Exercises

Exercise 1

Let X_{1} and X_{2} be independent and identically random variables with density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\}
$$

and let $X=\left(X_{1}, X_{2}\right)$. Furthermore, let $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{1}+2 X_{2}$ and $Y=\left(Y_{1}, Y_{2}\right)$.
a) Find the expectation and variance of X
b) Find skewness and excess kurtosis coefficients of X_{1} and of X_{2}
c) Find the density function of $Z=X_{1}^{2}$
d) Find $E(Y)$ and $V(Y)$.
e) Write the joint density of X_{1} and X_{2}
f) Find the joint density of Y_{1}, Y_{2}. Are Y_{1} and Y_{2} stochastically independent?
g) Find the marginal density of Y_{1}
h) Find the conditional density of Y_{2}, given Y_{1}
(Hint: $\int_{-\infty}^{+\infty} \exp \left\{-x^{2}\right\} d x=\sqrt{\pi}$)

Solution

a)

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=\int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} d x=0
$$

since the function is odd.

$$
V\left(X_{1}\right)=V\left(X_{2}\right)=E\left(X_{1}^{2}\right)=\int_{-\infty}^{+\infty} x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} d x
$$

Integrating by parts, we obtain

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} x\left(x \exp \left\{-x^{2} / 2\right\}\right) d x & =\frac{1}{\sqrt{2 \pi}}\left[x\left(-\exp \left\{-x^{2} / 2\right\}\right)\right]_{-\infty}^{+\infty}+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left\{-x^{2} / 2\right\} d x \\
& =0+\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \exp \left\{-t^{2}\right\} d t \\
& =1
\end{aligned}
$$

Hence $V\left(X_{1}\right)=V\left(X_{2}\right)=1$. Since X_{1}, X_{2} are stochastically independent, their covariance is zero.
Hence

$$
E(X)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad V(X)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

b)

$$
\varphi=\frac{E(X-\mu)^{3}}{\sigma^{3}}=E\left(X^{3}\right)=\int_{-\infty}^{+\infty} x^{3} \frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} d x=0
$$

$$
\begin{aligned}
\kappa & =\frac{E\left(X_{1}-\mu\right)^{4}}{\sigma^{4}}-3 \\
& =E\left(X_{1}^{4}\right)-3 \\
& =\int_{-\infty}^{+\infty} x^{4} \frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} d x-3 \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} x^{3}\left(x \exp \left\{-x^{2} / 2\right\}\right) d x-3 \\
& =\frac{1}{\sqrt{2 \pi}}\left[-x^{3} \exp \left\{-x^{2} / 2\right\}\right]_{-\infty}^{+\infty}+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} 3 x^{2} \exp \left\{-x^{2} / 2\right\} d x-3 \\
& =0+\frac{3}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \exp \left\{-t^{2}\right\} d t-3 \\
& =0
\end{aligned}
$$

Since X_{2} has the same distribution as X_{1}, their skewness and excess Kurtosis coefficients are equal to zero.
c)

For $z>0$

$$
\begin{aligned}
P(Z \leq z) & =P\left(-\sqrt{z} \leq X_{1} \leq \sqrt{z}\right) \\
& =2 \int_{0}^{\sqrt{z}} \frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} d x \\
& =\int_{0}^{z} \frac{1}{\sqrt{2 \pi}} \exp \{-t / 2\} t^{-1 / 2} d t
\end{aligned}
$$

Hence the density function of Z is

$$
f_{Z}(z)= \begin{cases}0 & z \leq 0 \\ \frac{1}{\sqrt{2 \pi}} \exp \{-z / 2\} z^{-1 / 2} & z>0\end{cases}
$$

d)

$$
\begin{gathered}
E\left(Y_{1}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0 \\
E\left(Y_{2}\right)=E\left(X_{1}\right)+2 E\left(X_{2}\right)=0
\end{gathered}
$$

Since X_{1} and X_{2} are uncorrelated,

$$
\begin{gathered}
V\left(Y_{1}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=2 \\
V\left(Y_{2}\right)=V\left(X_{1}\right)+4 V\left(X_{2}\right)=5 .
\end{gathered}
$$

