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Chapter 1

Probability Spaces

Probability deals with random experiments, which means observing something where
we don’t know the exact result, but we can say what are all the possible outcomes.

1.1 Definitions
Definition 1.1.1 (Sample space). In a random experiment, the sample space is the
space of all the possible outcomes of the experiment, and we denote it as Ω.

Example 1.1.2 (Tossing a coin). The possible outcomes are "head" or "tail". Setting
"head"= 1 and "tail"= 0 as a convention, we say that Ω = {0, 1}.
Example 1.1.3 (Tossing a coin infinitely many times). The sample space is a set of
sequences Ω = {ω = (ω1, ω2, . . . ) : ωi = 0, 1, i = 1, 2, . . . }.
Example 1.1.4 (Picking a random point from 0 to 1). Ω = (0, 1].
Example 1.1.5 (Pricing an asset from time t = 0 to time t = T ). Ω = {ω : [0, 1] →
R s.t. ω continuous and positive}

Definition 1.1.6 (Event). An event A is a subset of the sample space, A ⊆ Ω.

Example 1.1.7 (Head at first toss for two tosses). Toss a coin twice and consider the
event A "heads at first toss". We have

Ω = {(0, 0), (0, 1), (1, 0), (1, 1)} = {0, 1} × {0, 1} = {0, 1}2

and
A = {(1, 0), (1, 1)} = {1} × {0, 1}.

Example 1.1.8 (Head at first toss for infinite tosses). Toss a coin infinitely many times
and consider the event A "heads at first toss". We have

Ω = {0, 1}∞

and
A = {ω = (ω1, ω2, . . . ) : ω1 = 1} = {1} × {0, 1}∞.

If A and B are two events, then

• Ac is the event "not A";
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6 CHAPTER 1. PROBABILITY SPACES

• A ∩B is the event "A and B";

• A ∪B is the event "A or B";

• B \A = B ∩Ac is the event "B, but not A";

• If A ⊆ B, then "A implies B" and "B is implied by A".

Moreover,

• the empty set ∅ corresponds to the impossible event;

• the whole set Ω corresponds to the certain event.

If {At}t∈T is a family of events,

• the union ⋃t∈T At is the event that occurs if and only if at least one of the At’s
occur;

• the intersection ⋂t∈T At is the event that occurs if and only if all the At’s occur;

The following properties (De Morgan laws) hold

• (⋃t∈T At)c = ⋂
t∈T A

c
t

• (⋂t∈T At)c = ⋃
t∈T A

c
t

1.2 Algebra and σ-algebra

Among all the events, we want to select a class having some stability properties with
respect to complementation and union; such a classed is called an algebra.

Definition 1.2.1 (Algebra). A class A of subsets of Ω is an algebra if

(i) Ω ∈ A;

(ii) A ∈ A =⇒ Ac ∈ A;

(iii) A,B ∈ A =⇒ A ∪B ∈ A.

Given this definition, some properties follow

• ∅ ∈ A, as ∅ = Ωc ∈ A

• A closed under finite union, i.e.

{A1, A2, . . . , An} ⊆ A =⇒
n⋃
i=1

Ai = ((A1 ∪A2) ∪A3) · · · ∪An) ∈ A.

• A closed under finite intersection, i.e.

{A1, A2, . . . , An} ⊆ A =⇒
n⋂
i=1

Ai =
(

n⋃
i=1

Aci

)c
∈ A
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So we can say that and algebra is a class stable by complementation and finite unions
(or finite intersections).

If we require our class of subsets to be also closed by countable union, then we
obtain a σ-algebra.

Definition 1.2.2 (σ-algebra). A class F of subsets of Ω is a σ-algebra if

• Ω ∈ F ;

• A ∈ F =⇒ Ac ∈ F ;

• {An}n∈N ⊆ F =⇒
⋃∞
n=1An ∈ F .

Remark 1.2.3 (Finite union for a σ-algebra). A σ-algebra is an algebra because we
can write a finite union as a countable union: ⋃ni=1Ai = A1 ∪ A2 ∪ · · · ∪ An ∪ ∅ . . . .
However, an algebra is not a σ-algebra in general.
Example 1.2.4 (An algebra not stable by countable union). Ω = N, A ⊆ N, A is
finite if it contains a finite number of elements, A cofinite if Ac is finite. Consider
C = {A ⊆ N : A finite or cofinite}. C is an algebra but not a σ-algebra, indeed the set⋃∞
n=1{2n} is the set of even numbers, which is the union of finite sets, but it is neither

finite nor cofinite.
Example 1.2.5. Ω = {0, 1}∞, for fixed n consider the sequences of length n, A ⊆ {0, 1}n.
A cylinder on A is defined as Cn(A) = {ω = (ω1, ω2, . . . ) : (ω1, . . . , ωn) ∈ A}. The
class C = {Cn(A) : A ⊂ {0, 1}n, n ≥ 1} is an algebra but is not a σ-algebra. For
instance, ω = (0, 0, . . . ) = ⋂

n∈NCn((0, 0, . . . , 0)), but does not belong to C.
There are two particular σ-algebras:

• F0 = {∅,Ω}, the trivial σ-algebra;

• P(Ω) = {A : A ⊆ Ω}, the power σ-algebra.

Those are respectively the smallest and largest σ-algebras on Ω, i.e. for any F , σ-
algebra on Ω, F0 ⊆ F ⊆ P(Ω).

Definition 1.2.6 (Generated σ-algebra). Let C be a class of events of Ω. Then the
σ-algebra generated by C is

σ(C) =
⋂

G⊇C
G σ-algebra

G.

Note that σ(C) is well-defined as

• the intersection is not empty because it contains at least the power σ-algebra;

• it is a σ-algebra because it is the intersection of σ-algebras.

Moreover, it holds

• σ(C) ⊇ C;

• if G ⊇ C and G is a σ-algebra, then G ⊇ σ(C).

In other words, σ(C) is the smallest σ-algebra that includes C.
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Remark 1.2.7 (Expansion from the inside and generated σ-algebra). The expansion of
a σ-algebra is an expansion from the outside. Hence, in general, we cannot just add
events from the inside through complementation and countable unions/intersections.
This is possible only in the discrete case.
Example 1.2.8. If we take Ω = (0, 1] and C = {disjoint union of intervals (a, b] : 0 ≤
a ≤ b ≤ 1} then C is an algebra and we define B((0, 1]) = σ(C) the Borel σ-algebra on
(0, 1].

• B((0, 1]) ∋ {a} = ⋂∞
n=1

(
a− 1

n , a
]
;

• B((0, 1]) ⊇ {finite sets, countable sets};

• B((0, 1]) ⊇ {open sets, closed sets}.

Example 1.2.9. Ω = {0, 1}∞, C = {Cn(A) : A ⊆ {0, 1}n, n ≥ 1}, F = σ(C). Consider
a point x ∈ (0, 1] and its binary representation x = ∑∞

i=1
xi
2i , x ∼ (x1, x2, . . . ). This

suggests that Ω = (0, 1] and Ω = {0, 1}∞ are very similar and also F = σ(C) and
B((0, 1]) are similar.

1.3 Probability measures
Definition 1.3.1 (Finitely additive probability). Let A be an algebra of events on
a sample space Ω. Then a finitely additive probability (FAP) on A is a function
P : A → R such that the following properties hold

(i) Non-negativeness: P (A) ≥ 0 ∀A ∈ A;

(ii) Unitary total mass: P (Ω) = 1;

(iii) Additivity: If {A1, . . . , An} ⊆ A is a sequence of disjoint events (i.e. Ai ∩Aj = ∅
if i ̸= j), then P (⋃ni=1Ai) = ∑n

i=1 P (Ai).

Remark 1.3.2 (Properties of a FAP). • P (∅) = 0, since Ω ∩ ∅ = ∅, then P (Ω) =
P (Ω ∪ ∅) = P (Ω) + P (∅), hence P (∅) = 0.

• P (A) = 1 − P (Ac), since A ∩ Ac = ∅ and A ∪ Ac = Ω, then 1 = P (Ω) =
P (A) + P (Ac).

• A ⊆ B =⇒ P (B \A) = P (B)−P (A), thus P (A) ≤ P (B), since A∩ (B \A) = ∅
and A ∪ (B \A) = B, then P (B) = P (A) + P (B \A) ≥ P (A).

• P (⋃ni=1Ai) = ∑n
k=1 (−1)k+1∑

i1<i2<···<ik P (Ai1 ∩ · · · ∩Aik), as it can be proved
by induction. For n = 2, P (A1 ∪A2) = P (A1) +P (A2) −P (A1 ∩A2). For n = 3,
P (A1 ∪A2 ∪A3) = P (A1) +P (A2) +P (A3) −P (A1 ∩A2) −P (A1 ∩A3) −P (A2 ∩
A3) + P (A1 ∩A2 ∩A3).

