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Abstract

The concentration [unction, extending the classical notion of Lorenz curve, is well suited for comparing
probability measures. Such a feature can be uselul in different issues in Bayesian robustness, when
a probabilily measure is deemed a bascline to be compared with other mecasures by means ol their
functional forms. Neighbourhood classes I of probability measurcs, including well-known ones, can be
defined through the concentration function and both prior and posterior expectations of given [unclions of
the unknown parameter arc studied. The ranges of such cxpectations over [” can be found, restricting the
scarch among the extremal measures in I". The concentration function can be also used as a criterion to
assess poslerior robustness, when considering sensilivity to changes in the likelihood and the prior.

AMS Subject Classification: Primary 62F15; sccondry 62735,

Key words: Concentration Tunction; Bayesian robustness; mixtures of probability measures; extremal
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1. Introduction

Cifarelli and Regazzini (1987) defined the concentration function of a probability
measure P with respect to another one, say Py, extending the classical notion of the
Lorenz-Gini curve. By the concentration function, the discrepancy between two
measures defined on the same probability space is studied, comparing the different
concentrations of probability determined by the measures. As suggested by Regazzini
(1992), the concentration function could be a valuable tool in robust Bayesian
inference to analyse posterior probability measures under uncertainty about either
prior measure or likelihood. Fortini and Ruggeri (1990) implemented such ideas and
applied them to study the sensitivity of the posterior measures as the priors vary in an
e-contamination class. Such a sensitivity analysis, along with other issues in Bayesian
robustness, has received much attention; sce Berger (1984, 1985, 1990), Wasserman
(1992) and the references contained therein.
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In this paper, the role of the concentration function in Bayesian robustncss is
stressed, through applications to different issucs. In Section 2, the use of the concen-
tration function in Bayesian robustness is justified and a class I' of priors is defined
through a given class of concentration funclions with respect o a base prior. In
Scction 3, some results in Fortini and Ruggeri (1992) are presented and applied to
robust Bayesian inferences, so that the extremal points of I' arc identified and
maximisation of prior and posterior quantities of interest can be performed over them,
rather than all over I'. In Section 4, some classes I, including some well-known ones,
are defined through the concentration function and robustness analyses arc per-
formed over them. Some concluding remarks are contained in Section 5.

2, Comparison of probability measures

Bayesian robustness problems require the specification of crileria to analyse prob-
ability measures, [or example to define ncighbourhoods of an elicited prior or to
compare the posterior probability measures as the prior varies in a given class.
Suppose therefore that we are interested in comparing probability measures, say
P and Py, on the same measurable space (@, % ), @ being a Polish space and # its
Borel g-field. Many criteria have been proposed, such as probabilitics of scts, means,
etc. Such rules are often satisfactory but they usually say nothing about the functional!
form of the probability measures. Although rather neglected in Bayesian robustness,
some criteria exist to compare lunctional forms, such as the variational distance
dy(P, Po)=sup 4.5 | P(A)— Py(A)| and the Prohorov distance dp(P, Py)=inf{c>0:
P(A)KPo(A%)+e V AeF |, where A"={0e®: d(0, A)<e} and d is a melric on ©.

However, such rules do not scem sufficiently sensitive on the scts with small
probability under P,. For example, i the variational metric is considercd, then an
c-neighbourhood of P, contains all the probability measures P such that, for any
AeF,|P(A)— Py(A)| <& Consider a new sel E such that Py(E)=¢/10. Given P in the
e-neighbourhood of Py, it follows that P(E)< 11/10¢ is the only restriction about P on
E; ic. P is considered to be close to Pg even il its value on E is 11 times greater than
Po(E). A similar reasoning holds for the e-contamination class of priors, described in
Section 4, which contains all the probability measures P such that, for any Ae#,
(1 —=e)Po(A) < P{A)< (1 —g) Py(A)+ e When such a consequence is deemed inconven-
ient, then diflerent bounds on P(A) could be considered and the concentration
function (c.f.) is a flexible tool to get them. As an example, require, [or any A€, either
[Po(A)=P(A)I<emin{ Po(A), 1—Po(A)} or | Po(A)— P(A)| < Po(A)(1—Po(A)), so
that more stringent bounds are found on P(E); in the [lormer case, we have
(£/10)(1 —e) < P(E)<(e/10)(1 +¢), while the latter implics (¢2/100)< P(E)<(¢/10)
(2—¢/10), i.e. P(L) does not exceed twice Py(E).

