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Sununary

In robust Bayesian analysis, ranges of quantities of interest (e.g. posterior means) are
usually considered when the prior probability measure varies in a class I". Such quanti-
ties describe the variation of just one aspect of the posterior measure. The concentra-
tion function describes changes in the posterior probability measure more globally,
detecling differences in probability concentration and providing, simultancously,
bounds on the posterior probability of all measurable subsets. In this paper, we pre-
sent a novel use of the concentration function, and two concentration indices, to study
such posterior changes for a general class I', restricting then our atlention to some
e-contamination classes of priors.

Keywords: Concentration function, Bayesian robustness, e-contaminations, Gini’s
area of concentration, Pietra’s index.

1. Introduction

As described in Berger (1985, 1990, 1994), the robust Bayesian approach
usually deals with the uncertainty in specifying the prior probability measure.
Sometimes, a class I" of probability measures seems to be the most plausible
result of an elicitation process (e.g. it might consists of all the priors elicited
by some experts).

Posterior ranges of functions of the parameters (e.g. set probabilities,
means) are usually considered, as the prior measure varies in I". Small ranges
suggest that the inference (or decision) is not actually affected by a particular
choice in I'.

The paper complements the work in Fortini and Ruggeri (1994) where a
new approach to Bayesian robustness, based on the concentration function,
was proposed and in which the concentration function was mainly used to
define classes of priors and compute bounds on posterior quantities over such
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classes. This paper studics a different robustness problem, that of comparing
the posterior probability measures IT* themselves, by means of their concen-
tration function with respect to a base posterior IT}. The concentration func-
tion, as defined by Cifarclli and Regazzini (1987), extends the notion of
Lorenz curve and allows finding the range of the probabilitics, under IT*, of
all the sets with equal probability x under IT}. Robust analyses can be per-
formed considering the largest range, for any x in [0, 1], as the prior varies in
I "The width of such intervals, expressed by means of the concentration func-
tion, gives a distance between the posteriors IT* and IT}. Moreover, the con-
centration function satisfies the nced, as demanded by Wasserman (1992), of
providing graphical summaries of robust Bayesian analyses. This paper pre-
sents a general framework which holds for many classes of priors, applying it
to some e-contamination classcs, very relevant in Bayesian robustncss litera-
ture. Finally, we apply the results to some well-known examples and to an
ongoing study about accidents for a Spanish insurance company.

2. Concentration function

Cifarelli and Regazzini (1987) defined the concentration function, as a gener-
alization of the well-known Lorenz curve (see, e.g., Marshall and Olkin,
1979, p. 5). The classical definition of concentration refers to the discrepancy
between a probability measure IT and a uniform one, say IT,, and allows for
the comparison of both probability measures, looking for subsets where IT is
much more concentrated than [T, (and vice versa). Cifarelli and Regazzini
(1987) defined and studied the concentration function of IT with respect to
1Ty, where {1 and I, are two probability measures on the same measurable
space (@, ¥). According to Radon-Nikodym theorem, there is a unique
partition (N, N} C & of © and a nonnegative function /i on N€ such that,

VEe &, II(E) = [1,(E 0 NS) + IT(E N N) (with [T,(E N N€) = /E - h(®)

Hy(d)), IT(N) = 0, II(N) = IT(©), where IT, and IT; denote the absolutely
continuous and the singular part of IT with respect to IT,, respectively. Set
h(11) = e all over N and define IH(y) = ITy({0 e ©: h(V) < y))}, ¢, = inf(y
R H(y) =z x}and ¢ = lim ¢, Finally, let L, = {#e @: () <c,)and L] =
(e @: (D) <c). °

Definition 1. Thc function ¢ : [0, 1] — [0, 1] is said to be the concentration
function of IT with respect to I if gfx) = I(L7) + ¢, {x — H(cy)} for x € (0,
1D, ¢@0) = 0 and ¢(1) = I1,(@).
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Obscrve that g@(x) is a nondecrecasing, continuous and convex function,
such that ¢(x) = 0 < IT L I, ¢(x) = x, Yx e [0, 1] <> IT = I1,, and

