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SUMMARY. The Lorenz curve and its extensions, as the concentration function, are
used in some statistical problems, mainly related to economics, to describe the discrepancies
between a probability measure P and a reference measure Py. Some applications require the
consideration of variations in the concentration of P with respect to Py due to small changes
of P. This leads to the study of the differential properties of the concentration function at a
point, regarded as a functional defined on the space of the finite signed measures. This paper
proves that the Gateaux differential of the concentration function exists in any direction and
it provides its expression. Moreover, it shows that the concentration function is not Fréchet
differentiable. Some applications are described.

1. Introduction

Classical analysis of inequality describes the tendency of a transferable
quantity to be concentrated on few individuals. This analysis is traditionally
carried out using the Lorenz curve, which describes the discrepancy between
a probability measure P, which refers to the distribution of the transferable
quantity, and the uniform distribution.

Marshall and Olkin (1979, p.5) give the following definition of Lorenz con-
centration curve (also known as the Lorenz-Gini curve):

“Consider a population of n individuals, and let z; be the wealth of individ-

ual 4,4 = 1,...,n. Order the individuals from poorest to richest to obtain

T(1),- -+, T(n). Now plot the points (k/n,Sk/Sn),k =0,...,n, where Sy = 0 and
k

Sk = Z ;) is the total wealth of the poorest k individuals in the population.
i=1
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Join these points by line segments to obtain a curve connecting the origin with
the point (1,1). Notice that if total wealth is uniformly distributed in the pop-
ulation, then the Lorenz curve is a straight line. Otherwise, the curve is convex
and lies under the straight line.”

Therefore, the classical definition of concentration refers to the discrepancy
between a probability P, which gives mass x(; /S, to 6;,4 = 1,...,n, and the
uniform distribution Py on © = {6,...,6,}. Cifarelli and Regazzini (1987)
defined the concentration function of P with respect to Py, where P and Py are
two probability measures on the same measurable space (€2, A); Fortini and Rug-
geri (1993) extended their definition, considering a signed measure M instead of
the probability measure P (see Definition 1), so that the concentration function
can be considered as a functional on the vector space of finite, signed measures.
From the definition of concentration function ¢(M, z), it can be shown, for any
z € [0,1], that

p(M,z) =min{M(A) : A€ Aand Py(A) > =},

under very general conditions (see Theorem 1). Therefore the concentration
function provides lower bounds on set probabilities.

The Lorenz curve is mainly applied in the field of economics, where it is used
to study social inequalities, as determined by the wealth concentration. Actually,
studies on the concentration apply to many other situations, all the more so since
Cifarelli and Regazzini (1987) introduced the concentration function.

Many concrete problems suggest studying the dynamical behaviour of the
concentration function for a measure subject to changes. Consider, for example,
the distribution of wealth in a population and suppose that such distribution
is subject to a change due, say, to a new tax policy. The corresponding vari-
ation in the concentration function accounts for the impact of the tax policy
on the social inequality. If the trend of the social inequality is to be analysed,
then infinitesimal increments (i.e. differentials) of the concentration function
must be considered: the larger the increment (in absolute value), the faster the
modification of the social inequality.

The above example suggests developing a differential calculus for the con-
centration function. Actually this has a wide range of practical applications;
particularly interesting are those involving optimization problems. For exam-
ple, suppose that an economic policy is sought to achieve a reduction of social
inequality. Such a policy will act in transferring wealth from the richest to the
poorest classes and questions arise about which class to start from and how
to move wealth in order to reduce the inequality in the shortest time. More
effective policies are those leading to larger (in absolute value) increments in
the concentration function. Hence one should start from the policy for which
the derivative of the concentration function is the largest. This policy consists
in moving wealth from the richest class to the poorest one, leaving the others
unchanged (see Example 2).
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The paper is concerned with developing a differential calculus for both the
concentration function and some concentration indices, viz. the Ali-Silvey in-
dices, regarded as functions of the involved measures. As far as we know, this
approach, although natural, has never been proposed before. Gateaux deriva-
tives are obtained for the concentration function evaluated at any fixed point
x and, as well, when considering ¢ as a map taking values in the space of the
continuous functions on the interval [0,1]. An example will show that the con-
centration function is not Fréchet differentiable with respect to the variational
norm in the space of the finite measures.

Despite the very technical proofs, presented in the Appendix, the expression
of the Gateaux derivative is quite simple and has an immediate interpretation,
which makes it easy to apply in practical problems (see Examples 2 and 3).

Section 2 recalls some basic results for the concentration function and the
Ali-Silvey indices, and their extensions to signed measures. Section 3 provides
the expressions for the Gateaux derivatives of both the concentration function
and the Ali-Silvey indices, while some applications are discussed in Section 4.

2. Preliminaries

This Section recalls the definitions of concentration function and Ali-Silvey
indices of a signed measure, along with their main properties. We refer to Fortini
and Ruggeri (1993) for further details.

Let (2,A) be a measurable space. Denote by M the space of all the finite,
signed measures on (Q,.4) endowed with the variational norm. The subspace
of M consisting of all the probability measures will be denoted by P, while D
will be the subspace of M of all the signed measures A such that A(Q2) = 0.
Moreover, in the following, the extended real line R will be considered, with the
usual algebra and ordering.