• P (⋃ni=1Ai) ≤
∑n
i=1 P (Ai), since we can consider Ã1 = A1 and Ãn = An \(⋃n−1

k=1 Ak
)

⊆ An for n ≥ 2 and obtain

P

(
n⋃
i=1

Ai

)
= P

(
n⋃
i=1

Ãi

)
=

n∑
i=1

P
(
Ãi
)

=
n∑
i=1

P (Ai).
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Definition 1.3.3 (Probability measure). Let A be an algebra of events on a sample
space Ω. A probability measure (PM) on A is a function P : A → R such that the
following properties hold

(i) Non-negativeness: P (A) ≥ 0 ∀A ∈ A;

(ii) Unitary total mass: P (Ω) = 1;

(iii) Countable additivity (or σ-additivity): If {An}n∈N ⊆ A is a countable sequence
of disjoint events such that ⋃∞

i=1Ai ∈ A, then P (⋃∞
i=1Ai) = ∑∞

i=1 P (Ai).

Remark 1.3.4 (Finite additivity of a PM). A probability measure is a finite additive
probability. Indeed, we just need to prove that finite additivity holds. First, let us
notice that for a PM P , P (∅) = 0. In fact,

P (∅) = P

( ∞⋃
i=1

∅
)

=
∞∑
i=1

P (∅) =
{

+∞ if P (∅) > 0;
0 if P (∅) = 0.

Now, let A1, . . . , An ∈ F , then

P (A1 ∪ · · · ∪An) = P (A1 ∪ · · · ∪An ∪ ∅ ∪ · · · ∪ ∅ ∪ . . . )
= P (A1) + · · · + P (An) + 0 + · · · + 0 + . . .

= P (A1) + · · · + P (An).

1.3.1 Equivalent definitions to σ-additivity

In general, for a FAP countable additivity fails to hold, i.e.

P

( ∞⋃
i=1

Ai

)
̸=

∞∑
i=1

P (Ai),

Example 1.3.5 (A FAP not σ-additive). Ω = N, A = {finite and cofinite sets}. We
define

P (A) =
{

0 if A is finite
1 if A is cofinite

P is a FAP, since disjoint cofinite sets do not exists so we never have 1 + 1. But if we
consider N = ⋃∞

n=1{n} we can see that

1 = P (N) ̸=
∞∑
n=1

P ({n}) = 0

In general we are not allowed to go from the finite case to the countable case with
the equality, but only one inequality is satisfied.

Proposition 1.3.6 (Superadditivity). If P is a finitely additive probability measure,
{An}n∈N ⊆ A pairwise disjoint with

⋃∞
n=1An ∈ A, then

P

( ∞⋃
n=1

An

)
≥

∞∑
n=1

P (An).
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Proof.
⋃∞
i=1Ai ⊇

⋃n
i=1Ai and P is monotone. Hence,

P

( ∞⋃
i=1

Ai

)
≥ P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

The statement holds by taking the limit as n → +∞.

This result is very useful because we only need to show the opposite inequality to
prove that a FAP is a PM, i.e. σ-additivity holds.

Another way to prove if a FAP is σ-additive is to show other equivalent properties.

Definition 1.3.7 (Increasing/decreasing sequence of events). We say that {An}n∈N
is an increasing (decreasing) sequence of events if An ⊆ An+1 (An ⊇ An+1), ∀n ∈ N.
For an increasing (decreasing) sequence of events, we define

lim
n
An :=

∞⋃
n=1

An

(
lim
n
An :=

∞⋂
n=1

An

)
.

For short, we write

An ↗ A =
∞⋃
n=1

An

(
An ↘ A =

∞⋂
n=1

An

)
.

Definition 1.3.8 (Continuity on monotone sequences). Let Ω be a sample space and
A be an algebra on Ω. We say that a FAP P on A is continuous on monotone spaces
if one of the following equivalent definition holds.

(1) For any {An}n∈N ⊆ A such that An ↗ A ∈ A, it holds

P

( ∞⋃
n=1

An

)
= lim

n→+∞
P (An).

(2) For any {An}n∈N ⊆ A such that An ↘ A ∈ A, it holds

P

( ∞⋂
n=1

An

)
= lim

n→+∞
P (An).

Definition 1.3.9 (Continuity on ∅). Let Ω be a sample space and A be an algebra on
Ω. We say that a FAP P on A is continuous on ∅ if for any {An}n∈N ⊆ A such that
An ↘ ∅, it holds

lim
n→+∞

P (An) = 0.

Remark 1.3.10 (Continuity on monotone sequences implies continuity on ∅). It is trivial
by the fact that P (∅) = 0 to show that if P is continuous on monotone sequences, then
P is continuous on ∅.

Actually the converse result holds as well as can be shown by the following theorem,
which primarily gives the equivalence between continuity on monotone sequences and
σ-additivity.

Theorem 1.3.11 (Equivalent properties to σ-additivity). Let Ω be a sample space, A
an algebra on it and P be a FAP on A.
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(i) If P is countably additive, then P is continuous on monotone sequences;

(ii) If P is continuous on ∅, then P is countably additive.

Proof. (i) Let {An}n∈N be an increasing sequence. Let us define

B1 = A1;
B2 = A2 \A1;

...
Bn = An \An−1 for n ≥ 2.

Then, the Bi’s are pairwise disjoint and ⋃i∈NAi = ⋃
i∈NBi. Hence,

P

( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P (Bi) = lim
n→∞

n∑
i=1

P (Bi) = lim
n→∞

P (An).

(ii) Let {Bn}n∈N ⊆ A pairwise disjoint and let B := ⋃
n∈NBn.

Let us define

Ak := B \
k⋃

n=1
Bn,

then Ak ↘ ∅ and P (Ak)
k→∞−−−→ 0. Consequently, since

P (Ak) = P

(
B \

k⋃
n=1

Bn

)
= P (B) −

k∑
n=1

P (Bn),

we get

P (Ak) = (B) −
k∑

n=1
P (Bn) k→∞−−−→ 0 =⇒ P (B) =

∞∑
n=1

P (Bn).

1.4 Choice of the σ-algebra
If Ω is finite or countable, we can take F = P(Ω). For instance, if Ω = {ω1, ω2, . . . }
then pi := P ({ωi}) and P (A) = ∑

ωi∈A pi. But what if Ω is not countable? We could
still use F = P(Ω) but that is not a good choice in general as shown in Vitali’s example.

Example 1.4.1 (Vitali’s example). We want to define a probability measure, λ on
Ω = (0, 1] that is translation invariant1. However, we will show that this is not
possible if we take F = P((0, 1]) as our σ-algebra. Let us define

x⊕ y =
{
x+ y x+ y ≤ 1;
x+ y − 1 x+ y > 1.

1We require the property of being translation invariant, since it very useful: it assures that the
length of something does not change if we move it.
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and the following equivalence relation:

x ∼ y if ∃r ∈ Q ∩ (0, 1] such that y = x⊕ r.

Hence, we can split (0, 1] into equivalence classes; take one point from each equivalence
class for ∼ and put them together into a single set H. Let us define for r ∈ R,
H ⊕ r := {h⊕ r1 : h ∈ H}, then

• r1, r2 ∈ Q ∩ (0, 1] : r1 ̸= r2 =⇒ (H ⊕ r1) ∩ (H ⊕ r2) = ∅;

• ⋃
r∈Q∩(0,1]H ⊕ r = (0, 1];

Now, let us suppose by contradiction that a translation invariant probability measure
λ exists; then,

λ((0, 1])︸ ︷︷ ︸
=1

= λ

 ⋃
r∈Q∩(0,1]

H ⊕ r

 =
∑

r∈Q∩(0,1]
λ(H ⊕ r)

=
∑

r∈Q∩(0,1]
λ(H) =

{
0 λ(H) = 0;
+∞ λ(H) > 0.

Here, the second equality is given by the countability of Q∩ (0, 1] and the third by the
translation invariance of λ. Thus, we have a contradiction. No translation invariant
probability measure λ can be built on ((0, 1],P(0, 1]). In general, the power set is not
appropriate when Ω = R or {0, 1}∞ because it is too large and imposes too many
constraints on P .

A better way to define a σ-algebra and a measure consists in taking an algebra A
on Ω and define P on A. Then consider F = σ(A) and then extend P can be on F .
The possibility of this extension is guaranteed by Caratheodory extension theorem.

Theorem 1.4.2 (Carathèodory). Let P be a probability measure on an algebra A.
Then there exists a unique probability measure P ∗ on σ(A) that coincides with P on
A, i.e.

P ∗(A) = P (A) ∀A ∈ A.

Example 1.4.3 (Solution to Vitali’s example). Let A = {finite union of disjoint intervals}
and consider B((0, 1]) = σ(A). If we define P on A as

P

(
n⋃
i=1

(ai, bi]
)

=
n∑
i=1

(bi − ai),

then P is a FAP on A, since P (A) ≥ 0 and P ((0, 1]) = 1. Let us now show that P is
a PM by checking σ-additivity. Let (Ai)i∈N ⊆ A a sequence of disjoint sets such that⋃∞
i=1Ai ∈ A, then

P

( ∞⋃
i=1

Ai

)
≥

∞∑
i=1

P (Ai)

as in Proposition 1.3.6. For the other inequality, let us work with intervals, for the sake
of simplicity, i.e. Ai = (ai, bi] such that ⋃∞

i=1Ai = (a, b]. (This can be easily extended
to finite unions of disjoint intervals.) Now, we want to show that

P ((a, b]) ≤
∞∑
i=1

P ((ai, bi]).
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An intuitive way to prove this would be ordering the intervals; however, we may
have some accumulation points, that could make our reasoning fail. Let us prove the
inequality using compactness. Let ε > 0, then

[a+ ε, b] ⊆ (a, b] =
∞⋃
i=1

(ai, bi] ⊆
∞⋃
i=1

(
ai, bi + ε

2i
)
.