It is sometimes worth comparing [unctional forms ol probability measures, both
a priori and a posteriori. In the former case, it is reasonable to choose measures which
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are ‘functionally close’ to an clicited prior Py, allowing small changes in the concen-
tration of the probability, due to crrors in the clicitation process. In the latter case, the
[unctional closeness could be worth comparing when we are interested in the posterior
measures themsclves, e.g. when we accept the point of view of ‘some Bayesians (who)
maintain that inference should idcally consist of simply reporting the entire posterior
distribution ..." (Berger, 1985, p. 133).

Comparison of functional forms has received little atiention in Bayesian robustness,
mainly because the classes considered are not casy (o work with. We think that the c.f.
could simplily such task, by finding workable classes. Classes K, of probability
measures can be defined through the c.f.’s, as neighbourhoods around a base measure
Pq, which is assumed nonatomic in this paper.

Definition 1. If g: [0, 1]-[0, 17 is a continuous, convex, monotonc nondecrcasing
[unction with ¢(0)=0, then the set

Ko={P:P(A)Zzg(Po(A) V AeF } )
will be said to be a g-neighbourhood of Py.

Obscrve that, il PeK,, then g(Po(ANKP(A) < —g(l —Py(A). As proved in
Fortini and Ruggeri (1992), {K,} generales a topology in which it becomes a funda-
mental system of neighbourhoods of Py, when ¢ belongs lo an adequate class G of
continuous, convex, monotone nondecreasing functions.

The requirement g(0)=0 is needed to avoid P(@)< 1 —¢(0) < 1, while monotonicity,
continuity and convexity are thoroughly discussed in Fortini and Ruggeri (1992), as
quite natural requirements from the definition of probability measure on a o-ficld.

The definition of g-neighbourhood can be reformulated by means of the concentra-
tion function, which generalises the Lorenz curve, described in Marshall and Olkin
(1979, p. 5). The classical definition of concentration refers to the discrepancy between
a discrete probability P and a uniform one, say P,. Cifarelli and Regazzini (1987)
defined the c.l. of P with respect to (w.r.t.) Pg, where P and Py are two probability
measures on the same measurable space (@, # ). According to the Radon-Nikodym
thecorem, there is a unique partition {N, N} <% ol @ and a nonnegative function
I on N € such that

P(E):j h(0)Po(d0)+ PAEAN), VEeZ,
EnNCT
Po(N)=0,  PAN)}=P.(0),

wherc

Pa(-)=j h(0)Po(d0)
-ANC
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and P, denote the absolutely continuous and the singular part of P w.urt. P,
respectively. Set hi{0)=co all over N and define

H(y)="Py({0eO@: 1)< y}), c(x)=inl{yeN: H(y)=x}.
Finally, let
L(x)={0e@: h(h<c(x)} and L™ (x)={0eO@:h(0)<c(x)}.

Definition 2. The function ¢ :[0, 17—[0, 1] is said to be the concentration [unction
of P wrt. Py if o(x)=P(L™(x))+c(x){x—H(c(x)7)} for xe(0,1), ¢(0)=0 and
p(1)=P,(0).

When the dependence on P is to be cmphasized, the c.f. will be denotd ¢p(x). As
proved in Cifarelli and Regazzini (1987), @(x) is a nondecreasing, continuous and
convex function such that

X

p(x)= jrm {x—H()dt= J c(r)dt

4] 0
and

e(x)=0 <« PLP,, p(xX)=xVxe[0,1] < P=P,.

