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A CENTRAL LIMIT PROBLEM
FOR PARTIALLY EXCHANGEABLE
RANDOM VARIABLESY

B HacTosme#l cTaThe pacCMaTpHBaeTCA lIEHTpaJibHad IpelelibHasd
n .
npo6aeMa nas ((Sin, S2n,...))n, koraa S, = _’1-'=1 5‘(_1-) (i=1,2,..),a

{ E?): i=12,...;j=1,...,n} 1a4 KaX[0ro n eCTb MATPHIa YaCTHYIHO
NepecTaHOBOYHBIX CJIy4YadHBX BeJuunH. Iloka3zaHo, 4TO IpH omnpenpeseH-
HEIX YCJOBHSAX «IPEHeGPEXHMOCTH» KJacC MpeleJbHBIX 3aKOHOB COBIa-
IaeT C KJacCOM BCeX NepecTaHOBOYHRIX 3aKOHOB, KOTOphIE NpPEACTaBHME
B BHJe cMeceil 6e3rpaHMYHO AeJHMBIX pacnpeneiennii. BoJiee Toro, manni
Heof6XOoI MMBIe M NOCTATOYHLIE YCJIOBHA CXOMMMOCTH K JIIOGOMY 3alaHHOMY
3JieMeHTy H3 3Toro kKjaacca. O6cyxkaaloTcs KPHTEPHH IJiS Tpex 3aMeva-
TeJbHBIX THIOB IPeJeJbHbIX 3aKOHOB (CMeCh I ayCCOBCKHX, IIyaCCOHOBCKHX
H BHIPDOXIEHHHX pacnpeneseHuit). JlokasaHo Takxe, 4TO B Ciaydae, KOraa
£g') = Xij/an, (@an — +00), a Beanunnn X;; (i,j =1,2,...) nepecraHo-
BOYHBI, KJacC NpeAeJbHBX 32KOHOB MOXHO OXapaKTepH30BaTh B TEPMH-
HaX cMeceli yCTOHYMBHIX 3aKoHOB. HakoHel, Mbl MOKa3hnIBaeM, UTO HEKO-
TOpble XOpOIIIO H3BeCTHhIE OCHOBHBIE IpelieJibHBIE TEOpEeMEl MOTYT GhITH
NOJydYeHbl KaK CJCNCTBHA Pe3yJbTaTOB, IOKa3aHHLIX B HacTOfIUEH pabo-
Te.

Kawouesvie caosa u Pipadvi: NeHTpalibHad npefeabHas npobieMa, Te-
opeMa mpeicTaBJieHus e PuHeTTH, Ge3rpaHUYHO [eJMMbIe 3aKOHBI H HX
CM€CH, YaCTHYHO NepecTaHOBOYHBIE CIydYaHHble BEJHYHHBI, yCTORIHBLIE
3aKOHBI H MX CMeCH, TeopeMa npenctasjeHds Cxopoxona.

Introduction

For every n = 1,2,..., let {Eg‘): i=1,2,...; j=1,...n} be an array
(with infinitely many rows and n columns) of partially exchangeable random
variables, in the sense that the probability distribution of every finite subset
of the array is invariant with respect to all finite permutations o1,...,0
acting on the first, ..., nth column, respectively. Then, for the nth array
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(n=1,2,...), consider the sequence of row sums

in=Z€(n) i=1,2,....
ji=1

The present paper deals with the following central limit problem:

— Which is the class of limit laws of ((S1n,S2n,-..))n as n — oco?

— Under which conditions does ({S1n, S2n, . ..))n converge to a specified
law?

The study of this problem is motivated by the need for reasonable jus-
tifications for the adoption of suitable models in the Bayesian analysis of
those situations in which observable random quantities are viewed as sums
of small effects of a great number of factors.

Section 4 in the present paper shows that, under suitable «negligibility»
conditions, the class of limiting laws coincides with that of all exchangeable
laws which are presentable as linear convex combinations of infinitely divisi-
ble distributions. In the same section, necessary and sufficient conditions for
convergence to any specified element of that class are provided. Section 5
includes criteria for three remarkable limit types: mixture of Gaussian, Pois-
son, degenerate probability distributions. Section 6 considers the array of
random variables

6'(;‘) fn an >0, an— +oo,
when the X;;’s (i,j = 1,2,...) are assumed to be exchangeable. Under
this assumption, the class of limiting laws can be characterized in terms of
mixtures of stable laws.

The arguments used to prove the previous statements rely substantially
on de Finetti’s representation theorem for partially exchangeable random
variables (see Section 1) and on the Skorokhod method for representing
weakly convergent sequences of probability measures by sequences of random
elements which converge almost surely; see Section 3. In fact, the Skorokhod
method is used to represent the conditional convolutions which appear in
de Finetti’s representation of the law of (Stn,S2n,...) and, consequently,
the method at issue allows one to resort to the central limit theorem for
independent random variables.

Finally, in Section 7, it is shown that a few basic, well-known central
limit theorems for sequences of exchangeable random variables (reviewed in
[17]) can be obtained as simple corollaries of the main statements included
in Sections 56 of the present paper. In particular, the deduction from
the same statements of a central limit theorem for exchangeable random
variables without moments, originally proved by Klass and Teicher [13], is
worth noticing; see Subsection 7.4.

A unified method of deriving weak limit results (giving convergence to
Gaussian and Poisson laws) for arrays of (partially) exchangeable random
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variables, based on known results for arrays of martingale differences, is ex-
plained by Eagleson in [4]. The connection between the exchangeable arrays
and the martingale results is made by introducing conditional expectations,
given suitable families of o-fields. General limit theorems about sequences of
conditional expectations, given some specific system of o-fields, are proved
in [14] and [19). However, these papers do not provide information about the
choice of suitable o-fields in order to obtain general, explicit answers to the
central limit problem for (partially) exchangeable summands. Going back to
the Eagleson approach, it is worth noticing that this is applicable whether
the number of the rows in the array be infinite or finite. On the other
hand, the same approach generally yields sufficient — but not necessary —
conditions for convergence.

1. Preliminaries and notation

The definition of infinitely divisible (i.d.) probability distribution func-
tion (p.d.f.) was introduced by de Finetti in connection with his pioneer
investigations into processes with stationary independent increments; see
[6]. A p.d.f. is called i.d. if for every integer n there exists a p.d.f. F, whose
n-fold convolution (F,)™* coincides with F' or, equivalently, if its Fourier—
Stieltjes transform ¢ is the nth power of a characteristic function (c.f.) ¢n
for every n.

