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ON DEFINING NEIGHBOURHOODS OF MEASURES
THROUGH THE CONCENTRATION FUNCTION

By SANDRA FORTINI and FABRIZIO RUGGERI
CNR-TAMI

SUMMARY. Statistical procedures are often interested in comparing probability measures by
menns of distances defined over the space P of all probability measures, endowed with some classical
topology, like the variational or the Prohorov ones. Other topologies can be obtained by means of the
concentration function, which extends the notion of Lorenz curve. Hence, neighbourhood classes I' of
probability measures, including well-known ones, are defined and a representation theorem is proved.

Finally, ranges of functionals over I are found, restricting the search among the extremal messures in I'.

1. COMPARISON OF PROBABILITY MEASURES

Many statistical problems require the specification of topologies or distances on
the space P of all probability measures, e.g. to study similarities among populations
or to consider neighbourhoods of a given probability measure. Suppose that we are
interested in comparing the functional forms of two probability measures, say P
and Fy, on the same measurable space (@, F), © being a Polish space and F its
Borel o-field. We could use the variational distance dy (P, Fo) = sup|P(A) — Py(A)|

AeF

or the Prohorov distance dp(P, 1) = inf{e > 0: P(A) < Py(A*) +e ¥V A € F},
where A* = {0 € © : d(#, A) < £} and d is a metric on .

However, such rules do not seem sufficiently sensitive on the sets with small
probability under Fy. For example, if the variational metric is considered, then a
e-neighbourhood of [ contains all the probability measures I2 such that, for any
A€ F,|P(A)—(A)| < e. Consider now a set E such that [5(£) =¢/10. Given P
in the e-neighbourhood of I7%, it follows that P(E) < 11€/10 is the only restriction
about P on F; i.e. I’ is considered close to I% even il its value on F is cleven
times greater than 1% (F). A similar reasoning holds for the e-contamination class of
probability measures, described in Huber (1981), which contains all the probability
measures P such that, for any 4 € F, (1—¢) Py(A) < P(A) £ (1-¢)F(A)+e. When
such a consequence is deemed inconvenient, then different bounds on 2(A) could be
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considered and the concentration function (c.f.) is a flexible tool to get them. As an
example, require, for any A € F, either |F5(A) — P(A)| < € min{Py(A4),1 - Po(A)}
or |[Po(A) — P(A)| < Po(A)(1 — I%(A)), so that more stringent bounds are found on
P(E); in the former case, we have 5(1 —¢) < P(E) < {5(1 +¢), while the latter
implies 1"8036 < P(E) < £(2 - %), ie. P(E) does not exceed twice By(E).

In this paper, we develop a method which enables us to define neighbourhoods
of a probability measure, specifying bounds on the probability of any measurable
subset A € F. Such a method is essentially based on the concentration function
defined by Cifarelli and Regazzini (1987) as an extension of the classical notion of
the Lorenz-Clini curve. A g-neighbourhood of a probability measure Fy, defined
in Section 2, is made of all the probability measures whose concentration function
with respect to Py lies above a specified continuous, convex, monotone nondecreas-
ing function g. In Section 3, it will be shown that g-neighbourhoods determine
a topology over P, while a representation theorem will be proved in Section 4.
Computations of upper and lower bounds on functionals over g-neighbourhoods are
simplified by the results in Section 5, while some final remarks are presented in
Section 6.

2. DEFINITION OF g-NEIGHBOURHOODS

In this section we consider classes K, of probability measures which can be
defined through the c.f.’s, as neighbourhoods around a base measure F.

Definition 1. If g : [0,1] - [0,1] is a continuous, convex, monotone nonde-
creasing function such that g(0) = 0, then the set

ng{l’EP:P(A)29(P0(A))VA€.7:} (D)
will be said a g-neighbourhood of F.

Observe that, if P € K, then g(Fy(A4)) € P(A) <1 —g(1 — Py(A)).

We give now the reasons for g to be continuous, monotone nondecreasing and
convex. The requirement g(0) = 0 is obvious to get I°() = 0.

