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SUMMARY. In the general setting of predictive inference, when observations are exchangeable

and take values in a Polish space, conditions are stated in order that parametric models turn out to

be limiting forms of predictive distributions and parameters are limiting forms of suitable predictive

sufficient statistics. The treatment is completed by a necessary and sufficient condition in order

that a sequence of predictive distributions may be consistent with an exchangeable distribution.

Moreover, main properties of predictive sufficiency are revisited in the general setting described

above.

1. Introduction

De Finetti’s characterization of exchangeable laws (see next Section 2) is a cor-
nerstone of modern Bayesian theory. Generally speaking, implementation of statis-
tical methods get simpler when de Finetti’s measures are supported by parametric
families of probabilities. Thus, Bayesian statisticians are concerned with the gen-
eral question whether, and under what circumstances, it is coherent to reduce the
class of all admissible distributions on a given sample space to some distinguished
parametric family. In fact, “. . . it is not at all clear, at first sight, how we should
interpret ‘beliefs about parameters’ . . . or even whether such ‘beliefs’ have any in-
trinsic interest” (Bernardo and Smith, 1994, page 244).

These questions, which echo Chapter V of de Finetti (1937), have been answered
(see next Section 5) by noting that the most common parametric models are limiting
forms of predictive distributions depending on predictive sufficient statistics. [Apart
from parametric forms, this is the kernel of de Finetti’s representation which, in
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point of fact, states that exchangeable laws of infinite sequences are mixtures of
limits of empirical distributions; see (R3) of Section 2]. Acceptability of this answer
is based on the following remarks: (a) Unlike prior and posterior distributions of
parameters, predictive distributions [conditional distributions of future observable
facts, given observed facts] can always be assessed; (b) Their dependence on a par-
ticular summary statistic follows from a direct, subjective judgement implying that
possible differences between data do not actually bring about differences between
previsions whenever data produce the same value for that statistic.

The present paper focuses on the question whether, and under what circum-
stances, statistical models can be interpreted as limiting forms of conditional previ-
sions about observables. Although this problem is clear enough in modern Bayesian
literature [see, e.g., Sections 4.5 and 4.6 of Bernardo and Smith (1994)], it has not
been adequately addressed, to the best of our knowledge. In the final section [Sec-
tion 7] of the present paper, conditions are given under which the support of de
Finetti’s measure reduces the issue to a family of laws depending on a parameter,
the parameter being the limit of a sequence of predictive sufficient statistics, as the
number of observed quantities goes to +∞. It’s worth noting that all those condi-
tions are of a predictive nature, in the sense that they do not anticipate properties of
the limiting models. Section 7 is the final step of a line of reasoning which involves
exchangeability and significant connections between predictive sufficiency and other
(conventional) forms of sufficiency. And some of the results achieved in the present
paper seem indeed to be new. Section 3 states a necessary and sufficient condition
in order that a sequence of predictive distributions be consistent with an exchange-
able law. As an application of such condition it is shown how its use improves
some well-known characterizations and, at the same time, simplifies their proofs;
cf. Section 4. Section 5 is devoted to general aspects of predictive sufficiency, and
tries to develop a mathematically adequate and more general than usual treatment
of the subject. The proofs of some propositions are omitted. They can be found in
Fortini, Ladelli and Regazzini (1998). Section 6 includes an application of the pre-
vious results to the characterization, in predictivistic terms, of exponential families.
Technically speaking, this characterization is made possible by the result relative
to Cauchy’s functional equation obtained by Diaconis and Freedman within their
general theory of exchangeability and sufficiency; see Diaconis and Freedman (1984)
and (1990). By the way, it goes without saying that their approach is different from
the predictivistic one followed in the present paper.

The final remarks of the present section focus on the adoption of the condition
of exchangeability. In view of its mathematical simplicity, exchangeability leads to
neat results by avoiding technical difficulties which could in point of fact hide the
true nature of the statistical problems involved. On the other hand, the adoption of
exchangeability does not represent a serious restriction, since: (a) Results deduced
in its presence are generally extensible, almost directly, to partially exchangeable
classes of observables [cf. de Finetti (1938)]; (b) There are forms of dependence –
different from (partial) exchangeability but of interest to Bayesian inference – which
can be reduced to (partial) exchangeability by means of suitable transformations of
the sequence of observables. Recall, for example, that it is mixtures of recurrent
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Markov chains which provide the general representation for the laws of partially
exchangeable arrays of adjacent subsequent states; cf. de Finetti (1959), Diaconis
and Freedman (1980), Fortini, Ladelli, Petris and Regazzini (1999).

2. Preliminaries and Notation

Consider a sequence of observable elements taking values in a set X, and let X be
a σ-algebra of subsets of X. Write Xn for the n-fold Cartesian product and Xn for
the usual product σ-algebra (n = 1, 2, . . . ,∞). Define x̃1, x̃2, . . . to be the coordinate
random variables (r.v.’s) of X∞, i.e. x̃i(x) = xi for every x = (x1, x2, . . .) in X∞.
We will assume that Xn = B(X)n, whenever X is a topological space, where, for
any topological space Y , B(Y ) denotes the Borel σ-algebra on Y . Thus, if X is
a Polish space [separable, complete, metric space], then Xn := B(X)n = B(Xn)
(n = 1, 2, . . . ,∞).

For any finite subset {i1, . . . , in} of N denote by en(x̃i1 , . . . , x̃in) the empirical
measure for (x̃i1 , . . . , x̃in), i.e.

en(x̃i1 , . . . , x̃in) =
1
n

n∑

k=1

δx̃ik

where δa denotes the unit mass at a. Here en(x̃i1 , . . . , x̃in) is thought of as a function
of the set X∞ into the set M1 of probability measures on (X,X ). M1 is made into a
measurable space by the σ-algebra M1 generated by all sets {p ∈ M1 : p(A) ∈ B},
with A in X and B in B([0, 1]). It is straightforward that en(x̃i1 , . . . , x̃in) is an
(X∞/M1)-measurable function. If X is metric, and M1 is made into a topological
space by the topology of weak convergence, then M1 = B(M1) [see, e.g. Kallenberg
(1986), Lemma 1.3 and Lemma 1.4]. Recall that M1 can be metrized as a separable
metric space if X is a separable metric space, and that M1 is topologically complete
if X is so. Hence, when X is a Polish space, with X = B(X), the same holds for
M1; cf., e.g., Theorems 6.2 and 6.5 in Chapter II of Parthasaraty (1967).

As far as the probabilistic aspects of x̃ = (x̃n)n≥1 are concerned, the present
paper focuses on probability measures P on (X∞,X∞), which make the x̃n ex-
changeable, i.e. the probability distribution (p.d.) of (x̃π(n))n≥1 is the same as
the p.d. of (x̃n)n≥1 for any finite permutation π. In this case, P will be called
exchangeable. Under suitable conditions about (X,X ), an exchangeable P admits
the de Finetti representation.

If X is a Polish space, then the following statements are equivalent.

(R1) x̃1, x̃2, . . . are exchangeable with respect to P .

(R2) There is a random probability measure p̃ [= r.v. on (X∞,B(X∞)) taking
values in (M1,B(M1))] such that p̃∞(B) is a version of the conditional probability
P (x̃ ∈ B | p̃) for every B in B(X∞), where p̃∞ is the power probability measure
which makes the coordinates i.i.d. with p.d. p̃.
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(R3) There exists a unique probability measure ν on (M1,B(M1)) such that

P (x̃ ∈ B) =
∫

M1

p∞(B)ν(dp) (B ∈ B(X∞)).

This measure is said to be the de Finetti measure of P [of x̃, equivalently] and
coincides with the p.d. of p̃. Moreover,

en(x̃1, . . . , x̃n) ⇒ p̃

a.s.-P [where ⇒ denotes weak convergence].
In Bayesian terms, ν is the prior p.d. of p̃. For proofs see, e.g., Aldous (1985) or

Schervish (1995). Throughout the present paper, conditional expectation is meant
as an equivalence class of functions [versions] which differ from one another only on
sets of zero probability. The same symbol will denote both conditional expectation
and one of its versions.

Equivalence of (R1), (R2) implies that the x̃n are exchangeable if and only if
they are conditionally i.i.d. given the σ-algebra σ(p̃) [given a r.v. χ on a measurable
space, σ(χ) will denote the σ-algebra generated by χ]. It is a remarkable fact that
if the x̃n are conditionally i.i.d. given a σ-algebra G ⊂ B(X∞), then G∗ = σ(p̃)∗

where, for any sub-σ-algebra H of B(X∞),

H∗ := {H 4N : H ∈ H, N ∈ B(X∞), with P (N) = 0}.
This result is proved, e.g., in Chow and Teicher (1997), page 237.

