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1. Introduction

Let z = (Z, : n € N) be a sequence of random variables with values in a Polish space
X. Suppose 7 is exchangeable or, equivalently, Z is independent and identically distributed
(i.i.d.) conditionally on some random probability measure 7 on the Borel o-field on X, B(X).
In Theorem (7.2) of Fortini, Ladelli and Regazzini (2000) — referred to as FLR in the
sequel — conditions are given for Z to be i.i.d. conditionally on #(7), where ¢ is a given
transformation. In fact, the hypotheses of Theorem (7.2) concern sequences of predictive
sufficient statistics, and are conceived to have some statistical content within a Bayesian
predictive framework.

In so far as the sole representation part is concerned — i.e., finding conditions under
which # is i.i.d. given (), where ¢ is an assigned transformation — the hypotheses of
Theorem (7.2) are sufficient but not necessary.

The aim of this paper is to take up again the representation part to provide necessary
and sufficient conditions. From a statistical point of view, such conditions are useful for
investigating existence of underlying parametric models for the distribution of .

In particular, two conditions are given. The first one (that will be denoted as condition
(b)) is of the abstract type. Nevertheless, by using it, various other sufficient conditions are
easily obtained, included the one proposed in FLR. Moreover, it alows a shorter and more
direct proof of Theorem (7.2). The second condition (condition (c)) applies to the specia case
where 7 is continuous (an assumption made also in Theorem (7.2)). In this case, however, it
has some statistical meaning.

The problem studied in this paper is different from the one tacled in Olshen (1974). In
the latter, among other things, an exchangeable sequence 7 is shown to bei.i.d. conditionally
on some real random variable M. Such result, clearly, is based on the Borel isomorphism
theorem. In our case, instead, we investigate whether 7 isi.i.d. conditionally on 7(7), where t
is a given transformation (possibly, suggested by a sufficient statistic) and p is the almost sure
weak limit of the empirical measures.

A further and minor goal of this paper is to start, in a particular case, an analysis of
Bayesian nonparametric problems for non exchangeable data. Suppose 7 is stationary or,
equivalently, 7 is ergodic conditionally on some random probability measure g on B(X).
Then, conditions (b) and (c) are still working, apart from "i.i.d." is replaced by "ergodic" and p
by ¢. In this framework, incidentally, the set of ergodic probability measures is shown to be a
Borel set, and almost sure weak convergence of a certain sequence of empirical measures is
proved.

The basic difference between the exchangeable and the stationary case lies in the
empirical measure to be used. Up to a proper choice of the latter, conditions (b) and (c) work
for alarge class of invariant distributions for x.

The paper is organized as follows. Section 2 is devoted to preliminaries and notation,
Section 3 includes the statement of Theorem (7.2), while Sections 4 and 5 contain the main
results, in the exchangeable and stationary case, respectively.

2. Preliminaries and notation
The basic notation is that of FLR, with some slight adaptions in view of the last
Section 5.



Let S be any set. Then, S isthe space of all sequences x = (z1, 3, ...) of elements of
S, and z,, isthe n-th coordinate map on S, that is,

Tp(z) =z, fordlz=(z,x,,..) € S®andn € N.

When S is atopologica space, B(S) denotes the Borel o-field on S, and S is equipped with
the product topology. By a Polish space, it is meant a topologically complete separable space.
If S isPolish, then S is Polish, too, and B(S>°) = B(S)°.

Given ao-fild £ on S, let M = M (&) be the set of probability measures (p.m.'s) on
&, and let P =P(E) be the o-field on M generated by the sets {p € M : p(A) € B}, for
A€ & and B € B(]0,1]). Any measurable function f : (Q,.A) — (M, P), where (2,.A) is
any measurable space, is called arandom p.m.. Thus, afunction f on (2, .4) isarandom p.m.
whenever f(w) isapm.on& forw € Q,andw — f(w)(A) is.A-measurablefor A € £.

We will consider a sequence of observable random elements taking values in a Polish
space X . For our purposes, it is convenient to work in the coordinate space (X, B(X*°)) and
to identify the sequence of observables with 7 := (Zy,To,...). Moreover, we let
M, = M(B(X)) and My, = M(B(X*>)), i.e., M; and M, denote the sets of p.m.'s on B(X)
and on B(X"), respectively. Both M; and M, are equipped with the topology of weak
convergence of p.m.'s. Since X is Polish, M, and M, are Polish, too, and B(M,) and B(M,)
coincide with the o-fields P(B(X)) and P(B(X*))defined earlier.