Let Py and M be, respectively, a probability measure and a bounded, signed
measure on (,.4) with M(2) = 1. From the Jordan decomposition (cf. Ash
(1972), pp. 60 and 61) there exist two positive measures M T and M~ such that
M = Mt — M~ and a set D such that M+(4) = M(AN D) and M~ (A) =
—~M(AN DY) for any A€ A. Let [M|=M*+ M~

According to Lebesgue decomposition and Radon-Nikodym theorems (cf.
Ash (1972), pp. 63 and 66) there exist a partition {N, N“} C A of Q, a real
valued function hys defined on N¢ and a signed measure M, such that

Py(N) =0, MJ(N)=M](Q), M7 (N)=M;(Q)

S S

and, VE € A,

M(E) = /; T @Po(de) + My(E O N).
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Mg and My(-) = / ha (w)Po(dw) are called the singular part and the ab-
.NNC
solutely continuous part of M w.r.t. Py. Set hps(w) = +oo all over the subset

Nt = DN N and hy(w) = —oo all over the subset N~ = D N N. Define,
for any y € R and any = € [0,1], Hy(y) = Po ({w € Q: hy(w) < y}), em(z) =
inf{y € R : Hy(y) > z}. Finally, let Ly (z) = {w € Q: hpyr(w) < em(x)} and
Ly(z) ={weQ:hyw) <cm(x)}.

DEFINITION 1. Let M be a finite signed measure and let Py be a probability
measure. The function p(M, - ) defined on [0, 1] by

—-M_ () z=0
(M, z) =S M (Ly(2) + ear(@) {z = Hu(en(2)7)} = Mg (Q) @€ (0,1)
Mo () — M, () z=1

is said to be the concentration function of M with respect to Fy.

The concentration function ¢(M, -) is a continuous, convex function. The
following fundamental property holds.

THEOREM 1. For any A € A such that Py(A) = z, then
(M, z) < M(A).

Moreover if x € [0,1] is adherent to the range of H, then B, € A exists such
that Po(B,) = = and

p(M,x) = M(B;) =min{M(A) : A€ Aand Py(A) > z}. .. (1)
If Py is nonatomic, then (1) holds for any x € [0, 1].

Consider now the space M, of signed measures M on (Q,.4) such that
M) = a; a € R. From (1) it follows that the measure M is much more
concentrated w.r.t. Py as its concentration function is far from the straight line
connecting (0,0) with (1,«). Therefore, the concentration function induces a
partial ordering in M,: given any M; and M, in M, then M, is said to be not
less concentrated than M; if and only if (M, x) > ¢(Ms,x), for any x € [0,1].

An important class of concentration indices, also known as coefficients of
divergence, can be defined.

Let g : R — R be a continuous and convex function such that there exist
finite g% = limy_,0o{g(t)/t} and ¢~ = lim;—, oo {g(t)/t}.

DEFINITION 2. The Ali-Silvey index of the signed measure M, relative to
g, is defined by
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p(M, g) = /R g(O)dH v (1) + M (Q)g* — My (Q)g™ @

Ali-Silvey indices induce an ordering among probability measures which is con-
sistent with the one induced by the concentration function itself.

3. Differential Calculus for the Concentration Function

The Fréchet and Gateaux derivatives (see Lusternik and Sobolev (1989),
pp. 215 and 221) are the most widespread derivatives of functionals and map-

pings.

DEFINITION 3. Let X and Y be normed linear spaces. The Fréchet deriva-
tive of a mapping f : X — Y at a point z( is the linear continuous operator
A: X =Y (if it exists) satisfying the condition

f(wo +h) = f(xo) + Ah +e(h),

where
lle(MI

Iim =0.
Ial—0 ||hl]

DEFINITION 4. Let X and Y be linear topological spaces. The Gateaux
differential at a point z¢ and in the direction of h € X of a mapping f: X - Y
is the limit (if it exists)

lim flzo + Ah) — f(xo)'

A—0t A

If X and Y are normed linear spaces and the operator f is Fréchet dif-
ferentiable, then it is also Gateaux differentiable. The converse is not true (cf.
Lusternik and Sobolev (1989), p. 222).

Given Py and P in P, consider a signed finite measure A € D. For any
x € [0,1], the Gateaux differential of ¢(-,x) at the point P and in the direction
of A is the limit

(plA(Pv .’IJ) = Ali)Ing {QO(P + )\A,JI) - (p(Pv Cl?)} /)‘7

if it exists.

It will be shown that for any = € [0,1] and any A € D, the Gateaux
derivative of ¢(-,z) at the point P and in the direction of A exists. An expression
for the Gateaux derivative will be supplied and conditions will be found ensuring
its linearity in A € D.
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Let Py, P € P and A € D be defined as earlier and let hp, ¢cp, Lp(x) and
L7(z) be defined as in Section 2. For any fixed x € [0, 1], consider the extended

real function
—00 if hp(w) < cp(z)
{ hA(w) if hp(w) = CP(JI)
+00 if hp(w) > cp(z).

by (w) =

For any z,y € [0,1] and z € R, let
H,(2) = Po({w € Q: hy(w) < 2}),
cz(y) =inf{z € R: Hy(z) >y},
La(y) ={w € Qi he(w) < ca(y)}, Ly(y) ={w € Q:ha(w) < ce(y)}-

and
lim, -+cp(y) fZT<1
+ _ Y—T
cp(z)” = { cp(x) ifz =1,

where T = sup{z € [0,1] : cp(z) < cp(x)}.