Monotonicity. Let g(z) belong to the range of a measure P € K; and let A € F
be such that Py(A) = x and P(A) = g(z). If B C A, then P(B) < P(A). Hence we
choose a monotone nondecreasing function g.

Continuity. Let g(z) belong to the range of a measure P € K, and let A € F
be such that Py(A) = z and P(A) = g(z). Since P is a regular measure, it follows

that P(A) = inf  P{G). Therefore, for any € > 0 there exists an open set
{G open:ACG}

¢ such that P(G) < P(A) +¢ < g(z) + . Since P(G) = g(P(G)), g must be
right-continuous in order to be meaningful. Analogously, left-continuity is required.

Converity. Let g(x{) and g(z;) belong to the range of a measure P € K,
and suppose there exist A;, Ay € F such that A; C Az, Po(A;) = = and. P(4;) =
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g(z;),i=1,2. If By and B, partition A2\A, then there exists B, (i=1or 2)such
that _P()(Bi) = A_P()(A'Z\A‘l) and P(B,) < AP(A)\AO < A(g(azg) —g(:l:1)). Since

inf P(C) < P(A P(B;) < g(s A — ,
Po(c)zzllgx(xz--zl) (C) € P(AY) + P(By) £ g(z1) + AMg(xa) — g(z1))

it follows that g((1 — A)z1 + Axzy) < (1 — A)g(z1) + Ag(z2). Hence the convexity is
another reasonable requirement.

The definition of g-neighbourhood can be reformulated by means of the con-
centration function, defined by Cifarelli and Regazzini (1987), as a generalisation
of the Lorenz curve. Marshall and Olkin (1979, p.5) give the following definition
of Lorenz concentration curve (also known as the Lorenz-Gini curve): “Consider a
population of n individuals, and let &, be the wealth of individual ¢, i = 1,...,n.
Order the individuals from poorest to richest to obtain 2y, . .., Z(y). Now plot the

k

points (k/n,Sc/Sn), k= 0,...,n, where Sy = 0 and Sy = Zw(i) is the total wealth

of the poorest & individuals in the population. Join thcsé p]>0ints by line segments
to obtain a curve connecting the origin with the point (1, 1)--- Notice that if to-
tal wealth is uniformly distributed in the population, then the Lorenz curve is a
straight line. Otherwise, the curve is convex and lies under the straight line.”

The classical definition of concentration refers to the discrepancy between a
probability P, which gives mass 2(;y/5, to 6;,4 = 1,...,n, and the uniform distri-
bution Py on @ = {61,...,6,}. Cifarelli and Regazzini (1987) defined the c.f. of F°
with respect to (w.r.t.) P, where P and /% are two probability measures on the
same measurable space (0, F). According to the Radon-Nikodym theorem, there
is a unique partition {N, N} C F of © and a nonnegative function h on N such
that P(E) = [ h(0)Py(df) + P,(ENN), Y E € F, B(N) =0, P(N) = 1%(0),

ENNE

where P,(-) = [ h(8)F(df) and P, denote the absolutely continuous and the
NNE
singular part of P w.r.t. Py, respectively. Set h(0) = oo all over N and define

H(y) = Py({8 € © : h(0) < y}),c(z) = inf{ly € R : H(y) > z}. Finally, let
L{z) = {6 € © : h(8) < c(z)} and L~ (z) = {0 € © : h(0) < c(x)}.

Definition 2. The function ¢ : [0, 1] — [0, 1] is said to be the concentration func-
tion of P w.r.t. Py if () = P(L™(z))+c(x){x—H(c(x) )} for z € (0,1), (0) =0
and (1) = F,(©).