As an example, the c.f. ¢(x) of P~%(2,2) w.r.t. Py~ & (1) is plotted in Figure 1 and i[1
is shown that [0.216, 0.5597 is the range spanncd by the probability, under P, of the
scts A with Py(4)=0.4. Such a range follows from Theorem 2.2 in Cifarclli and
Regazzini (1987), which provides an interesting interpretation of the c.f, especially
for its use in Bayesian robustness; in fact, given any x€[0, 1], then the probability,
under P, of any A with Py-measure x, is such that ¢(x)<P(A) <! —p(l—x). Under
P, nonatomic, such a thecorem can be expressed as follows.

Theorem 1. Given any xe[0,1], then By exists such that Py(B}=x and
o(x)=P,(B)=min{P(A): AeF and Py(A)=x}.

Theorem | allows g-ncighbourhoods to be expressed by means of c.ls.

Proposition 1. The set K,={P: @r(x)=g(x), ¥ xe[0, 1]} is g-neighbourhood of Py as
defined in (1).

Definition 3. A function y:[0,1]-[0, 1] is said to be compatible if g is a monotone
nondecreasing, continuous, convex function, with g(0)=0.

Fortini and Ruggeri (1992) proved that any compatible g is a c.f.

Theorem 2. Given a fimction g:[0,1]=[0, L], there exists at least one measure P such
that ais the ef. of P wart. Py if and only if g is compatible.
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Fig. 1. Concentration functions ¢(x) (—) and 1 —¢@(1 —=x} () of P~%(2,2) w.r.l. Py~&(1).

3. Representation theorems

Consider the space 2 of all probability measures on @ endowed with the weak
topology. It is well known that 2 can be metrised as a complete separable metric
space. Consider the set of extremal points of K, that is the probability measures
PeK, such that

P=aP,+(1—a)P;, P €K, P,eK, 0<a<l < P=P,=P,.

The following results were proved by Fortini and Ruggeri (1992).

Proposition 2. The set of all the extremal points of K, is contained in E,, where
E,={P: @p(x)=g(x), Vxe[0,1]}. If g()= |, then it coincides with Eg.

Furthermore, every probability measure whose c.l. is greater than g can be repre-
sented as a mixture of probability measures having g as c.f, applying the Choquet
theorem (Phelps, 1966).
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Theorem 3. Let the function g:[0, 1]-[0, 17 be compatible. Then for any probability
measure Pe Ky, there exists a probability measure up on @ such that Hp(F)=1 and
P=[,Pus(dP), where F,c E, is the set of the extremal points of K,.

In Section 4, it will be shown (hat Iy can be a proper subset of £, as in the cases of
e-contaminated and total variation neighbourhoods. The next theorem is proved
similarly to Lemma A.l in Sivagancsan and Berger (1989).

Theorem 4. Let fand g be real-valued functions on @ such that f@ | S P(d0)< oo and
0<fgg(0)P(d0)< oo for any Pe K. Then

Jo/O)PWEO) [, 7(0)P(d0)
ros [0 0O PW0) oo [ (@) PdD)

The same result holds with ‘sup’ replaced by inf .
Computations of bounds on prior expectations are simplified by the next theorem.

Theorem 5. Let

Hi(y)=Po({0@: f(0)<y}), cr(x)=inl{y: H,(y)=x}.
Then

1
sup J. () P{d{?):j cr(x)e(x) dx,
a 0

Pek,

where c(x)=g’(x) a.c.

Such a result can be applied (o find bounds on posterior cxpectations, too, using the
lincarisation technique presented by Lavine (1988).

4. Bayesian robustness

The results in Section 3 are used in building a class of prior measures in a neigh-
bourhood of a given onc and checking if inferences lead to posterior measures close to
a base one. In the former case, a class of prior measures K, is determined such that
their c.f. with respect to a nonatomic base onc, say Py, is pointwise not smaller than
a specified compatible function ¢. Such a function gives the maximum concentration
ofa measure w.r.t. a base one which is deemed compatible with our knowledge. It will
be shown that some well-known neighbourhood classes can be described in such
a way. Both prior and poslerior expectations of any [unction S(0), 0e @, say E(f)
and E(f{x) respectively, are maximised (or minimised) all over K, by apply-
ing Theorems 4 and 5. Let E(f) and E(f]x) be such maximum values over K,.
Finally, the latter case specifies a bounding function again, denoting the maximum
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Fig. 2. Examples of classes defined through the concentration function,

concentration allowed so that a posterior measure is deemed acceptable. Since Py is
nonatomic, the discrete measures can or cannot be ruled out by choosing g(1)=1 or
<1, respectively.