Furthermore

$$
\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}+2 X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{1}\right)+2 \operatorname{Cov}\left(X_{2}, X_{2}\right)=3
$$

Hence

$$
\begin{gathered}
E(Y)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
V(Y)=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]
\end{gathered}
$$

e)

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-x_{1}^{2} / 2\right\} \frac{1}{\sqrt{2 \pi}} \exp \left\{-x_{2}^{2} / 2\right\}=\frac{1}{2 \pi} \exp \left\{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2\right\}
$$

f)

The transformation is

$$
\left\{\begin{array}{l}
y_{1}=x_{1}+x_{2} \\
y_{2}=x_{1}+2 x_{2}
\end{array}\right.
$$

Solving with respect to x_{1} and x_{2}, we find

$$
\left\{\begin{array}{l}
x_{1}=2 y_{1}-y_{2} \\
x_{2}=y_{2}-y_{1}
\end{array}\right.
$$

The Jacobian matrix is

$$
J=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

The determinant of the Jacobian matrix is 1. Hence, using a)

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1}, X_{2}}\left(2 y_{1}-y_{2}, y_{2}-y_{1}\right) \cdot 1 \\
& =\frac{1}{2 \pi} \exp \left\{-\left(\left(2 y_{1}-y_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right) / 2\right\} \\
& =\frac{1}{2 \pi} \exp \left\{-\left(5 y_{1}^{2}+2 y_{2}^{2}-6 y_{1} y_{2}\right) / 2\right\}
\end{aligned}
$$

Since the density function of Y_{1} and Y_{2} can not be written as a product of a function in y_{1} and of a function in y_{2}, Y_{1} and Y_{2} are not stochastically independent.
g)

$$
\begin{aligned}
f_{Y_{1}}\left(y_{1}\right) & =\int_{-\infty}^{+\infty} \frac{1}{2 \pi} \exp \left\{-\left(5 y_{1}^{2}+2 y_{2}^{2}-6 y_{1} y_{2}\right) / 2\right\} d y_{2} \\
& =\frac{1}{2 \pi} \exp \left\{-5 y_{1}^{2} / 2\right\} \int_{-\infty}^{+\infty} \exp \left\{-y_{2}^{2}+3 y_{1} y_{2}\right\} d y_{2} \\
& =\frac{1}{2 \pi} \exp \left\{-5 y_{1}^{2} / 2\right\} \int_{-\infty}^{+\infty} \exp \left\{-\left(y_{2}^{2}-3 y_{1} y_{2}+9 y_{1}^{2} / 4\right)\right\} d y_{2} \exp \left\{9 y_{1}^{2} / 4\right\} \\
& =\frac{1}{2 \pi} \exp \left\{-y_{1}^{2} / 4\right\} \int_{-\infty}^{+\infty} \exp \left\{-\left(y_{2}-3 y_{1} / 2\right)^{2}\right\} d y_{2} \\
& =\frac{1}{2 \pi} \exp \left\{-y_{1}^{2} / 4\right\} \int_{-\infty}^{+\infty} \exp \left\{-t^{2}\right\} d t \\
& =\frac{1}{2 \sqrt{\pi}} \exp \left\{-y_{1}^{2} / 4\right\}
\end{aligned}
$$

h)

$$
\begin{aligned}
f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right) & =\frac{\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left[5 y_{1}^{2}+2 y_{2}^{2}-6 y_{1} y_{2}\right]\right\}}{\frac{1}{2 \sqrt{\pi}} \exp \left\{-y_{1}^{2} / 4\right\}} \\
& =\frac{1}{\sqrt{\pi}} \exp \left\{-\left(y_{2}^{2}-3 y_{2} y_{1}+9 y_{1}^{2} / 4\right)\right\} \\
& =\frac{1}{\sqrt{\pi}} \exp \left\{-\left(y_{2}-3 y_{1} / 2\right)^{2}\right\}
\end{aligned}
$$

