 (p(A*,3) — 2) ifDa >0
’ 4 Ho
Ya(llo,z) = ¢ 0 s ifDA =0
A * * :
_D {QO(A:IH"T)_(P(A11)+$) 1fDA<O)
Ho
where A* z's deﬁned by A*(B) = [ l(0)A(d6)/Da, for any B € F and

Da = [51(0)A(df) £ 0.

Proof. Along the lines of the proof of Theorem 2 in Fortini and Ruggeri
(1993), it can be shown that, for any real A such that ADa > 0, o((Ip +

z})*, z) = Dy /(D +ADa)z+(ADa /(D +ADa))@(A*, z). Otherwise,
A is taken so that —Dp, < ADa < 0, and it follows, from Lemma 1 in
Fortini and Ruggeri (1993), that

Dy, ADp R .
DHO ¥ )\DAa:ﬁDHO W [W(A )1 - :E) _QD(A :1}}

W((HO + AA): :C) =
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Applying the definition of Gateaux differential, then /.. (Ily,z) is easily
computed. O

Given ¢ € [0,1] and a probability measure @, the choice A = £(Q — Il)
implies that Iy + AA is a contaminated measure for any A € [0,1]. In this
case, the Gateaux differential is given by

' D *
Y0110 (o, ¥) =€ leo {p(Q",7) -z} .

The previous Géiteaux differential mainly depends on three terms: ¢,
Dg/Dn, and ¢(Q*,z). Because of their interpretation, they justify the use
of the Géteaux differential to measure the sensitivity of the concentration
function to infinitesimal changes in the baseline prior. In fact, the first
term measures how contaminated the prior is with respect to the baseline
one, while the third says how far the contaminating posterior is from the
baseline one. Besides, the second term can be interpreted as the Bayes
factor of the contaminating prior with respect to the baseline one. Hence,
the Géateaux differential stresses any possible aspect which might lead to
nonrobust situations. , .

We consider [|¢;(Q_HO)(HD)H = SUPg<g<i | wt(Q*Hg)(Ho’m) | as a concise
index of the sensitivity of Il to contaminations with ).

Theorem 10 Given @ and IIg as above, it follows that

: D "
2(o-np) Mo)ll = e =G5 (@),

where G (Q*) = supp<y <1 {2 — @(Q", )} is the Pietra concentration in-
dez. o

When contaminating IIp with the probability measures in a class Q, we
can assume

14’ (To, QI = sup ¥z g—me) Mol (4)
QeQ

as a measure of local robustness.

The index (4) can be found analytically in some cases. Let Iy be ab-
solutely continuous w.r.t. the Lebesgue measure on R. If the contami-
nating class is the class Q, of all the probability measures over ©, then
14 (Ig, @a)|| = €(iz(8)/ D11y, where § € © is the maximum likelihood es-
timator of #. Considering the class Qq of all probability measures sharing
m — 1 given quantiles, then |3 (Ily, Qq)|| = € i, ¢ils(0:)/Dr,, where
éi € I; is the maximum, for [,(f), over any interval I; of the partition
{I;} of © determined by the quantiles, while ¢; is the probability of I;,
1=1,...,m.
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6.6 DExample

Consider the model Py ~ A(8,1), the prior Ilj ~ A(0,2) and an e-
contamination class of probability measures around IIy. Let € = 0.1. This
example has been widely used in Bayesian robustness by Berger and Berliner
(1986) and many other authors since then.

6.6.1 Global sensitivity

Consider Iy contaminated either by the class Q12 of probability measures
which have the same median as Il or by Q, the class of the probability
measures which are either Qx ~ U(fo — k,60 + k), k > 0, or Qoo = bp,,
the Dirac measure at 8y. Observe the sample s = 1. In the former case, the
lowest c.f. is ¢ = 0, given by the contamination (J; + 81)/2, whereas, in the
latter case, the lowest c.f. is ¢(z) = 0.879z. Should we decide to compare
¢(z) with, say, the function g(z) = z?, it is evident that ¢(z) < g(z) for
some « and, therefore, robustness is not achieved. A different choice of g(z),
which allows for discrete contaminations (i.e., such that g(1) < 1), might
have led to a different situation.

6.6.2 Local sensitivity

Consider IIp to be contaminated either by the class Q, or by @i/ It can

be easily shown that ||¢'|| is achieved for a Dirac prior concentrated at the
sample s in the former case and for a two-point mass prior, which gives
equal probability to 0 and s, in the latter. The values of || (ITy, Q.)|| and
1o’ (o, Q1/2)|| are shown in Table 2, for different samples s’s. As expected,
the class Q;/; induces smaller changes than Q,. It is worth noting that the
difference is negligible for small values of s while it increases when observing
larger values of s (in absolute value). The finding is coherent with Table 1 in
Betrd et al. (1994). While their table was obtained by numerical solution of
a constrained nonlinear optimisation problem, here the use of the Gateaux
differential requires just a simple analytical computation.