P(x) :l [x = I{)]dt = /ﬁ cdi. (1

To facilitate the understanding of the behaviour of the concentration func-
tion, we describe two cases: (1) = 1 means that IT is absolutely continuous
with respect to Iy while @(x) = 0, 0 < x < a, means that ITgives no mass to a
subset A € & such that ITy(A) = a. To show how to practically draw the
concentration function when I7, and IT are absolutely continuous with re-
spect to Lebesgue measurc on R, consider a gamma distribution 17T ~ G2,
2) and an exponential one IT, ~ %(1). Then it follows that the Radon-
Nikodym derivative is i(8) = 43exp(—11). The concentration function @(x)
is obtained by evaluating x = Ily(L,) and p(x) = IT(L,), where L,={de0O:
h(#) < g} and g takes as many as possible values to draw the concgntration
function within the required accuracy.

The concentration function induces a partial order in the space P of all
probability measure, hence allowing for their comparison.

Definition 2. Let ¢y, @, be the concentration functions of I1; and TI, with
respect to ITy. We say that IT is not less concentrated than I7, with respect to
Iy, and denote it by I, > [T}, if py(x) < @y(x), Vx € [0, 1].

Total orderings, consistent with the previous partial one, are achieved when
considering cocfficients of divergence (see Regazzini, 1992). Here we consid-
]

er two particular case: Cp, (1) = 2/ {x = @(x)}dx and G, (IT) = sup (x —
0 xel0.1

]
@(x)) which are, respectively, the Gini’s arca of concentration (Gini, 1914)
and an index proposed by Pietra (1915), which equals the (otal variation
norm, as proved by Cifarelli and Regazzini (1987). Observe that

Cri (1) = 0 < Gy (11) = 0 <> IT = [y;

Ci (1) =1 Gy (1) = 1 < IT L I,

The following Theorem, proved in Cifarelli and Regazzini (1987), states that
((x) substantially coincides with the minimum value of I7 on the measurable
subsets of @ with Ily-measure not smaller than x.
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Theorem 1. 1f A e F, ITy(A) = x, then p(x) < IT,(A). Moreoverif x e [0, 1]is
adherent to the range of I1, then there exists a B, such that [Ty(B,) = x and

O(x) = I(B,) = min{I1(A) : A € F and [y(A) = x}. )
If Iy is nonatomic, then (2) holds for any x e |0, 1].

Such a Theorem is relevant when applying the concentration function to
robust Bayesian analysis; for any x € [0, 1], the probability, under IT, of all
the subsets A with IT,-mecasure x satisfies

px) < II(A) <1 — ¢l ~ x). (3)

Two examples are presented to show how the concentration function, far
from substituting the other usual functions (e.g. the mean), furnishes diffe-
rent information about the probability measures. As a first example, we men-
tion the fact that comparisons among probability measures are sometimes
made through their moments; it is well-known that different measures could
be found such that they share the first n moments, while their difference
could be detected by the concentration function. As another example, con-
sider two measures concentrated on disjoint but very close sets in %", say F,
and E;. In this case, the concentration function shows the difference between
them, which is large on the subsets which contain just one E;, [ = 1, 2,
although their means are very close.

3. Statement of the problem

Following a suggestion in Regazzini (1992), we shall compare a class of post-
crior probability measures, formed from a class I' of priors, with a base post-
erior measure with the aid of the concentration function. Hence, we provide
a novel approach to Bayesian robustness studies, based on an innovative use
of the concentration function. We will apply our general approach to one of
the most relevant classes in robust Bayesian analysis: the e-contaminations.

Two methods will be presented here. The first one considers the class of
concentration functions of the posterior probability measures with respect to
the base one and looks cither for the lowest concentration function, if it
exists, or, pointwise, for the infimum of the concentration functions. The
obtained function is then considered, by looking how far apart are it and the
line connecting (0, 0) and (1, 1) (corresponding to equal measures) or if it lies
above an adequate continuous, convex, nondecreasing function g, which im-
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poses bounds on the variation of the sct probabilities, as described in Fortini
and Ruggeri (1994, 1995a). Results are provided for well-known contaminat-
ing classes (arbitrary, unimodal and generalised moments priors). In the
second method, we measure robustness considering the distance between
probability mcasures by means of some indices, related to the concentration
function, as described in Regazzini (1992). In particular, we consider Gini’s
and Pietra’s indices.