4.1. Classes of prior meastres

Some well-known classes are presented by means of the corresponding classes of
c.l.’s, defined by the functions g(x) plotted in Figure 2.

4.1.1. e-Contaminations

Given a probability measures Py and e€[0, 1], the class I';={Py=(1 —¢) Py +€0Q,
Qe 2}, where 2< 2, is said Lo be an e-contamination class of priors. It was proved,
by Fortini and Ruggeri (1990), that the c.l. ¢(x) of Py, w.rt. Py is such that
p(x)=(l —g)x-+tepqe(x), where @g(x) is the cf of ¢ wrt P, Considering
glx)=(l—¢)x, Yxe[0,1], it can be easily shown that I',=K, when 2=2, while
E, and F, are obtaincd, respectively, for singular w.r.t. Py and Dirac contaminating
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measures @'s, observing that any probability measure is a mixture of Dirac measurcs
and the cf. of a Dirac measure w.r.t. to a nonatomic measure is @o=0. As shown in
Berger (1990), E(f) and E(f]x) are maximised by contaminating Dirac measures, i.e.
over F,.

Taking ¢= 1, the sct 2 ol all the probability measurces can be considered as a special
casc of e-contamination class ol priors, so that ¢(x)=0,V xe[0, 1], and any measure is
a mixturc of Dirac measures and E(f) and E{ | x) arc maximised by one of them (sce
Sivaganesan and Berger, 1989).

4.1.2. Density-bounded class

The density-bounded classes I'*, were firstly defined by Lavine (1991), while
a special case, emphasising their role as a neighbourhood class, has been considered
by some authors, ¢.g. Ruggeri and Wasserman (1991). Lavine defined I'? ; to be the sct
of probability measures P that satisly L(4)< P(A4)<U(A) [or all measurable A4 where
L and U are measures such that L{(@)< 1 < U(@). When all the probability measures
P have a density p(0) w.r.t. some dominating measure 4, the class I'? ; is such that
()< p0)<u(0) ac., where I() and w(0) arc the densities of L and U, respectively.
Given a probability mcasure Py, consider the special case, studied by Ruggeri and
Wasserman (1991), where L=(1/k) Py, U=kP,, k=1, which will be denoted by I'}2.
From a point of view of the cf,, such a class I'y’ can be scen as a special case of K,
where |

g(x)=max {ﬁ X o (x—1)+ 1}
o |

[t follows that PeE, il and only il KeZ exists such that Py(K)=a and it has density
-
P(U):gl’om)l’x (()}+[—_—£p(,(()}1,\-:(0),

where I, is the indicator function of the subset A.

The class Iy is oblained by taking a=k/(1+k) and f=1/(1+k) so that
g(x)=max {x/k, k(x— 1)+ 1}. It can be casily shown that I} = K, and the maximising
priors in E, confirm known results, such as E(f) over I' , which was computed by
Lavine (1991), while Ruggeri and Wasscrman (1991) considered I'}* and gave, in
addition, bounds on the maximum ol posterior expectations. By means of the c.f.s, the
ma)‘(imising measures are at least identificd, even if actual computations remain a hard
task.

Another case is obtained by taking a=%1 and f=34(l—¢) so that
g(x)=x—¢ min{x, | —x}. Such a case corresponds to the requircment, discussed in
Section 2, that

sup | Po(A)—P(A) | <e min{Py(A), [ —Po(A4)}.