REMARK 1. Notice that

o if 2 < inf Ha(y) = Po(Lp(x))
ye
. : > . . . < =
ca(z) = { W ERH(y) > 2} i inf Haly) <z < sup Ha(y)
+00 if z > sup H,(y) = Po(Lp(z))
yeER
and

—00 ifwe Lp(x)
ha(w) =< ha(w) ifweLp(x)\Lp(x)
{ +o0 if we (Lp(x))°.
From now on, the notation will be simplified by avoiding, when possible,
any mention of the dependence of functions on w.
Theorem 2 states that, for most of the x’s, the derivative of the concentra-

tion function equals the value of the measure A on the subset L;(x), i.e. where
P is less concentrated w.r.t. F,.

THEOREM 2. Let Py and P be probability measures and let A be a bounded
signed measure such that A(Q)) = 0. Then

(P = { ALE@) ifa = Hp(cr(@)7)
PP, )—{ ALy (@) + (@) { — Holea@) )} 24 Hp(ep(2)), .
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PROOF. See Appendix.

REMARK 2. It can be easily proved that ¢’y (P, z) is a continuous function
of z € [0,1]. Hence, if A, | 0, then ppyx, a(x) —op(z) — A (P, ) converges
uniformly to 0 as n — oo. Consider the space C[0, 1] of the continuous functions
on [0, 1], with the topology of uniform convergence, and the map ¢ : M — C[0, 1].
From uniform convergence, it follows that ¢/, (P, ) is the Gateaux derivative of
@ in the direction A evaluated at P.

REMARK 3. If Hp(cp(z)™) = Hp(cp(x)), then (3) becomes

Pa(Px) = A(Lp(2)) .

so that ¢/s (P, z) is a linear, bounded functional of A € D. Despite the linearity
of P!\ (P, ), p(P,x) is not Fréchet differentiable on D with respect to the varia-
tional norm, as shown by the following counterexample. Consider Q = [0, 1] and
let B be the Borel o—field of [0,1] and Py the Lebesgue measure on [0, 1]. Con-
sider the measures P and A, on (2, B) with Radon-Nikodym derivative w.r.t.
Py given by hp(w) =1/2 4w, w € [0,1] and

1 wel0g
ha.(w)=< -1 we[l—g1]
0  elsewhere,

respectively. Then, for any z € (0,1) and for ¢ sufficiently small, then Lp(z) =
[0,2] and Lpya, (z) = [e,2] U[1 —¢,1]. Therefore, it follows that

(p(P + AE,.’I)) - QD(P; CL') - A(Lp(x)) = —¢.
Since ||A:]| = ¢, ¢(+, x) is not Fréchet differentiable at P.

ExampLE 1. Consider Q = R and let Py and P be, respectively, an ex-
ponential distribution £(1) and a Gamma one G(2,1). It can be easily shown
that hp(w) = w for any w € Q and that Lp(z) = [0,—log(1l — z)] for any
x € [0,1]. Consider the signed measure A = (P — P), with 0 < & < 1, so that
P+ A =(1-¢)P + Py becomes a probability measure called e-contamination
of P (see Huber, 1981). Here, it follows that ¢\ (P,z) = —e(1 — ) log(1 — z),
i.e. a nonnegative function, for every x € [0, 1]. Therefore there is an increase in
the concentration function, showing, as expected, that the modified probability
measure P + A gets closer to Py.

Consider the Gateaux derivative of p(P, ), evaluated at Pp; since ¢, (z) =
ca(z) for any x € [0, 1], the following result holds.
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COROLLARY 1. If Py is a probability measure and A is a finite signed mea-
sure such that A(Q2) =0, then ¢\ (Po,z) = ¢(A, z).

REMARK 4. By the definition of concentration function, it is easy to show
that a stronger property holds. In fact

(p(PO + A,.’l)) - QD(P(),Z') = (plA(PO,x) = QD(A,CL’)

Like the concentration function, the Ali-Silvey index p(M,g) (Definition 2) is
Géateaux differentiable in any direction. We now compute its derivative.

THEOREM 3. Let Py, P be probability measures and let A be a finite signed
measure such that A(Q) = 0. Then

pa(P;g) Z/Qgi(hP(W))hm(W)Po(dw) —Agi(hp(w))ha—(w)Po(dW)+

HAN) + AF(N)) g™ = A (N9,
where g',, g'_ denote the right and left derivatives of g, respectively, and Ps(N) =
P;(Q), By(N)=0.

PROOF. See Appendix.

REMARK 5. If g is differentiable, then

pa(Pg) = /R g (DdHA (dw) + (As(N) + AF(NO))g+ — AT (NC)g™.