This example shows that sometimes local sensitivity analysis can give
information on the global problem as well, but favoured by simpler com-
putations.

Notice that

’ D D
[ (o, Qu)| =% = sup ==, (5)

s0 that the Pietra index does not seem to have an important part in (4).
The same happens when Q, /2 1s considered. As shown in the following
example, there are contaminating classes for which (5) does not hold. Con-
sider, for example, the class On = {N(0,72) : 1 < 7 < 2}. The values of
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SUpgeg, €Dq/Dn,, are shown in Table 2 for different samples s’s. They
are quite large, especially if compared with those of ||y’ (IIo, On)|]-

s @, QI 11 (o, Qupa)ll 11 (o, On)l| - supge g, e52
[lex] 0.5 0.1805 0.1606 - 0.0127 0.1199
1.0 0.2046 0.1399 0.0170 0.1126
1.5 0.2520 0.1392 0.0202 0.1019
2.0 0.3373 0.1717 0.0218 0.1023
2.5 0.4908 0.2458 0.0225 0.1174
3.0 0.7762 0.3881 0.0317 ] 0.1411
3.9 1.3342 0.6671 0.0453 0.1752
4.0 2.4927 1.2463 0.0656 0.2250

TABLE 2. Gateaux differentials

6.7 Connections with Choquet capacities

We conclude the paper by observing that g—neighbourhoods can be con-
sidered as an example of 2-alternating Choquet capacities. We refer to
Wasserman and Kadane (1990, 1992) for a thorough description of the
properties of the latter, their application in Bayesian robustness and their
links with other notions, like special capacities (see, for example, Bednarski,
1981, and Buja, 1986) and upper and lower probabilities in Walley’s (1991)
approach. Details on capacities can be found in Choquet (1955) and Huber
and Strassen (1973).

Let Q be a nonempty set of prior probability measures on (©,F). We
define upper and lower prior probability functions by

(A) = l_s[lépQH(A) and II(4) = r}ngH(A),

for any A € F.
The set Q is said to be 2-alternating if

(AU B) <TI(A) + TI(B) - I(An B),

for any A, B in F. The set Q is said to generate a Choquet capacity if
II(C,,) | TI(C) for any sequence of closed sets Cy, | C. It can be shown that
Q generates a Choquet capacity if and only if the set C = {II : II(4) <
II(A),YA € F} is weakly compact. We say that Q is m-closed (or closed
w.r.t. majorisation) if C C Q.

Consider a g—neighbourhood K, around a nonatomic probability mea-
sure Ip. Let g be such that g(1) = 1. For any set A € F, we show that

TI(A) = 1 - g(1 - To(A)) and II(4) = g(TTs(A4)).
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From the properties of g—neighbourhoods and the definition of upper and
lower probability functions, it follows that

9(Mo(A)) < T(A4) <TI(4) < T(A) <1~ g(1 - Tp(4)),

for any II € Q. We show that both upper and lower bounds are actually
achieved for probability measures in @, so that they coincide with upper
and lower probability functions, respectively.

Consider

_ g(ITx(A))

Io(A)

mo()a0) + T 2R

To()Mac (),

where 74 and my are the densities, w.r.t. some dominating measure, of the
probability measures I14 and Iy, respectively.

Note that I14 differs from IIy because of two different multiplicative
factors (the one on A is smaller than 1, whereas the one on A€ is bigger
than 1). The c.f. of II4 w.r.t. IIy is made of two segments joining on the
curve g at (IIg(A), g(IIo(A4))). Because of the convexity of g, the c.f. is above
g, so that II4 € K. Besides, [14(A) = g(II5(4)) = [I{A4) follows from the
construction of II4. Since the upper probability function is obtained in a
similar way, we have proved that upper and lower probability functions in
K, can be expressed by means of g (i.e., respectively, as 1 — g(1 — z) and
9(z), z € [0,1]).

Fortini and Ruggeri (1995a) proved that the set K, is compact in the
weak topology; therefore, its definition (see (3)) implies that it generates a
Choguet capacity, besides being m-closed.

Using the equation IT(4) = 1 —II(A°), the 2-alternating property can be
rewritten as

(AU B) > II(4) + I(B) — II(AN B),

for any A, B in F.
In our case, the property becomes

9(lo(A) + Io(B) — To(A N B)) > g(Ilo(4)) + g(Ilo(B)) — g(Io(A N B)),
which is satisfied because the convexity of g implies

9(z1 + z2 — x3) + g(z3) 5 9(@1) + g(z2)
2 - 2 !

for x3 < z; < z9; note that z2 < 2y + 29 — 5.
Therefore, K, is an m—closed, 2-alternating Choquet capacity, and re-
sults in Wasserman and Kadane (1990) apply to it.
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