De Finetti [7] proved that the class of i.d. laws coincides with the class
of distribution limits of finite convolutions of distributions of the Poisson
type. Kolmogorov [12] and Lévy [15] provided more useful representations.
Lévy’s representation is general, but somewhat convoluted. Consequently,
one generally refers to the following characterization due to [11]:

¢ is the c.f. of an i.d. law if, and only if,

. . 2
#(t) = exp {iat+/R(e“=-1- 11”‘22) 1;" dG(z)}, teR, (1.1)

where the integrand is defined at z = 0 by continuity (—t2/2), a is a real
number and G — the Lévy-Khintchine spectral function — is a nondecreas-
ing, right continuous function on the ertended real line R with G(—oc0) = 0,
limz 400 G(z) = G(4+00) < +00. ¢ uniquely determines (a,G).

Usually the Lévy-Khintchine spectral function is defined on R. Here
one considers G on R becanse of technical reasons arising in Section 3.

In the present paper one considers mixtures of i.d. c.f.’s with respect to
(w.r.t.) the parameter (a,G) and then, in order to define the corresponding
mixing probability measures, one introduces the following notation:

E for a metric space; :

B(E) for the Borel class of E;

M(E) for the class of all finite measures on B(E);

P(E) for the set of all probability measures on B(E);



356 Fortini S., Ladelli L., Regazzini E.

- D for the class of all bounded distribution functions (d.f.) D on the
extended real line R.

Moreover, given A in M(R), D, will denote the corresponding d.f. and,
given D in D, Ap will denote the corresponding Lebesgue—Stieltjes measure. -
Clearly, the spectral function in (1.1) belongs to the class Dy of the d.f.’s D
in D such that D(—-o0) = 0 and lim;— 40 D(z) = D(+00).

A sequence (An)n in M(E) is called completely convergent to A in
M(E) if

/E fddn — A fix (1.2)

for every f in the class Cy(E) of bounded continuous real-valued functions
on E. In particular, if An (n = 1,2,...) and A belong to P(E), then complete
convergence is usually called weak convergence of probability measures and
one writes A, = A. Moreover, if X» (n = 1,2,...) and X are random ele-
ments from a measurable space (R, F) into (E, B(E)), and if the probability
distribution (p.d.) of X, converges weakly to the p.d. of X, then (X,.),. is

said to be convergent in law to X and one writes X, ——» X.

A sequence (pn)n of probability measures is called relatively compact
if each subsequence has a subsequence converging weakly to a probability
measure. If E is Polish and (5 )n is relatively compact, then (un)n is tight,
that is: for every € > 0 there exists a compact set K. C E such that un(K.) >
1 - ¢ for all n. If E is any metric space and if (un)n is tight, then (gn)a
is relatively compact. These propositions will be referred to as Prokhorov’s
theorem; see [1, p. 37].

Finally, we quote the notion of partially exchangeable real-valued ran-
dom variables (r.v.’s). For each positive integer n, let

T
£ = 52 o & (1.3)
E(") E(") ES:)

be an array of real r.v.’s on the probability space (2, F, P), with n columns
and an infinity of rows. According to the definition mentioned in Introduc-
tion, the elements of (1.3) are said to be partially ezchangeable (or (1 3)is
s?.u)l to be partially exchangeable) if, for all finite permutations 01,02,...,0n,
&™) and

n) n n

£¢:71§1)1 Eezr,;l)z T £¢(r,.)(1)n

) i= | b S 77 Gt
f(") E(n) ... 5(")

o3(i)1 a2(1)2 aa(i)n
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have the same p.d. This is the notion of partial exchangeability originally -
proposed by de Finetti [8]. Clearly, if £(™ is partially exchangeable, then
each column is exchangeable.

By the same a.rgument used to prove de Finetti’s representatlon theorem
for exchangeable r.v.’s (cf. (3.1) in [20] and Subsection 2.2 in [21]), one ob-
tains that the elements of £(™ are partially exchangeable if, and only if, there
exist a g-algebra (") c F and a random vector (Fin(-,w),..., Fan(-,w)) of
random p.d.f.’s in Dy such that

= H H Fip(zik,w)  (P-as.) (1.4)

for every (zi1,...,Zin) in R i=1,... ., m,m=1,2,.

It should be noted that the random vector (Fln, F,.,.) is unique P-
a.s.; cf. (2.15) in [20] Clearly, £(™ is exchangeable if, a.nd only if, Fy, = Fin
P~a s. (k=2,...,n).

2. A central limit problem for partially exchangeable r.v.’s

Define (£(™), to be a sequence of arrays of r.v.’s as in (1.3) and assume
(Hi1) For each n, the elements of &™) are partially ezchangeable.
Hence, after putting

n
Sin=Y €0, i=12,..., n=12,..,

the present paper deals with the central limit problem explained in Intro-
duction. This setting can be motivated by paraphrasing Example (2.5) in
(5] dealing with the p.d. of a numerical characteristic of some mass produced
article, when such a characteristic is viewed as the sum of a real number and
of a cumulative error due to a great number, say n, of factors, whose effects
f'(:) on the ith article produced are negligible (i = 1,2,...; k = 1,...,n).
If articles are produced under similar environmental conditions and if the n
factors turn out to be distinguishable, then (H;) provides a suitable starting
point for modeling the p.d. of (S1n,S2n ...). As far as the magnitude of each
52,':) is concerned, one has to make precise the concept of negligibility. Taking
advantage of (H;) and, consequently, of (1.4), one introduces the following
r.v.’s

Ma(e) = Ma(e,0) = max e (l-6€l), €30, m=12,...,
and one can consider the elements of (£(™),, as negligible if

(HZ) Mﬂ(a) i’ 0, £>0, n— +oo,
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where £+ denotes convergence in probability.

When the elements of (£(™), satisfy (H;) and (H;), then they are called
conditionally uniformly asymptotically negligible (conditionally u.a.n.).