COROLLARY 2. If Py is a probability measure and A is a finite signed
measure such that A(Q) =0, then

Pa(Po,g) = AT (g (1) = A (Qg" (1) + AT (Q)g" — A7 (g™

5. Applications

The analysis of the differential properties of the concentration function al-
lows the comparison of two measures, through their concentration, in dynamical
situations when the measures themselves go through changes. In particular,
functional differentials of the concentration function can be useful in solving op-
timization problems involving the concentration function, as illustrated by the
following example.
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ExAMPLE 2. Let Q be a population and let Py be the distribution of the
total wealth in ; consider the social ordering induced by P, among individuals
in Q. Denote by (P, z) the concentration function of Py w.r.t. the uniform dis-
tribution on €, say U, corresponding to the ideal situation of complete equality.
For simplicity, U nonatomic and P, absolutely continuous w.r.t. U are assumed.

Suppose that income is transferred in order to reduce inequality (e.g through
tax increases and deductions). Moreover suppose that the change is brought
about in several steps in such a way that, at each step, the social ordering is
preserved and the fraction of the total income transferred does not exceed 0
(0<d<).

It is wished to find the strategy that, at each step, achieves the maximum
reduction of inequality.

If A; denotes the transfer of income at the i-th step (i = 1,...,n), then the
distribution of income after the i-th step will be denoted by

PA) =P+ A,
j=1

where A; = (Aq,...,A;). Let ¥ denote the desired concentration of the income
and let S, be the set of the transfer measures A, which satisfy the following
conditions:

(i) A< P i=1,...,n;

(1) o(Pu(A,) =¥;

(@i) ||Aql <6 i=1,...,n;

(i) (hpya,) (@) = hpa,)(w2))(hr, (wi)
—hpo(wz))ZO,le,wQEQ 1=1,...,n,

where, for any measure M, hjs is the Radon-Nikodym derivative of M w.r.t. U.
The problem consists in solving, w.r.t. (A,,,n),

2ns

e(Pi(4;),2) = (élg}%cesso(Pi(Aé),w) vz € [0,1],
where S = {S,, x {n} : n € N}. An approximate solution can be obtained, for
small 6’s, by the method of the steepest ascent, that is by solving, w.r.t. A, and
n,

AP @)= max (BB, )

2,12

forall z € [0,1],i=1,...,n.
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The solution to problem (4) can be found iteratively. For simplicity, it is
supposed that U is strictly convex and that U(hp, = x) = 0 for every z € R.
An analogous solution can be found otherwise. Notice that, under the above
conditions, there exists a unique P,(4,) satisfying conditions (ii) and (iv).
Denote it by P,. For a given P;_y = P;,_1(4A,;_,), define

h(Alz) (w; il') = min(hA(i) (UJ), Cpi_y (.’I)) - hPi—l (CU)),

h(A21) (w; .’L”) = ma‘X(hA(i) (w)7 CP;,_, ($)+ - hPi—l (LU)),

where A =P, — Py, i=1,...,n. Moreover, let

xEl) = sup{z € [0,1] : / h(AlZ_)(w;x)U(dw) <6},
Pi_y (@)
xEQ) — inf{x c [()7 1] . / h(AQz) (w;x)U(dw) > —5}.
(LPifl(w))C

Then the solution is given by

O, 2M)  ifwe Ly  (2M)

ha,(w) =9 W (w,2?)  ifwe (Lp_, (=7))° 0

0 elsewhere.

ExaAMPLE 3. Consider the distribution of incomes among individuals in
a population. According to its definition, let Lp(z) be the set of the poorest
100x2% part of the population. For simplicity, it will be supposed that

Pa(P,x) = A (Lp(x))

holds, at least as an approximation (reasonable in a large population). two
possible applications are briefly considered.

Suppose that a subclass Dy of D is given, corresponding to different policies
of income redistribution (e.g. different tax systems). Focusing on Lp(z) (the
group of the poorest individuals), for a given z € (0, 1), the Gateaux differential
gives the tendency to changes in income distribution among this group. It is
worth looking for the most effective policies, that is those leading to the largest
values (in absolute value) of the differentials.

Conversely, consider a given signed measure A and let z vary in (0,1). Here
the largest values (in absolute value) of the differentials give the groups Lp(x)
of the poorest individuals on which the policy A has been more effective.
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ExampPLE 4. Functional derivatives of the concentration function can be
used in robust Bayesian analysis, to assess the effects of infinitesimal changes
in the prior probability measure on some quantity of interest. (Different tech-
niques have been considered in, e.g., Diaconis and Freedman, (1986) and Rug-
geri and Wasserman, (1993). Some results can be found in Fortini and Ruggeri
(1995¢). When inferencing about the whole posterior distribution, the concen-
tration function can be used as a measure of the discrepancy between posterior
distributions, corresponding to different prior assessments (see Fortini and Rug-
geri (1994, 1995a, 1995b)).

Suppose, now, that a specific prior Il is suggested by some particular
features of the inferential problem but, nevertheless, an analysis of sensitivity
to small variations in IIy is deemed necessary. For any posterior distribution
IT*, corresponding to a prior II, the concentration function of II* w.r.t. IIj, say
o(IT*, z), describes the discrepancy between IT* and II§. Hence, if A is a signed
measure such that A(2) = 0 and ||A|| < 1, then a measure of robustness for
small variations of II in the direction of A is given by

lim (p((HO + /\A) 7$) B (p(H07m)
A—0 A

which coincides with the differential of the functional ®(II) = ¢(II*(II), z) in II,
and in the direction of A, say &'\ (Ilp).