AeF Py(r=x
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4.1.3. Density ratio class

The density ratio classes were firstly delined by DeRobertis and Hartigan (1981),
while a special case, emphasising their role as a neighbourhood class, has been
considered by some authors, e.g. Ruggeri and Wasserman (1991). Given a probability
measurc Py with density py (0), Ruggeri and Wasserman considered the density ratio
ncighbourhood around Py, 1'%, defined as the set of all the probability measures
whose densities p() arc such that there exists a ¢ >0 so that p(0)<ep(0) <kpo () for
almost all 0. It can be proved that I')}™® is also the class of the probability measures
such that their c.[.’s w.r.t. Py arc inside a triangle with vertices (0,0), (1, 1) and any
point on the curve g(x)=x/[k—(k—1)x], 0<x< 1. Since g is compatible, it follows
that I'°* = K,,. Bounds on expectations in such classes are compared in Wasscrman
and Kadane (1992). Observe that it can be proved that

Cf, PUA) _, PolA) -
Kg—{l.IJ(AC)ékPU(AC),VAeJ},

which resembles an equivalent definition of I'’® given by

pol0)

r(0) =, V0,0°€@ ZI.C.}

[qu = {IJ.' _'—gk
¢ p(O0) =" pol0

Computations of E(f) and E(f|x)in I'°® arc made possible by the resulls due to

DeRobertis and Hartigan (1981) and Ruggeri and Wasserman (1991).

4.1.4. Total variation neighbourhood

A class I'T is said to be a total variation ncighbourhood of a probability measure
Py il it contains all the probability measures P that satisly sup 4. | P(A)—Pq(A)|<¢,
given a fixed ce[0, 1]. Since Pq is nonatomic, then the measures in E, coincide with
P, over asubset B, such that Po(B,)= 1 —¢, give a total mass & to B, where Pq (B;)=0
and vanish elsewhere. [} is obtained by considering the measures in E, giving the mass
¢ to a unique point.

Compultations of E(f) are made possible by the results due to Wasserman and
Kadane (1990). They also found bounds on posterior probabilities, while here the
measures maximising E(f|x) are identified.

4.1.5. Neighbourhood of the uniform distribution

The behaviour of the inferences when considering a ncighbourhood of the uni-
form distribution has been considered in some recent works (e.g. Wasserman and
Kadane, 1992). In the next example, we consider a ncighbourhood which is given
by the c.f.

Example 1. Suppose that a coin is flipped twice and that 0'is the probability of getting
the ‘head’ in a flip. A uniform distribution Py is a possible choice as prior measure
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on 0. Such a choice can be modified, considering measures which slightly differ from it,
by choosing P such that

sup | Po(A) = P(A) | Po(A) (1 = Py(A)).
AeF:Po(A)=x
Hence, we consider the random variable X ~ Bin(2, 0), with density f(x|(), and the
class Ko={P: pp(x)2x?, V¥ xe[0, 1]}.

Smce g(1)=1, maximisations of E () and E( f| x) are made over E,, which contains
all the probability measures such that ¢(x)=2x, xe[0, 1. In particular, the next
computations are made by applying Theorem 5.

As pointed out in Berger (1985, Sections 3.5.1, 4.7.2), marginal distributions are
sometimes relevant, e.g. to construct the prior or to check assumptions on it and the
model. A well-known method to select priors is based on the ML-II approach (sce
Berger, 1985, Section 3.5.4). Given a class I of probability measures and the observed
data x, then Pel is said to i)c an ML-II prior if it maximises, over all I", the marginal
density m(x|P)= [, f(x|0)P(d0).

When x=0 or x=2, then lhe maximum value of the marginal density is 4, corre-
sponding, respectively, to the ML-11 priors Py and P, having densities fiy (0)=2(1—0)
and py(0y=20,0e[0,17. When x =1, then the maximum marginal density is 7, corres-
ponding to the ML-II prior P, having density pi(0y=4 min{0,1 -0}, 0[O, 1].

Given x=1, we compute now the upper and lower bounds, ¢ and p respectively;
on the posterior probability P(A|x) of the subsct A=[0,4], when the
prior measure varies in  K,. Hence, g=12 is found taking P with
density p(0)=20+ 1, y2(0) =112, 1 (0). Computing p similarly, it results that
< PAIN<H. )

4.2, Sensitivity to the prior

The next example will show how the c.f. is used to assess robustness w.r.t. changes in
the prior, when a function g(x) is assumed as maximum tolerable concentration of
a measure w.r.t. to a base one.