Since [a + ε, b] is a compact set and
((
ai, bi + ε

2i

))
i∈N

is a countable family of open
countable sets, then, by the topological definition of compactness, there exists N such
that

(a+ ε, b] ⊂ [a+ ε, b] ⊂
N⋃
i=1

(
ai, bi + ε

2i
)

⊂
N⋃
i=1

(
ai, bi + ε

2i
]

By monotonicity,

P ((a+ ε, b]) ≤
N∑
i=1

P

((
ai, bi + ε

2i
])

.

and using the definition of P on intervals and taking the limit

b− a− ε ≤
∞∑
i=1

(bi − ai) +
∞∑
i=1

ε

2i ≤
∞∑
i=1

(bi − ai) + ε,

which means
b− a ≤

∞∑
i=1

(bi − ai) + 2ε

and we can conclude since this holds for any ε > 0.
P is translation invariant on A,and we can use Caratheodory extension theorem to

state that it exists a unique PM P on B((0, 1]) such that P ((a, b]) = b − a. However,
are we sure that P is translation invariant on σ(A) = B((0, 1])? We cannot address the
problem directly because we cannot define P on B((0, 1]) but we can use the so-called
π-λ theorem to show it.

Definition 1.4.4 (π-class). A class C ⊆ P(Ω) is a π-class if it is closed under finite
intersections.

Remark 1.4.5 (Algebra as π-class). Trivially, an algebra is a π-class, a π-class is not
an algebra in general.

Definition 1.4.6 (λ-class). L ⊆ P(Ω) is a λ-class if

(i) Ω ∈ L

(ii) A ∈ L =⇒ Ac ∈ L

(iii) {An}n∈N ⊆ L disjoint =⇒
⋃∞
n=1An ∈ L

Theorem 1.4.7 (Dynkin or π-λ theorem). If L is a λ-class and C is a π-class such
that L ⊇ C, then L ⊇ σ(C).

Take the family of translation invariant sets

L = {A ∈ B((0, 1]) : P (A⊕ x) = P (A) ∀x ∈ (0, 1]}

is a λ-class. In fact,
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(i) (0, 1] ∈ L, trivial;

(ii) A ∈ L =⇒ Ac ∈ L, since

P (Ac ⊕ x) = P ((A⊕ x)c) = 1 − P (A⊕ x) = 1 − P (A) = P (Ac);

(iii) {Ai}i∈N ⊆ L disjoint =⇒
⋃
i∈NAi ∈ L, since

P

⋃
i∈N

Ai

⊕ x

 = P

⋃
i∈N

(Ai ⊕ x)

 =
∑
i∈N

P (Ai ⊕ x)

=
∑
i∈N

P (Ai) = P

⋃
i∈N

Ai

 .
On the other hand,

C = {(a, b], 0 ≤ a ≤ b ≤ 1}

is a π-class. Indeed, the intersection of a left-open right-closed interval is either a
left-open right-closed interval or the empty set. Lastly, L ⊇ C. Hence, L ⊇ σ(C) =
B((0, 1]), by Dinkyn theorem.

Definition 1.4.8 (Determining class of a σ-algebra). Let P1, P2 be probability mea-
sures on (Ω,F), a class C ⊆ F is a determining class for F if

P1(A) = P2(A), ∀A ∈ C =⇒ P1 ≡ P2 (i.e. P1(A) = P2(A), ∀A ∈ F);

i.e. knowing that the probability measures coincides on C implies that they coincide
everywhere in F .

Theorem 1.4.9 (Sufficient condition for determining class). If C is a π-class and
F = σ(C), then C is a determining class for F .

Proof. Let L = {A ∈ F : P1(A) = P2(A)}, then L is a λ-class. Indeed,

(i) Ω ∈ L, since P1(Ω) = 1 = P2(Ω);

(ii) A ∈ L =⇒ Ac ∈ L, since P1(Ac) = 1 − P1(A) = 1 − P2(A) = P2(Ac);

(iii) {An}n∈N ⊆ L disjoint =⇒
⋃∞
i=1Ai ∈ L, since

P1

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P1(Ai) =
∞∑
i=1

P2(Ai) = P2

( ∞⋃
i=1

Ai

)
.

Since C is assumed to be a π-class and C ⊆ L by definition of C, by Dynkin theorem
L ⊇ σ(C) = F ; i.e. P1(A) = P2(A) for any A ∈ F .
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1.5 Product spaces

Let (Ω1,F1), (Ω2,F2) be two measurable spaces and define

Ω1 × Ω2 := {ω = (ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ;
F1 ⊗ F2 := σ ({A1 ×A2 : A1 ∈ F1, A2 ∈ F2}) .

Proposition 1.5.1 (Rectangles as determining class). The class of rectangles

C = {A1 ×A2 : A1 ∈ F1, A2 ∈ F2}

is a determining class for F1 ⊗ F2.

Proof. By definition, F1 ⊗ F2 = σ(C); hence according to Theorem 1.4.9, we just need
to prove that C is a π-class.

(A1 ×A2) ∩ (B1 ×B2) = {ω = (ω1, ω2) : ω1 ∈ A1, ω2 ∈ A2, ω1 ∈ B1, ω2 ∈ B2}
= (A1 ∩B1) × (A2 ∩B2).

Example 1.5.2. For Ω = Rk, we can define the Borel σ-algebra, B(Rk) in many equiv-
alent ways,

• σ ({(a1, b1] × . . . (ak, bk]});

• σ ({open sets});

• B(R) ⊗ · · · ⊗ B(R).

1.6 Regularity of probability measures

In this section, we consider a metric space (S, d) endowed with its Borel σ-algebra
B(S), i.e. the σ-algebra generated by open sets. We will prove that for a probability
measure2 any Borel set can be approximated arbitrarily by closed sets from below, and
by open sets from above.

Theorem 1.6.1 (Regularity of PMs). Every probability measure on (S,B(S)) is reg-
ular, that is, for every A ∈ B(S) and ε > 0, there exist F closed and G open such
that

F ⊆ A ⊆ G and P (G \ F ) < ε

Proof. We will first prove the result when A is closed and subsequently extend it to
B(S) using the “good set technique”.

If A is closed, then

• F = A;
2Actually, this result can be immediately extended to finite measures
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• ∀δ > 0, let us define
Gδ := {x ∈ S : d(x,A) < δ} .

If δn ↘ 0, then Gδn ↘ A since A is closed. Hence, by continuity on monotone
sequences,

lim
n→+∞

P (Gδn) = P (A)

Hence, for every ε > 0, there exists n̄ large enough such that P (G \ A) < ε for
G = Gδn̄ open.

Consequently, for every closed set A,

F ⊆ A ⊆ G and P (G \ F ) < ε.

Now let C be the family of closed sets

C = {A ⊆ S : A closed} ,

which is trivially a π-class. Let L be

L = {A ∈ B(S) : ∀ε > 0, ∃ F closed, G open : F ⊆ A ⊆ G and P (G \ F ) < ε} ,

then C ⊆ L. If we now prove that L is a λ-class, then σ(C) = B(S) ⊆ L by Dynkin
theorem.

(i) S ∈ L. Trivial, as S is closed on itself;

(ii) A ∈ L =⇒ Ac ∈ L. If A ∈ L, then for any ε > 0, there exist F closed, G open
such that

F ⊆ A ⊆ G and P (G \ F ) < ε

Consequently, for Ac it holds that

Gc ⊆ Ac ⊆ F c and P (F c \Gc) = P (G \ F ) < ε.

And everything is correct since Gc closed and F c open.

(iii) {An}n∈N ⊆ L disjoint =⇒
⋃∞
n=1An ∈ L. If {An}n∈N ⊆ L, then for any ε > 0,

for any n ∈ N, there exist Fn closed and Gn open such that

Fn ⊆ An ⊆ Gn and P (Gn \ Fn) < ε

2n+1 .

For ⋃∞
n=1An, we can take

• G := ⋃∞
n=1Gn, which is open;

• F0 := ⋃∞
n=1 Fn, which is not said to be closed. However, we can approximate

it up to an N < +∞, i.e. there exist N > 0 such that

P (F0 \ F ) < ε

2 where F =
N⋃
n=1

Fn closed.