We end this section by noticing that it would be interesting to connect
the results of the paper with mean equalizing transfers, which get a probability
measure to coincide with the uniform one; see Regazzini (1992).

Appendix

This Appendix includes the proofs of Theorem 2 and 3 along with some
Lemmas needed for the proof of Theorem 2. Let Py and P be probability mea-
sures and let A be a finite, signed measure such that A(Q) = 0. Let z € (0,1) be
a fixed real number. Py will be assumed to be a nonatomic probability measure,
throughout.

LEMMA 1. For any § € R™, there exists A\g = \g(0) such that, for any A
with 0 < A < Ao,

cp(z) — 6 < cpiaa(r) < cp(x)T +6. ... (5)

PROOF. Since it is equivalent to the first inequality in (5), it will be first
proved that, for A > 0 sufficiently small,

Po(thr)‘A < CP(:L') — (S) < x. e (6)
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From the left-continuity of cp in x, for any 1 € (0,6) there exists v € RT such
that
cp(y) <cp(x) —d +n implies y <z — 7. .. (7

Taking y = Hp(cp(z) — 0 + 1), it follows that
cp(y) =inf{z € R: Hp(2) > Hp(cp(z) —d+n)} < cp(z) =5+

and, from (7), that y <z —~.
Let )\81) be such that Py(ha < —17/)\(()1)) < 7v/2. Therefore, for any A,
0< A< A, it holds
Py(hpyan < cp(x) —0)
< Py(hp < cp(®) — 0 — Aha, —Aha <) + Po{ha < —n/A}
<y+v/2<uw,

which proves (6).
For the arbitrariness of § > 0, the second inequality in (5) is equivalent to

Po(hpira < cp(z)™ +0) > .
Fix 5 € (0,4); there exists v € RT such that,
y <z +~ implies cp(y) < cp(x)™ +§ —n.
Let A{?) be such that Py(A{’ha > 1) < /2. Then
Py(hpyan < cp(x)T +6) > 1— Py(hp > cp(x)t +68 — Aha)
>1— Py(hp > cp(@)t + 8 — Mha,~Aha > —1) — Po(Aha > 1)
> Po(hp <cp(x)t +0—n) —7/2> Hp(cp(z +7)) —7/2 >z +7/2.
The proof is completed by taking Ag = min{)\él), )\82)}. 0
LeEMMA 2. For any sequence A, | 0,
a) Nyt Unin (Lp(@) N (Lpiy, a(@)) = 6;
b) oo Po((Ls 2,2 () 1 Ly (2) = 0
c) if cp(z) = cp(2), Ny=i UnZn(Lrar,a(z) N (Lp(2))9) = 0;
d)limy 00 Po(Lp iy A(2) N (Lp(x))C) =0.

PRrOOF. a) Fix w € Lp(z). Then hp(w) < cp(x) — ¢ for some € > 0. Let
Ny € N be such that, for any n > Ny, A\p|lha(w)| < €/4. Let Ny € N be such



CONCENTRATION DERIVATIVES 357

that, for any n > N1, ¢pix, na(x) > cp(x) —e/4, according to Lemma 1. Then,
for any n > N = max(Np, N1),

hpiana (@) < hp(@) + Alha(@)] < cp() — 35/4 < cpyr,na (2) — £/2

Hence, if w € Lp(z), then w € Ly, (%) for any n > N. Therefore Lp(x) C
UN=1 Noen Lp s, a(@), which implies a).

b) follows directly from a) and from the continuity of probability measures.

¢) Consider w € Ny—; Uren Lr+a,a(z). Fix a real number € > 0. Let
Ny € N be such that, for any n > Ny, cpia,a(z) < cp(z)T + £/2, according to
Lemma 1. Let Ny € N be such that, for any n > Ny, A\p|ha(w)| < £/2. Since
w € Nyey Une y Lpgr, az), there exists n > N = max(No, N1) such that

hp(w) = hpir,a(W)=Anha(w) < cpir, a(@)+An|ha(W)] < cp(z)T+e = cp(x)+e.

Since this holds for every ¢ > 0, hp(w) < cp(z) and, therefore, w € Lp(z). It
follows that Nx—; Ureny Lr+a,a(z) C Lp(z).

d) follows from c) for the z’s such that cp(z) = cp(z)T. We will prove it
for cp(z)* —cp(x) > 0.

Suppose that there exists a sequence )\, J 0 such that Py((Lp(z))¢ N
Lp \, a(x)) > 26 for some § > 0 and for every n € N. Choose k£ > 0 such
that Py(|ha| > k) < /2 and let H = (|ha| < k). Then Py((Lp(x)) N
Lpiy a(x)) N H) > 6 for every n € N. Since FPy(cp(z) < hp < cp(z)t) = 0,
then Po((hp > cp(@)T) N Ly, A(z) N H) > 6 for every n € N. Take Ny
such that, for every n > Ny, Ak < e with 0 < € < (ep(x)™ — cp(x))/2
and take w € (hp > cp(x)T) N Lp,, A(z) N H. Then, for every n > No,
cpiaA(T) > hpia, a(w) > hp(w) — Aplha(w)| > cp(z)T —e.