For every n € N, the empirical measure e,, associated to (74, ..., z,,) is defined as
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where 6, is the unit mass a a. Clearly, e,(x) is a pm. on B(X) for z € X*°, and
x+— ey(r)(A) is Borel measurable for A € B(X), i.e, e, is a random p.m. from
(X, B(X>)) into (M, B(M,)).

A p.m. P on B(X®) is exchangeable if it is invariant under all finite permutations of
X, thatis, if P = P on ! foral functions 7 : X*° — X of the form

’/T(l.la -oos Tpy Tpt1, ) = (':ij ooy Ly Tntls )

for some n € N and some permutation (7, .. ,jn) of (1,...,n). Asusua, P o 7! denotes the
p.m. on B(X>) given by Por1(A) = P(r1(A)). When P is exchangeable, we will aso
say that * = (71, o, ...) isexchangeable under P.

Given p € My, let p> denote the corresponding product p.m., i.e., p*> isthe p.m. on
B(X*°) which makes the coordinate random variables 7, 7, ... i.i.d. according to p. We are
now in a position to state de Finetti's representation theorem for (infinite) exchangeable
sequences.

Theorem 1 (de Finetti's representation theorem)
Let P be a p.m. on B(X>) where X is Polish. Then, the following statements are
equivalent:



(i) P isexchangeable;
(i) Thereisaunique p.m. v on B(M,) such that

= [p>(A)v(dp) forall Ae B(X*>);

(iii) Thereisarandomp.m. p (i.e., aBorel functionp : X* — M) such that,
for each A € B(X™), p™(A) isaversionof P(z € A|p).

Moreover, when P is exchangeable, onehasv(B) = P(p € B) for all B € B(M,) and
e, = p P-as,
where" =- " stands for weak convergence of p.m.'s.

We close this section with the notion of statistic. By definition, a statistic is a
measurable function of the data. In our case, the data are the n-tuple (Z1, ..., Z,) for some n.
Under the exchangeability assumption, the order in which observations appear is not relevant,
and (71, ..., T,,) can be summarized by the empirical measure e,,.

Let

D = {en(z) : z € X*°,n €N}

be the union of the ranges of all the random p.m.'se,,, and let M} be aBorel subset of M; such
that M; > D. Further, let T be a Polish space and ¢ : M; — T a Borel function. Then, for
each n, toe, is Borel measurable on X and is a summary of the data (71, ..., %,).
Accordingly, in Sections 3 and 4 a statistic is meant as the restriction to D, £|D, of any Borel
functiont : M; — T, where M; € B(M,) and M; D D. Inlast Section 5, aslightly different
(but conceptually equivalent) notion of statistic is used.

3. Statement of Theorem (7.2) of FLR

Let P be an exchangeable p.m. on B(X*) and let 7 = (Z,, : n € N) be the sequence of
coordinate random variables on X°. According to Theorem 1, conditionally on some random
p.m. p, T is i.i.d. according to . Fix a Borel function t : M; — T, where T is Polish,
My € B(M,) and M D D, and supposethat v (M) = 1 wherev isasin Theorem 1.

Under these conditions one question is whether, conditionally on % (7), 7 is again i.i.d.
according to p. Answering this question is useful, for instance, for investigating existence of
an underly| ng parametric model for the distribution of . Suppose in fact that, conditionally on
t(p), T isi.i.d. according to 7. Then, p and t(p) play essentially the same role, and a random
parameter 9 can be defined as 6 = t(7). In other terms, the "original random parameter” p,
whose existence is granted by de Finetti's theorem, can be reduced through ¢. As far as? is
concerned, in what follows it should be viewed as any given transformation. However, in a
particular statistical problem, ¢ is typically suggested by some sufficient statistic.

In any case, a positive answer to the earlier question occurs in case



(@ pe M; and g(t(p)) = b, P-as, B
for somefunction g : T — M; such that o(g) C B(T)

where B(T') is the completion of B(T") with respect to the distribution of t(P).
Indeed, under (a), = isi.i.d. (according to p) conditionally on ¢(p). In particular, one
has

P(A) = [g(t)®(A) ¥ (dt) foral A € B(X™)

where v* isthe distribution of #(7) and v* is the completion of v*.