4. General approach

Let (X, Fy, {Py, 9 € (O, F)}) be a dominated statistical space, where (©, F)
is any measurable space. Given a sample s from &, the experimental evidence
about ¢ will be expressed by the likelihood function [(®), which we assume
Fe () F-measurable. Let P denote the spacce of the probability measures on
the parameter space (@, %). Given a prior [T € %, the posterior

I IT(dD)
measure is defined by IT*(A4) = -2

, forany A e #. Following the

I(DTI(d))
robust Bayesian viewpoint, we consider a class I" of probability measures I7,
rather than just onc. Suppose that there exists a base prior IT,, as in the
e-contamination class, and consider the class ¥ of concentration functions ¢y,
of IT*, ITe I', with respect to IT*,. Because of Theorem 1 and (3), it follows
that, for any ITe I'and A € % with ITH(A) = x,

P(x) < ITHA) s 1 — (1 — x),

where @(x) = inf @p(x), for any x € [0, 1].
Iier

The interpretatipn of @, in terms of Bayesian robustness, is straightfor-
ward: the closest ¢(x) and I — ¢(1 — x) are for all x € [0, 1], the closest the
posterior measures are. It is then possible to make judgements on robustness
by looking how far apart the plots of ¢(x) and y = x (equal measures) are.
Fortini and Ruggeri (1995a) suggested checking, for any A € F, if IT*(A) =
g(ITH(A)), where g is a given continuous, convex, nondecreasing function
such that g(0) = 0. As an cxample, the choice g(x) = x* is equivalent to

sup  |[ITHA) — IT*(A)| < ITH(A) (1 = ITH(A)). 1f ITH(A) = x, then

AF T (A)=x )
Theorem 1 implies that IT*(A) = @yy(x), so that such criterion ensures robust-

ness if @(x) = g(x) for all x e [0, 1].
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The computation of ¢ is quite simple when there exists IT e I'such that @
= @y The paper gives conditions ensuring its existence for some classes of
priors; otherwise, ¢(x) can be obtained numerically. Besides, the paper com-
parcs probability measures by means of some concentration indices, con-
sidering Cpy, = sup Cpy (1) and Gn, = sup Gy (IT).

el Her -

The concentration function is well suited (o satisly the need, pointed out by
Wasserman (1992), of summarising graphically the results of a robust Baye-
sian analysis. In fact, the plot of ¢(x) and | — (1 — x) gives a very intuitive
description of the discrepancy between the base prior and the other mea-
sures. As an cxample p(x) =1 — (1 — x) (1 = log(1 — x)) is the concentration
function of IT ~ 4(2, 1) with respect to [ly ~ 6(1), showing that [0.094,
0.767] is the range spanncd by the probability, under 17, of the sets A with
[I”(/l) = ().4.

5. Concentration function of e-contaminations

We now apply the general ramework, described in the previous Section, to
the class T, of econtaminated priors, one of the most relevant classes in
robust Bayesian analysis (sce Berger, 1994),

Definition 3. Let TT be a fixed prior probability measurce and let € e [0, 1
The class I'. = {Hoy=0 -+ rQ, Qe 2}, where 9 C P, is said to be an
e-contamination class of priors.

Some classes 9. have been proposed and their properties are discussed in
Berger (1990). In this paper, we consider the class 9.4 of all the probability
measures, the class 9 of all probability measures defined by means of gener-
alised moments conditions (see Betro ef al., 1994) and, if I1, is unimodal, the
class 94, of all unimodal probability measures, with the same mode as IT,.

We consider some derivatives of ¢(x), sincc they are needed in proving
some of the next Proposition. Morcover, it is worth obscrving that such de-
rivatives allow the approximation of lower and upper bounds on the prob-
ability of the subsets A such that IT5(A) is sufficiently close to 0.