Now it holds that

• F ⊆ F0 ⊆ A ⊆ G;
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• P (G \F ) = P (G \F0) +P (F0 \F ) < ε. In fact, the term P (F0 \F ) < ε
2 for

N large enough. While, the term

P (G \ F0) = P

⋃
i∈N

Gi \
⋃
j∈N

Fj

 = P

⋃
i∈N

Gi ∩
⋂
j∈N

F cj


≤ P

⋃
i∈N

(Gi ∩ F ci )


≤
∑
i∈N

P (Gi \ Fi) <
∑
i∈N

ε

2i+1 = ε

2

Does the opposite hold? Is it possible to approximate the probability of a measur-
able set by an open inner set and a closed outer set? It is not possible as shown in the
following example.

Example 1.6.2 (Impossible open inner and closed outer approximation of a PM). Let
S = [0, 1], A = Q∩[0, 1] and P defined on intervals as P ([a, b]) = b−a. Then, P (A) = 0,
while the probability of the closure of A (i.e. the smallest closed set containing A) is
P (Ā) = P ([0, 1]) = 1.

If we consider Rk as our metric space, we have a stronger result, i.e. that the inner
regularity is not given only by closed set, but also by compact set.

Proposition 1.6.3 (Regularity of PMs by compact sets on R). When S = Rk, then
for every A ∈ B(Rk) and any ε > 0, there exist G open and K compact such that

K ⊆ A ⊆ G and P (G \K) < ε.

Proof. Let B̄n =
{
x ∈ Rk : ∥x∥ ≤ n

}
, then B̄n ↗ Rk. Hence,

P (Rk \ B̄n) n→∞−−−→ 0;

i.e. for any ε > 0, there exists n0 such that P (Rk \ B̄n0) < ε
2 . By Theorem 1.6.1, there

exist F closed and G open such that

F ⊆ A ⊆ G and P (G \ F ) < ε

2 .

Now, let us set K = B̄n0 ∩F , which is compact as closed in a compact set (B̄n0). Then

• K ⊆ F ⊆ A ⊆ G;

• P (G \K) = P (G \ F ) + P (F \K) < ε. Indeed,

P (F \K) = P (F ∩ (F ∩ B̄n0)c) = P ((F ∩ F c) ∪ (F ∩ B̄c
n0)) ≤ P (B̄c

n0) < ε

2 .
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1.7 Kolmogorov extension theorem

1.7.1 Cylinder sets

Let us take as sample space the space of functions from a time space T , which can be
either continuous or discrete, to R; i.e.

Ω = RT = {ω : T → R} = {ωt ∈ R : t ∈ T}

We want to construct a σ-algebra on Ω. In order to do so we start with the algebra of
cylinders. Fix n ∈ N and t1, . . . , tn ∈ T and define the cylinder set

Ct1,...,tn(A) =
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ A

}
for A ∈ B(Rn). (1.1)

For instance, if A = A1 × · · · × An is a rectangle in B(Rn), then we are fixing some
times t1, . . . , tn and check that at time ti the path is in Ai.

The family of cylinder sets

A = {Ct1,...,tn(A) : A ∈ B(Rn), t1, . . . , tn ∈ T, n ≥ 1}

is an algebra but not a σ-algebra. Consequently, we consider the generated σ-algebra
of cylinders, i.e. F = σ(A).

However, we have that the representation of a cylinder is not unique. Hence, to
have consistency, we need that some necessary properties hold.

Proposition 1.7.1 (Consistency properties of cylinder sets). The family of cylinder
sets defined as in (1.1) satisfies the following consistency properties.

(I) For any A1, . . . , An ∈ B(R), then

Ct1,...,tn,tn+1(A1 × · · · ×An × R) = Ct1,...,tn(A1 × · · · ×An).

(II) For any A1, . . . , An ∈ B(R) and π a permutation of {1, . . . , n}, then

Ctπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)) = Ct1,...,tn(A1 × · · · ×An).

Proof. (I) Let A1, . . . , An ∈ B(R), then

Ct1,...,tn,tn+1(A1 × · · · ×An × R) =
{
ω ∈ RT : (ωt1 , . . . , ωtn+1) ∈ A1 × · · · ×An × R

}
=
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ A1 × · · · ×An

}
= Ct1,...,tn(A1 × · · · ×An).

(II) Let A1, . . . , An ∈ B(R) and π a permutation of {1, . . . , n}, then

Ctπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)) =
{
ω ∈ RT : (ωtπ(1) , . . . , ωtπ(n)) ∈ Aπ(1) × · · · ×Aπ(n)

}
=
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ A1 × · · · ×An

}
= Ct1,...,tn(A1 × · · · ×An).



1.7. KOLMOGOROV EXTENSION THEOREM 19

1.7.2 Kolmogorov consistency conditions

Let us assume that there exists a PM P on A, and denote

Pt1,...,tn(A) := P (Ct1,...,tn(A)) for any A ∈ A (1.2)

the probability measure on B(Rn) for any n ∈ N and any t1, . . . , tn ∈ T . Then, given
the consistency conditions on cylinders as in Proposition 1.7.1, the following conditions
must hold for P .

(I) Let A1, . . . , An ∈ B(R), then

Pt1,...,tn,tn+1(A1 × · · · ×An × R) = P (Ct1,...,tn,tn+1(A1 × · · · ×An × R))
= P (Ct1,...,tn(A1 × · · · ×An))
= Pt1,...,tn(A1 × · · · ×An).

(II) Let A1, . . . , An ∈ B(R) and π a permutation of {1, . . . , n}, then

Ptπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)) = P (Ctπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)))
= P (Ct1,...,tn(A1 × · · · ×An))
= Pt1,...,tn(A1 × · · · ×An).

In particular, we say that our family of probability measures in (1.2) satisfies Kol-
mogorov consistency conditions.

Definition 1.7.2 (Kolmogorov consistency conditions). A family of probability mea-
sures

{Pt1,...,tn PM on B(Rn) : t1, . . . , tn ∈ T, n ∈ N}

satisfies Kolmogorov consistency conditions if

(I) for any A1, . . . , An ∈ B(R), then

Pt1,...,tn,tn+1(A1 × · · · ×An × R) = Pt1,...,tn(A1 × · · · ×An); (KCC1)

(II) for any A1, . . . , An ∈ B(R) and π a permutation of {1, . . . , n}, then

Ptπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)) = Pt1,...,tn(A1 × · · · ×An). (KCC2)

Remark 1.7.3 (KCC for PM on Borel sets). We can actually extend Kolmogorov con-
sistency conditions from rectangles to Borel sets using a compact notation.

(I) If we iterate the reasoning in (KCC1), then

Pt1,...,tn,...,tn+k
(A1 × · · · ×An × Rk) = Pt1,...,tn(A1 × · · · ×An).

Let us now set

t as the time vector i.e. t = (t1, . . . , tn, . . . , tn+k);
φk as the projection on Rn i.e. φk(x1, . . . , xn, . . . , xn+k) = (x1, . . . , xn).
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Then,
A1 × · · · ×An × Rk = φ−1

k (A1 × · · · ×An).

Hence,
Pt(φ−1

k (A1 × · · · ×An)) = Pφk(t)(A1 × · · · ×An).

for any A1, . . . , An ∈ B(Rn). Applying Proposition 1.5.1, then

Pt(φ−1
k (A)) = Pφk(t)(A)

for any A ∈ B(Rn), which is equivalent to (KCC1).

(II) Let us set

t as the time vector i.e. t = (t1, . . . , tn);
π as a permutation on {1,. . . ,n} i.e. π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)).

Then, by (KCC2),

Aπ−1(1) × · · · ×Aπ−1(n) = π−1(A1 × · · · ×An).

Hence,
Pt(π−1(A1 × · · · ×An)) = Pπ(t)(A1 × · · · ×An)

for any A1, . . . , An ∈ B(Rn). Applying Proposition 1.5.1, then

Pt(π−1(A)) = Pπ(t)(A)

for any A ∈ B(Rn), which is equivalent to (KCC2).

Hence, summing everything up, if ψ = φk ◦ π, where φk is a projection and π is a
permutation, then

Pψ(t)(A) = Pφk(π(t))(A) = Pπ(t)(φ−1
k (A)) = Pt(π−1(φ−1

k (A))) = Pt(ψ−1(A))

for any A ∈ B(Rn).
Remark 1.7.4 (KCC for cylinders of Borel sets). For cylinders, we similarly have that

Cψ(t)(A) = Ct(ψ−1(A)) for any A ∈ B(Rn),

where ψ = φk ◦ π, with φk projection and π permutation.
Example 1.7.5 (Tossing a coin infinitely many times). Let Ω = {0, 1}∞, then the
cylinders are defined as

Ct1,...,tn(A) = {ω ∈ {0, 1}∞ : (ωt1 , . . . , ωtn) ∈ A} for A ∈ {0, 1}N .

Let us define the family of probability measures of

Pt1,...,tn(A) := |A|
2n

define the family of probability measures on ({0, 1}n,P({0, 1}n)). Then this family
satisfies Kolmogorov consistency conditions. Indeed,



1.7. KOLMOGOROV EXTENSION THEOREM 21

(I)

Pt1,...,tn,tn+1(A× {0, 1}) = |A× {0, 1}|
2n+1 = 2|A|

2n+1 = |A|
2n ;

Pt1,...,tn(A) = |A|
2n .

