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Exercises

Exercise 1
Let X1 and X2 be independent and identically random variables with density function

f(x) =
1√
2π

exp{−x2/2}

and let X = (X1, X2). Furthermore, let Y1 = X1 +X2, Y2 = X1 + 2X2 and Y = (Y1, Y2).

a) Find the expectation and variance of X

b) Find skewness and excess kurtosis coefficients of X1 and of X2

c) Find the density function of Z = X2
1

d) Find E(Y ) and V (Y ).

e) Write the joint density of X1 and X2

f) Find the joint density of Y1, Y2. Are Y1 and Y2 stochastically independent?

g) Find the marginal density of Y1

h) Find the conditional density of Y2, given Y1

(Hint:
∫ +∞
−∞ exp{−x2}dx =

√
π)

Solution

a)

E(X1) = E(X2) =

∫ +∞

−∞
x

1√
2π

exp{−x2/2}dx = 0

since the function is odd.

V (X1) = V (X2) = E(X2
1 ) =

∫ +∞

−∞
x2

1√
2π

exp{−x2/2}dx

Integrating by parts, we obtain

1√
2π

∫ +∞

−∞
x
(
x exp{−x2/2}

)
dx =

1√
2π

[
x
(
− exp{−x2/2}

)]+∞
−∞ +

1√
2π

∫ +∞

−∞
exp{−x2/2}dx

= 0 +
1√
π

∫ +∞

−∞
exp{−t2}dt

= 1

Hence V (X1) = V (X2) = 1. Since X1, X2 are stochastically independent, their covariance is zero.
Hence

E(X) =

[
0
0

]
V (X) =

[
1 0
0 1

]

b)

ϕ =
E(X − µ)3

σ3
= E(X3) =

∫ +∞

−∞
x3

1√
2π

exp{−x2/2}dx = 0
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κ =
E(X1 − µ)4

σ4
− 3

= E(X4
1 )− 3

=

∫ +∞

−∞
x4

1√
2π

exp{−x2/2}dx− 3

=
1√
2π

∫ +∞

−∞
x3
(
x exp{−x2/2}

)
dx− 3

=
1√
2π

[
−x3 exp{−x2/2}

]+∞
−∞ +

1√
2π

∫ +∞

−∞
3x2 exp{−x2/2}dx− 3

= 0 +
3√
π

∫ +∞

−∞
exp{−t2}dt− 3

= 0

Since X2 has the same distribution as X1, their skewness and excess Kurtosis coefficients are equal to zero.

c)
For z > 0

P (Z ≤ z) = P (−
√
z ≤ X1 ≤

√
z)

= 2

∫ √z
0

1√
2π

exp{−x2/2}dx

=

∫ z

0

1√
2π

exp{−t/2}t−1/2dt

Hence the density function of Z is

fZ(z) =

{
0 z ≤ 0
1√
2π

exp{−z/2}z−1/2 z > 0

d)

E(Y1) = E(X1) + E(X2) = 0

E(Y2) = E(X1) + 2E(X2) = 0

Since X1 and X2 are uncorrelated,

V (Y1) = V (X1) + V (X2) = 2

V (Y2) = V (X1) + 4V (X2) = 5.

Furthermore
Cov(X1 +X2, X1 + 2X2) = Cov(X1, X1) + 2Cov(X2, X2) = 3

Hence

E(Y ) =

[
0
0

]
V (Y ) =

[
2 3
3 5

]

e)

fX1,X2(x1, x2) =
1√
2π

exp{−x21/2}
1√
2π

exp{−x22/2} =
1

2π
exp{−(x21 + x22)/2}
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f)
The transformation is {

y1 = x1 + x2
y2 = x1 + 2x2

Solving with respect to x1 and x2, we find {
x1 = 2y1 − y2
x2 = y2 − y1

The Jacobian matrix is

J =

[
2 −1
−1 1

]
The determinant of the Jacobian matrix is 1. Hence, using a)

fY1,Y2(y1, y2) = fX1,X2(2y1 − y2, y2 − y1) · 1

=
1

2π
exp

{
−
(
(2y1 − y2)2 + (y2 − y1)2

)
/2
}

=
1

2π
exp

{
−
(
5y21 + 2y22 − 6y1y2

)
/2
}

Since the density function of Y1 and Y2 can not be written as a product of a function in y1 and of a function
in y2, Y1 and Y2 are not stochastically independent.

