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Summary

Comparisons among probability measures are rather frequent in many statistical
problems and they are sometimes performed through the coefficients of divergence or
the concentration functions with respect to a reference measure. Extending the notion
of Lorenz-Gini curve, the concentration function studies the discrepancy between two
probability measures IT and II,.

In this paper, both the concentration function and the coefficients have been de-
fined and studied for a signed measure I, as an extension of the concentration curve
for real valued statistical variables. Signed measures are relevant in statistical analy-
sis, even if unusual, because real problems require them, especially in descriptive
statistics, like the simple one presented here.

Keywords: Concentration function, coefficients of divergence, Gini’s concentration
ratio, Pietra index, signed measure.

1. Introduction

Comparisons among two measures on the same measurable space have been
the object of many researches, leading to different approaches; a well-known
approach is given by the Lorenz-Gini concentration curve (Marshall and
Olkin, 1979, p. 5) which compares the actual distribution of wealth among n
individuals with the uniform one. Cifarelli and Regazzini (1987) defined the
concentration function of a probability measure IT with respect to another
II,, extending the classical notion of Lorenz-Gini curve. By the concentra-

1. Address for correspondence: Sandra Fortini, Fabrizio Ruggeri, Consiglio
Nazionale delle Ricerche, Istituto per le Applicazioni della Matematica e dell’Infor-
matica, Via A.M. Ampére, 56, 1-20131 Milano, Italy.
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tion function, the discrepancy between two measures defined on the same
probability space is studied, comparing the different concentrations of prob-
abilities determined by the measures. In particular, Cifarelli and Regazzini
(1987) proved, under very general conditions, that it is possible to determine,
under IT, the range of the probabilities of all the sets with equal probability
content under Il,. Probability measures have been also compared through
the general class of coefficients of divergence defined by Ali and Silvey
(1966), including, e.g., the Kullback-Leibler and the variational distances.

Comparisons among two or more measures could be made by some con-
centration indices, like in Ragazzini (1992), where they induce rankings
among the measures. Besides, Ragazzini (1992) proved that the rankings due
to the concentration function and the coefficients of divergence coincide,
under very general conditions.

At the same time, actual problems require that the comparisons are to be
made also with signed measures, e.g. when some of the n individuals in the
above Lorenz-Gini scheme have debts. Many authors have already studied
such a problem (e.g. Wold (1935), Castellano (1938) and Michetti and Dal-
I’Aglio (1957)), extending the notion of Lorenz-Gini curve to statistical vari-
ables also taking negative values.

In this paper, the notions of concentration function and coefficients of di-
vergence are extended to compare a signed measure with a probability one,
because of both mathematical and statistical interest. Their main properties
are then proved and the links in terms of induced rankings are again proved.
Furthermore, both of them are split into the two parts corresponding to the
Jordan decomposition of the signed measure. Finally, the results are applied
to some examples and further developments are discussed.

2. Comparison among Probability Measures

Consider two probability measures IT and IT, on the same measurable space
(6, F). According to the Radon-Nikodym theorem, there is a unique parti-
tion {N, N} C % of © and a non-negative function 4 on N such that

IKE) = /E ) (@) + I(E N N),

VE € ¥, II)(N) = 0, II(N) = I1,(6), where
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CONCENTRATION FUNCTION
() = /nM h(®) I1y(a¥)

and I1, denote the absolutely continuous and the singular part of IT with
regard to IT,, respectively. Set A(f#) = o over N and define H(y) = II)({# ¢
O: h(?) <y}), c(x) = inf{y e R : H(y) = x}. Finally, let L(X) = {#e 6:
h(®) <c(x)} and L™ (x) = {f e 6 : i(}) < ¢(x)}.

Definition 1. The function @ : [0,1] — [0,1] defined by

0 x=0
p(x) = II(L™(x)) + c(x){x — H(c(x)7)} xe(0,1) (1)
I () x=1

is said to be the concentration function of I with respect to (w.r.t.) I,
Observe that .