When the dependence on P is to be emphasized, we will use the notations
hp(8), Hp(z), cp(z), Lp(xr) and pp(x).
Observe that

2) = P(L(z)) =z = H(c(x))
o) { P(L~(z)) == H(c(z)")

i

Po(L(x))
Po(L7(x))
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while () is defined by linear interpolation on {= : H(c(x) ) < z < H(e(z))}, if
it is not empty. Furthermore, as proved in Cifarelli and Regazzini (1987), p(x) is
a nondecreasing, continuous and convex function such that @(z) =0 & P L

E4

o(z)
Py, o(z) =zVz €0,1] & P=1%and p(z) = [ {z- H(t)}dt = [ c(t)dt.
0 0
As pointed out by Cifarelli and Regazzini (1987, Remark 2.1), the definition of
the c.f. can be extended to bounded positive measures which need not be probability

measures. P is such a measure, its concentration function w.r.t. P, coincides
with that of P, wrt. I%.
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Figure 1. Concentration function w(z)(——) and 1 — (1 —2)(- ) of P ~ G(2, 2)
wartl., Py~ 8(1)

As an example, the c.f. @(z) of P ~ G (2,2) w.rt.Py ~ £(1) is plotted in Fig.1,
and it is shown, e.g., that [.216, .559] is the range spanned by the probability, under
P, of the sets A with F3(A4) = .4. Such a range is a consequence of the following
theorem, due to Cifarelli and Regazzini (1987), which provides an interesting inter-
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pretation of the c.f.; in fact, given any x € [0, 1], then the probability, under P, of
any A with Py-measure z, is such that ¢(z) < P(A) <1 —¢(1 — z).

Theorem 1. If A € F, Po(A) = z, then ¢(z) < P(A). Moreover if x € [0, 1]
18 adherent to the range of H, then B, ezists such that Fy(B,) =z and

w(z) = Py(B;) = min{PP(A): A € F and Py(A) > x}. . {2)
If Py is nonatoric, then (2) holds for any = € [0,1].
Theorem 1 allows to express g-neighbourhoods by means of c.f.’s.

Proposition 1. The set Ky, = {P € P : ¢p(z) = g(z), Vz € [0,1]} is a
g-netghbourhood of Py as defined in (1).

3. ToroLoGY OVER P

If G is a suitable class of monotone nondecreasing, convex continuous functions
on [0, 1], then the class of neighbourhoods { K, } (ses} can be used to define a topology
on the space P of all the probability measures on (0, F).

When the dependence on F, has to be emphasized, tpg" denotes the c¢.f. of P
writ. Py and let K (F)={PeP: cpg"(;z:) > g(z), Yz e [0,1]}.

Proposition 2. Let (i be a class of monotone nondecrensing, continuous,
conver functions g : [0,1] — [0,1], with g(0) = 0 and let G be such that, for any
g € G, there exists §,3 € G such that §(g(x)) > g(z),¥Y x € [0,1]. Then there
exists a topology T on P such that the class {K,(Py)}4ec is a fundamental
system of neighbourhoods of P,.

Before proving Proposition 2, we need the following lemma.

Lemma 1. Consider N(Py) = {I/ C P : K,(I5) C U for some g € G}. The
following properties hold :
(1) If Uy C Uy and Uy € N(F), then T, € N(Py).
n

(II) If (}1,[]2,.. ')Un EN(P()), then nUz (S N( )())
=1

(II1) For any U e N(R,), Py € 1.
(1V) If Uy € N(P,), then there exists Uy € N(Py) such that Uy € N(P) for
any P, € Us.

Proof. The proofs of 1, I1, TII are trivial. Given U; € N (), there exists g € G
such that

{PeP:ipl@) > g(), Yo 1]} U
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To prove 1V, it is sufficient to show that there exists § € G such that

{PeP pp(x)2(x), Vae[0,1)} S{PeP:pR(x)2g(x), Yz e 0,1]} C U,
NE))
for P, belonging to K;3(#%), and for a suitable 9. Take § and g such that g(g(z)) >
g(x),Yz € [0,1], and Uy = K3(F}).
If P, € [y, then it follows, from Theorem 1, that

{Ae F:P(A) >z} C{A e F:P(A) = §(z)}.
Hence if @} (x) 2 §(2), ¥z € [0,1], then

{Fp(A)=z} ( { P A)23(x)} ( ) ( ( ))

which proves (3). Y

Let us come to the proof of Proposition 2.