g)

fY1(y1) =

∫ +∞

−∞

1

2π
exp

{
−
(
5y21 + 2y22 − 6y1y2

)
/2
}
dy2

=
1

2π
exp{−5y21/2}

∫ +∞

−∞
exp{−y22 + 3y1y2}dy2

=
1

2π
exp{−5y21/2}

∫ +∞

−∞
exp

{
−
(
y22 − 3y1y2 + 9y21/4

)}
dy2 exp

{
9y21/4

}
=

1

2π
exp{−y21/4}

∫ +∞

−∞
exp{−(y2 − 3y1/2)2}dy2

=
1

2π
exp{−y21/4}

∫ +∞

−∞
exp{−t2}dt

=
1

2
√
π

exp{−y21/4}

h)

fY2|Y1(y2|y1) =
1
2π exp

{
−1

2

[
5y21 + 2y22 − 6y1y2

]}
1

2
√
π

exp{−y21/4}

=
1√
π

exp{−(y22 − 3y2y1 + 9y21/4)}

=
1√
π

exp{−(y2 − 3y1/2)2}
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Exercise 2
Consider a data generating process Y = Xβ + ε with ε ∼ N(0, σ2I) and X a deterministic matrix of
dimension n × k and rank k. Let M = X(XTX)−1XT (notice that XTX is not singular since X has full
rank and XTX is a k × k matrix).

a) Show that M and I −M are symmetric and idempotent. Show that the rank of M is k and that the
rank of I −M is n− k (hint: the rank of an idempotent matrix is equal to its trace).

b) Write the joint density of Y1, . . . , Yn.

c) Show that the maximum likelihood estimator of (β, σ2) is β̂ = (XTX)−1XTY , σ̂2 = ε̂T ε̂/n where
ε̂ = Y − Ŷ with Ŷ = Xβ̂. Furthermore, show that β̂ = β + (XTX)−1XT ε.

d) Show that β̂ ∼ N(β, σ2(XTX)−1).

e) Show that Ŷ = MY = Xβ +Mε and that Ŷ ∼ N(Xβ, σ2M).

f) Show that ε̂ = (I −M)Y = (I −M)ε and that ε̂ ∼ N(0, σ2(I −M)).

g) Show that ε̂ is independent from β̂ and from Ŷ .

h) Show that ε̂T ε̂/σ2 ∼ χ2(n− k).

i) Assuming β = 0, show that Ŷ T Ŷ /σ2 ∼ χ2(k).

l) Assuming βi = 0, find the distribution of Ti = β̂i/(s
√

[(XTX)−1]ii), with s2 = ε̂T ε̂/(n− k) (hint:

write Ti =
(
β̂i/
(
σ
√

[(XTX)−1]ii

))
/
√

(ε̂T ε̂/σ2) /(n− k)).

m) Assuming β = 0, find the distribution of F = (Ŷ T Ŷ /k)/(ε̂T ε̂/(n− k))

(hint: F =
((
Ŷ T Ŷ /σ2

)
/k
)
/
((
ε̂T ε̂/σ2

)
/(n− k)

)
.)

Solution

a)
Let us show that M is symmetric and idempotent:

MT = (X(XTX)−1XT )T = X(XTX)−1XT = M

M2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = M

Let us compute the rank of M :

rank(M) = rank(X(XTX)−1XT ) = trace(X(XTX)−1XT ) = trace((XTX)−1XTX) = k

Let us show that I −M is symmetric and idempotent:

(I −M)T = IT −MT = I −M

(I −M)(I −M) = I2 −M −M +M2 = I −M

Let us compute the rank of I −M :

rank(I −X(XTX)−1XT ) = trace(I −X(XTX)−1XT )

= n− trace(X(XTX)−1XT )

= n− trace((XTX)−1XTX)

= n− k.
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b)
Since ε ∼ N(0, σ2I) and Y = Xβ + ε, Y ∼ N(Xβ, σ2I). Hence

fY (y) = (2πσ2)−n/2 exp

{
−1

2
(y −Xβ)T (σ2I)−1(y −Xβ)

}
= (2πσ2)−n/2 exp

{
− 1

2σ2
(y −Xβ)T (y −Xβ)

}

c)
The maximum likelihood estimate is the vector (β̂, σ̂2) that maximizes the likelihood function, or equivalently
the log-likelihood function. The log-likelihood function is

l(β, σ2) = log fY (y) = (−n/2) log(2πσ2)− 1

2σ2
(y −Xβ)T (y −Xβ)

Differentiating with respect to β and σ2, and letting the derivatives equal to zero, we find
1

σ2
XT (y −Xβ) = 0

− n

2σ2
+

1

2σ4
(y −Xβ)T (y −Xβ) = 0

The solution is 
β = (XTX)−1XT y

σ2 =
(y −Xβ)T (y −Xβ)

n

Hence the maximum likelihood estimator of (β, σ2) is

β̂ = (XTX)−1XTY

σ̂2 =
(Y −Xβ̂)T (Y −Xβ̂)

n

=
(Y − Ŷ )T (Y −XŶ )

n

=
ε̂T ε̂

n
.