Let (T, T ) be a measurable space. As usual, if T is a metric space, then T
is meant as its Borel σ-algebra B(T ). If t̃n is a (Xn/T )-measurable function of
Xn into T , then t̃n(x̃i1 , . . . , x̃in) is said to be a statistic of (x̃i1 , . . . , x̃in). This
paper deals with statistics defined by means of restrictions to the set of empirical
measures, of functions of some subset of M1 into T . More precisely, let M∗

1 be a
measurable subset of M1 and t̃ : M∗

1 → T a (M∗
1 ∩ M/T )-measurable function.

Define D to be the union of the ranges of all empirical measures. If X is a Polish
space, then D ∈ B(M1). Indeed, the range Dn of en(x̃1, . . . , x̃n) is the same as
the range of en(x̃∗1, . . . , x̃

∗
n), where x̃∗i is the i-th coordinate r.v. of Xn for i =

1, . . . , n. The function en(x̃∗1, . . . , x̃
∗
n) is (B(Xn)/B(M1))-measurable and, for any

y in Dn, [en(x̃∗1, . . . , x̃
∗
n)]−1(y) is a finite subset of Xn. Then, from Theorem III

21a in Dellacherie and Meyer (1975), Dn and, consequently, D = ∪n≥1Dn belong
to B(M1). Thus, if X is a Polish space and M∗

1 ⊃ D, then t̃ ◦ en is a statistic.
Throughout the present paper, these conditions are supposed to be satisfied, and
the term statistic designates the restriction t̃|D of t̃ to D.

3. Predictive Distributions and Exchangeability

Let (X∞,X∞, P ) and x̃ be the same as in Section 2. Recall that a regular
conditional p.d. for x̃n given x̃(n−1) := (x̃1, . . . , x̃n−1), with n ∈ {2, 3, . . .}, is a
function Pn on Xn−1 ×X satisfying the following properties:



90 sandra fortini, lucia ladelli and eugenio regazzini

(P1) Pn(x(n−1), ·) is a probability measure on X for each x(n−1) = (x1, . . . , xn−1) ∈
Xn−1;

(P2) Pn(·, A) is Xn−1-measurable for each A in X ;

(P3) For every A1 and A2 in Xn−1 and X , respectively,

P (x̃(n) ∈ A1 ×A2) =
∫

A1

Pn(y,A2)Px̃−1
(n−1)(dy)

where Px̃−1
(n−1) is the p.d. of x̃(n−1).

Any function Pn on Xn−1×X which satisfies (P1) and (P2) is called transition
probability with respect to (w.r.t.) Xn−1 × X . Then, a regular conditional p.d.
(r.c.p.d.) Pn on Xn−1 × X is a transition probability w.r.t. Xn−1 × X such that
Pn(x̃(n−1), A) is a version of P (x̃n ∈ A | x̃(n−1)) for every A in X . In Bayesian terms,
Pn is called predictive p.d. for x̃n given x̃(n−1) w.r.t. P . In view of this definition,
given (X∞,X∞, P ), a predictive p.d. for x̃n given x̃(n−1) w.r.t. P needn’t exist
[cf., e.g., (4) in Section 48 of Halmos (1950)]. It does exist, however, for every n,
if X and X meet suitable conditions which include, for example, the case when X
is a Polish space; cf. Section 10.29 in Hoffmann-Jørgensen (1994). On the other
hand, it is possible to construct a probability measure P on (X∞,X∞), without
requiring any special condition for the measurable space (X,X ), in such a way that
a given sequence of transition probabilities with respect to Xn−1×X (n = 2, 3, . . .)
represents a sequence of predictive p.d.’s w.r.t. P . This fact plays a leading role in
the general setting of the operational point of view according to which predictive
form is primary, i.e. predictive p.d.’s are thought of as primary constituents of
any attempt at modelling and reporting uncertainty. Specifically, a straightforward
translation into statistical terms of a basic theorem due to Ionescu Tulcea [cf., e.g.,
Section V-1 of Neveu (1980)] gives

Proposition 3.1. If P1 is a probability measure on (X,X ) and Pn is a transition
probability w.r.t. Xn−1 × X for every n = 2, 3, . . ., then there is a unique p.d. P
for x̃ such that P1 is the p.d. of x̃1 and Pn is a predictive p.d. for x̃n given x̃(n−1),
w.r.t. P , for every n = 2, 3, . . ..

Under what circumstances is the p.d. P in Proposition 3.1 exchangeable? In
order to answer this question, it is worth examining the inverse problem, i.e. in-
vestigating significant properties of predictive p.d’s deduced from an exchangeable
P .

Proposition 3.2. Let P be an exchangeable probability measure on (X∞,X∞)
where X is assumed to be countably generated. Moreover, suppose that there is a
predictive p.d. Pn for x̃n given x̃(n−1) for every n = 2, 3, . . .. Then there is a set N
in X∞ such that P (N) = 0 and, for each x ∈ N c:

(a) Pn(x(n−1), A) = Pn((xπ(1), . . . , xπ(n−1)), A) holds true for every n = 2, 3, . . .,
every A in X and every permutation π of (1, . . . , n− 1);

(b)
∫

B
Pn+1(x(n), A)Pn(x(n−1), dxn) =

∫
A

Pn+1(x(n), B)Pn(x(n−1), dxn) is true

for every A,B in X and for every n in N, with P1(x(0), ·) := Px̃−1
1 (·).
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[To say that X is countably generated means that there is a countable sub-family
F of X such that the σ-algebra generated by F , σ(F), coincides with X . Without
real loss of generality, F can be thought of as an algebra. If X is a separable metric
space, then B(X) is countably generated.]

Proof of Proposition 3.2. (a) Note that exchangeability entails

∫

A1×...×An−1

Pn(x(n−1), A)Px̃−1
(n−1)(dx(n−1))

= P (x̃(n) ∈ A1 × . . .×An−1 ×A)
= P (x̃(n) ∈ Aπ(1) × . . .×Aπ(n−1) ×A)

=
∫

Aπ(1)×...×Aπ(n−1)

Pn(x(n−1), A)Px̃−1
(n−1)(dx(n−1))

=
∫

A1×...×An−1

Pn((xπ(1), . . . , xπ(n−1)), A)Px̃−1
(n−1)(dx(n−1)).

Thus, there is N(n, π, A) ∈ X∞ with P (N(n, π, A)) = 0 such that

Pn(x(n−1), A) = Pn((xπ(1), . . . , xπ(n−1)), A) . . . (3.1)

is true for every x in (N(n, π, A))c. Hence, if F is a countable sub-algebra of X
and n is a fixed integer ≥ 2, (3.1) is true for every n, every permutation π of
(1, . . . , n− 1), every A in F and every x in N c

1 := (∪n ∪π ∪A∈FN(n, π, A))c, where
P (N1) = 0.

(b) For every C in Xn−1,

∫

C

{∫

B

Pn+1(x(n), A)Pn(x(n−1), dxn)
}

Px̃−1
(n−1)(dx(n−1))

= P (x̃(n+1) ∈ C ×B ×A)
= P (x̃(n+1) ∈ C ×A×B)

=
∫

C

{∫

A

Pn+1(x(n), B)Pn(x(n−1), dxn)
}

Px̃−1
(n−1)(dx(n−1)).

Hence there is N(n,A, B) ∈ X∞ with P (N(n,A, B)) = 0 such that the desired
property holds for every x in N(n,A, B). Therefore, (b) holds true for every x in
N c

2 := (∪n ∪(A,B)∈F2 N(n,A, B))c, and for every A×B in the product algebra F2,
where P (N2) = 0.

To complete the proof, define N to be N1∪N2 and observe that, for any x in N c,
the previous statements extend from F and F2 to σ(F) and σ(F2), respectively,
by the Carathéodory extension theorem.

The following examples show that there is generally no relation between condi-
tions (a) and (b) of Proposition 3.2.

Example 3.1. Let X = {0, 1} and define P by

P (x̃(n) = x(n)) = p(x1)p(x1;x2) . . . p(x(n−1); xn),
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where x(n) ∈ Xn for n = 2, 3, . . ., with

p(0) = p(x1; 0) = α ∈ (0, 1)

and p(x(k); 1) =
k∑

i=1

xi

k

for every x(k) ∈ Xk and k = 2, 3, . . ..
P is, by definition, consistent with condition (a) of Proposition 3.2, but it does not
satisfy condition (b). Indeed,

P (x̃2 = 0, x̃3 = 1 | x̃1 = 0) = 0,

P (x̃2 = 1, x̃3 = 0 | x̃1 = 0) = (1−α)
2 .