Proof. From I, 11, 111, 1V it follows that there exists a unique topological struc-
ture 7 on I’ such that, for each Py € P, N (I%) is the set of the neighbourhoods
of Fy in the topology 7. Moreover the class of neighbourhoods {Ky(F)}gec is a
fundamental system of neighbourhoods of P, in 7 (see Bourbaki, 1989). &7

Ezample 1. The trivial topology T4, in which any probability measure is an
open set, is obtained taking any G such that g, € G, where gi(z) = z,V z € [0,1].

Ezample 2. Considering G = {g:(z) = max{0,z —e},V z € [0,1],0 < e < 1},
the topology 7y of the variational metric in. P is obtained. In such a case, all the
requirements about the functions g, are satisfied, along with the property §(g(z)) >
g:(z),Yx €[0,1], for any €,0 < € < 1, e.g. taking § = g¢,, § = ge, Withe > e1+¢2.

Fzample 3. A topology 7, is obtained when taking G = {g, : go(z) =2°, V2 €
10,1],1 < & < o0}, In such a case, all the requirements about the functions g, are
satisfied, along with the property g(g(x)) > go(z), ¥z € [0,1], for any o,1 < o <
00, e.g. taking § = g = g . The topology 7, is finer than the topology 7v. In fact,
let Uy be a neighbourhood of Py € P in Ty. It is easy to prove that there exists €
such that

Uy 2{P P pR(z) > max{0,z —e}, Vz € [0,1]}.

Let o > 1 be such that * > max{0,z — €} for any = € [0, 1], then it follows that
Uv 2 Ky, (Fo)

so that Uy is a neighbourhood of P, in the topology 7,. Hence 7, is finer than 7y.
It follows that every continuous functional on (P, 7y) is a continuous functional on
(P, Ta).

As pointed out by Cifarelli and Regazzini (1987), the concentration function
w.r.t. a fixed measure P, can be used to introduce a partial ordering in the space
P of all the probability measures on (O, F).
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Definition 3. The probability measure P is to be said not less concentrated
than P, w.rt. Py if and only if ¢p (z) < @p(z), for any z € {0,1]. We will denote
it as P < .

If there exists a probability measure, say P, whose c.f. coincides with g, then
the definition of g-neighbourhood can be reformulated as:

K,={PecP:P =P}

Such a P exists, provided that ¢ is compatible with Py, according to the following
definition:

Definition 4. A function g : [0,1] — [0, 1] is said to be compatible with Fy if g
is a monotone nondecreasing, continuous, convex function, with g(0) = 0, and there
exists a correspondence x : S = {0 € O : P({0}) # 0} — [0,1] such that, if 0; # 0,

(x(61), x(61) + Po({8: 1)) N (x(62), x(62) + Fo({62})) = @

and for any 8 € 8, it follows that there exist ¢p and dy such that

Fix®) (@) + 1o((on (&) = coz + dp,

where g, »y(x) is the restriction of g(z) to the interval (a,b).

Observe that if I is nonatomic, then every monotone nondecreasing, continuous,
convex function g such that g(0) = 0 is compatible with P,.

Lemma 2. Let © be a Polish space and F the o-algebra of Borel sets. Then
there exists a total ordering on ©, denoted by <, such that, for any 0, the set
{0 € ©:0 < 8} belongs to F.

Proof. Let {6,}>1 be a dense subset of ©. Introduce in @ the following ordering:
f < 6 if and only if

(d(61,0) < d(61,6)) \/ (d(6n,0) = d(6,0),n =1,2,...)