I (H;3) holds, then for each € > 0 one can select a subsequence ny(e) of
(n) such that

M, (e)(€) — 0, k — 400, (P-as.)
and there is Q; C Q with P(Q1) = 1 such that

M,,.(I/m)(%) —0, . k— +oo,

for every m = 1,2,... and for every w € ;. Then, by the diagonal method,
one can fix a strictly increasing sequence v1,7v2 ... of integers for which

lim M’Yh(l)=07 m=12,..., well,
k—+o00 m

and, therefore,

Jm Mo, (€)=0, €>0, we. (2.1)
Remark. Condition (Hz) and, consequently, (2.1) are implied by
. () _ 1 R
(K2) lgfi(nP(lflk | >.€) = o(—d(n))’ n— 400, €>0,

provided that d(n) denotes the number of distinct elements in (Fin,. .., Fan)-
Indeed, for every z > 0:

P(M,.(e) > z) < Z(n-) E(/\F.-.(L—E,E]C)) = o(1), n—+oo, €>0,

where the sum ES‘) is extended to the i’s corresponding to distinct F;,’s.
~ Although more restrictive than (Hz), condition (K3) may be of interest
for statistical applications.
In order to state conditions under which ((Sin,S2n,...))n converges to
a specified law, define, for every w in Q and r > 0,

W)=Y {mi’l(w)* /R = LG “’)} e

k=1
n 2 r
Weo=Y [ Fadiee), (23)
k=1 (—0'0,.‘!:] y

-where

msc:z(w) = / zdFkﬂ(z,w), ﬁ?(-’t, w) = Fin (Z + ms:z(w), w). (24)
lzl<r
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For each fixed r > 0 and positive integer =, let 7 be the probability
measure on B(R x Mg(R)) determined by

W)(AxB) = P(aglr) €A, Ay € B) (2.5)

for every A in B(R) and B in B(Mp(R)), where Mo(R) = {} € M(R):
A{-00, 400} = 0}. '

3. A preliminary result

This section deals with the Skorokhod representation, mentioned in In-
troduction, concerning the sequences (Wn)» and (W,(.l)),., defined by

W, = (ag;),,\w(n,),,\r,,,\pl_,...,,\F“,ao,ao,...,M,.(%),M,.(%),...),

w = (,\rn, AFis s Mon, 605 80, - M,.(%), Ma(3), )

where 4, is the unit mass at @ and I', denotes the convolution Fip*---% Fun.
Here, Wy, is viewed as a random element from (2, F) into (S, B(S)), with
S = R x Mo(R) x P(R)® x R” . (My(R) and P(R) in the complete con-
vergence topology) whilst WV is viewed as a random element from (2, F)
into (M, B(8)) with §1) = P(R)® x R™. In the following, @, and Q"
will denote the p.d.’s of W, and W,(.l), respectively.

Lemma 1. Assume that (H3) holds.

(i) If, for a fized positive r, (US,')),. converges weakly, then each sub-
sequence of (Qn)n includes a subsequence (Qn:)n such that Q, = Q and
Q(R x Mo(R) x P(R) x {6} x {0}>) = 1.

(ii) If (S1n)n converges in law, then each subsequence of (Qg.l)),. includes
a subsequence (le,?)nn such that le,,) = QM) and Q(Po(R) x {60} x
{0}) = 1, where Po(R) = {A € P(R): A({=o00, +00}) = 0}.

Proof. (i) Since (US.T)),. ¢onverges weakly and P(R)® xR™ is com-
pact, (@n)n turns out to be relatively compact. Then, in view of (Hz), we
can chose a subsequence (n') such that both (Q,)n converges and

lim Mnl(E) =0 (31)
n!—+o00
for every € > 0 and w € Q3 with P(2;) = 1. In its turn, (3.1) implies that
(Mn(3),Mp(%),...) converges to (0,0,...) forevery win @ and Ag, , = éo.
(n' = 400, k =1,2,...). Therefore the thesis follows from the convergence
of 7).

(ii) P(R) is compact in view of Theorem VIII.5(d) in [3). Hence the

sequence of probability measures defined by

QD(4)=P(dr, €4), AeB(PR), n=12,...,
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is tight and, therefore, it includes a convergent subsequence(st,)),... Now
from the convergence of (S1n)n, for each m = 1,2,..., thereis K, in R with
Km T 400 as m — +oo and

T P(1S1] > Km) < %

On the other hand, if D{™ () = Q¥ ({u € P(R): p(R\ [-Km, Km]) < 7})
for every n € (0,1)

P(IS1w| > Km) > n{1 - DIP(n)},

T 1
m(1- DEP(n) < 7

Since the set
¢§™ = {1 € P(R): p(B\-Km, Km]) < 1)

is closed and N, C’('") is included in C’(°°) = {u € P(R): p{-o0, +o0} € 1},
from Theorem 2.1 (m) in [1],

Q(ci™) 2 lin_rprf')(Cv(;'"))
and, by letting m — +o0,
QAECY) 21 vqe(o,1).

This shows that Q(*)(Po(R)) = 1. Now, from the same argument used to
prove (i) there is a subsequence (n") of (n') such that

(AFyursee s AP 805- -y Ma(%),-. ) 5 (b0, ---,0,...)

and, therefore, the limit Q) of Q( + is concentrated on Po(R) x {6}*° x
{0}*°. Lemma 1 is proved.

3.1. Skorokhod’s representation for a convergent subsequence
of (Wn)n. Let (Wy)a be a convergent subsequence of (W,)n according to
(i). Since S is Polish, from the Skorokhod representation theorem (cf. [2,

p. 6], one can determine a probability space (Q 7, P) and random elements
on it, taking values in R x Mp(R) x P(R)® x R™

W=(a,x¢,z,zl,zz,...f() M(3),-- )

W = (8980 s Brwts s T (3, B (3), )
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wlhich have respective p.d.’s @ and @, and satisfy

im W (w) = W(w) (in the metric of 8) (3.2)

n! —<400

for every w in Q. Indeed, consistently with the previous notation, one will
denote the convolution Ly, * -+ % Ly by Ag . In view of the definition of

@n, the following statements hold, for each n’, P-as.:

gﬁ"' C]nr qug 60,60, )EEI)O(ILY” (3iﬂ
Lo =Ap
a) = { (f)+/ d _(r)(dz)}
1+ (3.4)
’\wf,',’ = ’\$f,'.’
with
)= [ olulds),
lz|<r
zs:;l)(_ooa Z] = Zlcn( 00, T + m(r)]
~ id 2
P (z) = / Y74y,
We@=Y [ i
= 1\ _ 5 1 17° _
o (3) = max B ([~ 1.4 )0 =23,
and, from (2.1):
= r1
M,,.(F)—»o, 2 —oo; k=23,..., (3.5)
Lin >Li=68, i=12,.... (3.6)
Moreover from (3.5): |
max Liw ([-¢, €]°) —0, n 00, €>0, (3.7)

1€ign’

holds P-a.s. In other words, p.d.’s L;u are u.a.n., P-as. Now, in view of
(3.2), (3.3) and (3.7) the conditions of the general version of the central
limit theorem, for independent summands, hold P-a.s.; cf. [16, p. 321, A 2°].
Hence, Z € Po(R) P-a.s. and

[ T =nead),  ter, (38)
R
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with
- . ; 2
h(t; @, ¥) = exp {ita + /R (e‘"‘ -1- i Tb) 1 :;‘ A'Z(du)} . (3.9

It should de noted that @ is concentrated on R x Mp(R) x Po(R) x
{60}* x {0}.