Example 3.2. Let X = {α, 1− α}, with α ∈ (0, 1). Define P by

P (x̃1 = α) =
1
2

Pn+1(x(n), {α}) = x1.

P is consistent with condition (b) of Proposition 3.2. In fact,

P (x̃1 = α, x̃2 = 1− α) = 1
2 (1− α) = P (x̃1 = 1− α, x̃2 = α)

and
P (x̃n+1 = α, x̃n+2 = 1− α | x̃1, . . . x̃n)

= x̃1(1− x̃1)
= P (x̃n+1 = 1− α, x̃n+2 = α | x̃1, . . . x̃n).

On the other hand, condition (a) of Proposition 3.2 does not hold.
In the next proposition it is proved that (a) and (b) of Proposition 3.2 are

sufficient conditions in order that a sequence of predictive p.d.’s can be consistent
with an exchangeable P . Such a proposition generalizes an analogous statement
proved by de Finetti for the particular case when X = {−1, 1}; cf. de Finetti
(1952).

Theorem 3.1. Let P be a probability measure on (X∞,X∞) w.r.t. which:
the transition probability Pn is a predictive p.d. for x̃n given x̃(n−1) (n = 2, 3, . . .),
and the probability measure P1 on (X,X ) coincides with Px̃−1

1 . Moreover, assume
that (Pn)n≥1 satisfies conditions (a)-(b) of Proposition 3.2 for every x in N c where
N ∈ X∞ and P (N) = 0. Then, P is exchangeable.

Before proving the theorem, recall that (x̃1, . . . x̃n) and (x̃π(1), . . . , x̃π(n)) have
identical p.d.’s, when π is a permutation of (1, . . . , n), if and only if

P (x̃(n) ∈ Aπ−1(1) × . . .×Aπ−1(n)) = P (x̃(n) ∈ A1 × . . .×An) . . . (3.2)

holds for every A1, . . . , An in X , and for the inverse π−1 of π. This fact can be
proved by means of a monotone class argument.
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Proof of Theorem 3.1. Let σ(1, 2, . . .) = (1, . . . , j − 1, j + 1, j, j + 2, . . .).

P (x̃(j+1) ∈ A1 × . . .×Aj−1 ×Aj+1 ×Aj)

=
∫

A1

Px̃−1
1 (dx1) . . .

∫

Aj−1

Pj−1(x(j−2), dxj−1)
∫

Aj+1

Pj(x(j−1), dxj)Pj+1(x(j), Aj)

=
∫

A1

Px̃−1
1 (dx1) . . .

∫

Aj−1

Pj−1(x(j−2), dxj−1)
∫

Aj

Pj(x(j−1), dxj)Pj+1(x(j), Aj+1)

from condition (b) of Proposition 3.2. This relation, together with (3.2), implies
that (x̃π(1) , . . . , x̃π(j+1)) and (x̃1, . . . , x̃j+1) have the same p.d. when π is the inverse
of σ.

Moreover, for every n ≥ j + 2, it follows from the first part of this proof that

P (x̃(n) ∈ Aσ(1) × . . .×Aσ(n))

=
∫

Aσ(1)×...×Aσ(j+1)

[∫

Aj+2

Pj+2(x(j+1), dxj+2) . . .

. . .

∫

An

Pn(x(n−1), dxn)

]
Px̃−1

(j+1)(dx(j+1))

=
∫

Aσ(1)×...×Aσ(j+1)

[∫

Aj+2

Pj+2(x(j+1), dxj+2) . . .

. . .

∫

An

Pn(x(n−1), dxn)

]
P (x̃π(1), . . . , x̃π(j+1))

−1(dx1 . . . dxj+1)

=
∫

Aσ(1)×...×Aσ(j+1)

[∫

Aj+2

Pj+2(x(j+1), dxj+2) . . .

. . .

∫

An

Pn(x(n−1), dxn)

]
Px̃−1

(j+1)(dxσ(1) . . . dxσ(j+1))

which, by condition (a) of Proposition 3.2, can be written in the form

∫

Aσ(1)×...×Aσ(j+1)

[∫

Aj+2

Pj+2((xσ(1), . . . , xσ(j+1)), dxj+2) . . .

. . .

∫

An

Pn((xσ(1), . . . xσ(n−1)), dxn)

]
Px̃−1

(j+1)(dxσ(1) , . . . , dxσ(j+1))

= P (x̃(n) ∈ A1 × . . .×An).

This proves that (x̃1, x̃2, . . .) and (x̃π(1), x̃π(2), . . .) have identical p.d.. Since any
finite permutation can be derived from (1, 2, . . .) by a finite number of exchanges of
adjacent elements, the previous assertion extends to any finite permutation. Thus,
P is exchangeable.

Remark. There is an equivalent formulation of condition (a) of Proposition 3.2
which highlights the role of the empirical measure en(x̃(n)) in reducing the com-
plexity of the observable element x̃(n), w.r.t. the predictive p.d. of x̃n+1. In
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the same setting as in Theorem 3.1, let x and y be elements of N c such that
(y1, . . . yn−1) is a permutation of (x1, . . . xn−1). Then, by condition (a) of Proposi-
tion 3.2, Pn(x̃(n−1)(x), ·) = Pn(x̃(n−1)(y), ·) and this is tantamount to saying that

Pn(x̃(n−1)(x), ·) = fn(en−1(x̃(n−1)(x)), ·)
for x in N c. Conversely, this equality entails condition (a) of Proposition 3.2.

Example 3.3. Theorem 3.1 can be exploited to prove that

Pn(x(n−1), A) :=
∫

A

α(y)
β(h(n−1)(x1, . . . xn−1), n− 1)

β(hn(x1, . . . xn−1, y), n)
µ(dy) (A ∈ X , n = 2, 3, . . .)

P1(A) :=
∫

A

α(y)
1

β(h1(y), 1)
µ(dy) (A ∈ X )

form a system of predictive p.d.’s of an exchangeable law provided hn is a symmetric
function for any n, and α, β, µ are chosen in such a way that P1 and Pn turn out to
be probability measures for every n and x(n−1). From the theory in Diaconis and
Ylvisaker (1979), general exponential families together with their conjugate priors
yield predictive p.d.’s of the above type. As an example of non exponential model
with predictive p.d.’s of that very same type, consider the uniform distribution on
[0, β̃] where β̃ is a r.v. with Pareto law. See next Example (7.7).

Theorem 3.1 and Proposition 3.2 can be used to insist on the following point:
adoption of improper priors can give rise to incompatibility with (σ-additive) ex-
changeability of observations.
Example 3.4. In many textbooks we read that

Pn+1(x(n), {x}) =
1
x!

n
1
2+

∑n

i=1
xi

Γ( 1
2 +

∑n
i=1 xi)

Γ( 1
2 +

∑n
i=1 xi + x)

(n + 1)
1
2+

∑n

i=1
xi+x

(n = 1, 2, . . . ; x, x1, . . . ∈ {0, 1, . . .}) is the predictive distribution of x̃n+1 when the
x̃k are i.i.d. Poisson observations conditional on the expectation θ̃, and the p.d. of θ̃
is “improper” with density ∝ (1/

√
θ)1(0,+∞)(θ). To see that this statement is incor-

rect (within the usual measure-theoretic approach), observe that, from Theorem 3.1
and the expression of Pn+1, the following equality

P1{x1} 1
Γ( 1

2 + x1)x2!
= P1{x2} 1

Γ( 1
2 + x2)x1!

has to hold for any (x1, x2) in {0, 1, . . .}2, in order that the x̃n may be conditionally
i.i.d., that is exchangeable. Whence,

P1{x} = P1{0}
Γ(x + 1

2 )√
πΓ(x + 1)

(x = 0, 1, . . .),

and
∑

x≥0 P1{x} = 0 or +∞ according to P1{0} = 0 or > 0. In both cases P1 is
not a probability measure. Thus, there is no probability p.d. for x̃1 which, together
with the above predictive p.d.’s, makes the x̃n exchangeable r.v.’s. The problem
has at least one solution within the class of all finitely additive probabilities.
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4. Application of the Previous Results

If (R2) holds and A ∈ X , then p̃(A) is a version of P (x̃n ∈ A | x̃(n−1), p̃). Hence