Example 2. Consider the random variable X ~ Bin(l,0) with density f(x|0). Take
Py~ (0, 1) and suppose that two experts clicit Beta priors with different parameters,
i.e. Py 1 ~Be(2, 1) and P, ,~DBe(2,2). Let @31 and ¢, , denote the respective c.f.’s
w.r.t. Pg. Such priors are deemed compatible with the prior knowledge if they do
not differ ‘too much’ from P, and here we measure such a difference by means of their
c.f.’s which should be not smaller than g(x)=x? (as in Example 1). Actually, the cl.’s
satisly such a rcquircman becausc it follows that ¢, ,(x)=g(x) and
P2,2(x)=(3) x> —§x? = ¢g(x), for all xe[0, 1].

Consider now a sample ® from X, so that the likclihood [unction becomes
1(0)=07(1—0)' "% while the posterior mecasures become PE~Be(l+%, 2—%),
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P} ~Be(2+%,2—%) and P} ,~Be(2+ %, 3—X). Robustness is checked by compar-
ing g{x)=x? with the cl’s of P¥, and P3, wrl P, denoted, respectively, by
q;;‘ . and tp’{z Given £=1, then it follows that ¢ (x)=x*?zg(x) and
Py (x)=3x*— =g(x), for all xe[0,1]. Given X=0, it follows that
3 x )—-3.\*2+2( —x)*2<g(x) and @3 (x)=3 x?—§ x?=g(x), for all xe[0, 1]. It
is clear that the robustness is achieved if and only if the sample =1 is oblained.

5. Discussion

The c.f. is useful in comparing functional forms of the probability measures; such
a comparison is well justified in Bayesian inferences (as it is also in robust ones} when
entire posteriors are reported, rather than some of their features (mean, HPD, etc.). As
discussed in Berger (1985, p. 144), reporting of the entire postrior measure is preferred
by many Bayesians, as opposcd to an HPD, which is not necessarily invariant under
reparaimelerisation.

Given the probability measures in a g-neighbourhood of Py, it would be interesting
to check il, or when, the corresponding posterior measures form a g*-neighbourhood
of P (the posterior form Pg) or a proper subset of it. Proper inclusion holds for the
g-contamination class ol priors, described in Scction 4.1, when the funclion
g(x)=(1 —¢)x is transformed into g*{x)= Cg(x), where the constant C is computed in
Fortini and Ruggeri (1990). Such a C, or other indices like the Gini’s arca of
concentration 2 [ 4 {x—g(x)} dx, could measure the effect of the data on the distribu-
tion of the parameter.

Finally, it should be observed that g-ncighbourhoods are also special capacilies, as
defined in Buja (1986) and Bednarski (1981); furtherimore, they are symmetric upper
probabilities, as in Wasserman and Kadane (1992), where g is the lower distribution
function and the convexity is equivalent (o the (wo-alternating condition.
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Comments on ‘Concentration functions and Bayesian robustness’
by Sandra IFortini and IFabrizio Ruggeri

Thomas Sellke

Purdue University, West Lafaycite, IN, USA

The paper by Fortini and Ruggeri presents some interesting connections between
concentration [unctions and Bayesian robustness. I especially liked the observations
in Scction 4 that certain standard class of priors, including the e-contamination,
density-bounded, and density ratio classes, can be described in terms of concentration
functions.

The first section below considers the ‘large sample theory’ of concentration function
classes of priors. The sccond section makes a somewhat related (but much less
important) observation about classes of posteriors. The third section points out
a [airly obvious weakness in the use ol concentration function neighborhoods as
classes of prior distributions.
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1. Large sample theory

A fundamental issue concerning the use of concentration function neighborhoods
K, as classes of priors is the behavior of the corresponding classes of posteriors when
the amount of information in the data is large. For example, the well-known principle
of stable estimation (see Edwards ct al. (1963), or Berger (1985)) says that the posterior
density n(0]y) will be approximately proportional to the likelihood 1(0]y) for data y if
the likelibood is concentrated on a set of 0's where the prior density n(0) is approxi-
mately constant. Thus, all reasonably smooth prior densities will yield approximately
the same posterior in the presence of enough data. Is there an analogous ‘large sample’
result in the present context? Under mild conditions, the answer is ‘yes’, as is explaincd
below.

