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Continuous distributions

A random variable X is continuous if

P (a < X ≤ b) =
∫ b

a

f(x)dx

f is called the density function of X.

Prices, returns, volumes, indices etc. are continuous random variables.
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Numerical characteristic of continuous distributions

expectation: µ = E(X) =
∫
xf(x)dx:

is the mean value of X;

standard deviation σ =
√
E(X − µ)2:=mean deviation of X from µ;

σ2 = E(X − µ)2 = V (X): variance of X.

skewness coefficient ς = E(X−µ)3
σ3 : measures asymmetry

symmetric distribution ς = 0; long right tail ς > 0; long left tail ς < 0

excess of kurtosis κ = E(X−µ)4
σ4 − 3: measures tails thickness

the larger κ, the thicker the tails.

Remark: the above parameters can be not defined or ∞.
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Skewness
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Different degrees of Kurtosis

On the left densities; on the right their logarithms

The red curve is the one with the largest Kurtosis
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Multivariate distributions

The random variables X1, . . . , Xn have continuous distribution if

P (a1 < X1 ≤ b1, . . . , an < Xn ≤ bn) =
∫ b1

a1

. . .

∫ bn

an

f(x1, . . . , xn)dx1 . . . dxn

f is called the joint density of X1, . . . , Xn.
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Marginal distributions

Suppose now you are interested only in the first k variables X1, . . . , Xk (k < n)

The density function of X1, . . . , Xk can be found integrating out the remaining
variables:

f(x1, . . . , xk) =

∫ ∫
. . .

∫
f(x1, . . . , xk︸ ︷︷ ︸

keep

, xk+1, . . . , xn︸ ︷︷ ︸
integrate

)dxk+1 . . . dxn

f(x1, . . . , xk) is called the marginal density of X1, . . . , Xk.

Remark: with an abuse of notation we write f for all densities
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Conditional distributions

Consider the random variables X1, . . . , Xn with joint density f .

Split the variables into two groups: X1, . . . , Xk and Xk+1, . . . , Xn.

Suppose you are interested in the distribution of Xk+1 . . . , Xn in the hypothesis
that X1 = x1, . . . , Xk = xk

called conditional distribution of Xk+1, . . . , Xn given that X1 = x1, . . . , Xk = xk.

The conditional density is

f(xk+1, . . . , xn|x1, . . . , xk) =
f(

given︷ ︸︸ ︷
x1, . . . , xk, xk+1, . . . , xn)

f(x1, . . . , xk︸ ︷︷ ︸
given

)

Notation: Xk+1 . . . , Xn|X1, . . . , Xk ∼ f
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Conditional density

f(xk+1, . . . , xn|x1, . . . , xk) is obtained by looking at f(x1, . . . , xn) as a function
of xk+1, . . . , xn, keeping x1, . . . , xk fixed, and then re-scaling.
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Independent random variables

The random variables X1, . . . , Xk are independent of Xk+1, . . . , Xn if

f(xk+1, . . . , xn|x1, . . . , xk) = f(xk+1, . . . , xn)

This holds iff

f(x1, . . . , xn) = f(x1, . . . , xk)f(xk+1, . . . , xn)

The above definition can be extended to more than two groups.

The random variables X1, . . . , Xn are independent if

f(x1, . . . , xn) = f(x1)f(x2) . . . f(xn)
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Matrix notation

A random vector is a vector X =


X1

X2

...
Xn

 of random variables

The expected value of a random vector is defined as the vector of the expected
values:

µ = E(X) =


E(X1)
E(X2)

...
E(Xn)

 =


µ1

µ2

...
µn


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Covariance

The covariance matrix of X is defined as

Σ = V (X) = E((X− µ)(X− µ)T ) = E(XXT )− µµT

Σ =


σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n

...
...

...
σn1 σn2 . . . σnn


where

σii = V (Xi)

σij = Cov(Xi, Xj) = E((Xi − µi)(Xj − µj))

Hence Σ contains the variances in the diagonal and the covariances off the
diagonal.
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Properties of expectation and variance

In matrix notation, the properties of expectation and variance can be written in a
very compact way

E(AX) = AE(X)

V (AX) = AV (X)AT

If Xi and Xj are independent, then Cov(Xi, Xj) = 0

If X1, . . . , Xn are independent, then Σ is diagonal.
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Partitioning

Partition: X =



X1

X2

...
Xk

Xk+1

Xk+2

...
Xn



Write X1 =


X1

X2

...
Xk

 X2 =


Xk+1

Xk+2

...
Xn

, X =

[
X1

X2

]
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Partitioning µ and Σ

µ and Σ can be partitioned likewise:

µ =

[
µ1

µ2

]
; Σ =

[
Σ11 Σ12

Σ21 Σ22

]
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Transformations

Problem:
you know the density of X: fX(x)
you know that Y = g(X)

want to find the density of Y: fY(y).