Theorem (7.2) of FLR, quoted in Section 1, just gives conditions for (a). To state it,
various definitions are needed.

First, let P be any p.m. on B(X*). Foreachn € N, P[(Z;: j > n) € -|Ty,...,Tp] IS
called the predictive distribution (at time n). A statistic £|D is predictive sufficient if, for each
n e Nand A € B(X*), onehas

Pl(Z;j:j>n)€ Altoe,] = P[(Tj:j>n) € AT, ...,T,] P-as.

S0, the informal idea is that f|D Is predictive sufficient provided predictive distributions
depend on data only through it. We send back to FLR for more on predictive sufficiency and
for some references therein.
Next, let G C B(X) be a countable 7-class such that o(G) = B(X) and P,(0A) =0
foral A € G, where P, isthe marginal of P on the first coordinate.
Further, for each n, fix afunction @,, on 7' x B(X) such that:
— Qn(t, -)isapm.on B(X)fort e T,
—Qn(-,A)isB(T)-measurablefor A € B(X),
— [ Qu(t, A)pn(dt) = P(Tps1 € At 0 e, € B)
foral A € B(X)and B € B(T), where 1, denotes the distribution of 7 o e,,.
Clearly, such ), exists since X is Polish.
Finally, consider the following condition; cf. condition (7.1) of FLR.

(*) Thereisaset S" € B(T™) satisfying:
— P((toe,) €8) =1,
— Each (t,) € S’ isaconvergent sequence;
— Foreach (t,) € S, A€ Gande > 0, thereisé > 0 such that
|Qn(sn, A) — Qn(t,, A)| < e foral sufficiently large n
whenever (s,) € S’ and
dr(sn,t,) < 6 forall sufficiently large n,

dr being ametric for 7.

We are now able to state Theorem (7.2).



Theorem (7.2) of FLR

Let X, T be Polish spaces, P an exchangeable p.m. on B(X>), andt : M; — T a
Borel function. If |D is predictive sufficient, ¢ is continuous on M, v(M;) =1, and
condition (*) is satisfied, then condition (&) holds.

Finally we note that, if 7|D is predictive sufficient, ¢ is continuous on M; and
v(M;) =1, then condition (*) is necessary in order that (8) holds for a continuous g; cf.
Theorem (7.4) of FLR.

4. The exchangeable case
In this section, P is an exchangeable p.m. on B(X>) and p and v are asin Theorem 1.
For definiteness, setting

E ={z € X* : e,(z) convergesweskly asn — oo},

it is supposed that
p(z) =weaklime,(x) fordlze E

and p(z) =pyfordl z ¢ E, Whereloo isany fixed element of M.
Given any Borel function ¢ : My — T, with M; € B(M,) and M; D D, let us
consider the condition:

(b) t isinjectiveon B, for some B € B(M;) such that v(B) = 1.
Before any comments on (b), we prove that it amountsto (a).

Theorem 2

Let X, T be Polish spaces, P an exchangeable p.m. on B(X>), andt : M; — T a
Borel function. Then, conditions (a) and (b) are equivalent. Moreover, under (a) or (b), the
function g involved in (a) can be taken Borel measurable.

Pr oof

(@ = (b). Under (), thereisaset A € B(X*), P(A) =1, such that p(z) € M; and
gotop(z) =p(x)foral z € A. Then, v(C) = 1 whenever C € B(M;) and C D B(A), i.e,
P(A) has v-outer measure 1. Further, p(A) is an analytic set. Hence, thereis B € B(M;) with
B C p(A) and v(B) = 1. Sincet isinjectiveon B C M, condition (b) holds.

(b) = (a). Since t is injective on B, for each ¢ € t(B) there is precisely one p, € B
such that Z(p;) =t. Fix py € M;, and define g(t) = p; for t € £(B), and g(t) = py for
t € T\t(B). Then, g(t(p)) = p for al p € B. Further, g : T — M, is Borel measurable. In
fact, t(B) € B(T), dueto? isBorel and injective on B, and for the same reason one has



gV H)NT(B) = {t €T(B): po € HY =T(BN H) € B(T) foral H € B(M).