‘roposition 1. Let I, and Q be probability mcasures on (0, %); for any a e
0, 1], define 11, = (1 - a)[Ty + aQ. If @ and ¢, arc the concentration
functions of I, and Q with respect to I respectively, then gfx) = (1 — a)x
+ aqy(v).
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Let @ {x) and @_(x) be, respectively, the right-hand and the left-hand
derivatives of gp(x), then it follows that

(M =(1—a) + aﬂi:gfr[,(ﬂ) and ¢@_(1) =(1l —a) + a ;1:{; l;(,(:?),

where ];n is the Radon-Nikodym derivative of Q with respect to T,

Proof. The relation between ¢ and ¢, follows casily from the definition of
concentration function. As pointed out by Cifarelli and Regazzini (1987), the
right-hand derivative can be computed, because (1) implies that. (qﬂ,,)',(l) =
ci. In the same way, (q,)'.(0) is computed, observing that ¢, is right con-
tinuous at the origin. 8]

For any measure O, Ict Ap = (1 — &)Dy/[(1 ~ &)Dy + €Dy,], with
Dy = / (NI (dB) and D, = /() 1(N)Q (d1).
' :

Proposition 2. Consider I = (1 — &)1l + £Q so that IT}, = A,TT} t (l‘—
Ap)Q*. 1If @ and ¢, denote the cpnccntr:tticm functions of 11, and Q* with
respect to Iy, respectively, then it follows that ¢(x) = Aov + (1= A,) gu(x).
Moreover, it [ollows that

P4 (0) = Ao + (1 = Ap) inf hy(P)

e

= Ao [1+ einf ho(D)/(1 — &),

a6

PL(1) = Ao + (1 = Ay) sup ho(d)

le@

= [l + gsup ()1 — £)].

DeE
where fz(, and Jiy arc, respectively, the Radon-Nikodym derivatives of € with
respect to I1; and of OQ* with respect to 1}, :

Proof. The expression about IT* is well known (sec Berger, 1985, p. 206).

. . DQ
The other results follow from Proposition | and the fact that /1“(1‘)):(5— X

0
X ().
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The previous Propositions are now applicd to robustness analysis, when con-
sidering e-contaminations of a nonatomic prior Iy. It is worth mentioning
that the results hold, with slight changes, for € = 1, so that they essentially
apply also to arbitrary, unimodal and generalised moments priors.

6. Arbitrary contaminations

In the case of arbitrary contaminations, there exists a contaminated measure
which is not less concentrated than the others, i.e. with lowest concentration
function.

Proposition 3. Consider the class 9, of all contaminations. Let & be the
maximum likelihood estimate of @ and Q be the Dirac measurc concentrated

at . It follows that H’bt [Ty, for any Q € 9,,. Moreover Cn,=Gp, = {1+
[(1 = e)/elDyI(d)) ",

Proof. Proposition 2 and (1) imply that Po(x) = Apx. For any Q € 9, it

follows that gg(x) < Apx = gp(x), since 1(1‘?) = Dg. The result about Gini's
and Pietra’s indices follows immediately. 8]

The previous result can be extended to all classes in which there exists a
Dirac contamination Q3 maximising Dy.

7. Generalised moments contaminations

We now consider the class 2, defined by gencralised moments conditions
(see Betro et al., 1994), which contains, as particular cases, the classes de-
fined by quantiles of either the prior probability measure on (sec Berger,
1990) or the (prior) marginal on a sample from Z. Let us define

9__“ — [Q .'/(9 [’Il(i?) Q(lil?) = oy, = 1, ey ”}

where [{; are given I -integrable functions and «;, i = 1, ..., n, arc fixed real
numbers. Suppose that 2 4 # @. As in the case of arbitrary contaminations,
there cxists a contaminated measure which is not less concentrated than the
others, i.e. with the lowest concentration function. Such measure maximises
D¢, a linear functional in @, rather than the more complicate ratio-linear
posterior quantities considered in Betrd ef al. (1994).
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Proposition 4. Consider the class 9. Let O be the discrete measure (con-
centrated in at most n + 1 points) which maximises D,,. It follows that IT". >

ITy for any Q e 2. Morcover Cpy, = Gy, = {1 + [(1 — &/e]DyDg) ™"

Proof. Proposition 2 and (1) imply that pg(x) = Agr. From Kemperman
(1968), it follows that D, is maximised by a discrete measure, concentrated
in at most n + 1 points, so that, Po(x) < Agx < @g(x), forany Q € 9. The
result about Gini's and Pietra’s indices follows immediately. o

We can compute D very easily in the quantile class, defined by the probabi-
lities Q(A) =p, i=1,...,n,0fa partition {A;} of @. In such case, it follows

that D} :__El pi sup {(9;), which can be casily computed if, e.g., {{#) is unim-

A, y
odal and the subsets A; are intervals.