(II)

Ptπ(1),...,tπ(n)(Aπ(1) × · · · ×Aπ(n)) =
|Aπ(1) × · · · ×Aπ(n)|

2n = |A1| . . . |An|
2n ;

Pt1,...,tn(A1 × · · · ×An) = |A1| . . . |An|
2n .

1.7.3 Kolmogorov extension theorem

If we have a probability measure defined on A, can we extend it to F? The answer is
that it is actually possible provided that Kolmogorov consistency conditions hold.

Theorem 1.7.6 (Kolmogorov extension theorem). Let us consider a family of prob-
ability measures {Pt1,...,tn} on (Rn,B(Rn)), defined for all n ≥ 1 and t1, . . . , tn ∈ T
time set, such that (KCC1) and (KCC2) are satisfied. Then, there exists a unique
probability measure P on (RT ,F) where F is the cylinder σ-algebra of RT , such that

P (Ct1,...,tn(A)) = Pt1,...,tn(A)

for all t1, . . . , tn ∈ T,A ∈ B(Rn).

Proof. We will proceed by steps:

(1) Define P on A;

(2) Show P is "well defined";

(3) Show P is a FAP on A;

(4) Show P is continuous on ∅ (i.e. P is a PM on A);

(5) Apply Carathéodory.

(1) We define
P (Ct(A)) := Pt(A).

(2) We need to show that if Ct(A) = Cs(B), then P (Ct(A)) = P (Cs(B)). We can
find a vector u containing all the elements of both t and s. Hence, there exist

ψ1 : t = ψ1(u) and ψ2 : s = ψ2(u).

Then, we obtain ψ−1
1 (A) = ψ−1

2 (B) since

Cu(ψ−1
1 (A)) = Cψ1(u)(A) = Ct(A) = Cs(B) = Cψ2(u)(B) = Cu(ψ−1

2 (B)).

Consequently, for P holds

P (Ct(A)) = Pt(A) = Pψ1(u)(A) = Pu(ψ−1
1 (A))

= Pu(ψ−1
2 (B)) = Pψ2(u)(B) = Ps(B) = P (Cs(B)).
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(3) Let us prove the properties of a FAP

• P (Ct)(A) = Pt(A) ≥ 0;
• P (RT ) = P (Ct(R)) = Pt(R) = 1;
• If Ct(A) ∩ Cs(B) = ∅, then, taking t = ψ1(u), s = ψ2(u),

Cu(ψ−1
1 (A)) ∩ Cu(ψ−1

2 (B)) = ∅ =⇒ ψ−1
1 (A) ∩ ψ−1

2 (B) = ∅.

Hence,

P (Ct(A) ∪ Cs(B)) = P (Cu(ψ−1
1 (A)) ∪ Cu(ψ−1

2 (B)))
= P (Cu(ψ−1

1 (A) ∪ ψ−1
2 (B)))

= Pu(ψ−1
1 (A) ∪ ψ−1

2 (B))
= Pu(ψ−1

1 (A)) + Pu(ψ−1
2 (B))

= Pt(A) + Ps(B)
= P (Ct(A)) + P (Cs(B))

(4) We now want to show that if {An}n∈N ⊆ A such that An ↘ ∅, then P (An) → 0.
Since the An’s are decreasing (A1 ⊇ A2 ⊇ . . . ), we have that the time steps
are increasing (i.e. we are adding more constraints) as n increases. Indeed, let
A1 = Ct1,...,tk(D1);

ω ∈ A2 =⇒ ω ∈ A1 =⇒ (ωt1 , . . . , ωtk) ∈ D1

For instance,

A1 = Ct1,...,tk1
(D1);

A2 = Ct1,...,tk1 ,...,tk1+k2
(D2);

A3 = Ct1,...,tk1 ,...,tk1+k2 ,...,tk1+k2+k3
(D3).

If there is no unitary increase in the indices (i.e. k1 = k2 = k3 = 1), then we can
create one as

A′
1 = RT = Ct1(R);

A′
2 = RT = Ct1,t2(R × R);

...
A′
k1 = A1 = Ct1,...,tk1

(D1);
A′
k1+1 = A1 = Ct1,...,tk1 ,tk1+1(D1 × R);

...
A′
k1+k2 = A2 = Ct1,...,tk1 ,...,tk1+k2

(D2);
A′
k1+1 = A2 = Ct1,...,tk1 ,...,tk1+k2 ,tk1+k2+1(D2 × R);

...

In general, we get that for every n ∈ N,

A′
n = Ct1,...,tn(Hn) with Hn ∈ B(Rn).
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Hence, we obtain that A′
n ↘ ∅ and P (An) → 0 if P (A′

n) → 0. Hence, we now
want to show that P (A′

n) → 0. Let us drop the ′ for the sake of simplicity. By
contradiction, there exists ε > 0 such that

P (An) > ε ∀n ∈ N.

Since Pt1,...,tn is a PM on B(Rn), by Proposition 1.6.3,

∃Kn ⊆ Hn compact : Pt1,...,tn(Hn \Kn) < ε

2n+1

Let Bn = Ct1,...,tn(Kn). We cannot take the sequence {Bn}n∈N directly as we do
not know whether it is increasing or not. Consequently, let

Cn =
n⋂
j=1

Bj for n ∈ N. (1.3)

which is a decreasing sequence. Then,

P (An \ Cn) = P (An ∩ Ccn) = P

An ∩
n⋃
j=1

Bc
j

 = P

 n⋃
j=1

(An \Bj)


≤ P

 n⋃
j=1

(Aj \Bj)

 ≤
n∑
j=1

P (Aj \Bj)

=
n∑
j=1

Pt1,...,tn(Hj \Kj) =
n∑
j=1

ε

2j+1 ≤
∞∑
j=1

ε

2j+1 = ε

2

Consequently, for any n ∈ N

P (Cn) = P (An) − P (An \ Cn) > ε

2 .

This implies that Cn ̸= ∅ for all n ∈ N, i.e. there exists ω(n) ∈ Cn for any n ∈ N.
Hence, by (1.3),

ω(n) ∈ Bj = Ct1,...,tj (Kj) for j ≤ n,

i.e.
(ω(n)
t1 , . . . , ω

(n)
tj ) ∈ Kj for n ≥ j.

For j = 1, ω(n)
t1 ∈ K1 for any n ≥ 1, then

∃(n1) ⊆ (n) : ω(n1)
t1 −→ u1 ∈ K1.

This hols since K1 is compact, so for every sequence it exists a subsequence that
converges to a point in K1. Now, For j = 2,

(
ω

(n1)
t1 , ω

(n1)
t2

)
∈ K2 for any n1 ≥ 2,

then
∃(n2) ⊆ (n1) :

(
ω

(n2)
t1 , ω

(n2)
t2

)
−→ (u1, u2) ∈ K2.

Continuing this way, for a generic j, we have(
ω

(nj)
t1 , . . . , ω

(nj)
tj

)
−→ (u1, . . . , uj) ∈ Kj
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Let us now take ω̄ ∈ RT such that ω̄tj = uj for any j, then

ω̄ ∈ Ct1,...,tj (Kj) = Bj for any j.

Hence,

ω̄ ∈
∞⋂
j=1

Bj ⊆
∞⋂
j=1

Aj

 =⇒
∞⋂
j=1

Aj ̸= ∅

 .
And we have got to a contradiction.

1.8 Sequences of events
Let (Ω,F , P ) be a probability space, {An}n∈N a general sequence of events in F

Definition 1.8.1 (Almost-sure/null events). An event A is called almost sure if
P (A) = 1. An event A is called null if P (A) = 0.

Remark 1.8.2 (Intersection/union of almost-sure/null events). For a sequence of almost
sure events {An}n∈N, it holds P (⋂∞

n=1An) = 1. For a sequence of null events {An}n∈N,
it holds P (⋃∞

n=1An) = 0.

Definition 1.8.3 (liminf/limsup of a sequence of events). For a sequence of events
{An}n∈N ⊂ F , we define

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak = lim
n→∞

∞⋂
k=n

Ak;

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak = lim
n→∞

∞⋃
k=n

Ak.

Remark 1.8.4 (Relation between liminf and limsup). The relationship between liminf
and limsup is established by the complement operator as

(lim inf An)c =
( ∞⋃
n=1

∞⋂
k=n

Ak

)c
=

∞⋂
n=1

∞⋃
k=n

Ack = lim supAcn;

(lim supAn)c =
( ∞⋂
n=1

∞⋃
k=n

Ak

)c
=

∞⋃
n=1

∞⋂
k=n

Ack = lim inf Acn.