II(L(x)) x = H(c(x)) = Ily(L(x))

p(x) = II(L~(x)) x = H(c(x)") = II,(L™(x))

while @(x) is defined by linear interpolation on {x : H(c(x)") <x < H(c(x))},
if it is not empty. Furthermore, as proved in Cifarelli and Regazzini (1987),
@(x) is a nondecreasing, continuous and convex function such that ¢(x) =0
< I 1 I, e(x) = xVx e [0,1] < II = II, and

(x)
@(x) = /: {x — H(t)}dt =/:c(t)dt. )

An interesting interpretation of the concentration function is provided by the
following Theorem, due to Cifarelli and Regazzini (1987).

Theorem 1. If A € ¥, II)(A) = x, then @(x) < II,(A). Moreover ifx € [0,1] is
adherent to the range of H, then B, exists such that II,(B,) = x and

@(x) = IT(B,) = min {II(A) : A e ¥ and IT)(A) = x}. 3)
If I, is nonatomic, then (3) holds for any x € [0,1].
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Therefore, the concentration function of IT w.r.t. IT, synthesizes the dis-
crepancy between IT and IT, on the sets with the same measure under IT,; in
fact, for nonatomic I, or for x adherent to the range of H,

x— @x) = sup {Il,(A) — II(A)} = SuP {II(B) — IIy(B)}.
I (A)= B)=I—x
Such a result has been throughly explored in Fortini and Ruggeri (1990),
where the concentration functions were applied in a robust Bayesian analysis
to compare a class of e-contaminated priors with a reference probability mea-
sure.

Consider now the class ® of all the probability measures on (O,%); it
makes sense to compare them in terms of their concentrations w.r.t. a fixed
measure IT, in ?. In this case the concentration function of IT w.r.t. I, will
be denoted by ¢(I1,x), to stress the dependence on IT. From Theorem 1, it
follows that the smaller ¢(I1x) is, the greater the concentration of IT w.r.t.
II,.

The comparison of probability measures is also possible when introducing
a partial ordering in the space P.

Definition 2. If o(IL,x) < @(IT};,x) Vx € [0,1], we will say that IL, is not less
concentrated than IT; w.r.t. I, Afterwards we will denote it by IT; < IT,.

As stated in the next Theorem, due to Regazzini (1992), the previous par-
tial ordering is equivalent to the one induced by the class of indices, consi-
dered in Ali and Silvey (1966) and Csiszar (1967),

o(ILg) = /[ 0.0 8(1)dHn(t) + I1(©)lim {g(1)/1}

where g : [0,0) — R is continuous and convex, while Hpy and IT, are defined
as before, for any IT € P, with respect to a fixed IT, € P.

Theorem 2. For any pair of probability measures II;, IT, € P, IT, < IT, holds
w.r.t. I, if and only if o(I1;,g) < o(IL,,g) for all continuous, convex g for
which o(I1,,g) and o(Il,,g) are finite.

Observe that the well-known Gini’s concentration ratio (Gini, 1914) C(II)

=2 / {x — @(x)} dx and the index G(II) = sup {x — @(x)} proposed by

Pietra (1915), which is equal to twice the vanatlonal distance sup |II(A) —
A€EF

ITy(A)), are obtained as particular cases of o(I1,g), taking, respectively,

g =112 /91 |t = u|dHp(u) + 1/2I15(©) and g(t) = |t — 1|.
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CONCENTRATION FUNCTION

3. Signed Measures

Cifarelli and Regazzini (1987) gave a general definition of concentration
function connected to the classical Lorenz-Gini curve defined for statistical
variable taking only nonnegative values. Many authors (e.g. Wold (1935),
Castellano (1938), Michetti and Dall’ Aglio (1957)) have considered variables
assuming also negative values, e.g. when interested in the concentration of
the gain of some industrial categories. Besides, signed measures are worth-
while when considering slight changes, even infinitesimal, in probability mea-
sures, like in local sensitivity analysis in Bayesian robustness (see Ruggeri
and Wasserman, 1993, and Fortini and Ruggeri, 1992, about infinitesimal
properties of the concentration function). In this paper, all the concepts in-
troduced in the previous Section about the concentration function and the
coefficients of divergence between probability measures are extended to
bounded signed measures. Further results about them are proved and ap-
plied to some examples.