V (\/ (d(0:,0) = d(6,,0), i = 1,2,...,1,d(81,0) < d(0n+,,§))) .
e 1

If < 6 and < 6, then d(6,,8) = d(6,,0), for any n = 1,2,.... Since the
topology is Hausdorff and {0n}.>: is dense, it follows that 0 = f. Moreover the
set {# € © : 8 < 6} is a denumerable union of measurable sets and therefore it is
measurable. - &

Theorem 2. Given a function g : [0,1] — [0,1], there exists at least one

measure P such that g is the c.f. of P w.r.t. Py if and only if g is compatible
with P().
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Proof. 'T'he necessity of the condition is trivial. Let us prove the sufficiency.
From the Lemma 2, © can be endowed with a total ordering, which will be denoted
by <, such that, for any 0, the set {6 € © : 8 < 0} is measurable. Let F; be a
measure on ©, singular w.r.t. /5 and such that P(©) = 1—g(1). Let x and S be as
in Definition 4. Define 1" = [0, 1]\Uges (x(0), x(8)+ Po({#}). The monotone function
Viz) = o — Z P»(0) determines a one to onc correspondence between 7'

{peS;x(0)<x}
and [0, 1], where t = I(S¢). Hence there exists a measurable monotone {unction
W : 8¢ — T such that

Po({8 € S€ 1 0 < 6)) = V(W (D). L (4)

From (4) the measure p defined on every Borel subset A of T as p(A) = Py(W™1(A))
is the restriction of the Lebesgue measure. Since g is a convex function, then it
is differentiable almost everywhere. Hence, if A, denotes the set where g is not
differentiable and A = W~'(4,), then F,(A4) = u(A;) = 0. Consider the function

Cy dec s
R(6) ={ g.(W(8) 0¢ce\(AuUS)
0 0e A

Observe that the restriction of h to ©\(AUS) is monotone nondecreasing. Moreover,
since W is measurable, then h is measurable. Let I, be the measure whose Radon-
Nikodym derivative w.r.t. Py is h and let P = P, + P,. Then, since h is monotone
nondecreasing on ©\(A U S) then, if ¢ = H(c(z)™),

/ RO)(dO) = Y caPo({0}) + / g'(t)u(dt) = g(=).

h{8)<c, feSix(f)<z Tr(0,z]

Hence it is easily seen that P is a probability measure and that g is the c.f. of P
w.r.t. F)(_). ) Vg

Observe that, as it results from the proof, the measure, whose concentration
function is g, is generally not unique, since it depends on P, and the arbitrary
ordering on ©. Furthermore, the singular component F; is present if and only if
g(1) < 1.

4. REPRESENTATION THEOREM

Let P, be a nonatomic probability measure on 6 and let g : [0,1] — [0, 1] be a
function compatible with F,. It will be proved now that all the probability measures
in a g-neighbourhood K, of F} are mixtures of the extremal ones in E,, where
FE, = {P € P : ¢p(z) = g(x)}. Different proofs lead to such a result when either
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g(1) =1 or g(1) < 1; the former case admits just probability measures absolutely
continuous w.r.t. /% while singularities are admitted in the latter one.

Consider the space P of all probability measures on © endowed with the weak
topology; then P can be metrized as a complete separable metric space (sce
Parthasarathy, 1967, pp. 43 46).

Lemma 3. If g(1) = 1, then K, is a convez, compact subset of P in the
weak topology.

Proof. K is convex. Let P13 € K, 0 <a < 1land P=aPi+ (1 —a)P,.
If A € Fis such that Py(4) > z, then it follows, from the definition of K, and
Theorem 1, that

PA)z inf P(B)>2a inf A(B)+(1—a) inf P(B)>g(x).
(A2 il P(B) 20 il B(B)+(1-0) il P2 o)

K, is closed. Let {P,},>1 be a sequence of probability measures in K,
converging weakly to a probability measure P. For closed sets C we have
P(C) > lim P,(C). Hence for any ¢ > 0 there exists no(C) such that, for any

n-—o0
n(C) > no(C), Pyey(C) < P(C) +e. Furthermore, let Po(C) = zo — 6, then it

follows that g(xy — 8) —e < P(C). Let S € F be such that Py(S) = xp. Then it
follows that

P(8) = sup P(C) 2 sup g(zo — 6) — e > g(xy) — e.
{c closed :ccsy 50

Hence ¢p(x) = g(z).