Theorem
Let g be one-to-one and continuously differentiable, J = Jacobian matrix of g−1.
If det(J(y)) 6= 0 ∀y, then

fY(y) = fX(g−1(y))|detJ(y)|

( Jacobian= matrix of all first-order partial derivatives)

fortini 18 / 51



Exercise 1

Let X = (X1, X2)with X1, X2 i.i.d. random variables with density

f(x) =
1√
2π

exp{−x2/2}

Furthermore, let Y = (Y1, Y2) with Y1 = X1 +X2, Y2 = X1 + 2X2.

a) Find the expectation and variance of X

b) Find skewness and excess kurtosis coefficients of X1 and of X2

c) Find the density function of Z = X2
1

d) Find E(Y ) and V (Y ).

e) Write the joint density of X1 and X2

f) Find the joint density of Y1, Y2. Are Y1 and Y2 stochastically independent?

g) Find the marginal density of Y1

h) Find the conditional density of Y2, given Y1

(Hint:
∫ +∞
−∞ exp{−x2}dx =

√
π)
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The normal (or Gauss) distribution

Let X be a continuous random variable with µ = E(X), σ2 = V (X).

X has normal distribution if

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

X ∼ N [µ, σ2]
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Law of errors

The Gauss distribution is the normal law of errors.

Why?

It can be proved that if X is the sum of a large number of independent and
uniformly small random variables, then the distribution of X is well approximated
by the normal law.

This is the Central Limit Theorem (CLT)

The CLT explains why errors have Gaussian law:

an error has many different sources, each of which gives a small contribution. If
the sources are independent, the error has normal distribution.
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Properties of the normal distribution

The normal law is stable with respect to linear transformations:

If X has normal distribution with mean µ and variance σ2, then

aX + b ∼ N [aµ+ b, a2σ2]

If X has normal distribution with mean µ and variance σ2, then

X − µ
σ

∼ N [0, 1]
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The chi-squared distribution

The chi-squared distribution with n degrees of freedom has density

f(x) =

{
cxn/2−1e−x/2 if x > 0
0 otherwise

where c depends on n and is such that the density integrates to 1.

E(X) = n and V (X) = 2n
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Properties of the chi-square distribution

If X1 and X2 are independent chi-squared variables with n1 and n2 degrees
of freedom, respectively, then

X1 +X2 ∼ χ2[n1 + n2]

If X1, . . . , Xn are independent chi-squared[1] variables, then

X1 + · · ·+Xn ∼ χ2[n]

If Z ∼ N [0, 1], then
X = Z2 ∼ χ2[1]

If Z1, . . . , Zn are independent N [0, 1] variables, then
n∑
i=1

Z2
i ∼ χ2[n]

If Z1, . . . , Zn are independent N [µ, σ2] variables, then
n∑
i=1

(Zi − µ)2

σ2
∼ χ2[n]
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The F distribution

The F distribution with n1 and n2 degrees of freedom has density

f(x) =

{
cxn1/2−1(1 + n1

n2
x)−

n1+n2
2 if x > 0

0 otherwise

where c depends on n and is such that the density integrates to 1.
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Properties of the F distribution

If X1 and X2 are independent chi-squared variables with degrees of freedom
parameters n1 and n2, then the ratio

F [n1, n2] =
X1/n1
X2/n2

has the F-distribution with n1 and n2 degrees of freedom.

fortini 26 / 51



The t-distribution

The Student’s t distribution with n degrees of freedom has density

f(x) = c

(
1 +

x2

n

)−n+1
2

where c depends on n and is such that the density integrate to 1.