P (x̃n ∈ A | x̃(n−1)) = E(p̃(A) | x̃(n−1)). . . . (4.1)

This relation comes in handy when expressing predictive p.d.’s.
Example 4.1. When p̃ has the Ferguson-Dirichlet prior with parameter α, by

a well-known closure property under sampling property of that prior [cf. Ferguson
(1973)] and by (4.1), it is immediate to check that for A in X , n ≥ 2 and c :=
α(X) > 0,

P (1)
n (x̃(n−1), A) :=

α(A) +
∑n−1

i=1 δx̃i

n− 1 + c

is a predictive p.d. for x̃n given x̃(n−1). Moreover,

P
(1)
1 =

α

c

turns out to be the p.d. of x̃1.
Example 4.2. Let π1, π2, . . . be a binary tree of partitions of X,

π1 = {B0, B1}, π2 = {B00, B01, B10, B11}, . . .

and (α0, α1, α00, α01, . . .) a sequence of nonnegative numbers. For all ε = (ε1, . . . , εm)
in {0, 1}m, with m in N, for all n ≥ 2, define

P (2)
n (x̃(n−1), Bε)

=
αε1 + nε1

α0 + α1 + n− 1
αε1ε2 + nε1ε2

αε10 + αε11 + nε1

. . .
αε1...εm + nε1...εm

αε1...εm−11 + αε1...εm−10 + nε1...εm−1

,

if all the denominators are strictly positive and 0 otherwise, where nε is the number
of elements, from x̃(n−1), in Bε. If p̃ has the Pólya tree prior with parameter
(π1, π2 . . . , α0, α1, . . .) [cf. Lavine (1992); cf. also Mauldin, Sudderth and Williams
(1992)], then P

(2)
n is the predictive p.d. for x̃n given x̃(n−1). Analogously, the p.d.

of x̃1 is
P

(2)
1 (Bε) =

αε1

α0 + α1
. . .

αε1...εm

αε1...εm−11 + αε1...εm−10
,

if all the denominators are strictly positive, and 0 otherwise.
In the general setting of the operational point of view mentioned in the previous

section, the following problem is of interest: “If P
(i)
n is the p.d. of x̃n given x̃(n−1)

w.r.t. P (i) for i = 1, 2 and every n = 2, 3, . . ., need this P (i) be exchangeable? If
the answer is yes and (R2) holds, need the law of p̃ be Ferguson-Dirichlet, Pólya
tree, according to i=1,2?”

Some authors have addressed only the latter part of the issue by means of ar-
guments susceptible of some significant simplifications, as suggested by the content
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of Section 3; see, for example, Regazzini (1978), Lo (1991), Walker and Muliere
(1997).

Firstly, as far as the former part of the question is concerned, there is a unique
p.d. P (i) for x̃, w.r.t. which P

(i)
1 and P

(i)
n are the p.d. of x̃1 and the predictive p.d.

of x̃n given x̃(n−1), respectively (n ≥ 2); cf. Proposition 3.1. Moreover, it is almost
immediate to check that (P (i)

n )n≥1 satisfies conditions (a)-(b) of Proposition 3.2
for every x in X∞, so that P (i) is exchangeable in view of Theorem 3.1, for i =
1, 2. Finally, if (R2) holds, the uniqueness of de Finetti’s measure is conducive to
addressing the latter part of the issue in a straightforward way.

A typical exploitation of Theorem 3.1 appears in
Example 4.3. Assume that (Pn)n≥1 is a sequence of Gaussian p.d.’s such that:

E(x̃1) = 0, V ar(x̃1) = 1; E(x̃n+1 | x̃(n)) = mn(s̃n), V ar(x̃n+1 | x̃(n)) = σ2
n for any

n ≥ 1, with s̃n :=
∑n

k=1 x̃k and σ2
n being a strictly positive number independent of

x̃(n). The problem is that of determining mn and σ2
n in such a way that the x̃n turn

out to be exchangeable. Clearly the p.d.’s Pn satisfy condition (a) of Proposition 3.2.
Hence, in view of condition (b) of that Proposition, mn and σ2

n have to obey

1
σ2

n

[{y −mn(sn−1 + x)}2 − {x−mn(sn−1 + y)}2]

=
1

σ2
n−1

[{y −mn−1(sn−1)}2 − {x−mn−1(sn−1)}2] . . . (4.2)

for every x, y in R, sn−1 in R with s0 := 0, m0 := 0, σ2
0 := 1 and n ≥ 1. Whence,

for n = 1, (4.2) takes the form

[(y −m1(x))2 − (x−m1(y))2] = σ2
1(y2 − x2) . . . (4.3)

which, solving for m1(x)2 with y = 0, gives m1(x)2 = (1− σ2
1)x2 + γ2 − 2γx, where

γ := m1(0). By substituting this expression for m1(x)2 on the left-hand-side of
(4.3), we obtain

m1(y)−m1(x)
y − x

=
m1(x)−m1(0)

x
x, y ∈ R, y 6= x.

Thus, there is ρ in R for which m1(x) = ρx+ γ and, by substituting this expression
on the left of (4.3), we have (y + x)(1− ρ2 − σ2

1) = 2γ(1 + ρ). Thus, since σ2
1 > 0,

we can write γ = 0 and σ2
1 = 1− ρ2 with ρ2 < 1.

Next, use induction on n to prove that mn(0) = 0 for every n ≥ 1. We have
proved that this is true for n = 1. Assume it holds for every 1 ≤ k < n. Then (4.2),
with sn−1 = 0, yields the same as (4.3) where σ2

1 is replaced by σ2
n/σ2

n−1. Thus,
mn(0) = 0 and mn(x) = ρnx for some ρn with 1− ρ2

n = σ2
n/σ2

n−1.
Finally, from exchangeability, 0 ≤ E(x̃ix̃j) = E(E(x̃2 | x̃1)x̃1) = ρ for any i 6= j

and nρ = E(x̃n+1s̃n) = E(E(x̃n+1 | s̃n)s̃n) = ρnE(s̃2
n) = nρn{1 + (n− 1)ρ}, i.e.

mn(x) =
ρ

1 + (n− 1)ρ
x (x ∈ R, n ∈ N).
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Furthermore, 1 = E(x̃2
n+1) = E(E(x̃2

n+1 | s̃n)) = σ2
n + ρ2

nn{1 + (n− 1)ρ}, i.e.

σ2
n =

(1− ρ)(1 + nρ)
1 + (n− 1)ρ

(n ∈ N).

5. Predictive Sufficiency

In Section 3 qualitative conditions to obtain an exchangeable P have been indi-
cated, but this is yet far from a concrete specification of P as it is needed in actual
applications. Nevertheless, in Section 4 it has been shown that there are simple and
natural definitions of (Pn)n≥1 which lead to a complete characterization of what is
needed to implement the Bayesian paradigm. The present section deals with what
is implied when one assumes that data can be reduced, without actually altering
previsions, by means of suitable statistics. Hence, these statistics will be called
predictive sufficient. To make precise the notion of predictive sufficiency, assume
that X and T are Polish spaces and keep the notation introduced in the final part of
Section 2. Define a statistic t̃|D to be predictive sufficient w.r.t P if, for any n in N,
there is a r.c.p.d. Qn for (x̃i)i≥n+1 given t̃(en(x̃(n))) such that Qn(t̃(en(x̃(n))), A) is
a version of P ((x̃i)i≥n+1 ∈ A | x̃(n)) for every A in B(X∞). The r.c.p.d. Qn exists
since X∞ and T are Polish spaces.

Predictive sufficiency and its properties have been investigated in a number of
writings among which : Campanino and Spizzichino (1981), Cifarelli and Regazzini
(1980, 1981, 1982), Dawid (1982), Secchi (1987), Muliere and Secchi (1992). More
recently, Bernardo and Smith have devoted Section 4.5 of their book to this subject;
cf. Bernardo and Smith (1994). Related notions of sufficiency have been studied by
Lauritzen (1984, 1988), Diaconis and Freedman (1984). These works are reviewed in
Section 2.4 of Schervish (1995). Here, some basic properties of predictive sufficient
statistics are stated precisely and proved in a somewhat general setting, i.e. when
X and T are Polish spaces. The missing proofs are given in Fortini, Ladelli and
Regazzini (1998).

Proposition 5.1. Let x̃ be the sequence of coordinate r.v.’s of X∞. Then t̃|D
is a predictive sufficient statistic w.r.t. P if, and only if, x̃(n) and (x̃i)i≥n+1 are

conditionally independent given t̃(en(x̃(n))), for every n in N.