Suppose that g(1)=1 and that 0<g'(0)<g'(l)<co, where g'(0) is ol course the
right-hand derivative of g at 0 and g'(1) is the left-hand derivative at 1. Write
I'°R(Py; k) for the density ratio class I'P* defined in Section 4 of Fortini and Ruggeri
to emphasize the dependence on Py. Set ky=¢'(1)/¢’(0) and k,=[1—g(1 —¢)]/g(c),
O<e< I Note that k, T ky as ¢ ] 0.

For data y, let K|y be the class of posterior distributions corresponding to priors in
K,. It is easy to show that

K o FPR(P k), ‘ (1)
so that
Kylyc I'PR(Pg; ko)l y. (2

Under the assumptions above that g(1)=1 and 0<g’(0)<g’(1)< oo, it turns out that
(2) is an approximate equalily when Py|y (the posterior distribution corresponding Lo
prior Py and data y) is concentrated on a sct B of small Py-probability.

To give a more exact statement of the claim that (2) is an approximate equality for
large samples, let us define a distance function between classes of distributions. For
probability distributions P, and P, on the parameter space @, let

d(Py, Py)=sup |Py(A)—Pa(4)] ' )

AcO

be the total variation distance between them. For a class K of probability distribu-
tions on @, define the total variation distance rom P, to K by

(I(Pl,K): inl (}{Pl,Pz). (4)

PekK

Finally, lor two classes K, and K,, define the total variation distance between them
by

ALK Kﬂ:max{ sup d(Py,K;), sup d(Pz,K,)}. ()

PieK) PieKaz
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Theorem. For B= @, let Po(B)=¢ be the prior probability of B under Py, and let
Po(Bly)=1=36 be the posterior probability of B under Pg, given data y. Then

ALK 1y I TP (Pos ko)l y] < 26k + (ko — k). (6)

Thus, il yy,y2,... is a sequence of increasingly informative data in the sense that
there are sets B, = @ with Py(B,}] 0 and Py(B,]v,)7T 1, then the total variation distance
between K |y and I'°!(Py; ko)|y will converge to 0.

Here is a sketch of the prool of the theorem. It is easy to check that

IR (Poik)|y=T"P*(Pyly; k) 0
It is casy to check that
FOR(Poi k)| B=1"P}(Po| B; k). (8)

(Indeed, (8) is a special case of (7).) For Bc @ with Py(B)<c, a straightforward
argument shows that

PP Bk K | B DPP JBk) )]

By (7) and (9),

PP (Poly, Bik )= Kyly, BT ™ (Poly, B;ko).  (10)
Now note that for any P, and k; >k, =1,
dLPPR(P ) TPR (P k) Sk —ky. (11)

Applying this to (10) yiclds
ALK 1y, BITPH(Poly, Biko <A [T (Poly, Bik N T " (Poly, B; ko))
<ko—k,. (12)

Also, [or any class K, of probability distributions on @ and any B< @,

d[K,B|K,]< sup P,(B°). (13)

Prek,
Thus, by (8) and (13),
dLTPR(Poly, By ko) PR (Polys ko)1 < ko Po(B%|y) =k . (14)
Likewisc,
ALK I BI K y] <k d. (15)

The total variation distance (5) satisfies the triangle inequality, so (12), (14), and (15)
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2. “Weak dilation’ of concentration functions

Again, let K, be a concentration function neighborhood of Py, and let K |y be the
corresponding posterior distributions for data y, When Py is nonatomic, the class
K,|y will contain posterior distributions whosc concentration functions with respect
to Pyly are as close to g as desired. Under mild conditions (e.g. multidimensional
© and a smooth likclihood function), it will even be true that K,y contains distribu-
tions whose concentration functions with respect lo Pg|y are exactly g.