3.2. Skorokhod’s representation for a convergent subsequence
of (W(l)) If (W( ))n: is a convergent subsequence of (W )n according to
(ii), from the Skorokhod representa.tlon theorem, there are random elements
taking values in Po(R)® x R™

W = (z,zl,zz,...,fq(

WY = (Zos Zrwts By oo oo (3), (3, - ),

which have respective p.d.’s Q) and @'} and satisfy (3.3) and (3.5)~(3.7)
and
lim W( )(‘*’) = W(l)(w) (in the metric of S(l))

n'—+o00

for every w in Q. Consequently, from the general version of the central limit
theorem for independent summands (cf. [16, p. 321]), there exist random
elements & taking value in R and A ¢ taking value in M, (R) such that

/ = 0(dz) = h(t;&,9), teR, (3.10)
R

with

h(t; &, $)=exp{ita+/n(e“"-1- 1::’;,) 1+" Ag(du )}

& —a,
n! !
{ AA(.) ——»A completely, n — too, (3.11)

and

P-as. for every r > 0.

4. A central limit theorem for sums
of partially exchangeable r.v.’s

The present section provides a solution, under conditions (H; )-(Hz2), for
the problem formulated in Section 2. The proof of the main result is based
on the Skorokhod representations in Subsections 3.1 and 3.2.
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Theorem 1. Assume that (H,)—-(Hz) hold. Then

1°) If ((S1n,S2n,...))n converges in law, then there is a unique proba-
bility measure v on (R x Mo(R.), B(R x Mo(R))) such that the limiting law
of ((Siny--.,Smn))n has the following Fourier-Stieltjes transform

Pm(ty, ... tm)

e . ity T 1% 14 z?
= exp < iaty + / (e LI ) p(dz
/ano(ﬁ) ,:!;‘[1 { N 1+22) 2? (de)

x v(da dp), (4.1)

(tl,...,tm) E Rm, m = 1,2,....
2°) ((S1nsS2n,.--))n converges in law to a random sequence whose p.d.
is characterized by (4.1) if, and only if, Ar) defined by (2.5) satisfies

A =0, n — oo, (4.2)

for any fized finite r > 0.

Proof. If ((Sin,S2n,-..))n converges in law, then, according to de
Finetti’s representation theorem, the limiting c.f. of (Sin,-..,Smn) is given
by

lim E (exp {iZtkS,m}) = lim E ( II /e“"’/\pn(dz)).
k=1 k=1

Furthermore, from Lemma 1 (ii), every subsequence of (n) includes a subse-
quence (n') such that

lim E(H / e“"’/\pn(dz)) = lim E(H / 7 Ag, (dz))
k=1 k=1 '

(from the Skorokhod representation in Subsection 3.2)

k=1
(from (3.8) and the Lebesgue dominated convergence theorem).

Then, if v represents the p.d. of (@,A7) on (R x Mo(R),B(R x Mp(R))),
one obtains

E(g h(tk;a,w)) - /R - gh(tk; a,p)u(dadp)  (4.3)

for every (%1,...,tm) in R™ and every m. Hence, there is a random sequence
whose p.d. is determined by the right-hand side of (4.4). The elements of
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this sequence are exchangeable and, consequently, uniqueness of v follows
from de Finetti’s representation theorem, and this completes the proof of
the first part of the theorem.

To prove the second part, firstly assume that (S1n,- - <y Smn)n converges
in law. Then from Subsection 3.2, L belongs to Po(R) and, thanks to
Subsection 3.1, £ is the weak limit of Ag P-as. Consequently from the
central limit theorem (cf (16, A 1°, p. 321]) the Fourier-Stieltjes transform
of Z is given by (3.9), P-a.s. and the p.d. v of (&, /\'p) is the weak limit ofuy).
At this stage, (4.2) follows from the uniqueness of v stated in the first part
of the theorem. To prove the converse, it suffices to consider the c.f. gps.,'.‘) of
(Siny-..,Smn) and to prove that every pointwise convergent subsequence of
(cpg::))n converges to the right-hand side of (4.1), for m = 1,2,.... If (4.2)
holds, the Subsection 3.1 yields

11 / %2 (da)— [[ hltni 8, 8), o' —oo,
k=1"R k=1

for every (t1,...,tm) in R™, P-a.s., and in view of (3.2) and (4.2) the p.d.
of (a, A ';) is v. Hence, from the Lebesgue dominated convergence theorem,

lim ‘PS:I)(tl, N Y / H h(tx; a, p)v(da dp)
" RxMo(R) .53

and this completes the proof.

It may happen that, under (H;)-(Hz), the sequence ((Sin,S2n,.--))n
does not converge in law but the sequence ((Sin ~ ¢n;S2n — €a,...))n does
for suitable constants cn, n = 1,2,.... The following extension of Theorem 1
is immediate.

Theorem 2. Suppose (H;), (Ha) hold, and let (cn)n be a sequence of
real numbers. Then

1°) If ((S1n—¢nySan —€n,. . .))n converges in law, then there is a unique
probability measure v on (R x Mo(R), B(R x Mo(R))) such that (4.1) is the
Fourier-Stieltjes transform of the limiting law of ((Sin—¢ny-- .5 Smn—Cn))n-

2°) ((S1n = €n,S2n — €n,...))n converges in law to a random sequence
whose p.d. is characterized by (4.1) if, and only if,

r
"V'g)=>l/, n — oo,

with 7 )(A x B) = P(a(') —cnh €A, z\'p(,) € B) for every A x B € B(R x
Mo(R)) and for any fized r > 0.