Here, conditional independence is understood in the sense that there is a r.c.p.d.
of x̃(n) given t̃(en(x̃(n))) , say Q′

n, such that Q′n(t̃(en(x̃(n))), A)Qn(t̃(en(x̃(n))), B)
is a version of P (x̃ ∈ A×B | t̃(en(x̃(n)))) for every A in B(Xn) and B in B(X∞).

The previous proposition is useful to investigate the connections between pre-
dictive and Fisher’s classical sufficiency.

Lemma 5.1. Let P be an exchangeable probability measure on (X∞,B(X∞))
and let t̃|D be a predictive sufficient statistic w.r.t. P . Then Q′

n(t̃(en(x̃(n))), A) is

a version of P (x̃(n) ∈ A | p̃, t̃(en(x̃(n)))) for every A in B(Xn) and n in N, where p̃
has the same meaning as in (R2).
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Theorem 5.1. Under the same conditions as in Lemma (5.1), there is a set
N in B(M1) with ν(N) = 0 [ν is the de Finetti measure as in (R3)] such that, for
every n in N, t̃|D ◦ en is classical sufficient for {pn : p ∈ N c}, where pn is the n-th
power probability.

Proof. Define Rn : M1 × B(T ) → [0, 1] by

Rn(p,B) = p∞(t̃(en(x̃(n))) ∈ B)

for every p in M1 and B in B(T ). Thus, for any C in B(M1) and A in B(Xn),
∫

C

[ ∫

B

Q′n(t, A) Rn(p, dt)
]
ν(dp)

= P (x̃(n) ∈ A, t̃(en(x̃(n))) ∈ B, p̃ ∈ C) [from Lemma 5.1]

=
∫

C

p∞(x̃(n) ∈ A, t̃(en(x̃(n))) ∈ B)ν(dp) [from (R3)]

Therefore,
∫

B

Q′n(t, A)Rn(p, dt) = p∞(x̃(n) ∈ A, t̃(en(x̃(n))) ∈ B) . . . (5.1)

holds true for any p in N(A,B, n)c where N(A,B, n) ∈ B(M1) and ν(N(A,B, n))
= 0. By separability of Xn and T , the standard argument used, e.g., to prove
Proposition 3.2, entails the existence of a set N ∈ B(M1) with ν(N) = 0, such
that (5.1) remains valid for every p in N c and for every A in B(Xn) and B in B(T ).
Hence, for any p in N c, Q′n(t̃(en(x̃(n))), A) is a version of the conditional probability
of {x̃(n) ∈ A} given t̃(en(x̃(n))), when p∞ is the p.d. of x̃, i.e. pn is the p.d. of x̃(n).
Since Q′n is constant with respect to p ∈ N c, then t̃(en(x̃(n))) is, by definition, a
classical sufficient statistic for {pn : p ∈ N c}.

Theorem 5.1 states that predictive sufficiency implies classical sufficiency - when
P is exchangeable - for ν-almost all p, where ν is the de Finetti measure of P . As
far as the converse is concerned, the following proposition holds true.
Theorem 5.2 Assume that the sequence x̃ of coordinate r.v.’s of X∞ is exchange-
able w.r.t. P . Moreover, let t̃(en(x̃(n))) be a classical sufficient statistic for {pn :
p ∈ N c}, n = 1, 2, . . ., where N is an element of B(M1) with ν(N) = 0. Then, t̃|D
is predictive sufficient w.r.t. P .

When P is exchangeable and p̃ is as in (R2), then t̃|D is called Bayesian sufficient

w.r.t. P if, for each n in N, there is a r.c.p.d., Bn, for p̃ given t̃(en(x̃(n))) such that
Bn(t̃(en(x̃(n))), C) is a version of P (p̃ ∈ C | x̃(n)) for every C in B(M1).
Theorem 5.3. Let the sequence x̃ of coordinate r.v.’s of X∞ be exchangeable
w.r.t. P . Then, w.r.t. P , t̃|D is Bayesian sufficient if, and only if, it is predictive
sufficient.

As far as relations between classical sufficiency and Bayesian sufficiency w.r.t.
a single P are concerned, see Letta (1981). It is worth recalling that Bayesian
sufficiency is usually understood as dependence of the posterior on a specific statistic
for every prior on a fixed parameter space; see, e.g., Schervish (1995).
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The last result of the present section is about a remarkable asymptotic property
of the predictive distribution

Q′′
n(t̃(en(x̃(n))), A) := Qn(t̃(en(x̃(n))), A×X∞) (A ∈ B(X)).

Proposition 5.2. Let t̃|D be a predictive sufficient statistic w.r.t. P , where P
is an exchangeable probability on (X∞,B(X∞)). Then

Q′′
n(t̃(en(x̃(n))), ·) ⇒ p̃ a.s.− P.

The proposition can be proved starting from a result in Doob (1949).

6. Characterization of Exponential Families

In the classical setting of i.i.d. observations x̃1, . . . , x̃n, there are precise state-
ments of this fact : if

∑n
i=1 x̃i is a sufficient (in the classical sense) statistic for a

parametric model, then the p.d. of each x̃i belongs to an exponential family. These
characterizations differ from one another in the regularity conditions that are as-
sumed, in addition to sufficiency, in order to formulate the problem in a reasonable
mathematical form. The present section deals with a similar type of question, when
classical sufficiency is replaced with predictive sufficiency and, consistently with
this, regularity conditions are given in terms of predictive p.d.’s.

Here X is a Borel subset of Rd and P is supposed to be exchangeable and such
that

(I1) t̃|D =
∫

X
xden (en ∈ D) is predictive sufficient w.r.t. P , i.e. there is a

r.c.p.d. Qn for (x̃k)k≥n+1 given
∑n

i=1 x̃i/n such that Qn(
∑n

i=1 x̃i/n,A) is a version
of P ((x̃k)k≥n+1 ∈ A | x̃(n)) for every A in B(X∞) and n in N.

Then, by Proposition 5.2,

Q′′n(
n∑

i=1

x̃i/n, ·) ⇒ p̃(·) . . . (6.1)

a.s.-P . Thus there is N in B(X∞), with P (N) = 0, such that Q′′n(
∑n

i=1 xi/n, ·) ⇒
px(·), for every x in N c and, by Theorem 5.1,

∑n
i=1 xi/n is classical sufficient for

{pn
x : x ∈ N c}, where px denotes the value of p̃ at x.
Moreover, assume the following conditions:
(I2) For every ε > 0 and x in N c there is ηx(ε) for which

lim inf
n

Qn(t̃(en(x̃(n))), G×X∞) ≤ ε

whenever G is any open subset of X such that λ(G) ≤ ηx(ε), λ being the restriction
of the Lebesgue measure to B(X).

(I3) λ(F ) = 0 for every closed subset F of X such that

lim
n

Qn(t̃(en(x̃(n))(x)), F ×X∞) = 0
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for some x in N c.
(I2)− (I3) entail

px and λ are equivalent measures on (X,B(X)) for every x in N c. . . . (6.2)

[To prove (6.2), choose x in N c and to each A1 ∈ B(X) with λ(A1) ≤ ηx(ε)/2
associate an open set GA1 ⊃ A1 such that λ(GA1) ≤ ηx(ε). Then, from (6.1) and
Theorem 2.1 in Billingsley (1968),

px(A1) ≤ px(GA1) ≤ lim inf
n

Qn(t̃(en(x̃(n))), GA1 ×X∞) ≤ ε [from (I2)],

i.e. px is absolutely continuous w.r.t. λ.
Conversely suppose that px(A1) = 0 for some x in N c. Then, for every closed

subset FA1 of A1, by Theorem 2.1 in Billingsley (1968),

0 ≤ lim sup
n

Qn(t̃(en(x̃n(x))), FA1 ×X∞) ≤ px(FA1) = 0

which, by means of (I3), yields λ(A1) = 0.]
Plainly, (6.2) implies that px is absolutely continuous w.r.t. py, whenever x and

y are in N c. It is now possible to state the main result of this section, i.e. that the
de Finetti measure ν of P is supported by an exponential family.

Theorem 6.1. Let X be a Borel subset of Rd and P be any exchangeable law
on (X∞,B(X∞)), satisfying conditions (I1) − (I3). Then, there are measurable
functions: α : M1 → R, β : M1 → Rd and γ : X → (0, +∞) such that for every
z ∈ X

lx(z) := γ(z) exp{α(px)+ < β(px), z >}
is a density function of px w.r.t. λ, for every x in N c.