8. Unimodal contaminations

Suppose that IT, is unimodal with mode . Consider the class 24, of all
unimodal probability measures with mode . Such a class contains just one
discrete measure, the Dirac measure 0 concentrated at %, the only one
which could lead to the lowest concentration function, as shown in the next
Proposition.

Proposition 5. 1f

sup Do < [(1), (4)
Qed,,
then it follows that H‘(‘_) > ITy for any Q € 9a.
No contaminated measure, different from (0, leads to the lowest concen-
tration function when

inf ho(9) > 0 and inf q(D)/my(F) > (Do = I(B))/[Dy + el(D)/(1 — £)] (5)

de@ De@

for every Q € 94, such that Dy > (9,).

If conditions (4) and (5) are not satisfied, then there exists no contamin-
ated measure whose concentration function is below all the others.

If IT% > ITG, for any Q € 94, it follows that Cn,=Gp, = {1 + [(1 = &)e]
Dy/l(8,)) 1.
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Proof. The result about condition (4) can be proved as in Proposition 3.
From now on, let us suppose that there exists at least one ( & 94 such that
Dy = I(%h). We now prove that there is no_é such that pg(x) < @y(x) for all
x e [0, 1] and Q € Qq, when inf ho(®) = 0 for any Q € 24 Since 0 is a
e
discrete measure, it follows that gQ(l) = (IT5)a () < (ITh)4 (O) = py(1) =
Lorall @ # Q. Let Q & 94, such that Dg> ([(1‘}[,); then Proposition 2 implies
that (pg)'(0). Therelore, since the concentration function is continuous,
there exists x* such that gg(x) < @g(x), for any x e (0, x*).
Let us suppose that there exists at least one Q e 94, such that infhy(d) > 0.
e®
[rom Proposition 2, it follows that (¢g),.(0) > (q)Qé)fF(()) if and only if (5)
holds. Therefore, H’;} = 11 for any O e 9q when (5) holds. If (5) does not
hold, there exists no contaminated measure whose concentration function is
below all the others. The result about Gini's and Pictra’s indices follows im-
mediately. a

The previous result shows that just one contaminations, Q, might lead to the
lowest concentration function. Therefore, numerical computation is needed
to compute @, unless (4) holds.

9. Examples

We use now concentration functions in analysing the robustness in some ex-
amples, showing the applicability of our proposal, even when considering
classes different from the e-contaminations.

Example 1. (Berger, 1985, p. 212). Assume that Py ~ N(9, 02), 0 known,
and ITy ~ N(&, o3), ¥ and o known, with density function my(?}. Let 9 be
the class of the probability measures which are either Q, ~ U(Y, — k, O, +
k), k >0, or Q., which assigns probability onc to the point ¥, (note that
Berger, 1985, docs not consider .., but we can add it with no changes in his
results). Define IT, = (1 — ¢) 1T, + £0,. Given a sample s from &, the likeli-
hood function is /() = [1/(V2r 6)] exp(— (3 — 5)*/(26%)). The density of Q,,
k> 0, is given by g (¥ = (1/2!()1,,9“%‘,9”“](0) where 1,4 is the indicator
function of the set A. Note that O, converges in distribution to Q., as k — 0.

It can be scen that Dy = (/N 2a(0?+0d) ) exp(— (9 — 5)(2(0* + 0})))

otk

and Dy = (1/2!()/ ().
0,—k
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Result 1. Given a sample s, then Dy, < (%) for any k > 0 if and only if |s —
VI

Proof. It holds thatklif{,:‘ Dy, = 1{¥y) and A-HT Dy, = 0%. Seth = kloand v
= |s—)fo. Then, there exists the derivative of Dy, with respect to /i :
D' o.(h) = [1/2V27 oh?)] f(h), with

v+h

fth) = —(I/lr)/ y exp(—12)dt + exp((v — h)%2) + exp(—(v + W)¥2)

and, conscquently, lim f(h) = 0and f*(I) = h[(v — h) exp(—(v—h)’12) - (v
1 h—0

+ h) exp(—(v+ h)?2)]. For any h > 0,/'(h) <Oifand onlyifg(h) = (v—h)
exp(vh) — (v + h) exp(—vh) < 0.