In Section 6 we provide a sharper characterization of the limiting law in
point 1° of Theorem 2, when fg") = Xik/@n, an > 0 for every n, @, — o0
and X, (i,k=1,2,...) are exchangeable r.v.’s.
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5. Convergence to mixtures of
Gaussian, Poisson, degenerate p.d.’s

This section deals with central limit criteria for three noteworthy limit
types: mixtures of Gaussian, Poisson, degenerate p.d.’s. After choosing
r >0, define 7{"” to be the p.d. of (mn(w,r),0%(w,r)) with

Mn(w, ) = "Z::l /l;la zdFyn(z,w)
oa(w, r) = Zn: {/I=l<r 22 dFin(z, w) - (/I=I<r zdFiq(z, w))?} .

k=1

Moreover, for every € > 0, let ¢t?) be the p.d. of a1 fltl?t dFp,(z,w).

Theorem 3. Suppose that (H1) holds. Then (Hy) holds and there is a
p.d. © on the Borel sets of R x Ry (where Ry = [0,+00)) such that

. m m
. . . 1
ﬂILH;OE(exp {t Ztkskn}) = / H exp {:tka - Etiaz} 7(da do?),
k=1 RxRy g—1
(t1,--»tm) €R™), m=1,2,..., (5.1)

if , and only if, )
p' =W
{ 91(:; ) = bo (5-2)
holds for some r > 0 and for every ¢ > 0, as n — oo.

Proof. Necessity. In view of (5.1), point 1°) of Theorem 1 and the
uniqueness of v, one obtains that v coincides with a p.d. 7 supported by
R x Dy, where Dy is the set of all masses concentrated at 0. Hence, from
the Skorokhod representa.tlon in Subsection 3.2, L, converges weakly to the
Gaussian law with mean @ and variance 52, P-as. Moreover, the Gaussian
and’ degenerate convergence criteria for 1ndependent summands [16, p. 328-
329] yields

72 (w, r) _>32(w), g (W, T) — G(w), (5.3)

Z /=|>= Lin(dz, w) — 0, (54

ﬁ-as where 7i,s,02, are the same as my,02,, respectively, with Lin in
the place of A F,.- In fact, each subsequence of (n) includes a subsequence,
(n'), for which (5 3)-(5. 4) hold and this — via the Prokhorov theorem —
implies (5.2).

Sufficiency. To prove the converse, one can observe that (H;) easily
follows from q( ) o éo. Moreover, if

Zn=WD, Uy, n=12,...,
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where W) is defined at the beginning of Section 3 and

Un = (mﬂ( ) T)s Un( ) T) Z/z|>1/2 dFkrn Z/ﬂ;l/a dFy,, .. -)a

then the sequence of the p.d.’s of Z;,Z,,... is tight. Hence, every subse-

. quence of (n) admits a subsequence (n') for which a representation d la
Skorokhod holds, and this representation is analogous to the one exhibited
in Subsection 3.1. In particular, one can state the existence of a random
vector (@,5?2), taking values in R x R4 whose p.d. is 7. Moreover (5.3)-
(5.4) and (3.7) hold and, consequently, from the above mentioned Ga.ussm.n
convergence criterion:

t2"2
H / exp{ztk.'c}z\A (d.'c) — H exp {nka - 2 } n' — oo,

obtains on §;, with ﬁ(ﬁl) =1, for evéry (t1,...,tm)in R™and m =1, 2,.
Then; an application of the dominated convergence theorem leads to the
formula.

m 2
]h,nE(exp {iZtkSknr}> / Hexp{ztka— %a }r(da do?)
" k=1 RxRy joy

and (5.1) follows from the Prokhorov theorem. Theorem 3 is proved.
The proof of the following extended version of Theorem 3 is immediate.
Theorem 4. Suppose (H,) holds. Then (Hz) holds and there ezist a
sequence of real numbers (cn)n and a p.d. T on the Borel sets of R x Ry
such that v :

ﬂ]j_'néaE (exp {i itk(skn - Cn)})
k=1

m
= / H exp {itka - ltiaz} #(da do?),
RXR+ k=1 2 4
(t1,...,tm)€eR™, m=1,2,..., (5.5)

if, and only if, for every € > 0 and some r > 0:

~()=>,,, D

where 7\7) is the p.d. of (mn(-,7) = €n,02(-,1)).
By an analogous hne of reasoning, one can state a Poisson convergence
criterion.
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Theorem 5. Under (H;) and (Hz), there is a probability measure x on
B(Ry) such that

nlLIIgoE(exp{if:tkSkn}) =/ Hexp {,\(e'u 1)} x(d>)
k=1 Rt k=1

holds for every (t1,...,tm) in R™ (m =1,2...) if, and only if, for every ¢
~in (0,1) and some 7 in (0,1):

. A
/ dFin(z,w) 220,  02(w,7) 20, ma(w,r) 200
|z|2e,|z-1|2¢€

and

X'5) being the p.d. of Tp_, flz_n(:dFk,,(z,w), n=12,...

© Since the degenerate law can be considered as a degenerate Gaussian
law, the following proposition immediately follows from Theorem 4.

_ Corollary 1. If(H;) is valid, then (H;) holds and there ezist a sequence
of real numbers (ca)n and a probability measure x on B(R) such that

lim E(exp{iztk(skn—cn)}) =/ Hexp{itka}n(da),
e U k= Ry |
(t1,---,tm) € R™, m=1,2,. ’

if, and only if, fof every € > 0 and for some r > 0,
z / dFin(z,0) 220, o3(w,r) 20
jz|=e

and
Kslr) => K, n — 00,

where kST denotes the p.d. of (ma(w,) — cx).

6. Exchangeable summands. A few remarks

The present section includes some comments on Theorem 2, point 1°),
when:

5(") _&l, where {X;;; 1,7 > 1} is an array of

excha.ngea,ble r.v.’s and (an)n is a divergent sequence (6.1)

of strictly positive numbers;

Cn = 2—", (b,.),vl being a sequence of real numbers; (6.2)
n
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(S0, Xaj - ba)

an

Sin —cCn =
nondegenerate r.v.

converges in law to a (6.3)

Notice that here one does not require convergence of (Sin — €n,S2n —
Cn,...). Under the above assumptions, one can prove the following result
which will be used to provide a new proof for Theorem 2 in [13]; see Subsec-

tion 7.4.