Let IT, be a probability measure and IT a bounded signed measure on the
same measurable space © (observe that the extension to any positive mea-
sure I1, is straightforward). Then, from the Jordan decomposition (see Kol-
mogorov and Fomin, 1980, p. 347) there exist two positive measures IT" and
IT" such that IT = IT" — IT".

The notion of concentration function of IT with respect to I, can be intro-
duced as follows. Let & be the Radon-Nikodym derivative of IT with respect
to I, (see Ash, 1972, p. 68). Set h(#) = += all over the subset N* where IT
= [IT" and IT is singular with respect to IT, and set h(#) = — all over the
subset N~ where IT = IT and IT is singular with respect to IT,. Let H(y),
¢(x), L(x), L™ (x) be as in Section 2, while the definition of the concentration
function slightly differs from (1).

Definition 3. The function @ : [0,1] — [—IT (O), IT,(O) — II, (O)] defined by

—II; (6) x=0
@(x) = | I(L"(x)) + c(x}{x — H(c(x)")} xe(0,1) 4
I(6) — I1;(6)) x=1

is said to be the concentration function of IT w.r.t. I,

It can be easily that (2) becomes
c(x)

P(x) = xc(x) — | H(ndt — IT, (6) = /oxC(t)dt -IL(©). (5
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This is obvious if x = 0,1 while, if x € (0,1),
(x)— c(x)

o(x) + I (©) = /‘_ tdH(t) + c(x){x — H(c(x)")} = xc(x) — _ H(t)dt.

The concentration function of a signed measure IT can be expressed in
terms of the concentration functions of the positive measures IT and IT ", as
shown in Theorem 3. To prove it, a lemma is needed; it should be noted that
it has its own interest, because it gives the relation between ¢@(ITx) and

o(—ILx).
Lemma 1. @o(—ILx) = @(IIL1 — x) — I1I(O) for any x € [0,1].
Proof. Because of their definitions, it follows that

H_pn(y) =1 — Hp(~y) + I({# € © : hn(#) = —y}) and
c-n(x) = —cp(l — x) — v(I — x),

where V(I — x) = sup{z e R : Hp(z") <1 — x} — cg(l — x) and the meaning
of the subscripts is evident. Applying (5), it follows that

@(—IIx) = —(IL1) + o(I11 — x) — IT;(6) - E,,
where E, = [ v(1 — v)dt.
Taking x = 9, it follows that E; = 0 so that the thesis is proved because E,
= (), since v(I — x) = 0 for any x € [0,1].

Theorem 3. Given the Jordan decomposition IT = IT" — IT, it follows that

@(Ix) = @(IT",x) + ¢(IT",1 — x) — IT"(6).

Proof. Let h(w) be decomposed into its positive and negative parts # = h* —
h~ and take i™ = —h~ and IT" = —IT . Denote H(t) and c(x) corresponding
to IT" and IT with the subscripts + and —, respectively. It follows that

_ | H (@ t=0
Hy = { H @) t<0

and
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CONCENTRATION FUNCTION

c(x) x<H(07)
cx) =4 0 H(07)<x<H'0)
ct(x) x> H*(0)

Because of (5), it results that

(T - x< H(07)
P(ILx) = { o(IT"x) + T(©) x>H(07)

so that @(IT,x) = @(IT*,x) + @(IT ,x) for any x € [0,1], while the thesis is a
consequence of Lemma 1.

Because of Theorem 3, it is possible to apply the results in Cifarelli and
Regazzini (1987) to @(IT*,x) and @(IT,1 — x), so that @ is a continuou,
convex function, but not necessarily nondecreasing as before; moreover
Theorem 1 still holds, provided that IT(A) = x is substituted in (3).