It follows from
∫

X
lxdλ = 1 that eα(px) = ρ(β(px)). Hence, {px : x ∈ N c}

reduces to a family of p.d.’s whose members are completely determined by the
assignment of the d-dimensional parameter β̃ = β(p̃). Therefore, in de Finetti’s
representation (R3) of P , the measure ν can be replaced with νβ̃ := ν ◦ β̃−1, defined
on (Rd,B(Rd)), to obtain, for every B ∈ B(X∞),

P (B) =
∫

Rd
(Exβ)∞(B)νβ̃(dβ) where, Exβ(B) := ρ(β)

∫

B

γ(z)e<β,z>dz.

This fact is of practical primary importance when P has actually to be specified.
Proof of Theorem 6.1. Let l∗x be a density of px w.r.t. px0 , where x0 is a

fixed element of N c and x varies in the same set. Then, by Theorem 5.1, (6.2) and
a well-known result due to Halmos, Savage and Bahadur [cf., e.g., Lemma 2.24 in
Schervish (1995)],

n∏

i=1

l∗x(zi) = gpx,n(
n∑

i=1

zi) (n = 1, 2, . . .) . . . (6.3)
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holds true for λn-almost all (z1, . . . zn) in Xn, and for a suitable measurable function
gpx,n : X(n) → (0,+∞), where X(1) := X, X(n+1) := X(n) + X. Due to Theorem
2.1 in Diaconis and Freedman (1990), (6.3) yields

l∗x(z) = exp{α(px)+ < β(px), z >}
for x ∈ N c and for λ-almost all z in X. Since l∗x = lx/lx0 (a.e.-λ), where ly denotes
a density of py w.r.t. λ, the thesis follows by putting γ = lx0 .

The following examples illustrate how particular exponential families could be
specified.

Example 6.1. (Gaussian model with known precision). Suppose that x̃ is a
(potentially) infinite sequence of real-valued measurements of a physical property
of a given substance. Assume that the elements of x̃ are exchangeable and that
their p.d. P satisfies (I1) − (I3). Hence, from Theorem 6.1, the elements of x̃
are conditionally i.i.d. given a real-valued r.v. β̃ with p.d. Exβ̃ . In this case,
many individuals might think of the expected value of Exβ̃ as the unknown value
of the physical property of interest. Thus we can assume that they judge Exβ̃ to
be completely determined when the expected value of the above physical property
is assigned. This justifies the identification of β̃ with some one-to-one function of
the expected value of Exβ̃ . Such expectation, as it is well-known, coincides with
{−ρ′(β)/ρ(β)}. Cf. Chapter 12 in Hoffmann-Jørgensen (1994). We wonder whether
these conditions are consistent with the additional assumption that the above one-
to-one function is the identity mapping, that is

−ρ′(β)
ρ(β)

= β (β ∈ R) . . . (6.4)

Integration of (6.4) together with the definition of Exβ , gives

ce
β2

2 =
1

ρ(β)
=

∫

R
γ(x)eβxdx (β ∈ R)

which entails γ(x) = c1 exp(−x2/2).
Thus, the Gaussian family with known variance (= 1) and unknown mean is the

sole statistical model which is consistent with (I1)− (I3) and (6.4).
A complete specification of P requires assessment of νβ̃ . Here, two different

“strategies” - both of a predictive nature - are illustrated. The former aims at
searching for any prior νβ̃ such that E(x̃n+1 | x̃(n)) takes the form of a convex
combination of 1

n

∑n
k=1 x̃k and of E(x̃1), for every n. It is well-known that such

property holds true if and only if

νβ̃(dβ) ∝ exp{− 1
2σ2

0

(β − E(x̃1))2}dβ (β ∈ R).

Cf. Theorem 3 in Diaconis Ylvisaker (1979).
Assume now that, in the light of additional information, E(x̃n+1 | x̃(n)) has to be

positive. Consequently, one could search for any prior w.r.t. which E(x̃n+1 | x̃(n))
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is presentable as the expectation of a distribution truncated on [0, +∞), provided
such distribution depends on x̃(n) only through 1

n

∑n
k=1 x̃k [from (I1)] and becomes

more and more concentrated around β̃ as n → +∞ [from Proposition 5.2]. As a
typical illustration of this case consider

E(x̃n+1 | x̃(n)) =

∫ +∞
0

x exp{−n
2 [x− 1

n (
∑n

k=1 x̃k + γ)]2}dx∫ +∞
0

exp{−n
2 [x− 1

n (
∑n

k=1 x̃k + γ)]2}dx
. . . (6.5)

Does there exist νβ̃ for which (6.5) holds true for every n and for some suitable γ?
To answer this question, denote the right-hand-side of (6.5) by fγ,n(

∑n
k=1 x̃k) and

rewrite (6.5) with n = 1:

∫
R βe−

1
2 (x̃1−β)2νβ̃(dβ)

∫
R e−

1
2 (x̃1−β)2νβ̃(dβ)

= fγ,1(x̃1)

i.e.
{fγ,1(x̃1)− x̃1}

∫

R
e−

1
2 (x̃1−β)2νβ̃(dβ) =

d

dx̃1

∫

R
e−

1
2 (x̃1−β)2νβ̃(dβ).

Integration of this equation gives
∫

R
e−

β2

2 +βx̃1νβ̃(dβ) = ceFγ,1(x̃1) . . . (6.6)

with Fγ,1(x̃1) =
∫ x̃1

0
fγ,1(u)du. Thus, the answer is yes provided c exp(Fγ,1(x̃1)) is a

moment generating function and, in such case, (6.6) has a unique solution. In fact,
write φγ(x̃1) for the denominator of (6.5) with n = 1, and observe that it satisfies
equation

fγ,1(x̃1)dx̃1 = d log φγ(x̃1) + (x̃1 + γ)dx̃1

i.e.

c exp{Fγ,1(x̃1)} = kφγ(x̃1) exp{γx̃1 +
x̃2

1

2
}

= k′
∫ +∞

0

e−
1
2 β2+β(γ+x̃1)dβ.

Combining this with (6.6), and recalling the uniqueness theorem for Laplace trans-
forms, gives

νβ̃(dβ) = −γeβγ1(0,+∞)(β)dβ

where γ ∈ (−∞, 0) in order that νβ̃ may be a probability measure. Now it is an
easy task to verify that (6.5) is valid for every n if and only if νβ̃ has the previous
form, that is an exponential distribution with parameter −γ.

Example 6.2. (Gamma model with unknown scale parameter). Let x̃ denote
a sequence of exchangeable interarrival times, in a process of emission of particles
from a radioactive source. Assume that the p.d. of x̃ obeys (I1) − (I3). Then,
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X ⊂ [0, +∞) and Exβ̃ describes a conditional p.d. for any interarrival time given
β̃. In this setting, arrival rate (=intensity) of the process is a characteristic of
paramount importance and, thus, let us suppose that Exβ̃ is completely determined
by the specification of the value of that rate. Hence, think of β̃ as a one-to-one
function of the (random) arrival rate. Afterwards define the expected interarrival
time - under Exβ - as the reciprocal of the intensity when β is the value taken
by the above one-to-one mapping. Positive linear mappings cannot be used in the
present case. In fact, for them we have

−ρ′(β)
ρ(β)

=
c

β
(β > 0)

for some strictly positive c. This entails

kβc =
∫ +∞

0

γ(x)eβxdx (β > 0)

which is absurd since λ({x > 0 : γ(x) > 0}) > 0. Whence, we can try to obtain a
consistent specification of Exβ̃ by assuming β̃ = −α̃, where α̃ denotes the arrival
rate and, therefore,

ρ′(β)
ρ(β)

=
c

β
(β < 0) . . . (6.7)

i.e.

kα−c =
∫ +∞

0

γ(x)e−αxdx (α > 0)

which yields γ(x) = xc−1. Thus, if P obeys (I1)− (I3) and if Exβ is supposed to be
determined by the arrival rate and (6.7) holds, then Exβ is the gamma distribution
with parameters c > 0 and α = −β > 0.

7. Predictive Sufficiency and Parametric Models

Suppose that t̃|D is a predictive sufficient statistic with M∗
1 in B(M1) and

ν(M∗
1 ) = 1. In view of the definition of predictive sufficiency [cf. Section 5],

Q′′
n(t̃(en(x̃(n))), A), with A in B(X), is a version of P (x̃n+1 ∈ A | en(x̃(n))). ¿From

now on, Q′′
n will be thought of as a measurable function of T into M1. This is justi-

fied by the factorization theorem [see, e.g., Hoffmann-Jørgensen (1994), Section 6.4].
Moreover ν∗, ν∗n, ν∗∞ will denote the p.d.’s of t̃(p̃), t̃(en(x̃(n))) and (t̃(en(x̃(n))))n≥1,
respectively.