Theorem 8. If (6.1)6.3) hold, then:

1°) Each subsequence of (n) includes a subsequence (n') such that (a,n//
@y )pt converges to a strictly positive limit, ol”), and ((Brnr — T )/ gt e
converges to ("), for any positive integer r. '

2°) There ezists a probability measure P* on (R*,B(R*)) such that
the limiting c.f. % of (Si1n — ¢n)n admits the representation

a0 = [ stwp@), teR,

where g(-,w) is a c.f. for every w in R™ and

.
P (g(t, w) = y(ﬁ, w) P71 for gll t in R) =1 (64)
Proof. We start by oBéerving that
Sin—cnESin=cn, 22,

where £ denotes equality in law. Then, the sequence of p.d.’s of () =
(S1n—¢ny...,Srn—cn),n=1,2,..., is tight for every r. Hence, by resorting
to the diagonal method, one can prove that each subsequence of (V{"),
includes a subsequence (V,S,')),,: such that

v L (X0, X, ). (6.5)
From (6.5), |
WS’:Z(S,‘,,,—c,,,)—i»X1+---+Xr, T=‘1)2)°-'» (66)

k=1

and, since -

WO Lo (s )+ ine no1a L, (67)

an

the convergence of types theorem implies that there exist o") > 0 and A(")
such that

b

Er_"’. __’a(,-) b,.nl - Tbnl __'ﬂ(r), nl — 00. (68)
- Gp Ay .
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Now, from (6.6)~(6.8) and (6.3),

(r)
L Xt ;f AL (6.9)

where X is the limit (in law) of (S1n —¢n)n. If P* denotes the p.d. of (Xn)n,
then, since the X,’s are exchangeable, one obtains the representation

(exp( Zthk)) = /;w.w f[g(tk,w)P*(dw). (6.10)
k=1 .

For each (n’) such that (6.5) holds, this representa.tion is unique. Clearly,

it generally depends on (n'). Then, since X = X,., (6.4) follows from (6.9).
Theorem 6 is proved.

We now investigate the admissible values of o). In fact it follows
from (6.4) that g(-,w) turns out to be, P*-a.s., the c.f. of a stable law and,
therefore,

o(t,) = exp {it160) - ety [1+i80) § w(t 1) }

for all £ € R where ™ B, ¢ are r.v.’s such that 0 < n(w) < 2, |B(w)| €
e(w) 20,

tang Tléw) if n(w)#1,

—log|t| if npw)=1.

(6.11)

w(t, n(w)) = {

Hence, by (6.4), the following system of equations holds P*-a.s., for every
positive integer r

1.8
| (“’)[ a(r)] o)’
{ c(w) [1_(7’7)"‘—“’] =0, (6.12)
| ) 80) [w(t, 1)) - ey gty 7)] =0

Then, if
ol =1  for every positive integer T, (6.13)

either .

c(w) =0 (614)
or

c(w) # 0,

n(w) =1, (6.15)

B ((.d) =0,

5 Teopus BepoaTHOCTeH U ee NpuMeHenus, Ne 2
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holds. On the other hand, if (6.13) does not hold, then either

cw)=0
’ 6.16
{ W) =7 (6.16)
> e(w) #0,
1w) =17, (6.17)
ngw) =n#1,
a
obtains. Hence, if (6.13) does not hold, since the limiting p.d. of (S1n —¢n)n
is nondegenerate, then the probability that (6.17) holds is strictly positive.
This proves
Theorem 7. If (6.1)-(6.3) hold, then either (6.13) or

r) = pl/n

ol = pl/n for some n#1 and for every r (6.18)

holds.

For suitable choices of the limiting c.f. ¢, one can show that (6.1)-(6.3)
imply convergence of ((Sin — €n,S2n — €n,...))n. In particular, this comes
true when (6.3) is replaced by

Sin —cn converges in law to a standard Gaussian r.v.,say Z. (6.3')

Theorem 8. If (6.1), (6.2) and (6.3') hold, then ((Sin — Cn,S2n —
Cn,...))n converges in law. v ‘

Proof. In view of the arguments used to obtain Theorem 7, the
limiting c.f. ¢z of Z admits-one of the following two representations:

#(0)= [ _exp {in(w)t-c(w) 1} P"(do) (6.19)

when (6.13) holds;
s20)= [ _exp{int—ctwrir1+i8) frrang ] } @) (620

when (6.18) occurs. Since ¢z(t) = exp(—t2/2) is infinitely differentiable,
then
c(w)=0 in (6.19)
7=2,v=0,cw)=4% in (6.20)
From (6.8), (6.13), Theorem 7 and (6.21), each convergent subsequence of
(arn/@n)n converges either to /7 or to r. Hence, given any positive integer

r, define ‘

P*-as. (6.21)

Qrn
an

-7

Ni(r) = {n eN:
Na(r) =N - Ny(r).

Arn
—Vri <
= - A

a
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If Ny(r) is infinite (N3(r) infinite), then

lim % — ﬁ[ lim 2 = r] (6.22)
w400 Qnt wl— 400 Qpn
n'€Ny(r) n' ENa(r) ‘ .

for some suitable subsequence (n’) ((n”)). Moreover, if Ny(r) and N3(r) are
both infinite then (n') and (n") can be chosen in such a way that n} = nj+1.

This implies

51 nir— bnﬂ'r _ S nir— bn;r Qn!r bn‘r - bn;’r

[/ a, a,, a,n
ﬂ‘f ﬂ." ﬂkf ﬂ.f

Xinirp1 o+ Xy (ng+1)r

anL’ r

+

and, consequently, from (6.3') and the convergence of types theorem,

anzr —1
a'n;'r '
as k — +oo, for every r in N, in contradiction with (6.22). Hence, (arn/an)n

converges for every r in N and, consequently, representation (6.10) turns

~ out to be independent of (n’). Then, from the Prokhorov theorem, ((Sin —

€n,S2n — €n,...))n converges. Theorem 8 is proved.
Let us conclude with a result on regular variation of (an)» in Theorem 8.
Theorem 8. Under the hypotheses in Theorem 8, (@n)n either varies
regularly with ezponent } or varies regularly with exponent 1.
Proof. From the proof of Theorem 8:

. a
lim 22 =aV=¢r or r

for every r in N. Then, for any s in N,

+
51 rnt4s — brn+s _ Si1rn—brn arn + E::rr:+1 X + ben — brn+a

Qrn+s Grn Grn4s Qrnits Qrnts

and, from the convergence of types theorem,

im -2 =1, r,seN. (6.23)

n—+00 Qrnts

Let p be a strictly positive rational and let r be the least integer for which
pr € N. Then, forn=ir (1 =1,2,...)