Finadly, let A =7 '(B). Then, P(A) = v(B) = 1 and, for dl = € A, onehasj(x) € M} and
gotop(x)=Dp(x). Hence, (a) holdsfor aBorel function g. (1

A first remark on Theorem 2, even if not essential, is that the function ¢ in condition
(a) can aways be taken Borel measurable. Apart from this fact, two other points need to be
discussed. One is the possible meaning of (b) and the other is that, taking (b) as a starting
point, various other sufficient conditions for (a) can be obtained.

4.1. Meaning of condition (b)

From a statistical point of view, to get condition (@) (which is our goal, as explained in
Section 3), it would be desirable to ask conditions only on the way ¢ summarizes data. More
precisely, it would be desirable to ask conditions on ?\D, in particular on its connections with
predictive distributions, but not on the behaviour of £ on M\ D.

Strictly speaking, thisis not possible in general. Suppose in fact that (D) = 0, choose
any Bord function ¢ on D, and take M| D D to be any Borel set with v(M;) = 1. Then,
apart from trivial cases, ¢ admits two Borel extensions to M}, say #; and 5, such that (b)
holds for ¢; and fails for Z,. In view of Theorem 2, condition (a) holds for ¢; but fails for 7,,

In Theorem (7.2) of FLR, for instance, continuity of ¢ is asked on al M. However, all
other conditions of Theorem (7.2) concern | D only, and also the continuity assumption looks
admissible. Indeed, when # is continuous on D and admits a continuous extension to M (e.g.,
when 7 is uniformly continuous on D), it is natural to take £ on M; as such continuous
extension.

Generally, condition (b) deals with the behaviour of ¢ on M{\D, and in this sense it
does not have an intuitive statistical content. Nevertheless, (b) is aso necessary, and thus one
can think in term of it without any real loss of generality. In addition, (b) makes clear which
properties are requested to ¢ in order that 7 can be reduced through ¢: over a set B of v-
probability 1, ¢ must be able to distinguish between two different weak limits of empirical
measures.

4.2. Other sufficient conditions for (a)

By using Theorem 2, sufficient conditions for (a) can be obtained. Moreover, it is
possible to give a shorter (and more direct) proof of Theorem (7.2). We begin with the latter
point.

Proof of Theorem (7.2) of FLR

Since G is countable and P;(0A) =0 for all A €, there is F; € B(X*) with
P(F) =1 and p(z)(0A) =0 for al z € F; and A € G. Moreover, Q,(t oe,, - ) = P, P-
as., wherethe Q,, are asin condition (*).

Let

F=EnFn{(toe,) cSn{Q.(toen, -)= 7}



Since p(F) is an andytic set and P(F) =1, there is H € B(M;) with H C p(F) and
v(H) =1.Let B= H N M;. By definition of F, continuity of ¢ and condition (*), it follows
that () = B(y) whenever =,y € F andt o p(x) =t o p(y). Hence, t is injective on B, and
sincev(B) = v(M;) = 1, condition (b) holds. By Theorem 2, this concludes the proof. O

Let us turn now to some other sufficient conditions for (a). If assumptions on the
behaviour of £ on M;\ D are allowed, then, by Theorem 2, a plenty of conditions are available.
Because of the remarks in Subsection 4.1, however, we focus on conditions concerning | D
only, apart from continuity of 7 which is asked on all M. Then, one possible candidate is:

(c) Thereisaset A € B(X*), P(A) = 1, such that
lim supy dr (£ 0 en(x),T 0 ex(y)) > 0

whenever z,y € A and

lim infn p(en(x), en(y)) > 0
where dr isametric for 7" and p is Prohorov metric on M.
We recall that Prohorov metric p on M, isgiven by
p(p,q) =inf{e>0:p(A) <q(A°) +eforadl Ae B(X)}
where A° = {u : dx(u, A) < €}, dx being ametric for X.

Theorem 3

Let X, T be Polish spaces, P an exchangeable p.m. on B(X>), andt : M; — T a
Borel function. If # is continuous on M and v(M;) = 1, then conditions (a), (b) and (c) are
equivalent.