Such a condition is obviously satisfied if 4 = v, so that Dy, = i(1) for any
k = |s — 1%|. Otherwise, suppose that v < 1, then

© UL w22k
g(hJZZ{ZU,h _Zlh. ]{
o (25410 o (2
[E’ VIR e g J o
o (2/+1)! 0 2!

The convexity of Dy, implies that D, < () for any k > 0if v < 1. Suppose
now that v > 1, thC]lIﬁI“ Do, (h) Z,H’f,’ fr(h)idh = exp(—v*)12 -Ilir}} h(v? —
1—0* 1— 0 h— ()

1) = 0" so that Dy, > I(), for k close enough to 0. o

Result 2. Given a sample s, then the concentration function @, of IT% with
respect to IT§ is such that g.(x)} < gu(x), for any x € [0, 1] and for any
concentration function ¢ of 1T}, with respect to T}, if and only if |s — dl/o <
1. Given such a sample s, it follows that

= = (I—E)] Y ag(s—,)* ““1
Cn, = Gn, = {l * { e 1V (0*+0d) exp([Zoz(UzirU%)]” '

Otherwise, there is no Qg(x) such that gg(x) < q(x), for any x e [0, 1] and
P

Proof. From Result 1 and Proposition 5, it follows that ¢, lies under any
other concentration function gy if [s — &)/o < 1. Olherwise, there are no 11,
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k >0, less concentrated that the other measures, since inf liy,(9) = 0, for any
V)

k, where o (9) = [qi(0]s)/mo(D]s)] = [gu(my(9)] - (Dy/Dg,). The value of
the indices follows from Proposition 5. : O

As in Berger (1985), take dy = 0, 0% = |, ga=2,e=0.1ands = 1. For
Pietra’s index, it follows that G, = 0.121. Therefore, there exists a subsct A

such that sup ITH(A) — w(A) = 0.121. Such a difference is sensibly larger
Qed

‘than the one found by Berger (1985) about the 95% credible interval (for
ITy) C = (-0.93, 2.27) which attains 0.945 as minimum value (at k = 3.4) as
Ok varies in Q. Therefore, the concentration function gives a different in-
formation, with respect to the range of IT,(C), about the changes in the post-
crior measures induced by the class 9.

Here g(x) = 0.879x and the inspection of the plots of ¢fx) and y = xgives
us an idea of the changes in the prior. If we choose to compare @(x) with, say,
the function g(x) = x2, described in Section 4, it is evident that ¢(x) < g(x)
for some x and, thercfore, robustness is not achieved. A different choice of
g£(x), which allows for discrete contaminations (i.c. such that g(1) < 1), might
have lead to a different situation.

Lxample 2. (Berger and Berliner, 1986, Morcno and Cano, 1991, Betro et
al_, 1994). Assume that P, ~ N(Q3, 1), and 1T, ~ N(O, 2). Consider IT, con-
taminated, with £ = 0.1, by the class 9, of probability measures which have
the same median as IT,. Obscrve the sample s = 1. From Proposition 4, the
lowest concentration function is obtained by considering the contamination
(o + 6,)/2, where 6, denotes the Dirac measure al x. Considering Pietra’s
index, it follows that G, = 0.154. Comparing such a result with Table 1 in
Betro ef al. (1994), it follows that the credible interval C (the same as in
Example 1) attains 0.889 as minimum value, while therc exists a subset A

such that sup ITHA) — ITH(A) = 0.154. In this case, we can sce that the
Qe
behaviour of Cis not sensibly different from the one of the «worst» subset A,

Lxample 3. (Rios Insua ef al., 1995). The following consulting problem has
been considered by some of the authors in Rios Insua et al. (1995) for a
Spanish insurance company, being then studied by means of dynamical mod-
cls in such paper (where the problem is throughly presented, along with
data).