The gist of what is going on here may be understood by considering the case of
a likelihood function which takes on only (initely many values. Let By, ..., B, be the
subsets of @ of positive Py-probability upon which the likelihood function takes on its
k possible values. Define a probability P, so that the concentration of | B; relative to
Po| B; is g for each B;. (That such a P cxists follows [rom a theorem in Fortini and
Ruggeri (1992).) Then the concentration function of P, |y with respect to Pgly will be
exactly g.

In general, if one can find a P, with concentration function g w.r.l. P, for which the
Radon-Nikodym derivative d P, /d(Pq + P, ) is independent of the likelihood [unction
under both Py and Py, then the concentration function of P |y w.r.t. Pyly will be 4.

It [ollows [rom the above observations that, under mild conditions, any concentra-
tion function neighborhood centered at Pyly which contains K|y must contain the
g-neighborhood of P4 y.

3. Quibbles

The papers by Fortini and Ruggeri as well as the cited papers by Cifarelli and
Regazzini show that concentration functions arc objects of basic mathematical inter-
est and that concentration functions provide a unifying and enlightening perspective
on some stalistical issucs,

However, a major weakness in the use of concentration function neighborhoods to
study Bayesian robustness is that concentration function neighborhoods ignore the
topology of the parameter space. It will typically be the case that the prior distributions
of real interest have smooth densities (or at least some local smoothness properties) so
that the principle of stable estimation will usually apply when the amount ol informa-
tion is large. Concentration function ncighborhoods contain distributions whose
densities are extremely irregular, Of course, it is often awkward to specily classes of
smooth priors and to describe the corresponding classes of posteriors. Thus, it may
sometimes be worthwhile to investigate aspects of Bayesian robustness using classes of
priors which arc artificial but tractable. For one thing, theoretical investigations arc
obviously easier for situations permitting nice, clean formulation and calculation.
Ideally, some of the insights gained [rom looking at artificial examples should carry
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Bayesian robustness can be established for a class of priors much larger than the class
of real interest, then Bayesian robustness holds at least as well for the priors of real
interest. However, onc should not lose sight of the fact that classes of priors (such as
those given by concentration function neighborhoods) which are chosen lor reasons of
tractability and mathematical elegance will seldom be more than crude surrogates for
more appropriate classes. I wish (o thank Larry Wasserman for very helpful conversa-
tions about concentration funclions.

Additional reference

Edwards, W., H. Lindman and LJ. Savage (1963), Bayesian statistical inference for psychological
rescarch, Psychol. Rev. 70, 193-242; reprinted in J. Kadane, Ed. (1984). Robustuess of Bayesian Analyses.
North-Holland, Amsterdam.

Rejoinder to Thomas Sellke’s comment

S. Fortini and F. Ruggeri

|

We wish to thank Professor Sellke for his stimulating results and comments. We
like the idea of studying what happens to a neighbourhood K, of a prior measure
when considering (he corresponding posterior measures. Sellke gives a condition
under which the same g defines both prior and posterior neighbourhoods. We have
analysed some classes in order Lo sce what happens; in particular we mention that the
e-contaminations, when the contaminaling class contains all the probability measures,
are defined by g(x)=(1—&)x, ¥ xe[0, 1], while a posteriori, the lowest c.f. is given by

(1-£)Dy

9= ) Do+ o1, 00)

where [.(0g) is the likelihood at its mode and DO:I(_) L(0)Py(d0) (see Fortini and
Ruggeri, 1990). Such a g cannol be above the g a priori, confirming, as Sellke pointed
out, that ‘any concentration [unction of neighborhood centered at Py|y which con-
tains K, |y must contain the g-ncighborhood of Pgly’.

Finally, we think that the concentration function neighbourhood is interesting not
only for ‘reasons of tractability and mathematical elegance’ but also because it arises
qﬁite naturally when bounding the probability of any measurable subset, as pointed in
Section 2.