Pr oof

Let ¢ be continuous on M; with v(M;) = 1. By Theorem 2, it is enough to prove that
(b) and (c) are equivalent.

(c) = (b). Let E be defined as at the beginning of Section 4. Since p(ANE) is
analytic and has v-outer measure 1, thereis H € B(M;) with H C p(ANE) and v(H) = 1.
Then, (b) holds with B = H N M. To see this, the only non trivial fact is injectivity of t on
B. Fix py, po € B such that p; # ps, and take x; € AN E with p; = p(x;) for i = 1, 2. Then,
Iirsnp(en(a:l), en(z2)) = p(p1,p2) > 0, dueto z1, 2o € E and p; # pe, and thus continuity of

t and condition (c) yield

dr(t(p1), t(p)) = Ii?[bn dr(t o en(x1),t 0 en(xy)) > 0.



(b) = (c). Define A = ENp !(B), note that P(A) = 1, and fix =,y € A such that
liminf, p(e,(x),en(y)) > 0. Then, p(x), p(y) € B and, sincez,y € E,

~

p(p(x), p(y)) = limp(eq(2), en(y)) > 0.
Thus, continuity and injectivity of ¢ on B yield

limdr(t o en(2), 0 ealy)) = dr(t o B(x),t 0 B(y)) > 0.0

By Theorem 3, in the relevant case where? is continuous on M} and v(M;) = 1, (c) is
equivalent to (a). Moreover, in line with the remarks in Subsection 4.1, condition (c) deals
with | D only. Hence, Theorem 3 is an improvement of Theorem (7.2).

Next, given a function f : S — S’ with S and S’ metric spaces (with distances d and
d"), let us cal f "uniformly injective" in case: For each ¢ > 0 there is 6 > 0 such that
d'(f(a), f(b)) > & whenever a,b € S and d(a,b) > . If t is uniformly injective on D, then
condition (c) trivially holds. Thus, by Theorem 3, it is enough for condition (a) that ¢ is
uniformly injective on D and continuous on M, with v (M) = 1.

We close this section by noting that condition (c) becomes more meaningful if
plen(z),en(y)) is translated into a sort of distance between (z,, ...,z,) and (y,,...,yn). TO
this end, it is convenient to replace Prohorov distance with some other equivalent metric. Let
L bethe set of real valued functions f on X such that, for all a,b € X,

|f(a) = f(b)| <1 Adx(a,b).
The so called bounded Lipschitz metric on M, is defined as
dpr(p,q) = supser | [ fdp — [ fdql,

and it can be shown to satisfy p?> < dp;, < 2p (see, e.g., Huber, 1981, Corollary 4.3, p. 33).
Thus, by using dp;, instead of p, condition (c) can be equivaently written as:

(c) Thereisaset A € B(X*), P(A) = 1, such that
lim sup, dr (t 0 e,(x),t 0 en(y)) > 0

whenever z,y € A and

liminf, supger, |%Zlf($z) - %Zlf(yz” > 0.

5. The stationary case
This section includes versions of Theorems 2 and 3 and a convergence result for the
case where P is stationary. Some remarks on Bayesian nonparametric inference for stationary
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data, or more generally for data with invariant distribution, are also given. We begin with a
result asserting that, under general conditions, every invariant p.m. is a unique integral mixture
of extreme points.

Given a measurable space (2,,4) and a class F of measurable functions
f: (A — (Q,A), let T be the set of those p.m.'s P on A which are F-invariant, i.e,
P =Po f~'fordl f € F. Further, let ext Z be the set of extreme points of Z, and let ext Z
be equipped with the trace o-field (ext Z) N P(A). According to Section 2, (ext Z) N P(A) is
generated by the maps @ — Q(A), A € A, from extZ into the reals. We aso recal that a
p.m. P on A is perfect if, for each A-measurable function f : QO — R, thereis B € B(R) such
that B C f(2) and P(f € B) = 1. Next Theorem 4, due to Maitra (1977), unifies results of
Bogoliouboff, de Finetti, Farrel, Kryloff and Varadarayan.

Theorem 4 (Maitra)

Suppose F is countable, A is countably generated and includes the singletons, and
every p.m. on A is perfect. Then, for each P € 7 thereisa unique p.m. p on (ext Z) N P(A)
suchthat P(A) = [ -Q(A)u(dQ) foral A € A.