Given the accident history D, of a company (number of workers 1, num-
lJCl' of accidents X,) at the period k, we want to make inference on 4, the
individual accident proneness rate. We consider a Poisson model for the
number of accidents, i.c. X|A, n, ~ P(nid). A gamma prior I, ~ Gy, Bo)
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on A was chosen and an expert from the insurance company provided some
quantiles of the prior measure, leading to the choice ay = 1.59 and g, = 2.22.
We know that the posterior measure on A is still gamma distributed. Data are
recorded monthly, from January 1988 to November 1990, and the number of
accidents in the years 1988, 1989 and 1990 are, respectively, 54, 68, 60, while
the number of workers oscillates between 286 and 401.

Here we consider the class of gamma priors [, = {1, : Hy~G(a, B), 1<
a < 3}, which is not an e-contaminations. We compare the probability mea-
sures with respect to I, (and its updates) at four stages: a priori, after one
year, alter 2 years, at the end of the period, i.e. after November 1990. We
can see that IT; (and its updates) provides the lowest concentration in all
cases and that the Pietra’s indices are 0,395, 0.075, 0.051 and 0.041, respcc-
tively. Therefore, we start with probability measures which are quite far
apart from cach other and then we get very similar measures, becoming the
weight of the data overwhelming with respect to the (diffcrent) priors.

Lxample 4. (Goel and DeGroot, 1981). We present a simple k-level hicrar-

chical model in which X given ¢, is normal distributed N(, a?); at the i-th

level, & given ¥, is normal distributed Nl s 0F0bd = 1, sl — 1, s

and the variances g, i = 1, ..., k, arc known. We know that, foranyi=1, ...,
1

k — 1, the posterior distribution of ¥;, is N(ax + Bidw, mi), where a; = r],-/IT‘

i k k

o Bi=1-aandny = .'a; 012'%" 0‘,2/57' of.

Consider the data in Example 17 in Berger (1985, p. 181). They can be
modelled according to a 2-level hicrarchical model. Unlike Berger, we
assume the variance at the first level is known (or, to keep the formal equiva-
lence, we consider a Dirac measure as a prior on it). During a 7-years period,
a child scores 105, 127, 115, 130, 120, 135, and 115 on a NPy, 100) 1Q test
(note that there is a misprint in Berger's values). We suppose that ¢, comes
from a normal distribution whose mean, , is the «true» 1Q, on which a
normal prior [Ty is finally elicited. As in Berger, let of = 100, 03 = 225 and th
= 100. We suppose that 03 = 1 (strong belicf that @, is close to the «true» 10Q
;) and that o3 is specified with uncertainty, so that we consider an &
contamination class 2 of priors on ,, given by IT, = (1 — &I, + €0,
where O, is N(100, k), with 49 < k < 400.

Consider the corresponding concentration functions @x: it can be shown
numerically that [T, > I1, for any Q e 9, and that the corresponding Pie-
tra’s index is equal to 0.385. Numecrically, it is possible to show that Iy, is
the measure leading to the smallest posterior mean. In comparing posterior
mean g and 95% credible set C for [Ty, and [T, we find that they are pu =

295



S. FORTINI - F. RUGGERI

116.223 and C = (109.679, 122.767) for the former, and = 119.735 and C =
(112.517, 126.951) for the latter. Thercfore, a sensitivity analysis focused on
posterior means (even supported by credible sets around them} might be
intepreted as-a robust situation, while it is hard to claim robustness when
considering the concentration function. This fact is not contradictory: we are
simply looking at two different aspects of the postcrior measurces.

10. Discussion

In this paper, we have used the concentration function to compare poslerior
probability measures, corresponding to a class of priors, with respect to a
basc onc. We have considered some classes of contaminated priors; the same
approach could be applied to measure robustness with respect to changes in
the model, but we expect that compulting the lowest concentration function
will be a harder task.

In the paper we have studied a problem of global sensitivity, considcring
the behaviour of a quantity of interest (c.g. Pietra’s index) in a class of priors.
A diffcrent approach, aimed at considering the effects of infinitesimal
changes in the prior measure and based on the use of the Gateaux diffcrential
of the concentration function, has been pursued in Fortini and Ruggeri
(1995b). Berger (1994) and Wasserman (1992) provide wide discussion about
these two approaches.
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