K, is compact. Since K, is closed, it is suflicient to show that for any £ > 0
there exists a compact set R € F such that for every P € K,, P(R) 2 1 — ¢ (see
Parthasarathy, 1967, p. 47). Let z. be such that g(z.) = 1 —e. Since © is a Polish
space, it follows (see Parthasarathy, 1967, p. 29) that I% is tight, i.c. there exists
a compact set B € F such that Fy(R) > x.. Then, applying Theorem 1, it follows
that P(R) > 1 —¢, for any P’ € K, &

Let Py be a nonatomic probability measure. Consider the set of extremal points
of Ky, that is the probability measures I € K, such that

P=aPi+(1-a)P, PLe K, hEK,0<a<]le P=P=h,
Proposition 3. The set of all the extremal points of K, is contained in E,.
If g(1) = 1, then it coincides with E,.

Proof. Suppose g(1) =l and let Pe E,. f P=aP,+ (1 —a)Py, P, P € K,
then P and P belong to E,. In fact, suppose that P ¢ E4, so that there exists
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x € [0,1] such that Po(l,xal)f?z'H(A) > g(z) and then

inf P(A) > a inf P(A)+(1—a) inf P3(A) > g(z),
i, ( >"“p02,‘3)f2x 1 (A) + ( a)&&l)n 2(A) > g(x)

because P; € K, implies that 2n)f Py(A) > g(z). Therefore, it follows that
R(A)zz

wp(z) = pp,(z) = g(x) and cp (x) = cp(z) = cp(x) almost everywhere.
Consider Lp(z) for any x € [0,1] such that & = Hp(cp(x)). Since P, 1, P2 € E,
then P(Lp(x)) = aPi(Lp(x)) + (1 — ) Py(Lp(z)) implies that for every z € {0,1]

Pi(Lp(z)) = Po(Lp(z)) = P(Lp(z)) = 9()- -+ (5)

Analogously, we have Pi(Lp(x)) = Po(Ln(z)) = P(Lp(x)) if x = Hp(cp(z)™). If
x = Hp(cp(2)), then, for any & > 0,cp(x + 8) > cp(x) which implies cp, (z + 6) >
cp(x) and ep(x + 6) > cp(x). Hence z = Hp(cp(x)) = Hplcp(z)) so that
Py(Lp (x)) = Py(Lp(x)) = g{x). From this and (5) it follows that, for any y = 0,

{(0cO hp(0) <y)={0€cO :hp(@) <y}={0€0O:hp(f) <y}as -1
Analogously,
{0€© :hp(d) <y} =1{0€©:hp(6) <\y} ={0€®:hp(¥) <y}as —F.

Hence P; = P = P and every probability measure in E, is an extremal point for
K,.

Let now P be a probability measure not belonging to F,. Then there exists
z € [0,1] such that ¢p(x) > g(x). Since ¢, and g are continuous, there exists a
neighbourhood U of = such that @p(z) > g(z) for every x in U.

Let (z1,7;) be the largest interval, eventually (0,1), such that z € (z1,%)
implies @ p(x) > g(x). Since pp and g are continuous, ¢p(z1) = g(x;) and pp(z2) =
g(z2).

Let & € (z1,72) and let a = (@p)  (£). Then g (x)) < a < g (x2). It is easily
seen that ay, ay, ¢, , ¢, can be chosen such that ¢' (z1) < a; < @ < a3 < ¢, (x2) and

@p(x) (¢p)(x) < ay or (pp), (x2) > az
Plz) =< ax+cy ay < (pp) (x) < (pp)i(x) Sa

az + o a< (pp) (%) < (o), (2) < ag

is a continuous function with the property g(z) € ¢(z) < wp(z) for any = € [0,1].
Let ¢ = min(ag — a,a — a,). Since P, is nonatomic, the set {# € © : hp(f) €
@ —¢/3,a+ €/3]} contains more than one point. Hence there exists a non-constant
function & defined on © such that §(8) = 0if hp(8) & [a—€/3, a+c/3],18()] < /3
and [ 6(6)Py(df) = 0. Define hy(0) = hp(8) + 6(6), ha(6) = hp(0) — 5(8). Hence
hi(8) = hp(8) if hp(0) ¢ [a1,a9),a — ¢ < h(f) < a+eifa—e < hp(f) <a+te