Consider now the space M, of the signed measures IT on © such that IT(©)
= a, a € R. The concentration function induces a partial ordering in such a
space: for any IT; and IT, in M, IT; < IL if and only if ¢; = @,, where ¢, and
@, are the concentration function of IT; and I, w.r.t. IT), respectively.
Define, for any IT € M,, the extension of the Ali-Silvey index:

o(ILg) = /gt g(t)dHp(1) + I (6) lim {g(v)it} — IL;(6) lim {g(1)/t}(6)

where g : R — R is continuous and convex. Such an index can be interpreted
as a coefficient of divergence d(II,I1,) of IT from Iy, satisfying four basic
properties which are the natural extension of the Ali-Silvey’s (1966) ones.
Such properties are:

P.1. The coefficient d(I1,I1,) should be defined for all pairs of measures IT
and IT, on (©,%).

P.2. Let & = t(#) be a measurable transformation from (6,%) onto the
measurable space (£,%9). Then, it should follow that d(ILIL;) =
d(ITt™*, It ™!), where ITt ! and ITyt~! are the induced measures on Q corres-
ponding, respectively, to IT and I,.

P.3. The coefficient d(I1,IT;) should be minimised when IT = IT, and
maximised, among all the measures IT sharing the same IT*(6) and IT (©),
when IT 1 II,.

P.4. Let {II,; w e (a,b) C R} be a family of equivalent (mutually abso-
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lutely continuous) measures on R such that the family of densities 7,,( ?) with
respect to a fixed measure p has monotone likelihood ratio in # (see
Lehmann, 1986, p. 78). Given a < w; < w; < w3 < b, it should follow that
d(nwerwZ) = d(IIerHaﬁ)-

The detailed proofs of the index (6) satisfying the properties are omitted,
since they are very similar to the Ali and Silvey’s ones, and just few changes
are mentioned.

In proving the property P.1, it should be observed that g(x) = (x — a)/(b —
a) - (g(b) — g(a)) + g(a) holds for any x ¢ [a,b] and that lim  {g(9)i1} < .

The bound g(x + y) < g(y) + x lim {g(x)/x}, for x < 0, is used in the
proofs of the properties P.2 and, fof y = 0, P.3. Finally, P.4 holds, provided
that the monotone likelihood ratio is defined also for signed measure.

Like the concentration function, the index (6) can be split in two parts too,
corresponding to the Jordan decomposition IT = IT* — IT . In the next
Theorem, the index (6) should be better denoted o(I1,g(1)).

Theorem 4. Given the Jordan decomposition IT = IT" — IT, it follows that
o(ILg(v) = o(IT*,g(1)) + o(IT",g(—1)) = o(IT*,g(1)) — o(—IT",g(1)).
Proof. Let H* and H~ be defined for IT" and IT, respectively, so that

1 Hw t=0
Hy = { I-H (-)+I({8 € © : hn(®) = —1}) <0

Because of Lemma 1 and the definition of the index (6), the result can be
proved.

As another property of the index (6), it should be remarked that the corre-
sonding partial ordering coincides with that induced by the concentration
function, as proved by Regazzini (1992) about probability measures.

Lemma 2. Let IT; and IL; be signed measures such that II;(©) = I1,(©); let

hy, hy be the Radon-Nikodym derivatives of II; and IT, with respect to IT,; let
H; and H, be their distribution functions and c;, c, their quantile functions. If

II; < IT,, then, forany x € R, IT7(O) ~ IT;1,(O) + {H)(t) — Hy(t)} dt =
0. -

Proof. Let x € R and y = H,(x). Since
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CONCENTRATION FUNCTION

i(y)
@y) = —ITi(6) + ycly) — | Hft)dy, i =12

then
2(y) 1(y)
(T3 — ITy) (6) + | H(y)dt - __Hi(ndt = y(cx(y) — ci(y))-

Therefore
1(y) c2(y)

(T3 — 1) () + | {H(1) - Hy(t)}dt= y(ca(y) — ci(y)) — . (y)Hz(t)dt-
It follows

(H_Zs - 1T1J (9) + /jm {HZ(t) - H](t)}dt =

1(y)

= 0 {Ha(t) — Hy(t)}dt + /:(y) {Hy(Y) — H,(1)}dt =

2(y)
=yc0) —ay) ~ | Hyydt + f {Ha()) = Hy(9)}dt = 0.
cly) o y)
Theorem 5. Under the same hypotheses as Lemma 2, I1; < IL, if and only if
o(I1,,g) < o(IL,g) for all continuous, convex g for which o(I1,,g) and o(IL,,g)
are finite.