Let K = (|ha| < k) N Lp(z). Then Py(K) > Po(Lp(z)) —d/2 >z —J/2.
Fix N; € N such that, for any n > Ny, A, < €/k. Then, if n > max(Nog, N1)
and w € K,
hpixn,a(w) < hp(w) + Alha(W)| < cp(x) +e < cp(x)T —e < cpyr,alz).
It follows that K C Ly, A(2), for n > max(No, N1). Moreover
&> Po(Lpy s, a(2) 2 Po(K) + Po(Lpyy, a(2) N (Lp(2)Y) > 2 +6/2

which is a contradiction. 0

LEMMA 3. a) There exist Ay C {w : hpiaa(w) = cppan(z)}, A
{w : hg(w) = cp(x)} and A C {w : hp(w) = cp(x)} such that Py(Ax)

N



358 SANDRA FORTINI AND FABRIZIO RUGGERI

x — Hpaa(cpiaa(@)7), Po(As) = — Ho(ca(2)7), Po(A) =z — Hp(cp(z))
and Lp(x) UA=L;(z) U A;, as. — B.

b) For every sequence A, | 0, lim Py(Ax, N (Lp(z))°) = 0.
n—o0

c) If, for every A > 0, By = {w : hp(w) = cp(x),ha(w) < (cpyrn(z) —
cp(x))/A}, By = {w : hp(w) = cp(x), ha(w) < cx(x)}, then, for every sequence
An 10,

lim |P0(B)\n U A>\n) - P()(Bw U Am)| =0.
n—odo

PROOF. a) Since P, is nonatomic, there exist Ay and A such that Ay C
(hptaa = cpiaa(®)), Az C (hy = cp(2)), Po(Ax) = = — Hpiaa(cpiaa(z)™)
and Po(Az) =2 — Hy(ep(z)7). T A= (L, (z)\ Lp(x)) UA,, then Lp(z)UA =
L, (x) UA; and Py(A) =z — Hp(cp(x)™).

b) If cp(x)™ = cp(z), b) follows from Lemma 2 ¢). We will prove b)
when cp(z)t — cp(z) > 26 for some § > 0. Suppose that there exist ¢ >
0 and a sequence ), such that, for every n, Py(Ax, N (Lp(x))¢) > e. Let
K = (Jha] < k) N Lp(x), where k is such that Py(K) > = — e/2. As in the
proof of Lemma 2 d), it can be shown that there exists Ny such that, for any
n > Ny, cp(x)T < epyr, a(2)+0; moreover let Ny be such that, for any n > Ny,
An < 6/(2k). For every n > N = max(Ng, V), if w € K,

hpia,alw) < ep(@) + Ak < cp(x)t —26 + M\ k
< eppaa(@) =0+ Ak < cepin,alz) —0/2;

it follows that K C Ly, A(z), for any n > N but then
= Py(Lp,\ A(@®)UAy,) > Po(K)+ Po(Ax, N (Lp(x))¢) >z —¢/2
which is a contradiction.
¢) Since Po(Lp ya(z) U AN) = Po(L; () UA,) and Ly (z) = Lp(z) U By,
0 = Ry(Lpaa@)+ Po(Ax) — Bo(Lp(z)) — Po(Bz) — Po(Az)
= P(Lpiyal@)n (Lp(2))€) + Po(Ax) — Po(Lp(z) N (Lpira (2)“)
_PO(Bz) - PO(Az)
= Py(Bx) + Po(Lpza(@) N (Lp(x))°) + Po(Ax) — Po(Lp(x) N (Lpyaa(2)€)
_PO(Bz) - PO(Am)

Therefore, from Lemma 2, for any A, | 0,

|Po(Bx, UAx,) = Po(Bo UAL)| < Po(Lpyy a(@) N (Lp(2)°)
+Py(Lp(x) N (Lpy s, a(2)9) =0
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as n — o0 O

LEMMA 4. Let A\, L 0 as n — oco. Then, for every § > O there exists Ny
such that, for every n > Ny,

cPia.a(T) — cp(2)
An

cx(x) —0 < < cp(z)T +6.

PROOF. Suppose that there exist § > 0 and a sequence A, J 0 such that,
for every n,

cpia,A(z) — cp(z)

. > cp(z)T + 6.

Since A, C (hp = cp(x)), then

cpeaa(T) — CP(-IT))

Po(A)\n UB)\R) > Po(B)\n) = P()(hp = Cp(l'),hA < h\

and
Py(A, UB,) < Py(hp = cp(x), ha < cp()).
Hence

Po(A)‘" U B)\") - _Po(flm U Bm)

Py(hp = cp(x), cx(x) < ha < CPHnA(i) ~cp(@),

>
> Py(hp = cp(z),cs(x) < ha < cp(z)T +0) > Poley(x) < hy < cp(x)t +6}) A0
as n — 0o, which contradicts Lemma 3.

Suppose now that there exist § > 0 and a sequence A, | 0 such that, for
every n,

cpr.a(z) — cp(2)

N, < ex(x) — 4.