454 SANDRA FORTINI AND FABRIZIO RUGGERI

and f{h€(0)ga__e} hi(8)Py(df) = f{hp(e)ga o hp(Q)Po(dB),-i = 1,2: Define F; as th.e
probability measure on ©® whose Radon-Nikodym derivative with respect to Fy is
hi,i = 1,2. It follows that ¢p, and ¢p, satisfy the condition

p(z) = pp(z) for (vp), (x) < a) and (pp), () > az. .. (6)
Moreover, since ¢ is the most concentrated curve among those satisfying (6),
er (@) 2 P(@) > 9(x). ()

Since P = (P, + P;)/2 and (7) holds, then P is not an extremal point of K.
Suppose now g(1) < 1; it can be proved, as before, that E, is an extremal
subset, i.e. that P € E, is a convex combination just of P, P, € ;. No probability
measure P ¢ E; is an extremal one, because it can be expressed as a combination
of two other measures, as before, whose c.I.’s are above g. The extremal points, if
any, are thus in E,. Vg

Every probability measure whose c.f. is greater than g can be represented as a
mixture of probability measures having g as c.f.

Theorem 3. Let the function g : [0, 1] — [0, 1] be compatible with a nonatomnic
probability measure Py. For any probability measure P € Kg, there erists a
probability measure pp on P such that up(E,) =1 and P = [ Pup(dP).

P

Proof. Suppose g(1) = 1 and let K, be the sct of the probability measures P
such that pp(x) > g(z). It was proved in Lemma 3 that K, is convex and compact
in P. Moreover in Proposition 3 it was proved that F is the extremal set of K.

Consider the topological vector space C(©) of all bounded continuous functions
on ©, endowed with the supremum topology, and let C' be its dual space; it can be
easily seen that P C C'.

The C(©) -topology of (' is a locally convex vector topology on C’ (see Rudin,
1991, p. 68). Since K| is metrizable, because P is, and it is also convex and compact
in ', then the Choquet’s theorem (Phelps, 1966, p. 19) implies the result.

Suppose now g(1) = 1 —¢ < 1. Let P,(®) = 1 — 75, where, for any P, P,
denote the absolutely continuous part of P with respect to FPy. If n = g, then
the previous proof is applied to the set P,_. of the measures P on © such that
P(©) =1 — ¢, proving that there exists a probability measure p on P;_, such that

Fo= f P,(dP). Hence
{PEP_cor=g}
{PePi_ or=9} {PePywpr=y}

Consider the case n < €. Let § > 0 be such that @ s(x) > g(x) for every x € (14, 1}.
Let §:1{0,1] — [0,1 — 7] be a continuous convex monotone nondecreasing function
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such that (1) =1 -7 and

{f](m):g(w) 0<z<1—46
9(2) £ g(x) <pp(x) 1-6<x<1

Let kg ={P:P(@)=1-n, §(z) < pp(z) < (1-n)z}. Then it can be proved as
in Lemma 3 that K is a convex compact subset of the space P(;_y of the measures
P’ on © such that P(©) = 1 —17 endowed with the weak topology. Moreover P & I"(g
is an extremal point if and only if ¢ p(z) = §(z) (see Propositon 3). Since P, € K,
there cxists a probability measure i on Pi._p such that

P = / P.(dP).

{P(@)=1-n, ¢r(x)=g(=)}

Let P be such that P(®) =1 — 7 and pp(x) = § and let h be its Radon-Nikodym
derivative with respect to P,. It is easy to see that there exist § and hg such that
hg(0) = h(6) for 8 € Lp(1 — 6),hy(6) < h(0) for 6 € O\Lp(1 — 8), P(®) =1 —¢
and ¢p (z) = g(x) for any x € [0,1], where hy is the Radon-Nikodym derivative of
P, with respect to F.