The previous section showed, under somewhat restrictive conditions, how the
existence of a predictive sufficient statistic can lead to represent an exchangeable
P as a mixture of the p.d.’s of sequences of i.i.d. r.v.’s with common distribution
from an exponential family. Reduction of the support of ν by low-dimensional pa-
rameters is of great moment for the actual assessment of P and the implementation
of predictive Bayesian methods. Hence, when modelling uncertainty in terms of
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observables is thought of as primary, it is worth enquiring into the origins of para-
metric inference from predictive sources. This is the same as investigating under
what qualitative assumptions on predictive p.d.’s, P disintegrates into distributions
which make the observable coordinate r.v.’s i.d.d., and which depend on an informa-
tive low-dimensional parameter. Assume, for instance, that the actual judgements
of an individual are consistent with the following “robustness” condition: small
departures of t̃|D from t produce departures of Q′′n(t̃, ·) from Q′′

n(t, ·) which are uni-
formly small w.r.t. n. As an aid in the precise formulation of this idea, consider a
countable π-class G ⊂ B(X) such that σ(G) = B(X) and P1(∂A) = 0 for each A in
G, where

P1(·) :=
∫

X∞
p̃(x, ·)P (dx).

Now observe that by (R3) and by the continuity of t̃, we get the following imme-
diate, fundamental fact: the set S of sequences (t̃(en(x(n))))n≥1 that converge has
probability 1. Whence, the above mentioned robustness condition states that there
exists S′ ⊂ S with ν∗∞(S′) = 1 and with the following property.

(S1) To each (tn)n≥1 in S′, A in G and ε > 0 corresponds some δ = δ((tn)n≥1, A, ε)
such that supn≥n2

|Qn(tn, A)−Qn(t′n, A)| < ε for some n2 in N, whenever (t′n)n≥1 ∈
S′ and supn≥n1

dT (t′n, tn) < δ for some n1 in N, dT being a metric for T .

The formulation of the next result involves the usual definition of completion
which differs from the one recalled in Section 2. Given a probability space (Ω,F , P )
and a sub-σ-algebra H of F , the σ-algebra H of all subsets of Ω defined by G4M
with G ∈ H, M ⊂ N ∈ F and P (N) = 0, is called completion of H. P defined by
P (G4M) = P (G) is thought of as the completion of the restriction of P to H. We
are now in a position to prove

Theorem 7.1. Let X, T be Polish spaces and P an exchangeable probability
on (X∞,B(X∞)). Assume that t̃ is continuous on M∗

1 with ν(M∗
1 ) = 1, and that

t̃|D is predictive sufficient. Then, if (S1) holds true, there is a function g : T → M1,

measurable w.r.t. B(T )/B(M1), such that p̃ = g(t̃(p̃)) a.s.-P , and

P (A) =
∫

T

g∞(θ,A)ν∗(dθ) for all A in B(X∞).

Proof. First, since

0 = P1(∂A) =
∫

X∞
p̃(x, ∂A)P (dx) (A ∈ G)

and G is countable, there is F1 in B(X∞) with P (F1) = 1 and such that p̃(x, ∂A) = 0
for all x in F1 and A in G.
We will prove that there is a (B(T )/B(M1))-measurable function g for which p̃ =
g(t̃(p̃)) holds true with probability 1. Define

F = F1 ∩ {en(x̃(n)) ⇒ p̃, Q′′
n(t̃(en(x̃(n)))) ⇒ p̃, (t̃(en(x̃(n))))n≥1 ∈ S′}.
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Then P (F ) = 1, in view of (3), Proposition 5.2, (S1) and the definition of F1. For
a particular x in F , (t̃(en(x(n)))n≥1 belongs to S′. Hence, for any x′ in F for which
t̃(p̃(x′)) = t̃(p̃(x)) and for any A in G, we have dT (t̃(en(x(n))), t̃(en(x′(n)))) < δ, for
large n. Thus, by (S1),

|Q′′n(t̃(en(x(n))), A)−Q′′n(t̃(en(x′(n))), A)| < ε. . . . (7.1)

holds true for large n. Moreover, by the definition of F and Theorem 2.1 in Billings-
ley (1968), Q′′

n(t̃(en(x(n)), A) [Q′′
n(t̃(en(x′(n))), A), respectively] converges to p̃(x,A)

[p̃(x′, A), respectively]. Combining this fact with (7.1) gives |p̃(x,A)− p̃(x′, A)| < ε,
i.e., from the arbitrariness of ε,

p̃(x,A) = p̃(x′, A).

Since B(X) = σ(G), the previous equality yields p̃(x) = p̃(x′) for all x, x′ in F
such that t̃(p̃(x)) = t̃(p̃(x′)). Thus p̃(x) = Q′′(t̃(p̃(x))) for all x in F and for some
function Q′′ : T0 → M1 with T0 = t̃(p̃(F )).

Fix p0 in M1 and set g = Q′′1T0+p01T c
0
. We have to prove that g is (B(T )/B(M1))-

measurable. First we show that T0 ∈ B(T ). Since t̃(p̃) is measurable, by the
Lusin continuity theorem and the Prokhorov approximation theorem [cf., e.g., Doob
(1994), Sections V.15 and IV.6], there is a compact Kj ⊂ F , such that P (Kj) >
1 − 1/j, with the property that t̃(p̃) is continuous on Kj . Then t̃(p̃(Kj)) ⊂ T0

is compact and ν∗(t̃(p̃(Kj)) > 1 − 1/j. Furthermore B := ∪j t̃(p̃(Kj)) ⊂ T0 has
ν∗-probability 1 and, by the customary definition of completion, this implies that
T0 belongs to B(T ).

Next, we prove that t 7→ Q′′(t, A) is continuous on T0, for each A in G. In
fact, by (S1), if t, t′ belong to T0 and dT (t, t′) < δ/2, there are x, x′ in F such that
t = t̃(p̃(x)), t′ = t̃(p̃(x′)), and

|Q′′n(tn, A)−Q′′n(t′n, A)| < ε

for large n, with tn = t̃(en(x(n))), t′n = t̃(en(x′(n))). Hence |Q′′(t, A)−Q′′(t′, A)| ≤ ε,
which shows that t 7→ Q′′(t, A) is continuous on T0, for each A in G. Then, in view
of the measurability of T0 w.r.t. B(T ), Q′′(·, A) : T0 → R is measurable w.r.t. the
same σ-algebra.

To prove that Q′′ is (B(T )/B(M1))-measurable, consider the σ-algebra D gen-
erated by ∪A∈Gσ({p ∈ M1 : p(A) ≤ x} : x ∈ R) and B′ = {B ∈ B(X) :
{p ∈ M1 : p(B) ≤ x} ∈ D for all x in R} ⊃ G. Then, {p : p(X) ≤ x} = ∅
or M1 according to x < 1 or x ≥ 1, and, hence, {p : p(X) ≤ x} ∈ D, i.e.
X ∈ B′. Moreover, if B1, B2 ∈ B′ and B1 ⊂ B2, then {p : p(B2 \ B1) > x} =
{p : p(B2) − p(B1) > x} = ∪r∈Q{p(B2) > r} ∩ {p(B1) < r − x} ∈ D, which
implies that B2 \ B1 ∈ B′. Finally, if Bn ∈ B′ (n ≥ 1) and Bn ↑ B, then
{p(B) ≤ x} = {lim p(Bn) ≤ x} = ∩n≥1{p(Bn) ≤ x} ∈ D so that B ∈ B′. This
shows that B′ is a λ-class and, by Theorem 2 on page 7 of Chow and Teicher (1997),
B(X) ⊃ B′ ⊃ σ(G) = B(X). Hence, D = σ(∪A∈B(X)σ({p(A) ≤ x} : x ∈ R)) =
B(M1), i.e., ∪A∈Gσ({p(A) ≤ x} : x ∈ R) generates B(M1) and, therefore, Q′′ is
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(B(T )/B(M1))-measurable if (Q′′)−1({p(A) ≤ x}) ∈ B(T ) for all A in G and x in
R. In fact, for any A in G and x in R:

(Q′′)−1({p(A) ≤ x}) = {t : Q′′(t) ∈ {p(A) ≤ x}} = {t : Q′′(t, A) ≤ x} ∈ B(T )

in view of the previous part of this proof.
Combination of this statement with measurability of T0 shows that g is (B(T )/B(M1))-
measurable. To complete the proof, observe that p̃ = g(t̃(p̃)) a.s.-P , and extend
de Finetti’s representation (R3) to (X∞,B(X∞), P ). Finally, use the change-of-
variable formula.