Since By, C (hp =cp(z)) N B, and Ay, N (hp = cp(x)) C (hp = cp(x), ha =
[ep i ana (2) — cp(x)]/An), then
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P()(Am U Bw) - Po(A)\n U B)\n)
= Py(Az) + Po(Bs) — Po(Ax,) — Po(By,,)

= Py(Ay) + Polhp = p(@), [cpin, a(@) — cp(@)]/An < ha < ca(@)) — Po(Ay,)
= Po(Az) + Po(hp = cp(z), [cpin,a(z) — cp(2)]/An <ha < cx(z))
+Po(hp = cp(@),ha = [cpia,a() — cp(@)]/An)
—Po(Ax, N Lp(2)) = Po(Ax, N (Lp(2)Y) = Po(Ax, N (hp = cp(2)))
> Po(Az) + Po(hp = cp(x), ca(z) =6 < ha < co(2)}
—Po(Ax, N (Lp(x))9) = Po((Lpyy, a(@)C N Lp(2)).
Hence,
Po(Ay U By) — Po(Ay, U By,)

> Po(Az) + Po(hp = cp(),cp(x) — 8 < ha < cz(x))
—Po((Lpyr, a(2)° N Lp(x)) = Po(Ax, N (Lp(2))).

From Lemma 2 b) and Lemma 3 b), for every € > 0, there exists N(g) such that,
for any n > N(e),

Po((L}_3+)\nA(£U))C NLp(z)”) < 8/4 and (Py(Ax, N (Lp(.%‘))c) < 8/4

If x # H,(c,(x)7), then there exists € > 0 such that Py(A;) > ¢ and, therefore,
for any n > N(e),

Po(Ay UB,) — Po(Ax, UBy,) > Po(Ay) — /2> /2,

which contradicts Lemma 3.
On the other hand, if x = H, (¢, (x)™), there exists € > 0 such that

Py(cp(z) =0 < hy < ¢p(x)) > €.
Then, for every n > N(e),
Py(A; UB,) — Po(Ax, UBy,) > Pyleg(z) =6 < hy < cz(x)) —e/2 > /2,

which contradicts Lemma 3. 0O

LeEMMA 5. Consider a sequence A, | 0 as n — oo and suppose that
x # Hp(cp(x)™). The following results hold, for every e > 0.
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a) There exists Ny such that, for every n > Ny, A(Ay,) > c(x)Po (Ay,)
—e/2.

b) There exists No such that, for everyn > Na, A(Lp,\ A(z) N (Lp(x))%)
> —€.

¢) There exists N3 such that, for everyn > N3, A(By, UAy, )—A(B,UA,) >
—€.

ProoF. Since x # Hp(cp(x)™), cx(x) # —00. According to Lemma 4
there exists Ny such that, for every n > Ny,

cpia,A(z) — cp(T)
An

> ¢, (x) — e/4.

a) If cp(z) = cp(z)™, then by Lemma 2 ¢), there exists N1 > Ny such that, for
n Z Nla

max{|A[(Ax, N (Lp(@))), cx(2) Po(Ax, N (Lp(2))} < /8.
Hence,
A(Ay,) = A(Ax, NLp(x)) + A4y, N (Lp(2))C)
> [ea(x) — £/4]Py(Ax, N Lp(x)) — /8
> ca(w)Po(An,) — 3/8e — co(@)[FPo(Ax,) — Po(Ax, N Lp(x))]
> ca(7)Po(Ay,) — /2.

On the other hand, if c¢p(z) < cp(x)™ — n, then, by Lemma 4, there exists
M, > Ny such that, for n > M,

cpiana () < cp() + Apeg(2)T +n/4 < cp(x)t —n/2.
Let k be such that, if H = {ha < —k}, then
max{|A|(H), co(x) Po(H)} < £/8.

Choose N; > M; such that, for every n > Ny, A,k < n/4. Then, if w €
Ay, N HC,

hp(w) = CP+)WA(-'E)_)\nhA < CP+)\HA(:L')+/\nk < Cp+)‘nA(.’E)+77/4 < Cp(.’E)+—77/4.
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Therefore, since Py(cp(r) < hp < cp(x)™ —n/4) = 0, it follows that
A(Ay,) =A(Ay, NHY) + A(Ax, N H)
> (cu(w) —e/4)Py(Ax, NHC) — /8
> ¢y () Po(Ax,) — 3/8¢ — o (2)[Po(Ar,) — Po(Ax, N HE)
> ca(2)Po(Ax,) — /2.

b) Let k be such that, if H = {ha < —k}, then |A|(H) < &/2. According
to Lemma 2 d), let Ny be such that, for every n > Na, kPy(Lp,y A7) N
(Lp(x))¢) < €/2. Then

A(Lpyr,al@) N (Lp(2)7)

= A(Lpyr,a(@) N (Lp@)° NH) + A(Lpyy, a(2) N (Lp(2)) N H)

> —kPy(Lp,y A() N (Lp(x)9) —¢/2
> —c.

c) From Lemma 3 and Lemma 2 ¢), there exists N3 > Ny such that, for every
n 2 NS:
cz(2)(Po(Bx, UAN,) — Po(By U Ay)) > —€/2.

and
max{|A[(Ax, N (Lp(x))9), ca(€) Po(Ax, N (Lp(x))9)} <e/8.