E(X) = 0 for n > 1, otherwise undefined
V (X) = n

n−2 for n > 2, ∞ for 1 < n ≤ 2, otherwise undefined
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Properties of the t-distribution

If Z is an N [0, 1] variable and X is χ2[n] and is independent of Z, then the
ratio

t =
Z√
X/n

has t distribution with n degrees of freedom, denoted t ∼ t[n]

If t ∼ t[n], then t2 ∼ F [1, n]
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Asymptotic distributions

t ∼ t[n]→ N [0, 1] as n→∞
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If F ∼ F [n1, n2], then n1F → χ2[n1] as n2 →∞

If X ∼ χ2[n], then Z =
√
2X −

√
2n− 1→ N [0, 1] as n→∞
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The multivariate normal distribution

A continuous random vector X has multivariate normal (or Gauss) distribution if
it has density

f(x) = (2π)−n/2|Σ|−1/2e− 1
2 (x−µ)

TΣ−1(x−µ)

It holds µ = E(X), Σ = V (X).

The notation is X ∼ N [µ,Σ].

Remark: Σ must be non-singular.
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The multivariate standard normal distribution

The N [0, I] is called multivariate standard normal or spherical normal distribution.

The density function of a multivariate standard normal vector is

f(x) = (2π)−n/2|I|−1/2e− 1
2xT I−1x

= (2π)−n/2e−
1
2

∑n
i=1 x

2
i

=

n∏
i=1

(
1√
2π
e−

x2i
2

)
Hence X ∼ N [0, I] iff X1, . . . , Xn are i.i.d. variables with standard normal
distribution.
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Partitioning a normal vector

Theorem
If

X =

[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
then

X1 ∼ N [µ1,Σ11]

X2 ∼ N [µ2,Σ22]

X2|X1 ∼ N [µ2.1,Σ22.1] with

µ2.1 = µ2 + Σ21Σ
−1
11 (X1 − µ1)

Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12

Remark: X1 and X2 are independent if and only if Σ12 = Σ21 = 0
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Partitioning a normal vector

All marginal and conditional distributions from a multivariate normal are normal
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Linear functions of a normal vector

Any linear function of jointly normally distributed random variables is normally
distributed:

If X ∼ N [µ,Σ], then AX + b ∼ N [Aµ+ b,AΣAT ].

fortini 35 / 51



Quadratic forms

A quadratic form in the variables x1, . . . , xn is homogeneous polynomial of
second degree in x1, . . . , xn. A quadratic form can be written as

a11x
2
1 + a12x1x2 + . . . a1nx1xn + a21x2x1 + · · ·+ annx

2
n = xTAx

with A symmetric matrix.

A matrix A is said to be idempotent if A2 = A

A quadratic form xTAx is called idempotent if A is idempotent.
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Idempotent Quadratic forms in a standard normal vector

Theorem
If X ∼ N [0, I] and A is symmetric and idempotent, then XTAX has a
chi-squared distribution with degrees of freedom equal to the rank of A.

Remark: for a symmetric, idempotent matrix, the rank is equal to its trace (sum
of the elements in the diagonal).
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Application: Distribution of S2 in a Standard Normal
Vector

Let X1, . . . , Xn i.i.d. ∼ N [0, 1].

Let X =
∑n
i=1Xi
n be the sample mean

and S2 =
∑n
i=1(Xi−X)2

n be the sample variance.

Then
nS2 ∼ χ2[n− 1]
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Proof

X =


X1

X2

. . .
Xn

 ∼ N [0, I]

nS2 = XTAX

where A =


1− 1/n −1/n . . . −1/n
−1/n 1− 1/n . . . −1/n

...
... . . .

...
−1/n −1/n . . . 1− 1/n

 is symmetric and idempotent.

Hence nS2 has a chi-squared distribution.

To find the number of degrees of freedom we need to compute rank of A, which
is equal to the trace of A.

trace(A) =
∑n
i=1(1− 1/n) = n− 1.
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Independence of linear forms in a standard normal vector

Theorem
If X ∼ N [0, I] and AX and BX are two linear forms, then AX and BX are
independent if and only if ABT = 0.
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Proof

Let Z = AX, W = BX. Then[
Z
W

]
=

[
A
B

]
X ∼ N

([
0
0

]
,

[
AAT ABT

BAT BBT

])
It follows that Z,W are independent if and only if ABT = 0.
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Independence of Idempotent Quadratic forms in a standard
normal vector

Theorem
If X ∼ N [0, I] and XTAX and XTBX are two idempotent quadratic forms,
then XTAX and XTBX are independent if AB = 0.
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Application: Ratio of Independent Idempotent Quadratic
forms in a standard normal vector

Let X ∼ N [0, I] and let A and B be symmetric idempotent matrices such that
AB = 0.