In our case, (2, A) = (X, B(X*>)) where X is Polish, so that (2,.A) meets the
conditions of Theorem 4 and the o-field (ext Z) N P(A) reducesto B(ext 7). If F isthe class
of al finite permutations of X, then Z is the set of exchangeable p.m.'s and ext Z the set of
product p.m.'s, i.e, extZ = {p> : p € M;}. Hence, the equivalence between (i) and (ii) in
Theorem 1 follows from Theorem 4, after noting that 1 and v are connected by the relation
p=rvo@¢ !, where ¢(p) = p>® for p € M. In other terms, at least formally, de Finetti's
theorem can be embedded into a more general result on invariant p.m.'s.

Since de Finetti's theorem is fundamental in Bayesian nonparametric inference for
exchangeabl e data, one could hope that, taking Theorem 4 as a starting point, arelevant part of
the usua theory can be extended to the invariant case. In principle, this is possibly true.
However, moving from the exchangeable to the invariant case, the problem becomes
technically much more intricated. So, developing a nonparametric theory for invariant data,
analogous to the usual one for exchangeable data, seems to be very hard. In particular, it looks
hard to get usable statistical procedures. On the other hand, it would be interesting to
investigate which part, if any, of the usual Bayesian nonparametric theory can be extended to
invariant data.

In the sequel, as a significant example, we discuss the dtationary case. Let
s: X* — X be the shift transformation: s(x1, z,...) = (22, z3,...). A p.m. P on B(X*)
isstationary if (71, %o, ...) and (¥, T3, ...) have the same distribution under P, or equivalently
if P= P os ! Clearly, P isstationary in case is exchangeable, but the converseis not true. If
P is gtationary and P(A) € {0, 1} for each Borel set A with A = s71 A, then P is said to be
ergodic. When P is stationary or ergodic, we will also say that ¥ is stationary or ergodic under
P. Let C bethe set of ergodic p.m.'sand M, the set of al p.m.'son B(X); cf. Section 2. By
relying on an argument of Maitra (1977), we now provethat C' isaBorel subset of M.

Lemmab
If X isa separable metric space, then C' € B(M,).

10



Pr oof

Let: F = {s}, Z the set of stationary p.m.'s, N’ ={A € B(X*): P(A) =0 for dl
PeI},andU ={AecB(X®):P(AA(stA)) =0foral P € Z}. By Lemma4 of Maitra
(1977), the o-field U is sufficient (in the classical sense) for Z. Since B(X®) is countably
generated, sufficiency of &/ implies existence of a sufficient and countably generated o-field U
such that Uy C U C o(Uy U N); cf. Burkholder (1961, Theorem 1). Fix countable fields H,
and H such that Uy = o(Hy) and B(X>) = o(H), and define

B={PeM,: P(A)=P(s'A)foradl Ae H,and P(A) € {0,1} foral A € Hy}.

Since H, and H are countable, B is Borel, and since B(X*>) = o(H), one has B C Z. Let
P € B. Since P is degenerate on the w-class HoU N, then P is also degenerate on
o(Ho UN). Since U C o(Uy UN) = o(HoUN), it follows that P € C. Hence, B C C,
whileitisclear that B D C. Tosumup, C = B € B(M,). O

Setting F = {s}, Theorem 4 applies to stationary p.m.'s, and the set of extreme points
of stationary p.m.'s coincides with C. Hence, each stationary P admits the representation
P(-)=[Q(-)u(dQ) for some unique p.m. x on B(C). Furthermore, just as in the
exchangeable case, 1 isthe probability distribution of ¢, for some Borel functiong : X*° — C
such that g(A) isaversion of P(z € A|q) foral A € B(X®™).

To realize the program sketched above, i.e., to develop a Bayesian nonparametric
theory for stationary data, one has to assess priors on C'. Precisely, one should "propose" some
reasonable class of priors . on B(C'), and calculate the corresponding posterior and predictive
distributions. Such priors should have large support, so as to obtain a real nonparametric
theory. Further, they should cover a broad range of potential beliefs, and the posterior and
predictive distributions should be not too difficult to evaluate. Clearly, it is not easy to put
together all these requisites.

As apreliminary step, we investigate, for stationary data, the same problem of Section
4, 1.e., existence of underlying parametric models.