Since P — P, is a positive measure on ©, it is well-known that there exists a
probability measure Q on © such that P — P, = (e — 7) fe 89QQ(d0) where by is the
Dirac measure on 8. Hence P = P, + [, (e — 1)6Q(d6) and

P = [P+ e~ ntalaaoniap,, Q)
{(Pp)} ©
- / P,.(dP).
{PE)=1-7, =g}
Hence P = J P,.(DP). <

{P(®)="1,0r=9}

Observe that if % is nonatomic, then Thoerem 3 does not hold in general.

Example 4. Suppose © = {01,0,,05}; let Po(8)) = 0,P(6;) = Po(63) =
1/2, P(81) = 0,P(0;) = 1/3, P(65) = 2/3 and g(x) = 22/3. Let u be a probability
measure on P such that u(E;) =1 and let

ﬂ:Jaum

Since P(6;) = 1/3 for any P € E,, then P; can not be represented as a mixture of
measures belonging to E,. Ve
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5. BOUNDS ON FUNCTIONALS

Theorem 3 can be applied to show that the supremum (or the infimum) over K,
of a large class of functionals is equal to the supremum (or the infimum) over E,.
The proof can be obtained by slightly modifying the one in Sivaganesan and Berg('r
(1989).

Theorem 4. Let f and g be real-valued functions on © such that
f |f(0)|P(dO) < o0 and 0 < [, g(0)P(d) < oo for any P € K,. Then

wup JoSOP@) o £(0)P(d0) ®
pek, Jog(O)P(dB) — peb [, 9(0)P(d6)’

The same result holds with “sup” replaced by “inf”.

Observe that if f(0) = A + f1(0) and g(8) = B + ¢1(6), then (8) becomes
A ) P(do A+ [ f(8)P(do

pek, B+ [ 01(0)P(d0)  peg, B+ [, g(0)P(d6)

If g(0) = ¢ for some ¢ > 0, then the computation of

Jo F(O)P(d6) 1
R T e®)Pas) ~ it / 1(0)P(df)

becomes easy.

Theorem 5. Let H(y) =1 2({0€0: f(0) <y}), cf(x) = inf{y: Hp(y) > z}.
Then sup f £(0)P(d8) = / ¢(@)e(z)dz, where () = ¢'(z) a.e.

Proof. Observe that sup/f(O)P(dﬂ) sup/f(O)hp(G)P (d@). Since ¢s(x)
and c(n:) are rearrangements (see Ha.rdy—thtlowood Polya, 1988, pp. 276-278)
of f(#) and h(6), then ff(B)P (do) < fr:f(:c)c(az)dz. On the other hand there

exists P € E; such tha,t f(6) < (92) implies hp(61) < hp(6;). For such a
1

P, [ f(8)P(d0) = [ cj(x)c(z)dx, which proves the Theorem. Vo
® 0

Since inf /-f(B) P(df) = — sup /f(H)P(dB), the following corollary to The-
Pek,, PeK,
‘e

orem 5 holds.

1
Corollary. 1 inf ef £(6)P(dg) = — 0/ e. /(@)c(x)dz.
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6. DISCUSSION

In this paper we have defined neighbourhoods of a probability measure F, and
then, by means of a representation theorem, we have been able to provide results
on the bounds of functionals defined in such neighbourhoods. The results presented
can be used both in economics and in statistics, and not only in the problems in
which the concentration curve has been widely used.

We just mention that the Lorenz curve, as well as the related (Jini’s index, has
been sometimes used as a tool to examine how far actual situations are from ideal
ones (e.g. to check the fairness in allocating seats in a U.S. legislature, so that
representatives are elected by equivalent numbers of voters). In such problems, the
function g could be considered as the maximum allowed distance from a uniform
probability measure, expressed by means of c.f.’s, obviously.

Fortini and Ruggeri (1994) already applied the results in this paper to the robust
Bayesian analysis, where the authors faced the problems of building a class of prior
measures in a neighbourhood of a given one and checking if inferences lead to either
posterior measures close to a base one or posterior functionals quite insensitive to
the changes in the prior.
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