Let rA and rb be the ranks of A and B, respectively.

According to the above theorems XTAX and XTBX are independent chi-square
random variables.

The ratio of independent, chi-square random variables, each divided by the
number of degrees of freedom, has F distribution.

Hence

XTAX/rA
XTBX/rB

∼ F [rA, rB ]
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Independence of a linear and quadratic form in a standard
normal vector

Theorem
Let X ∼ N [0, I]. A linear function LX and an idempotent quadratic form
XTAX are independent if LA = 0.

fortini 44 / 51



Application: independence of the sample mean and the
sample variance in a standard normal vector

Let X1, . . . , Xn be i.i.d ∼ N [0, 1].

The sample mean X and the sample variance S2 are independent random
variables.
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Proof

nX =
∑n
i=1Xi = LX with L =

[
1 1 . . . 1

]
nS2 = XTAX with A as before

LA =
[
1 1 . . . 1

]


1− 1/n −1/n . . . −1/n
−1/n 1− 1/n . . . −1/n

...
... . . .

...
−1/n −1/n . . . 1− 1/n



=
[
0 0 . . . 0

]
Hence nX and nS2 are independent and, therefore X and S2 are independent.
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The standardized normal distribution

Let X ∼ N [µ,Σ].

There exists a symmetric matrix A such that A2 = Σ.

A is called the square root of Σ and denoted by Σ1/2

The inverse of Σ1/2 is denoted by Σ−1/2 and satisfies

Σ−1/2Σ−1/2 = Σ−1

Z = Σ−1/2(X− µ)
is called the standardized normal.

Z ∼ N [0, I]

ZTZ ∼ χ2[n]
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Proof

X− µ ∼ N [0,Σ]

hence
Σ−1/2(X− µ) ∼ N [Σ−1/20,Σ−1/2ΣΣ−1/2] = N [0, I]

For the last assertion

(X− µ)TΣ−1(X− µ) = (X− µ)TΣ−1/2Σ−1/2(X− µ) = ZTZ

fortini 48 / 51



Extended definition of multivariate normal

If X ∼ N [µ,Σ], then
X = µ+ Σ1/2Z

with
Z ∼ N [0, I]

Definition
A random vector X has multivariate normal distribution if

X = µ+ AZ

for some
Z ∼ N [0, I]

some vector µ and some matrix A.

With the new definition, all properties still hold.
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Two cases

Let
X = µ+ AZ

with
Z ∼ N [0, I]

Let Σ = V(X) = AAT.

If Σ is non-singular, X is continuous and the definition coincides with the
old one.

If Σ is singular, there exists a such that

aTΣa = V(aTX) = 0

Hence aTX = a1X1 + · · ·+ anXn = c with c constant. In this case X has
no density. If rank(Σ) = k it is possible to write n− k of the random
variables as linear functions of a constant and of the remaining k random
variables, that have continuous multivariate normal distribution.
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Exercise 2

Let Y = Xβ + ε with ε ∼ N(0, σ2I) and X deterministic of dimension n× k and
rank k. Let M = X(XTX)−1XT

a) Write the joint density of Y1, . . . , Yn.

b) Show that the MLE of (β, σ2) is β̂ = (XTX)−1XTY = β + (XTX)−1XT ε,

σ̂2 = ε̂T ε̂/n where ε̂ = Y − Ŷ with Ŷ = Xβ̂.

c) Show that β̂ ∼ N(β, σ2(XTX)−1).

d) Show that Ŷ =MY = Xβ +Mε and that Ŷ ∼ N(Xβ, σ2M).

e) Show that ε̂ = (I −M)Y = (I −M)ε and that ε̂ ∼ N(0, σ2(I −M)).

f) Show that ε̂ is independent from β̂ and from Ŷ .

g) Show that ε̂T ε̂/σ2 ∼ χ2(n− k).

h) Assuming β = 0, show that Ŷ T Ŷ /σ2 ∼ χ2(k).

i) Assuming βi = 0,show that Ti = β̂i/
√

[(XTX)−1]iiε̂T ε̂/(n− k) ∼ t(n− k).

j) Assuming β = 0, show that F = (Ŷ T Ŷ /k)/(ε̂T ε̂/(n− k)) ∼ F (k, n− k).
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