Moreover, lim inf An ⊆ lim supAn.
What is the meaning of these two events? Let us call ω the outcome of an ex-

periment. We say that an event A occurs if the result of the experiment is ω ∈ A.
Hence,

ω ∈ lim supAn ⇐⇒ ω ∈
∞⋂
n=1

∞⋃
k=n

Ak

⇐⇒ ∀n ≥ 1 ω ∈
∞⋃
k=n

Ak ⇐⇒ ∀n ≥ 1 ∃k ≥ n : ω ∈ Ak.
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In other words, regardless of n, we can always find a subsequent occurrence of the
event, which means that infinitely many An’s occur, i.e.

lim supAn = {An infinitely often} = {An i.o.}

On the other hand,

ω ∈ lim inf An ⇐⇒ ω ∈
∞⋃
n=1

∞⋂
k=n

Ak

⇐⇒ ∃n ≥ 1 : ω ∈
∞⋂
k=n

Ak ⇐⇒ ∃n ≥ 1 : ∀k ≥ n : ω ∈ Ak.

In other words, starting from some event An, every subsequent event occurs, which
means that the An’s occur ultimately.

lim inf An = {An ultimately} = {An ult.}

Example 1.8.5. Tossing a coin infinitely many times can be represented with Ω =
{0, 1}∞ where 0 = tails and 1 = heads. The event An = {ω : ωn = 0} leads to
lim supAn = {infinitely many tails} and lim inf An = {tails ultimately}.

Definition 1.8.6 (Limit of a sequence of events). We say that a sequence of events
{An} has limit if

lim inf
n

An = lim sup
n

An

In which case the limit is

lim
n
An = lim inf

n
An = lim sup

n
An

Proposition 1.8.7 (Properties of the limit of a sequence of events). 1. P (lim inf An) ≤
lim inf P (An) ≤ lim supP (An) ≤ P (lim supAn);

2. if ∃ limAn then P (limAn) = limP (An).

Proof. 1. Considering that lim inf P (An) ≤ lim supP (An) because of the properties
of sequences of numbers, let us prove that lim supP (An) ≤ P (lim supAn).

P (lim supAn) = P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= limP

( ∞⋃
k=n

Ak

)
= lim supP

( ∞⋃
k=n

Ak

)
≥ lim supP (An).

where we have used the fact that {
⋃∞
k=nAk}n≥1 is a decreasing sequence and the

monotonicity of P on monotone sequences.

2. Setting P (limAn) = L, then

L = P (lim inf An) ≤ lim inf P (An) ≤ lim supP (An) ≤ P (lim supAn) = L.
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Example 1.8.8. Ω = {0, 1}∞, An = {ω : ωn = 0}

P (lim inf An) = P ({tails ult.}) = P (lim
n

∞⋂
k=n

Ak) = lim
n
P (

∞⋂
k=n

Ak)

= lim
n

lim
N→∞

P (
N⋂
k=n

Ak) = lim
n

lim
N→∞

1
2N−n+1 = 0

P (lim supAn) = P ({tails i.o.}) = 1 − P ({lim supAn}c)
= 1 − P (lim inf Acn) = 1 − 0 = 1.

In general, finding null or almost certain events for the limsup and liminf of a
sequence of events is important because they are related to the behaviour at infinity
of the sequence.

From Proposition 1.8.7 we can see that a necessary condition for P (lim supAn) = 0
is that lim supP (An) = 0, i.e. P (An) → 0. The next lemma provides a sufficient
condition.

Lemma 1.8.9 (Borel-Cantelli first lemma). If
∑∞
n=1 P (An) < ∞ then

P (lim supAn) = 0.

Proof.

P (lim supAn) = limP

( ∞⋃
k=n

Ak

)
≤ lim

∞∑
k=n

P (Ak) = 0,

where the last equality follows because the remainder of a converging series converges
to 0.

Example 1.8.10. Take Ω = {0, 1}∞ and define Bn as a block of "tails" of length rn
starting from toss n + 1. How can we define rn such that we have a finite number of
blocks, i.e. P (lim supBn) = 0? In the previous example, we showed that P (Bn i.o.) =
1 when rn = 1. Now P (Bn) = 2−rn , then

if
∞∑
n=1

P (Bn) =
∞∑
n=1

1
2rn

< ∞ then P (lim supBn) = P (Bn i.o.) = 0

by Lemma 1.8.9. If rn = n then P (Bn i.o.) = 0. If rn = ⌊(1 + ε) log2 n⌋ with ε > 0,
then

∞∑
n=1

P (Bn) =
∞∑
n=1

1
2⌊(1+ε) log2 n⌋ ≤

∞∑
n=1

1
2(1+ε) log2 n−1 ≤ 2

∞∑
n=1

1
n1+ε < ∞.

Hence, if rn → ∞ at a rate (1 + ε) log2 n or faster, then P (Bn i.o.) = 0.

Definition 1.8.11 (Independent sequence of events). A sequence of events {An}n∈N
is said to be stochastically independent (and we write ⊥⊥) if

P

(
n⋂
i=1

Ati

)
=

n∏
i=1

P (Ati) ∀n, ∀t1, . . . , tn,

i.e. information on some of these events does not change the probability of the other
ones.
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Remark 1.8.12 (Independence for complement events). If the An’s are independent, so
are the Acn’s. In fact, take Ac1, A2, . . . . We have

P (Ac1 ∩A2 ∩ · · · ∩An) = P ((A2 ∩ · · · ∩An) \ (A1 ∩ · · · ∩An))

=
n∏
j=2

P (Aj) −
n∏
i=1

P (Ai)

=
n∏
j=2

P (Aj)(1 − P (A1)) =

 n∏
j=2

P (Aj)

P (Ac1)

and we can repeat the same steps for all the Ai’s.

Lemma 1.8.13 (Borel-Cantelli second lemma). Let {An}n∈N be a sequence of inde-
pendent events. If

∑∞
n=1 P (An) = +∞, then

P (An i.o.) = 1.

Proof. We want to show P (lim supAn) = 1 or equivalently P (lim inf Acn) = 0.

P (lim inf Acn) = lim
n→∞

P (
∞⋂
k=n

Ack) = lim
n→∞

lim
N→∞

P (
N⋂
k=n

Ack)

= lim
n→∞

lim
N→∞

N∏
k=n

P (Ack)

= lim
n→∞

lim
N→∞

N∏
k=n

(1 − P (Ak))

≤ lim
n→∞

lim
N→∞

N∏
k=n

e−P (Ak)

= lim
n→∞

lim
N→∞

e−
∑N

k=n
P (Ak) = 0

Example 1.8.14 (Importance of independence for BC second lemma). Is it possible to
get rid of the ⊥⊥ assumption in Lemma 1.8.13? No. For example, take Ω = {0, 1}∞,
and An = {ω1 = 0, ω2 = 0, . . . , ω⌊log2 n⌋ = 0}. Then

∞∑
n=1

P (An) =
∞∑
n=1

1
2⌊log2 n⌋ ≥

∞∑
n=1

1
2log2 n

=
∞∑
n=1

1
n

= +∞.

However, P (An i.o.) = P ({all tails}) = 0

Example 1.8.15. With Ω = {0, 1}∞ and Bn = {ωn+1 = 0, . . . , ωn+rn = 0}, take
rn = ⌊log2 n⌋. In this situation we cannot apply Lemma 1.8.13 because the tosses
are overlapping. So let us consider disjoint blocks of tosses by defining a sequence of
integers:

n1 = 2, nk+1 = nk + ⌊log2 nk⌋.
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Take Ck a block of tails of length ⌊log2 nk⌋ starting from toss nk + 1, Ck = {ωnk+1 =
0, . . . , ωnk+1 = 0}, rnk

= ⌊log2 nk⌋ = nk+1 − nk. Now Ck ⊥⊥.

∞∑
k=1

P (Ck) =
∞∑
k=1

1
2⌊log2 nk⌋ ≥

∞∑
k=1

1
2log2 nk

=
∞∑
k=1

1
nk

=
∞∑
k=1

nk+1 − nk
⌊log2 nk⌋nk

≥
∞∑
k=1

nk+1 − nk
nk log2 nk

=
∞∑
k=1

nk+1∑
j=nk+1

1
nk log2 nk

≥
∞∑
k=1

nk+1∑
j=nk+1

1
j log2 j

=
∞∑
j=3

1
j log2 j

= +∞

By Lemma 1.8.13, P (Ck i.o.) = 1, and since {Ck i.o.} ⊆ {Bn i.o.} we have that
P ({Bn i.o.}) ≥ P ({Ck i.o.}). Therefore P (Bn i.o.) = 1 as well.

1.9 Independence
An important concept in probability is the one of conditional probability, i.e. the
probability of an event knowing that another event occurs.

Definition 1.9.1 (Conditional probability). In a probability space (Ω,F , P ) , for
A,B ∈ Ω such that P (A), P (B) > 0, the probability of A given B is defined as

P (A|B) := P (A ∩B)
P (B) .

Notice that we can write

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) = P (A|B)P (B) + P (A|Bc)(1 − P (B)).

Hence, P (A) is a convex combination of P (A|B) and P (A|Bc). In general, in fact,
P (A) depends on B occurring or not.

Definition 1.9.2 (Independent events). Two events A and B are independent (we use
the symbol ⊥⊥) if P (A ∩B) = P (A)P (B).