A different kind of empirical measureisto be used. Given k € N U {0}, define:

y; = (Tj,.Tjx) forjeN,
1 n—k
fmk =% z:lé'y"] forn > k.
J:

For fixed n, k and x € X, f,;(z) isap.m. on B(X**!). To obtain ap.m. on B(X*), we fix
any v € M, and we refer to f, . x v instead of f, . (For each p.m. a on B(X*1), a x v
denotes the p.m. on B(X>) under which y, has distribution «, (Tit2,Tits,...) has
distribution ~, and 7, is independent of (Zj o, Zx.3,...)). Clearly, thisis only a rough device
to transform f,, ;, into a p.m. on B(X°), and ~ will not play any essential role. Next, cal &,
the integer part of n/2 and define

o= fmkn X .
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Thus, each f, : X* — M, is a Borel function, and it is a summary of the data (71,...,7,).
When P is stationary, we will use the f,, as empirical measures. One reason is the following.

Theorem 6
If X isaPolish space and P a stationary p.m. on B(X°), then

fn=19q P-as
where" = " stands for weak convergence of p.m.'s.

Pr oof

Conditionally on g, x is ergodic with distribution g. Hence, it is enough to show that, if
P is ergodic then f,, = P, P-as.. Suppose that P is ergodic, and fix £ € N. Let ¢, be the
canonical projection of X* onto X**!. Since the sequence of X**+!-valued random variables
(U, : n € N) = ((Tn,....Tntx) : n € N) isergodic under P, one has f,,; = P o ¢, ! P-as. as
n — oo. Further, for all B € B(X**1) andn > 2k + 1, adirect calculation shows that

fo 0 3 M(B) = fag, (B x X"7F) = fo p i 1(B).
Thus, f, 0 ¢;' = Po¢;!, P-as. asn — oo, and this concludes the proof. O

Since f,, (and not e,) is now used as empirical measure, the notion of statistic is to be
slightly modified, too. Let

G={fu(x):z€ X neN}

be the union of the ranges of all the f,,, and let M3 € B(M,) be such that M5 D G. In what
follows, in line with the notion adopted so far, a statistic is meant as the restriction to G, |G,
of any Borel functiont : M — T.

At this stage, the argument proceeds essentially asin Sections 3 and 4. The first part of
Section 3 remains unaffected, apart from "exchangeable' is to be replaced by "stationary”,
"i.i.d." by "ergodic", v by u, and p by g. In particular, given a stationary P and a Borel
function : M — T, where M; € B(M,) and M3 > G, condition (a) smply becomes

(a0) 7 € Mj and ¢(t(7)) = §, P-as., for some Borel function g : T' — M.

A dlight difference between (a)) and (a), suggested by Theorem 2, isthat g is now asked to be
a Borel function, and not merely a B(T)-measurable function. In any casg, if (a) holds then,
conditionally on ¢(g),  is ergodic with distribution g. So, under (a), the "original random

parameter" § can be reduced through 7, i.e., the random parameter can be taken to be § = #(3).
Next, conditions (b) and (c) turn into:

(bo) 7 isinjectiveon B, for some B € B(M;) such that u(B) = 1;

12



(co) Thereisaset A € B(X™), P(A) = 1, such that
lim sup, dr (? ° fn(x%z © fn(y)) >0

whenever z,y € A and

liminfn p(fo(x), fuly)) > 0;

where p is now Prohorov metric on M,. As in Section 4, condition (c,) is perhaps more
expressive if p is replaced by some other equivalent metric, like the bounded Lipschitz metric
on M.

Finally, the arguments for proving Theorems 2 and 3 do not depend on exchangeability
of P, and can be repeated for a stationary P. In fact, up to a proper choice of the empirica
measure (and thus up to Theorem 6), the results in this section hold for any F-invariant p.m. P
on B(X®), with F countable. We state the stationary versions of Theorems 2 and 3 jointly,
and we omit proofs.

Theorem 7

Let X, T be Polish spaces, P a stationary p.m. on B(X*), andt : M; — T a Borel
function. Then, (a,) is equivalent to (by). Moreover, if 7 iscontinuous on M; and u(M3) = 1,
then conditions (&), (by) and (c,) are equivalent.
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