Exercise 2

Consider a data generating process $Y=X \beta+\epsilon$ with $\epsilon \sim N\left(0, \sigma^{2} I\right)$ and X a deterministic matrix of dimension $n \times k$ and rank k. Let $M=X\left(X^{T} X\right)^{-1} X^{T}$ (notice that $X^{T} X$ is not singular since X has full rank and $X^{T} X$ is a $k \times k$ matrix).
a) Show that M and $I-M$ are symmetric and idempotent. Show that the rank of M is k and that the rank of $I-M$ is $n-k$ (hint: the rank of an idempotent matrix is equal to its trace).
b) Write the joint density of Y_{1}, \ldots, Y_{n}.
c) Show that the maximum likelihood estimator of $\left(\beta, \sigma^{2}\right)$ is $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y, \hat{\sigma}^{2}=\hat{\epsilon}^{T} \hat{\epsilon} / n$ where $\hat{\epsilon}=Y-\hat{Y}$ with $\hat{Y}=X \hat{\beta}$. Furthermore, show that $\hat{\beta}=\beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon$.
d) Show that $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right)$.
e) Show that $\hat{Y}=M Y=X \beta+M \epsilon$ and that $\hat{Y} \sim N\left(X \beta, \sigma^{2} M\right)$.
f) Show that $\hat{\epsilon}=(I-M) Y=(I-M) \epsilon$ and that $\hat{\epsilon} \sim N\left(0, \sigma^{2}(I-M)\right)$.
g) Show that $\hat{\epsilon}$ is independent from $\hat{\beta}$ and from \hat{Y}.
h) Show that $\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2} \sim \chi^{2}(n-k)$.
i) Assuming $\beta=0$, show that $\hat{Y}^{T} \hat{Y} / \sigma^{2} \sim \chi^{2}(k)$.
l) Assuming $\beta_{i}=0$, find the distribution of $T_{i}=\hat{\beta}_{i} /\left(s \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}\right)$, with $s^{2}=\hat{\epsilon}^{T} \hat{\epsilon} /(n-k)$ (hint: write $\left.T_{i}=\left(\hat{\beta}_{i} /\left(\sigma \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}\right)\right) / \sqrt{\left(\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}\right) /(n-k)}\right)$.
m) Assuming $\beta=0$, find the distribution of $F=\left(\hat{Y}^{T} \hat{Y} / k\right) /\left(\hat{\epsilon}^{T} \hat{\epsilon} /(n-k)\right)$
(hint: $F=\left(\left(\hat{Y}^{T} \hat{Y} / \sigma^{2}\right) / k\right) /\left(\left(\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}\right) /(n-k)\right)$.)

Solution

a)

Let us show that M is symmetric and idempotent:

$$
\begin{gathered}
M^{T}=\left(X\left(X^{T} X\right)^{-1} X^{T}\right)^{T}=X\left(X^{T} X\right)^{-1} X^{T}=M \\
M^{2}=X\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1} X^{T}=X\left(X^{T} X\right)^{-1} X^{T}=M
\end{gathered}
$$

Let us compute the rank of M :

$$
\operatorname{rank}(M)=\operatorname{rank}\left(X\left(X^{T} X\right)^{-1} X^{T}\right)=\operatorname{trace}\left(X\left(X^{T} X\right)^{-1} X^{T}\right)=\operatorname{trace}\left(\left(X^{T} X\right)^{-1} X^{T} X\right)=k
$$

Let us show that $I-M$ is symmetric and idempotent:

$$
\begin{gathered}
(I-M)^{T}=I^{T}-M^{T}=I-M \\
(I-M)(I-M)=I^{2}-M-M+M^{2}=I-M
\end{gathered}
$$

Let us compute the rank of $I-M$:

$$
\begin{aligned}
\operatorname{rank}\left(I-X\left(X^{T} X\right)^{-1} X^{T}\right) & =\operatorname{trace}\left(I-X\left(X^{T} X\right)^{-1} X^{T}\right) \\
& =n-\operatorname{trace}\left(X\left(X^{T} X\right)^{-1} X^{T}\right) \\
& =n-\operatorname{trace}\left(\left(X^{T} X\right)^{-1} X^{T} X\right) \\
& =n-k
\end{aligned}
$$

b)