Proof. The argument partially follows the one in Regazzini (1992).
Necessity. Since g is continuous and convex, there exists a non-decreasing

function y on R such that g(y) = g(a) + / y(t)dt, for a, y € R. Since
/m /. v(t)dd(H, — H)) (y) = /gz YO){Hi(y) — H(y)}dy

=| / _{H) - Hz(t)}dt]w - /5,t /_y,., {Hife) — Ha(t)}atdyly)

then -

o(IL;,g) — eo(11,,8) =
L 8(t) d(Hz — Hy)(9) + (IT5, — IT3,)(6) lim_ g(y)ly -
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(IT2s — IT3)(6) lim_ g(y)ly

= (ks = I,)(6) lim_ y(y) + (Il — I1;,)(6) lim _ 8()ly
y

* /a { @3, - o) + _ (Hy() - Hl(t))dt}d)’()') -

= /a { (IT3, — IT3,.)(6) + /_yw {Ha(1) — H,(t)}dt}dy =0

from Lemma 2, I,(6) = IT;(6), Jim {g(y)ly — v(»)} = 0 and

/j) ydH;(y) = /

© {h(®)<0

/ :de.-(y) = /

{hi(0)>

hi(9)I1p(dd) = / IT(d9)
} {h(8)<0}

hi(O)I1y(dd) = / I1(d¥).
0} (h(8)>0)

Sufficiency. For y € (0,1) belonging to the range of H;, let g(t) = |t — ca(y)|.
Then

o(I,g) = /a |t — c2(y)|dHi(t) + ITy5(6) + IT;5(6) =

1(y) +@
=/ (c2(y) — YdH (1) + / (t = c2(y))dH, (1) + IL;(O) + 2IT,;(6) =

c(y)

(y)
2 2ycy(y) — cx(y) + II)(6) — 2 /‘_7 . tdH (1) + 2IT;(6).

On the other hand

o(I,,g) < o(IL,,g) < /gi |t — ca(y)|dH (1) + IT5(6) + IT3,(6) <

(y)
< 2ycy(y) — c2y) + II(O) — 2 /Q tdH(t) + 2IT34(6).

It follows that
2(y)

c2(y)
—IT(6) . tdH,(t) < —IT15(6) / . tdH (1)
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and, hence

@2(x) < @;(x) ™

holds for any x belonging to the range of H;. Since ¢; and ¢, are continuous
and convex functions on [0,1], and ¢, is linear on (H,;(¢"),H,(t)), (7) holds
necessarily for all x € 0,1].

Setting g(t) = |t — 1|, the index (6) becomes the Pietra’s index G(II) as
before and it coincides with twice the variational distance between IT and IT,,
while

gt =112 { /su |t — uldHp(w) + IT, (©) + IT, (@)} +1 - II(B)
gives the Gini’s concentration ratio C(I1).
Proposition 1. Given g(t) = |t — 1|, it follows that
o(Ilg) =2sup {x — @(x)} + I(O) ~1=2 {1/2 / |x —~ ﬂoldu} ,
x€/[0,1] e

where x and my are the densities; respectively, of IT and I, with respect to a
dominating measure y and 1/2 |m — moldu = sup |IT(A) — IT(A)| is the
o AEF

variational distance between IT and II, (cf. Strasser, 1985, Definition 2.1 and
Lemma 2.4).

Proof. Substituting g(t) = |t — 1| in (6), it follows that

1
o(ILg) = 2/ (I-)dHp(1) + / (t—1)dHp(y) + IT5 (©) + IT; (6)

— o0 [+ ]

1
= Z{Hn(l) - / thn(t)} + I1(0) — 1 + II(6) + 2IT(6) (8)

=2{¢ - @(*)} + II(6) ~- 1,
wherevf = Hp(1) is such that ¢(£) < 1 < c(£"). Since @(x) is a.e. differenti-
able, it follows from (5) that £ maximise x — @(x) all over [0,1]. The second
part of the Proposition is proved considering the three possible situations:

1) ¢(y) > 1, ¥y € R. In this case, a(#) > my(?) a.e. and £ = 0, so that

o(ILg) = II,(6) — 1 + IT; (6) + IT; (6) = 2{1/2/ = - ﬂold#}-
o
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2) ¢(y) < 1, ¥y € R. Now, n(#) < my(¥) a.e. and £ = 1. Since here
1

/ tdHy(t) = IT,(©) and Hp(1) = 1, it follows from (8) that
o(ILg) =1 - II,(6) + ITy(6) + IT(6) = 2{1/2/9 | — -’Foldﬂ} .