And this can be written in terms of conditional probability as P (A|B) = P (A|Bc) =
P (A) meaning the events don’t influence each other.
Remark 1.9.3 (Independence for almost-sure/null events). If P (A) = 0 =⇒ P (A ∩
B) = 0 so A ⊥⊥ B ∀B. The null event is always independent on every other event and
the same holds for almost sure events.

Definition 1.9.4 (Independence of a sequence of events). Let {An}n∈N sequence of
events. They are mutually independent if ∀N, ∀k1, . . . , kN distinct

P (Ak1 ∩Ak2 ∩ · · · ∩AkN
) = P (Ak1)P (Ak2) . . . P (AkN

)

and this is equivalent to ∀j,∀k1, . . . , kN distinct, P (Aj |Ak1 ∩Ak2 ∩· · ·∩AkN
) = P (Aj),

knowing that some of these occur doesn’t change the probability of Aj .
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Remark 1.9.5 (Independence for three event). If we have three events A,B and C we
have to prove four constraints for independence

1. P (A ∩B) = P (A)P (B);

2. P (A ∩ C) = P (A)P (C);

3. P (C ∩B) = P (C)P (B);

4. P (A ∩B ∩ C) = P (A)P (B)P (C).

Example 1.9.6 (Independence and pairwise independence). Roll a die, Ω = {1, 2, 3, 4, 5, 6},
and consider A = {1, 2, 3, 4}, B = {2, 3, 4}, C = {4, 5, 6}, so that P (A) = 2

3 , P (B) = 1
2 ,

P (C) = 1
2 . We have that P (A ∩ B ∩ C) = 1

6 = P (A)P (B)P (C) but these events are
not mutually independent, as B ⊂ A, so the last condition alone is not sufficient.

Example 1.9.7. Toss a coin twice and consider A ="H" at first, B ="H" at second, C =
equal outcomes. We can see that these events are two by two mutually independent but
the three of them are not as P (A∩B∩C) = P (A∩B) = P (A)P (B) ̸= P (A)P (B)P (C).

Definition 1.9.8 (Independence of a family of events). Let {At}t∈T be a family of
events. They are independent if ∀n, ∀t1, . . . , tn ∈ T At1 , . . . , Atn ⊥⊥

Example 1.9.9. Toss a coin infinitely many times, An ="H" at toss n, {An} ⊥⊥.

Independence is not really a definition that concerns events. If we have A ⊥⊥ B we
have seen that

• P (A|B) = P (A) = P (A|Bc)

• P (B|A) = P (B) = P (B|Ac)

the point is that information about A occurring or not does not change the probability
of B, so it is really about information. In (Ω,F , P ) consider a sub-σ-algebra G ⊂ F .
Information is about events in G.

Example 1.9.10. Roll a die, G = {Ω, ∅, even, odd}. We still don’t know the outcome,
but if we know which event of G it is we have some information.

Definition 1.9.11 (Independence of classes of events). Let C1, . . . , Cn be classes of
events. They are said independent if ∀A1 ∈ C1, . . . , An ∈ Cn we have A1, . . . , An ⊥⊥.

Example 1.9.12. Roll a die. Consider C1 = {even, odd}, C2 = {≤ 2, > 2}. Then
C1 ⊥⊥ C2 because probability of the outcome being even or odd has nothing to do with
the outcome being smaller or grater than two.

Suppose C1, . . . , Cn ⊥⊥ and consider subclasses C′
1 ⊂ C1, . . . , C′

2 ⊂ Cn. Then if we
take events ∀A1 ∈ C′

1, . . . , An ∈ C′
n they are also in C1, . . . , Cn, so they are independent.

We never loose independence while restricting a class, but can we keep independence
extending?

Theorem 1.9.13 (Independence of generated σ-algebras). Let C1, . . . , Cn be indepen-
dent π-classes. Then σ(C1), . . . , σ(Cn) are independent σ-algebras.
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Proof. Without loss of generality we can assume that ∀i, Ci ∋ Ω. It is enough to show
that σ(C1), C2, . . . , Cn are ⊥⊥ because then we have σ(C1) as another π-class and we can
apply the same reasoning again. Let B2 ∈ C2, . . . , Bn ∈ Cn. Take the set L defined as
follows:

L = {B ∈ F : P (B ∩B2 ∩ · · · ∩Bn) = P (B)P (B2) · · ·P (Bn)}
L is a λ − class, and L ⊇ C1 because C1 is a class that is independent of the others,
hence it satisfies the condition in L. By Dynkin’s lemma, L ⊇ σ(C1). We also have
that ∀B1 ∈ σ(C1),

P (B1 ∩B2 ∩ · · · ∩Bn) = P (B1) · · ·P (Bn)

We can repeat this ∀B2, . . . , Bn and by taking some of the Bi = Ω we have the
independence condition for a subset of events.

Example 1.9.14. Toss a coin twice, Ω = {0, 1}2 and take A1 = {ω1 = 1}, A2 = {ω2 =
1}, A3 = {ω1 = ω2}. Take two classes: C1 = {A1, A2} and C2 = {A3}. The two classes
are independent but σ(C1) and σ(C2) are not independent, because A1 ∩ A2 ∈ C1 and
A1 ∩A2 ⊆ A3 ∈ C2.

Theorem 1.9.15 (Disjoint block independence). Take this array (with finite or infinite
number of rows each with finite or infinite length) of independent events:

A11 A12 . . .
A21 A22

...
... . . .

Let Gi = σ({Aij , j ∈ N}). Then {Gn}n≥1 are independent.

It is convenient to put the events in an array, but in general it means that σ-algebras
generated by blocks of independent events are independent.

Proof. Take the π-classes Ci = {
⋂
j∈J Aij : J finite}. When J = ∅, ⋂j∈∅Aij = Ω.

These generate Gi and are also independent. Indeed, let us take Bi1 ∈ Ci1 , . . . , Bin ∈
Cin . Then

Bik =
⋂

jk∈Jk

Aikjk

and

P

(
n⋂
k=1

Bik

)
= P

 n⋂
k=1

⋂
jk∈Jk

Aikjk

 =
n∏
k=1

∏
jk∈Jk

P (Aikjk) =
n∏
k=1

P

 ⋂
jk∈Jk

Aikjk


=

n∏
k=1

P (Bik)

So σ(C1), . . . , σ(Cin) ⊥⊥ ∀i1, . . . in and ∀n.

Definition 1.9.16 (Tail σ-algebra). Let {An} be a sequence of events. The tail σ-
algebra is defined as T ({An}) = ⋂∞

n=1 σ({An, An+1, . . . }).

T is the σ-algebra of the events such that it is possible to establish whether A
occurs by looking at the tail of the sequence. So for example lim inf An is a tail event
and belongs to T .
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Example 1.9.17. lim supAn is a tail event, indeed

lim supAn =
∞⋂
n=1

∞⋃
k=n

Ak =
∞⋂
n=N

∞⋃
k=n

Ak

because we don’t care when we start, so for every N lim supAn ∈ σ({AN , AN+1, . . . }).
The same holds for lim inf An.

Theorem 1.9.18 (Kolmogorov 0-1 Law). If {An}n∈N are independent and if A ∈
T ({An}), then

P (A) =
{

0
1

Proof. Using the sequence, fix n and construct this array:

A1
A2
...
An
An+1 An+2 . . .

Then by the disjoint blocks theorem we have

σ(A1), σ(A2), . . . , σ(An), σ({An+1, An+2, . . . }) ⊥⊥

And A ∈ σ({An+1, An+2, . . . }). Therefore A,A1, A2, . . . , An are ⊥⊥, ∀n. This means
A,A1, A2, . . . are ⊥⊥. Now take another array:

A
A1 A2 A3 . . .

By the disjoint blocks theorem, σ(A) ⊥⊥ σ({A1, A2, . . . }) ∋ A. This means that
A ⊥⊥ A, therefore P (A) = P (A ∩ A) = P (A)P (A) = P (A)2 and P (A) is either 0 or
1.

Example 1.9.19. Toss a coin infinitely many times. We want to know if it exists a limit
frequency of heads, so we consider the event

A = {ω : lim inf
∑n
i=1 ωi
n

= lim sup
∑n
i=1 ωi
n

}

and the sequence An = {ω : ωn = 1}.

lim inf
∑n
i=1 ωi
n

= lim inf
(
ω1
n

+
∑n
i=2 ωi
n

)
= lim inf

∑n
i=2 ωi
n

= lim inf
∑n
i=N ωi
n

so A ∈ T (An) and An are independent, so P (A) = 0 or P (A) = 1.
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Chapter 2

Random Variables and Random
Vectors

Recall that a function g : (Ω,F) 7→ (Ω′,F ′) is F/F ′-measurable if g−1(B) ∈ F for
every B ∈ F ′. Here are some properties of functions on measurable spaces:

• Let g : (Ω,F) 7→ (Ω′,F ′). Then {g−1(B) : B ∈ F ′} is a sigma-algebra;

• Let g : (Ω,F) 7→ (Ω′,F ′). Then {B ∈ F ′ : g−1(B) ∈ F} is a sigma-algebra;

• Let C′ ⊂ F ′ be a class of subsets of Ω′ such that F ′ = σ(C′) and let g : (Ω,F) 7→
(Ω′,F ′). If g−1(B) ∈ F for every B ∈ C′, then g is F/F ′-measurable;

• If g : (Ω,F) 7→ (Ω′F ′) is measurable and h : (Ω′,F ′) 7→ (Ω′′.F ′′) is measurable,
then h(g) is F/F ′′-measurable;

• If S and S′ are metric spaces and g : (S,B(S)) 7→ (S′,B(S′)) is continuous, then
g is measurable.