Qpn] _ Gpir _ Gpir a;

Gn Qir a; a;
Hence a
L0 N 1) (6.24)
an

5*
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and, from (6.23)-(6.24),

Qp(ir+1)] _ Bpir+le] Loir _Gir
Qiry1 Qpir Qiyr Giry1

(»)

—

which entails (6.24) along the sequence: n =r, r+1, 2r, 2r+1,.... Iterating
the process a finite number of times, one obtains (6.24) for any strictly
positive rational p. In order to show that (6.24) holds for each p > 0,
observe that each subsequence of (a[,,))n contains an increasing subsequence
(@[pn'))n'- Then, for any two rationals p; and pz such that py < p < p2,

o) < Giminf A0 < Limsup Zn'd < gle2)

n': [n' pl€(n') Qguu n'": [n p]e(n') Ay

and, in view of the arbitrariness of p;, pz and the continuity or p — al?),
(6.24) must hold for every p > 0.

7. Applications

Now we exhibit some applications of the previous general results to
some common situations, analyzed before by several Authors from different
viewpoints. In particular, one provides a new deduction of a central limit
theorem, for exchangeable random variables without moments, proved by
Klass and Teicher [13]. In each case taken into consideration, the corre-
sponding classical result is obtained as corollary of the results explained in
Sections 5-6.

- T.1. Convergence to the Poisson law. Kendall {10] proved that, if
the elements of &™) in (1.3) are 0-1 ezchangeable r.v.’s, and if

AFn ({0}) =1-2Ap, ({1}) =1~0n(w)

with

{ n2E(62) — p? > 0, (7-1)

then the p.d.f. of S1n converges weakly to the Poisson law with parameter pu.

Kendall'obtained this result by analytical methods. Now, one can prove
the same result by showing that (7.1) implies the conditions in Theorem 5.
In fact, given € and 5 >.0,

P( max A, ([-¢, €]°) > n) = P(/\p“ (-, €°) > n) _

1€ign

1 (n) 1 1p
<=P >e)<=E(ln)~=%
; PUEDI>€) < LB~ 2 8
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and this implies (Hz). Moreover, given € and r in (0,1):

Z/ dFin(z,w)=0

lzi>e,|z-1]2e ' ' ,

Ma(w, ) = Z/ zdFy,(z,w) =0, &f,(w, r)=0
lz|<r

and

> / dFn (2, w) = nn(w).
Jz-1|<e
Since

P(|n0,,(w) - ul> e) < elz E((nfn - p)*) —0  (from (7.1))

then x( ) converges weakly to §, and, from Theorem 5, S1, £, X where X
has the Poisson distribution with parameter .

In view of Theorem 5, conditions (7.1) are redundant when it comes-to
obtaining convergence to the Poisson distribution. In fact, for this purpose,
it suffices to replace (7.1) with '

{ E(8x) = of1), (71

nb, £, U.

Kendall considers the following case in which (7.1) does not hold:

P(0,,=H>=1-l, Pbn=1)=1,
n n

n

and, nevertheless, the Poisson convergence holds. Indeed, in that very case,
1
E(6,) — 0, P(|no,, —p|> e) <P(Bn=1)=7:

so that we obtain (7.1'). On the other hand, nothing can be said, without
further analysis, about necessity of (7.1') in order that S1, converges in law
to a r.v. distributed according to the Poisson distribution. In fact, (7.1')
is necessary in order that (Sip,S2n,...) converges in law to a sequence of
independent r.v.’s, distributed according to the Poisson distribution with
parameter p.

7.2. Convergence to the Gaussian law. Consider (1.3) with £g.') =
(") /vn (i 2 1; 1 < j < n) and assume that the X (J") ’s are exchangeable
w1th common conthlona.l p.d.f. Fu(,w). Corollary 2 in [18], obtained by
martingale methods, states that
if E(XV) =0, Va.r((X("))z) =1 with E((X{")*) < +oo, and
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(2) E((XMXM)?)—1asn— oo
(b) nE(XMX™M) 0 asn — +oo
(n)y2
(c) ve> 0, E((X;") l{lef)'l>=\/ﬂ) —0 as n — +oo,
then Sin converges in law to a standard Gaussian r.v.

In fact, this result is an almost direct consequence of Theorem 3. Indeed,
for every 6 > 0:

(G) ((6 +oo) (EAF ([—6\/_ Eﬂ ) > 6)
( (")I > ev/n) —0 (from (c))
and this implies q( &) = . Moreover,

Mn(w, T) = VA / 21[0,,( \/l) dFa(z, w)

= ﬁ{ LZan(Z, w) - /R"‘l(r,+°°) (Ii\/hl.) dFy(z, U)}

and

r(|ve
zl(,m)('}) 4Fu(2,0)| < 1 [ 1010 ym, 1o (21) Fr(2, ).

One derives from (c),

P(/}; lzlzl(r\/i,+co) (|Zl)an,(Z, w) > 6)
1 n
3 B(IXPP1, s, 4oy (X)) —0.

Hence, mn(w, ) converges in law to a r.v. which degenerates at 0, and

o3(w, r)=n{ A =12 By, ](\'/l) dFo(z, w)

-([ %1(0,10:1/«5)«1&@,««:))2}
= /R |22 dFu(z, w) - /R 12121 /z, 4 00) (I2]) dFn(2, w)

- {/deFn(z,U) - LZI(r\/E,+m)(lzl) an(z,w)}z.

zan(z w)l>6) ZEXPXE)—0  (from (b));
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But
m E ( L"‘zl(rﬁ.w)(lﬂ) an(z’“)) =0,
2
E({ /R zan(z,w)} ) E(X{;')X("))_a( )
2
E ({/ zl(,ﬁ’+°°)(|z|) dF,.(z,w)} >
=FE (Xl(;l)X{2)1(r\/_.+m)(|X11 I)l(r\/_.+oo) (|X12 I))
< E (X5 sy (XF)) =0 (from (c)
and
E'(l/nzdF,.(z,w)/l;zl(,\/,—h+°°)(|z|) an(z,w)l)
1/2
<{B(1XP 1 m o (XPD)} T —0  (from (€).
Finally, ‘

P(l/ (z? - l)dF,,(z,w)l > 6)

{E([X{;')X(")I ) - } —0  (from (a))

and, consequently, o2(w,r) £, Then, the thesis fo]lows from Theorem 3
with 7 = 6§ ® 1. :

7.3. Convergence to a scale mixture of Gaussian laws. Eaton,
Fortini and Regazzini 5 deal with the problem of the convergence of (S1n —
¢n)n when, besides (6.1)-(6.3) with cn = 0, E(X11) = 0 and E(X%) < 400’
hold.