3) m cly) <1 S’l.i_r’r} ¢(y). Suppose that c¢(£) = I; otherwise L~ (I) should
substitute L(I) in the next proof. It follows that

g =] (mo® - moNdu+ | (aAO)-mol®)yds =
L(I) [L(1)]

2{1/2 /e | - :taldp}.
Proposition 2. Given
&) =112 { / |t — u|dHp(u) + IT; (6) + IT, (9)} +1 - I1(6),
*
it follows that
1
o(I1g)=2 / {x — @(x)}dx=12A4+]1-II(O)+IT; (6)+II; (6), (9)
where Ay = 2 - Hp(t){1 — Hp(t)}dt is the mean difference of Hp.
Proof. Observe that g(t) equals
1/2 {2 /_.; (t—u)dH,-,(u)+/g]l (u—t)dHp(u) +
(10)
IT; (6) + IT, (6) } + 1-11(6)

which becomes, after integrating the first integral by parts and computing the
second one,

t
/ Hp(wdu + 1 — 12 — 1/2 [I(8) + IT, (6),

so that g(t) ~ —t/2 and g(1)/t — —1/2 as t — — while g(t) ~ #/2 from (10) and
g®)it—> 1/2 as t > .
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Substituting the above limits in g(IL,g), then (9) is obtained after some
computations7 including another integration by parts. Because of (5), it fol-

lows that 2 / {x — @(x)}dx equals

(x)
1+ 2IT;(©) — 2/xc(x)dx + 2/ /£ Hpy(t)dtdx.
Taking x = Hn(t) then c(x) =t + {t* — t}, where t* = inf{z : Hp(z) =

Hp(1)}, and / dHp(u) = 0. The proof is complete, observing that

(x)
2 / xc(x)dx = 1/2 Ay + IT,(6) and 2 / / Hp(t)dtdx = Ay
[ 07 —o

It should be noted that not all the indices, defined through the Ali-Silvey
index for the probability measures, can be extended to the signed measures.
As an example, consider the Kullback-Leibler’s index which is obtained from
o(ILg) setting g(x) = x log x, which cannot be extended to negative x pre-
serving both continuity and convexity.

4. Examples

Two examples are now presented; the former has essentially a mathematical
interest because it gives the analytical expression and the plot of the concen-
tration function when the measures are absolutely continuous with respect to
the Lebesgue measure; the latter case is more interesting, from a statistical
viewpoint, because it compares the spreads of people’s natural movement
and of the population among the Italian regions, confirming the different
behaviour across the country.

Example 1. Let IT, have density my(#) = 68(1 — 8), for # € [0,1] while the
density of ITis

32 de [1/12,11/12)
a(d) =
=32 #e[0,1/12) U [11/12,1]

The concentration function of IT with respect to I, is shown in Fig. 1, and it
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Fig. 1 — Concentration function of the signed measure IT w.r.t. I, ~ Beta(2,2) (---)
compared with the minimum concentration curve (—).

is given in a parametric form by x = 6¢Z — 4’ and ¢(x) = ~3awhen0 < a<
1/12 while x = 449/432 — 6% + 4 and @(x) = 5/4 — 3awhen 1/I12 < a <
12.

Example 2. The data in Table 1 (extract from Table 2.17 in the Annuario
Statistico Italiano by Istituto Centrale di Statistica, 1989) refer to the natural
movement of the resident population in the twenty Italian regions during the
year 1988; such a movement is given by the difference between the births and
the deaths.