Since $\epsilon \sim N\left(0, \sigma^{2} I\right)$ and $Y=X \beta+\epsilon, Y \sim N\left(X \beta, \sigma^{2} I\right)$. Hence

$$
\begin{aligned}
f_{Y}(y) & =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2}(y-X \beta)^{T}\left(\sigma^{2} I\right)^{-1}(y-X \beta)\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-X \beta)^{T}(y-X \beta)\right\}
\end{aligned}
$$

c)

The maximum likelihood estimate is the vector $\left(\hat{\beta}, \hat{\sigma}^{2}\right)$ that maximizes the likelihood function, or equivalently the log-likelihood function. The log-likelihood function is

$$
l\left(\beta, \sigma^{2}\right)=\log f_{Y}(y)=(-n / 2) \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{T}(y-X \beta)
$$

Differentiating with respect to β and σ^{2}, and letting the derivatives equal to zero, we find

$$
\left\{\begin{array}{l}
\frac{1}{\sigma^{2}} X^{T}(y-X \beta)=0 \\
-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{T}(y-X \beta)=0
\end{array}\right.
$$

The solution is

$$
\left\{\begin{array}{l}
\beta=\left(X^{T} X\right)^{-1} X^{T} y \\
\sigma^{2}=\frac{(y-X \beta)^{T}(y-X \beta)}{n}
\end{array}\right.
$$

Hence the maximum likelihood estimator of $\left(\beta, \sigma^{2}\right)$ is

$$
\begin{aligned}
\hat{\beta} & =\left(X^{T} X\right)^{-1} X^{T} Y \\
\hat{\sigma}^{2} & =\frac{(Y-X \hat{\beta})^{T}(Y-X \hat{\beta})}{n} \\
& =\frac{(Y-\hat{Y})^{T}(Y-X \hat{Y})}{n} \\
& =\frac{\hat{\epsilon}^{T} \hat{\epsilon}}{n} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\hat{\beta} & =\left(X^{T} X\right)^{-1} X^{T} Y \\
& =\left(X^{T} X\right)^{-1} X^{T}(X \beta+\epsilon) \\
& =\left(X^{T} X\right)^{-1} X^{T} X \beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon \\
& =\beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon .
\end{aligned}
$$

d)

Since $\hat{\beta}=\beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon$ is a linear transformation of ϵ and $\epsilon \sim N\left(0, \sigma^{2} I\right)$,

$$
\hat{\beta} \sim N\left(\beta,\left(X^{T} X\right)^{-1} X^{T} \sigma^{2} I X\left(X^{T} X\right)^{-1}\right)=N\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

e) It holds

$$
\hat{Y}=X \hat{\beta}=X\left(X^{T} X\right)^{-1} X^{T} Y=M Y
$$

On the other hand,

$$
\begin{aligned}
\hat{Y} & =X \hat{\beta} \\
& =X\left(X^{T} X\right)^{-1} X^{T} Y \\
& =X\left(X^{T} X\right)^{-1} X^{T}(X \beta+\epsilon) \\
& =X \beta+X\left(X^{T} X\right)^{-1} X^{T} \epsilon \\
& =X \beta+M \epsilon .
\end{aligned}
$$

Since $\hat{Y}=X \beta+M \epsilon$ is a linear transformation of ϵ and $\epsilon \sim N\left(0, \sigma^{2} I\right)$,

$$
\hat{Y} \sim N\left(X \beta, \sigma^{2} M M^{T}\right)=N\left(X \beta, \sigma^{2} M^{2}\right)=N\left(X \beta, \sigma^{2} M\right)
$$

f)

It holds

$$
\hat{\epsilon}=Y-\hat{Y}=Y-M Y=(I-M) Y .
$$

On the other hand,

$$
\hat{\epsilon}=Y-\hat{Y}=X \beta+\epsilon-X \beta-M \epsilon=\epsilon-M \epsilon=(I-M) \epsilon .
$$

Since $\hat{\epsilon}=(I-M) \epsilon$ and since $\epsilon \sim N\left(0, \sigma^{2} I\right)$,

$$
\hat{\epsilon} \sim N\left(0, \sigma^{2}(I-M)(I-M)^{T}\right)=N\left(0, \sigma^{2}(I-M)^{2}\right)=N\left(0, \sigma^{2}(I-M)\right)
$$

g)