Under these conditions, either: ap ~'c\/ﬁ and

nli&le (exp {ikz:;tkskn}) = /[;] H exp { - = t,‘b} w1(db) (7.2)

+°°)k—
(tl,...,tm)ER Pl m—1,2,...

or an ~ cn and

,.ETN E (exp {igt;‘skn}) = / H exp{ttka} v(da) (7.3)

(t],...,tm)ERm, —1,2,... .
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This result can be deduced from Theorem 3 and Corollary 1, as follows.
If E(XnXu) = 0, then

s(en {2 ) =5 (7(G))
—p(en{-Liw]) o

where H is the Fourier-Stieltjes transform of the conditional p.d.f. F of
X11, in de Finetti’s representation, and g?(w) represents the conditional
variance. In view of (6.3), P(0%(w) = 0) < 1. Indeed, if P(0?(w) =0) =1,
then P(X11 = 0) =1 and this would imply that S1, converges in probability
to 0, in contradiction with (6.3). Then, from (6.3), (7.4) and the convergence
of types theorem,

E'—‘-—rC>0

' vn
At this point, (7.2) follows from Theorem 3. In fact, (H;) holds and for
every 6 >0 and r > 0:

e ((6, +o0)) € = P(lXul > £an)

< 2802 E(IXHI 1{|X11|>ea‘})‘—’0, i (75)
€ 60,,

o fyriea(ar) e
o oo (&) ame )

/ 1211 ra., o0y (12]) dF (2, w)

|mn(w, r)| =

1'a2

and

P(/R|z|21(m_,+m)(|z|) dF(z,w) > 5)

3 B((X2) 1 rar ooy (Krl) ) —0, (7.6)
o (w,r) = aZ {/|=|<ra.. z?dF(z,w) - [/M«a‘ zdF(z,w)] }
~ —% z?dF(z,w)
Gn Jiz|<ra,

which converges to o?(w)/c?, P-a.s. This implies (5.2) with 7 =  ® m
and, consequently, (7.2). To complete the proof, one has to consider the
case in which E(X11X;2) # 0. Since E(X1,) is finite, the strong law of large



A central limit problem for partially ezchangeable random variables 377

numbers, for sequences of exchangeable r.v.’s, implies that a r.v. a exists
such that

1 n
= z; X1;—a  (P-as.).
=

Moreover a is nondegenerate. In fact, if P(a = ¢) = 1 for some suitable con-
stant ¢, then ¢ = 0 (since £(X11) = 0) and, consequently, F(X11X12) =0, in
contradiction with the assumption. At this point, (6.3) and the convergence
of types theorem imply

"7"_.c>0 (7.7)

Now, (7.3) follows from Corollary 1. Indeed,
oi(w, r) £, Z/ dF(z,w) £
) |z|>ean
follow from (7.5)4(7.7). Moreover,

Mmn(w, ) = % /R""'lloﬁa-] (Iz])dF(z, w) — % a(w) (P-as.).

T7.4. Convergence to the Gaussian law. Exchangeable sum-
mands without moments. Klass and Teicher [13] provide necessary and
sufficient conditions in order that (S}, — ¢n)n converges in law to a stan-
dard Gaussian r.v. Z, under assumptions (6.1)-(6.2). From Theorem 4 and
Corollary 1, via (6.19)—(6.21) one immediately obtains the following theorem,
which implies the basic Klass and Teicher central limit problem.

If (S1n — cn)n converges in law to Z, and if F = F(-,w) denotes the
conditional p.d.f. of X11 in de Finetti’s representation, then

nAp([~€6n, €a4]°) i 0, e>0, (7.8)
and either
( (:;-: - \/—1
n P
— zdF(z,w)- — — 0,
q % Jjzicr (=) (7.9)

% {/|,|<., z?dF(z,w) - (/lslazdF(z, w))z} Ry

”
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(for some T > 0) or

( Qrn
an

—T

n £
— dF -—= =7,
{ @ Jieter” &) (7.10)

S0 e ([ )=

(for some T > 0). Conversely, if there ezist sequences (bn)n and (an)n,
0 < an — +oo, such that (7.8) and either (7.9) or (7.10) hold, then (Sin—cn)n

converges in law to Z.
As a matter of fact, the a.bove conditions for convergence to Z formally

differ from the ones in Theorem 2 in [13], but they are obviously equivalent.
In any case, one can use Theorem 4 and Corollary 1 to provide an alternative
proof of Theorem 2 in [13]. Indeed, if Sin —¢n Lz , from Theorem 1 in
[13] it follows that

1 n
Tln — Cn = Z lei 1{|X1.‘|<€nﬂn}
i=1

converges in law to Z for a suitable sequence ¢» | 0, and condition (29) in
[13] follows from Lemma 1 in [13]. In fact, since (Sin — €n,S2n — Cn,...)
converges in law and P({S1n # T1n} U ---U{Skn # Tkn}) — 0, for every k,
then (Tin — ¢nyT2n — €n,...) converges in law to the same limit of (Sin —
¢nyS2n — Cn,...). Hence, if arn/an — /7, then (6.20) and (6.21) state that
such a limit is a mixture of Gaussian laws and, from Theorem 4 applied to
(Tin—¢n,Tan—cn,...) one deduces (30) in [13]. Alternatively, if arn/an — r,
then (6.19) and (6.21) state that the limit of (Tin — ¢n,T2n — Cn,...) is a
mixture of degenerate laws and (31) in [13] directly follows from Corollary 1.
Conversely, if (29) and (30) [(29) and (31)] in [13] hold, then convergence
in law of (T1n — ¢5) to Z directly follows from Theorem 4 (Corollary 1).

Moreover, from (29) one easily deduces that Sy, —¢cn L,z
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