Theorem 7.1 states that the r.v.’s x̃n are conditionally i.i.d. [w.r.t. the com-
pletion P of P ] given θ̃ = t̃(p̃). In view of the meaning of θ̃, ν∗ can be assessed
by thinking of it as an approximating p.d. of the p.d. of t̃(en(x̃(n))) when n is
sufficiently large. The attention to be paid to the evaluation of ν∗ is a logical con-
sequence of the special status of the predictive sufficient statistic t̃|D in modelling
uncertainty in terms of observables.

As far as assumptions in Theorem 7.1 are concerned, observe that they are
trivially satisfied when t̃ is the identity function, i.e. when no actual reduction of
data is assumed in the process of assessing predictive beliefs. Hence, it seems that
(S1) may be necessary in order that t̃(p̃) plays the same role as p̃ in de Finetti’s
representation of P . The proof of Theorem 7.1 shows that g(·, A) is continuous
on T0 with ν∗(T0) = 1. Thus the necessity of (S1) will be investigated under the
additional hypothesis that g(·, A) is continuous almost certainly.

Theorem 7.2. Let X, T be Polish spaces and P an exchangeable probability
on (X∞,B(X∞)). Assume that t̃ is continuous on M∗

1 with ν(M∗
1 ) = 1, and that

t̃|D is predictive sufficient. If there is a function g : T → M1, measurable w.r.t.

B(T )/B(M1), such that, for every A in G, g(·, A) is continuous ν∗-a.s. and

P (A) =
∫

T

g∞(θ,A)ν∗(dθ) for all A in B(X∞), . . . (7.2)

then (S1) holds true.

Proof. From (7.2) it follows that there exists F0 in B(X∞) with P (F0) = 1
and such that p̃(x) = g(t̃(p̃(x))) for every x in F0. Define G1 = ∩A∈G{t ∈ T :
g(·, A) is continuous in t}, F1 = (t̃(p̃))−1(G1). Then the set

F = F0 ∩ F1 ∩ {en(x̃(n)) ⇒ p̃, Q′′
n(t̃(en(x̃(n)))) ⇒ p̃}

has probability 1. Moreover S′ := {(t̃(en(x(n))))n≥1 : x ∈ F} belongs to B(T∞)
and ν∗∞(S′) = 1, by the same argument used, in the proof of Theorem 7.1, to show
that T0 belongs to B(T ) and ν∗(T0) = 1.

Let (tn)n≥1 be any fixed point in S′. Then tn = t̃(en(x(n))) for some x in
F . Since t := t̃(p̃(x)) belongs to G1, to every A in G and ε > 0 corresponds
δ = δ(t, A, ε) > 0 such that |g(t, A)− g(t′, A)| < ε/2, whenever t′ belongs to G1 and
dT (t, t′) < δ.

Now, if (t′n)n≥1 belongs to S′ and n1 is such that supn≥n1
dT (tn, t′n) < δ/2,

then t′n = t̃(en(x′(n))) for some x′ in F . Moreover, since t̃(en(x(n))) → t̃(p̃(x)),
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t̃(en(x′(n))) → t̃(p̃(x′)), we have dT (t̃(p̃(x)), t̃(p̃(x′))) < δ. This, together with the
fact that t̃(p̃(x)) and t̃(p̃(x′)) belong to G1, yields |g(t̃(p̃(x)), A)− g(t̃(p̃(x′)), A)| <
ε/2, i.e.

|p̃(x,A)− p̃(x′, A)| < ε

2
. . . . (7.3)

On the other hand, Q′′n(t̃(en(x(n))), A) → p̃(x, A) and Q′′
n(t̃(en(x′(n))), A) → p̃(x′, A)

(as n → +∞), since x and x′ belong to F . Finally, combining this fact with (7.3),
gives supn≥n2

|Q′′
n(t̃(en(x(n))), A)−Q′′

n(t̃(en(x′(n))), A)| < ε.
In connection with applicability of Theorem 7.1, it is worth pointing out that

specification of ν∗∞ and (Q′′n)n≥1 is not needed. In point of fact, assumptions in The-
orem 7.1 concern qualitative aspects of the above mentioned distributions. Then,
one has simply to decide whether or not one’s judgements on those qualitative as-
pects agree with what is stated by assumption. If the answer is yes, de Finetti’s
representation of P can be given in a parametric form justified by large-sample ar-
guments on observable random entities. Further propositions, which give conditions
in order that de Finetti’s representation holds in a parametric form, are proved in
Fortini, Ladelli and Regazzini (1998).

When (Q′′n)n≥1 is specified, Theorem 7.1 can be exploited to deduce the precise
form of the ingredients of a parametric representation.

Example 7.1. Let X = [0, +∞) and (x̃n)n≥1 be a sequence of exchangeable
r.v.’s such that the p.d. of x̃(n) has a density (w.r.t. the Lebesgue measure) defined,
for any (x1, . . . xn) in (0, +∞)n and n in N, by

αxα
0 (α + n)−1(x0 ∨ x1 ∨ . . . ∨ xn)−α−n . . . (7.4)

where α and x0 are strictly positive constants. Hence,

α + n

α + n + 1
(x0 ∨ x1 ∨ . . . ∨ xn)α+n

(x0 ∨ x1 ∨ . . . ∨ xn ∨ x)α+n+1
. . . (7.5)

represents a predictive density, at x > 0, for x̃n+1 given x̃(n) = (x1, . . . xn). Define
t̃(en) = sup(Support(en)). Clearly, t̃(en) = Mn(x(n)) := x1 ∨ . . . ∨ xn is a predic-
tive sufficient statistic. Hence, de Finetti’s representation can be established in a
parametric form with t̃(p̃) = sup(Support(p̃)) if we show that:

• Mn(x̃(n)) converges a.s.;

• t̃(p̃) obeys the continuity condition assumed in Theorem 7.1.

Apropos of these points note that the p.d. function of Mn(x̃(n)) at x > 0 can be
deduced from (7.4) in the following form

αxα
0 (α + n)−1

∫

[0,x]n
(x0 ∨ x1 ∨ . . . ∨ xn)−α−ndx1 . . . dxn =

αxα
0 (α + n)−1n!

∫ x

0

dxn

∫ xn

0

dxn−1 . . .

∫ x2

0

(x0 ∨ x1 ∨ . . . ∨ xn)−α−ndx1
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by using the symmetry of the integrand. Hence, a density at x for Mn is

nαxα
0

α + n

xn−1

(x0 ∨ x)α+n
.

Thus, the p.d. of Mn converges weakly to the Pareto distribution with parameters
α, x0. Hence, since the monotone sequence (Mn(x̃(n)))n≥1 converges in probability
to a real r.v. [and hence a.s.], then the limiting r.v. θ̃ is greater than x0 with
probability 1. At this stage it is easy to show that (S1) holds for every sequence
(Mn)n≥1, with G = {[0, x] : x ∈ Q+}, and that (7.5) converges to the uniform
density

1
θ̃
1[0,θ̃](x)

with probability 1. These remarks lead us to conjecture that the p.d. of x̃ is a
mixture of distributions of i.i.d. r.v.’s, having the uniform distribution on [0, θ̃], θ̃
being a Pareto p.d.. In fact, equality

αxα
0 (α + n)−1(x0 ∨ x1 ∨ . . . ∨ xn)−α−n =

∫ +∞

x0

{
n∏

k=1

1
θ
1[0,θ](xk)} αxα

0

θα+1
dθ

is valid for any x1, . . . xn in X and n in N. Therefore, since sup(Support(·)) is
continuous on the set Ux0 of all uniform p.d.’s supported by [0, θ] for any θ > x0,
then, by recalling Proposition 5.2, sup(Support(·)) is continuous on M∗

1 := D∪Ux0 .
Thus, by Theorem 7.1, if x̃n are exchangeable r.v.’s according to (7.4), then they
are conditionally independent and identically distributed, given a Pareto r.v. θ̃ with
parameters α, x0, and P{x̃1 ≤ x | θ̃} = (x/θ̃)1[0,θ̃](x) + 1(θ̃,+∞).
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