We already know that

$$
\begin{aligned}
& \hat{\epsilon}=(I-M) \epsilon \\
& \hat{\beta}=\beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon \\
& \hat{Y}=X \beta+M \epsilon
\end{aligned}
$$

Let $Z=\epsilon / \sigma$. Then $Z \sim N(0, I)$ and

$$
\begin{aligned}
\hat{\epsilon}=L_{1} Z & \\
& \hat{\beta}=\beta+L_{2} Z \\
& \hat{Y}=X \beta+L_{3} Z
\end{aligned}
$$

with

$$
\begin{aligned}
& L_{1}=\sigma(I-M) \\
& L_{2}=\sigma\left(X^{T} X\right)^{-1} X^{T} \\
& L_{3}=\sigma M
\end{aligned}
$$

To show the independence it is sufficient to verify that $L_{1} L_{2}^{T}=0$ and $L_{1} L_{3}^{T}=0$. It holds

$$
\begin{aligned}
& L_{1} L_{2}^{T}=\sigma(I-M) \sigma X\left(X^{T} X\right)^{-1}=\sigma^{2}\left(X\left(X^{T} X\right)^{-1}-X\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1}\right)=0 \\
& L_{1} L_{3}^{T}=\sigma(I-M) \sigma M^{T}=\sigma^{2}(M-M)=0 .
\end{aligned}
$$

h)

Since $\hat{\epsilon}=(I-M) \epsilon$ with $I-M$ is symmetric and idempotent, we can write

$$
\frac{\hat{\epsilon}^{T} \hat{\epsilon}}{\sigma^{2}}=\frac{\epsilon^{T}}{\sigma}(I-M)(I-M)^{T} \frac{\epsilon}{\sigma}=Z^{T}(I-M) Z
$$

with $Z=\epsilon / \sigma$. Since $Z \sim N(0, I)$ and $I-M$ is symmetric and idempotent and has rank $n-k, \hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}$ has a chi-square distribution with $n-k$ degrees of freedom.
i)

If $\beta=0, \hat{Y}=M \epsilon=\sigma M Z$ with $Z=\epsilon / \sigma \sim N(0, I)$.
Hence

$$
\frac{\hat{Y}^{T} \hat{Y}}{\sigma^{2}}=Z^{T} M^{T} M Z=Z^{T} M Z
$$

Since M is symmetric and idempotent and has rank $k, \hat{Y}^{T} \hat{Y} / \sigma^{2}$ has a chi-square distribution with k degrees of freedom.
1)

Notice that

$$
T_{i}=\frac{\hat{\beta}_{i} /\left(\sigma \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}\right)}{\sqrt{\left(\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}\right) /(n-k)}}
$$

If $\beta=0, \hat{\beta} \sim N\left(0, \sigma^{2}\left(X^{T} X\right)^{-1}\right)$. Hence $\hat{\beta}_{i} /\left(\sigma \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}\right) \sim N(0,1)$. Furthermore $\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2} \sim \chi^{2}(n-k)$.
We also know that $\hat{\beta}$ is independent of $\hat{\epsilon}$. Hence $\hat{\beta}_{i} /\left(\sigma \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}\right)$ and $\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}$ are independent. It follows that T_{i} has a Student-t distribution with $n-k$ degrees of freedom.
m)

We can write

$$
F=\frac{\hat{Y}^{T} \hat{Y} / k}{\hat{\epsilon}^{T} \hat{\epsilon} /(n-k)}=\frac{\left(\hat{Y}^{T} \hat{Y} / \sigma^{2}\right) / k}{\left(\hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}\right) /(n-k)}
$$

We already know that, under the assumption $\beta=0, \hat{Y}^{T} \hat{Y} / \sigma^{2} \sim \chi^{2}(k), \hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2} \sim \chi^{2}(n-k)$. Furthermore, since \hat{Y} and $\hat{\epsilon}$ are independent, $\hat{Y}^{T} \hat{Y} / \sigma^{2}, \hat{\epsilon}^{T} \hat{\epsilon} / \sigma^{2}$ are independent. It follows that F has a Fisher-F distribution with k and $n-k$ degrees of freedom.