Then, it follows that

A(B)\n U A>\n) - A(Bm U Az)

v

A(hp = cp(z),ha < [epia,a(@) — cp(@)]/An, ha > co(x))
—A(hp = cp(@), ha < co(),ha > [cppa,a(@) — cp(@)]/An)
+A(Ax, N (Lp(@)9) + A(Ay, N Lp(z)) — A(4,)

> ey (2)Po(Bn,) = ca(@) Po(By) + o) Po(An,) — e (2) Po(Ay) — £/2

> —&. O

PRrROOF OF THEOREM 2. Suppose that Py is nonatomic. Consider a se-
quence A, | 0 as n — co. Then, from Lemma 3 a) in the Appendix, there exist
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Ay, , A and A, such that
PP A(T) — @p(2) — M@ (2)
= (P+MA)(Lpy a@)UAy,) = P(Lp(z) UA) = MA(L, (2) U Ay)
= (P+ M) (Lpyy, a(@)UAL,) = (P+AA)(Lp(z) UA) <0

since (P + AA)(C) > (P + MA)(Lpyy, alz) U Ay,), for any C such that
Py(C) > z. On the other hand,
PP+a,A(T) = op(x) — A (2)
=P(Lp\ A@UAL) = P(Lp(x) UA) + AA(Lp,y alz) UAL,)

—MA(L; (2) U Ay)
> MA(Lpyy, a@ UAL) — AA(L; (2) U Ay),

since P(C) > P(Lp(z) U A), for any C such that Py(C) > x. Moreover, if By,
and B, are defined as in Lemma 3 c),

A(Lpiy,alx)UAy,) — AL, (2) U Ay)
> A(Lpiy,a(@) = A(Lp(z)) — A(B:) + A(Ax,) — A(4:)
> A(By,) + A(Lpyy, a@) N (Lp(2)9) = A(Lp(x) N (Lpyy,a(@)9)
—A(B:) + A(4y,) — A(4L)
> A(By, UAy,) = A(By U A;) + A(Lpyy, a(2) N (Lp(2)) -

—A(Lp(@) N (Lpyr,a@)) =0,

as n — 0o, from Lemma 2 and Lemma 5 in the Appendix.
Suppose now that P, is any probability measure on ({,.4). Consider
the probability space ([0,1], B([0,1]), By), where B([0,1]) and Py denote the o-
algebra of the Borel sets and the Lebesgue measure on [0, 1], respectively. Let
cp() be the quantile function of the Radon-Nikodym derivative of P w.r.t. Pp.
Con51der the probability measure P on ([0, 1], B([0,1])) whose density, w.r.t. Pp,
is h(z) = c¢p(x). Consider a random variable ha on ([0,1], B([0,1])) such that
the joint distribution of (k, ha) under Py coincides with the joint distribution of
(hp,ha) under Py. Denote by A the signed measure on ([0, 1], B([0,1])) which
has density ha w.r.t. Py. Then A([0,1]) = 0; moreover, for any A > 0, the
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distribution of h + )\ilA under 130 coincides with the distribution of Ap + Aha
under Py. It follows that the concentration function of P+ A w.r.t. Py, PpiaAs
coincides with the concentration function ppiya of P+ AA w.r.t. Py, for every
A > 0. Since ]30 is nonatomic,

Oa(Pz) = ¢ (P, 2)

_ [ Ad @) if 2 = Hp(cp(a)")
A(L; (@) +cp o @] = Hp,(ep,(@) )} if @ # Hplep(e)),

where L™ (z) = {y € [0,1] : h(y) < cp(x)} and cp(x) is the quantile function
of h. Moreover, since the distribution of (h, ha) under Py coincides with the
joint distribution of (hp,ha) under Py, * = Hp(cp(x)™) holds if and only if
z = Hp(cp(r)7), A(L™(2)) = A(Lp(2)), A(L; (2)) = A(L; (2)), Hp , = Hpa
and Cpy = CPa- The Theorem follows immediately. 0

PRrROOF OF THEOREM 3. By the definition of Gateaux derivative,

p(P+ A, g) — p(P, g)

(P, g) = li =1 +1
PA(P,9) Jim, 3 1+ Lo,
where
. 1
no= tim { [ aatteaso - [ awameo},
A—0t :)l\ R
o= lim 1 {[(P4AAFO) - PO g~ (P+AA); ()97}
if such limits exist. Observe that
l; = lim I\ (w)ha(w)Po(dw) + lim I (w)ha (w)Py(dw),

A—0t (ha<0) A—0t (ha>0)

where
_ 9(hp(w) + Aha(w)) — g(hp(w))

Iw) Nia ()

Since g is a convex function,

)

|1 ()] < max (LIE& g1

t_l}l_noo g(t)/tD < 00.

Hence, from the dominated convergence theorem, it follows that

Iy Z/ngr(hp(w))hANw)Po(dw)—/Qg',(hp(w))hA_(w)pO(dw).
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Furthermore, if P;(N) > 0, there exists Ag such that (P + AA)(N) > 0 for any
A < Ag. Hence, it follows that

o= lim (P4 L)L) - P(N)g*

+ lim S((P 4 M) (NO)g™ — (P +A8); (N)g™ — (P+3A); (N)g7)
Ay(N)gt + AT (N gt — AT (N)g™. o
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