Furthermore,
β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ε)

= (XTX)−1XTXβ + (XTX)−1XT ε

= β + (XTX)−1XT ε.

d)
Since β̂ = β + (XTX)−1XT ε is a linear transformation of ε and ε ∼ N(0, σ2I),

β̂ ∼ N(β, (XTX)−1XTσ2IX(XTX)−1) = N(β, σ2(XTX)−1)

e)
It holds

Ŷ = Xβ̂ = X(XTX)−1XTY = MY.
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On the other hand,
Ŷ = Xβ̂

= X(XTX)−1XTY

= X(XTX)−1XT (Xβ + ε)

= Xβ +X(XTX)−1XT ε

= Xβ +Mε.

Since Ŷ = Xβ +Mε is a linear transformation of ε and ε ∼ N(0, σ2I),

Ŷ ∼ N(Xβ, σ2MMT ) = N(Xβ, σ2M2) = N(Xβ, σ2M)

f)
It holds

ε̂ = Y − Ŷ = Y −MY = (I −M)Y.

On the other hand,
ε̂ = Y − Ŷ = Xβ + ε−Xβ −Mε = ε−Mε = (I −M)ε.

Since ε̂ = (I −M)ε and since ε ∼ N(0, σ2I),

ε̂ ∼ N(0, σ2(I −M)(I −M)T ) = N(0, σ2(I −M)2) = N(0, σ2(I −M))

g)
We already know that

ε̂ = (I −M)ε

β̂ = β + (XTX)−1XT ε

Ŷ = Xβ +Mε

Let Z = ε/σ. Then Z ∼ N(0, I) and

ε̂ = L1Z

β̂ = β + L2Z

Ŷ = Xβ + L3Z

with
L1 = σ(I −M)

L2 = σ(XTX)−1XT

L3 = σM

To show the independence it is sufficient to verify that L1L
T
2 = 0 and L1L

T
3 = 0. It holds

L1L
T
2 = σ(I −M)σX(XTX)−1 = σ2(X(XTX)−1 −X(XTX)−1XTX(XTX)−1) = 0

L1L
T
3 = σ(I −M)σMT = σ2(M −M) = 0.

h)
Since ε̂ = (I −M)ε with I −M is symmetric and idempotent, we can write

ε̂T ε̂

σ2
=
εT

σ
(I −M)(I −M)T

ε

σ
= ZT (I −M)Z

with Z = ε/σ. Since Z ∼ N(0, I) and I −M is symmetric and idempotent and has rank n− k, ε̂T ε̂/σ2 has
a chi-square distribution with n− k degrees of freedom.
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i)
If β = 0, Ŷ = Mε = σMZ with Z = ε/σ ∼ N(0, I).
Hence

Ŷ T Ŷ

σ2
= ZTMTMZ = ZTMZ

Since M is symmetric and idempotent and has rank k, Ŷ T Ŷ /σ2 has a chi-square distribution with k degrees
of freedom.

l)
Notice that

Ti =
β̂i/
(
σ
√

[(XTX)−1]ii

)
√

(ε̂T ε̂/σ2) /(n− k)

If β = 0, β̂ ∼ N(0, σ2(XTX)−1). Hence β̂i/
(
σ
√

[(XTX)−1]ii

)
∼ N(0, 1). Furthermore ε̂T ε̂/σ2 ∼ χ2(n−k).

We also know that β̂ is independent of ε̂. Hence β̂i/
(
σ
√

[(XTX)−1]ii

)
and ε̂T ε̂/σ2 are independent. It

follows that Ti has a Student-t distribution with n− k degrees of freedom.

m)
We can write

F =
Ŷ T Ŷ /k

ε̂T ε̂/(n− k)
=

(
Ŷ T Ŷ /σ2

)
/k

(ε̂T ε̂/σ2) /(n− k)

We already know that, under the assumption β = 0, Ŷ T Ŷ /σ2 ∼ χ2(k), ε̂T ε̂/σ2 ∼ χ2(n − k). Further-
more, since Ŷ and ε̂ are independent, Ŷ T Ŷ /σ2, ε̂T ε̂/σ2 are independent. It follows that F has a Fisher-F
distribution with k and n− k degrees of freedom.
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