It could be observed that the increase in population in each region is not
proportional to the number of resident people; furthermore, the deaths are
more than the births in many regions, all of them from Northern and Central
Italy. To analyse such a phenomenon, two statistical variables are defined on
the space of the Italian regions: the former assigns them the population and
the latter its increase, both of them expressed by their percentage with re-
spect to the national figures. Afterwards, the variables are compared using
the concentration function, when the first of them is taken as the reference
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Table 1
Births and deaths in the Italian Regions in 1988

REGIONS births deaths difference  population
Piemonte 33,424 48,754 —15,330 4,365,911
Valle d’Aosta 1,003 1,224 -221 114,760
Lombardia 76,085 83,170 —7,085 8,898,951
Trentino-Alto Adige 9,336 8,108 1,228 884,039
Veneto 38,708 40,557 —1,849 4,380,587
Friuli-Venezia Giulia 8,646 14,963 -6,317 1,206,362
Liguria 11,246 22,733 —11,487 1,738,263
Emilia-Romagna 26,305 43,068 -16,763 3,921,281
Toscana 26,641 39,490 —12,849 3,565,280
Umbria 6,791 8,505 -1,714 819,562
Marche 12,136 14,005 —1,869 1,429,223
Lazio 50,362 43,217 7,145 5,156,053
Abruzzi 12,678 11,887 791 1,262,692
Molise 3,618 3,309 309 335,211
Campania 84,424 44,788 39,636 5,773,067
Puglia 53,337 29,794 23,543 4,059,309
Basilicata 7,671 5,547 2,124 622,658
Calabria 29,749 17,448 12,301 2,151,357
Sicilia 68,895 44,393 24,502 5,164,266
Sardegna 16,801 12,585 4,216 1,655,859
Italia 577,856 537,545 40,311 57,504,691

measure; in fact, such a concentration function can be defined and analysed
according to Section 3. The concentration curve is shown in Fig. 2 and ¢(x)
gives here the increase rate of the 100x% of the population, resident in the
regions with the smallest rate. As expected, since the concentration function
in Fig. 2 is very different from the straight line, the increase rate is not prop-
ortional to the number of residents.

The data could have been analysed also using the indices (6) and observing
that they become

20
o(g) = 2 g(h(w) Mof{wy),

where w,i = 1, ..., 20 denote the Italian regions. As an example, the Pietra’s

index confirms the discrepancy between the two measures because it becom-

es G(IT) = 4.8085.
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Fig. 2 — Concentration function of the natural movement w.r.t. the population in the
Italian regions (— - —) compared with the minimum concentration curve (—).

5. Discussion

In this paper the concentration function and the coefficients of divergence
have been defined and studied to compare a signed measure with a positive
one, as suggested by actual problems (e.g. populations in which individuals
might have debts). Actually, the signed measures could be considered in
some problems in which only positive measures are to be compared. As an
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example, it is worth looking for their connections with the mean equalizing
transfers (MET), studied in Regazzini (1992), that «provide an average eva-
luation of transfers which get IT to coincide with Il,». The MET have an
evident importance in many fields, like economics, where it might be re-
levant the study of how to move income in order to reduce social inequalities.

Comparisons among measures are also interesting when a measure is
changed along a «direction», given, for example, by a signed measure with
null total mass. In such a case, infinitesimal changes could be still interesting
so that the Gateaux differentials should be studied, like in Fortini and Rug-
geri (1992).

The concentration function and the coefficients of divergence, have been
already considered in the robust Bayesian analysis, when the posterior prob-
ability measures, from a given class of priors, are compared with a reference
posterior one (e.g. Fortini and Ruggeri, 1990, 1993a, and Dey and Birmiwal,
1990). The study of their infinitesimal properties, expressed through their
Giteaux differentials, could be useful in performing a local sensitivity analy-
sis, when posterior effects of small departures (even infinitesimal) from a
given prior probability measure are studied (like in Ruggeri and Wasserman,
1991, 1993).

Besides, it could be interesting, from a mathematical point of view, to
define neighbourhoods of a probability measure, which include signed mea-
sures too, extending the results in Fortini and Ruggeri (1993b). Finally, it is
worth observing that the definition of concentration function between signed
measures is not a straightforward extension of the definition given in this

paper.
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