2.1 Definitions of random variable and random vector
Definition 2.1.1 (Random Variable). A random variable on (Ω,F , P ) is a measurable
function X : (Ω,F) → (R,B(R)), so by definition ∀B ∈ B(R), X−1(B) ∈ F .

The meaning of the inverse image is X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F . The
measurable condition is needed to talk about the probability P (X ∈ B), indeed we
want P defined on events like (X ∈ B) = {ω : X(ω) ∈ B}.

Definition 2.1.2 (Indicators). For a set A ∈ F , we define the indicator function on
A

1A =
{

1 if ω ∈ A

0 otherwise
which is always measurable.

Definition 2.1.3 (Simple Random Variable). A random variable which takes a finite
number of values is called a simple random variable and can be written as a combination
of indicators

X =
∞∑
i=1

ai1Ai

33
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where ai ∈ R and Ai ∈ F .

Proposition 2.1.4 (Simple random variable approximation). We can approximate a
random variable with a sequence of simple random variable. Namely, ∀X ∃(Xn) simple
random variables such that ∀ω Xn(ω) → X(ω).

Proof. Assume X ≥ 0, then:

Xn =
n2n−1∑
k=0

k

2n1( k
2n ≤X< k+1

2n )

this is a simple measurable function by measurability of X. For any fixed ω ∈ Ω,
∃n0 : ∀n ≥ n0, n > X(ω); by construction X(ω) −Xn(ω) < 1

2n → 0 for n → ∞. For a
general X we can define the positive and negative part as

X+ = max(X, 0) X− = −min(X, 0)

which are both positive and satisfy X = X+ − X−. Once we have the converging
sequences for X+ and X−, we sum them to get a sequence converging to X.

Proposition 2.1.5 (Equivalent definitions to measurability for a r.v.). X : (Ω,F) →
(R,B(R)), X is measurable if and only if one of the following conditions hold

• (X ≤ a) ∈ F ∀a ∈ R

• (X < a) ∈ F ∀a ∈ R

• (X > a) ∈ F ∀a ∈ R

• (X ≥ a) ∈ F ∀a ∈ R

Definition 2.1.6 (Random vectors). A random vector is a vector of random variables.
We can also see it as a measurable function X : (Ω,F) → (Rk,B(Rk)) such that
X(ω) = (X1(ω), . . . , Xk(ω)).

Proposition 2.1.7 (Measurability as a component-wise property). X : (Ω,F) →
(Rk,B(Rk)) is measurable if and only if Xi is measurable for any i.

Proof. Suppose Xi measurable and let us take C = {B1 × · · · × Bk : Bi ∈ B(R), i =
1, . . . , k}, then

X−1(B1 × · · · ×Bk) = ((X1, . . . Xk) ∈ B1 × · · · ×Bk) =
∞⋂
i=1

(Xi ∈ Bi) ∈ F

is measurable and it can be trivially extended on B(Rn) using Dynkin’s theorem.
Conversely, suppose X : (Ω,F) → (Rk,B(Rk)) is measurable, then the coordinates
X = (X1, . . . , Xk) are measurable:

X−1
i (B) = (Xi ∈ Bi) = ((X1, . . . , Xk) ∈ R × · · · ×Bi × R × · · · × R) ∈ F .

Proposition 2.1.8 (Measurability of functions of r.v.’s). Since random vectors are
measurable functions the following properties hold:
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• If X is a random vector and g : Rk → Rj is a measurable function, then Y = g(X)
is a random vector

• If X is a random vector, then max(X1, . . . , Xk) and min(X1, . . . , Xk) are random
variables

• If Xn is a random variable ∀n (a sequence of random variables) then the follow-
ing are random variables: supXn, inf Xn, lim supXn, lim inf Xn and limXn (if it
exists).

Remark 2.1.9 (Sub σ-algebra). We usually call F the universe σ-algebra and we inter-
pret it as the set of all possible events that one might be interested in. Consider now
a sub-sigma-algebra G ⊆ F and assume that for any event A ∈ G, we know whether
A occurs or not. This means that, even if we don’t know the precise outcome of the
experiment, we still have some information about it (look at the next examples). We
interpret sub-σ-algebras as container of (partial) information on the outcome of the
experiment.
Example 2.1.10. • Ω = {1, 2, 3, 4, 5, 6} and F = P(Ω) then knowing whether any

element of G = {∅,Ω, {2, 4, 6}, {1, 3, 5}} occurs or not, means that we have infor-
mation on whether the outcome is even or odd.

• Ω = {0, 1}∞ and F = cylinder sigma-algebra, then information on the first
n tosses is represented by the set of cylinders Gn = {C1,...,n(A) : where A ⊆
{0, 1}n}.

Definition 2.1.11 (G-measurability). Let (Ω,F , P ) probability space and G ⊆ F a
sub-σ-algebra of F . We say that X is G-measurable if X : (Ω,G) → (Rk,B(Rk)) is
measurable, that is

(X ∈ B) ∈ G ∀B ∈ B(Rk)
and if this is true, then ∀B ∈ B(Rk) we can say whether (X ∈ B) or not based on
information in G.

If X is G-measurable then the information contained in G allows to determine the
value of X.
Example 2.1.12. Toss a coin infinitely many times. Ω = {0, 1}∞ and consider for each
n the σ-algebra of cylinders of dimension n Gn (defined above). Let X = # heads until
toss m. Here, X is Gn-measurable if and only if n ≥ m i.e. we know the number of
"H" in the first m tosses only once we have observed them.

Definition 2.1.13 (Sigma-algebra generated by a random vector). In (Ω,F , P ), with
X random vector, the sigma-algebra generated by X is:

σ(X) =
⋂

G⊆F
X is G-meas.

G

σ(X) is the smallest sigma-algebra with respect to which X is measurable. Indeed,
if X is G-measurable, then σ(X) ⊆ G.

Theorem 2.1.14 (σ-algebra generated by a r.v.). Let (Ω,F , P ) be a probability space,
X a random vector. Then

σ(X) = {X−1(B) : B ∈ B(Rk)}.
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Proof. Let G be the right hand side, one can easily see that it is a sigma-algebra.

• (⊂) By construction X is G-measurable and G is a sigma algebra. Then σ(X) ⊂ G,
by def. of σ(X).

• (⊃) Since X is σ(X)-measurable, X−1(B) ∈ σ(X) for any B ∈ B(Rn)

Theorem 2.1.15 (Doob-Dynkin). Let (Ω,F , P ) be a probability space, X : (Ω,F) →
(Rk,B(Rk)) a random vector and Y a random variable. Then:

Y is σ(X)-measurable ⇐⇒ ∃g : (Rk,B(Rk) → (R,B(R)) measurable : Y = g(X)

Idea: if Y is σ(X)-measurable then the information about X allows to determine
Y , so there must be a way of recovering X from Y .

Proof. ( ⇐= ) If Y = g(X), then (Y ∈ B) = (g(X) ∈ B) = (X ∈ g−1(B)) ∈ σ(X) and
so Y is measurable with respect to σ(X).
( =⇒ ) Suppose Y is σ(X)−measurable.

1. Let’s start by assuming that Y is a simple random variable, i.e. it takes on
a finite number of different values. This means that for a1, . . . , aN we have
Ai = (Y = ai) = (X ∈ Bi) for some Bi Borel set, so the representation is
not unique. But we can find B1, . . . , BN such that Bi ⊂ {X(ω) : ω ∈ Ω} and
Bi ∩ Bj = ∅ ∀i ̸= j, and we can restrict to the range of X and discard the rest.
We define g as

g(x) =



a1 x ∈ B1

a2 x ∈ B2

. . .

aN x ∈ BN

0 x ∈ (B1 ∪ · · · ∪BN )c

if we take a point ω ∈ Ω, g(X(ω)) = ai if X(ω) ∈ Bi, and so Y = ∑N
i=1 ai1Ai =∑N

i=1 ai1(X∈Bi) = ∑N
i=1 ai1Bi(X) = g(X).

2. Consider Y ≥ 0. Using the construction in 2.1.4, we can approximate Y from
below with a sequence of simple random variables Yn ↑ Y . Since Yn is a function
of Y , then it is measurable with respect to σ(X). Moreover, since Yn is simple,
Yn = gn(X), ∀n. Now define the set M = {x ∈ R : gn(x) converges} and notice
that ∀ω ∈ Ω, X(ω) ∈ M , since gn(X(ω)) = Yn(ω) and Yn(ω) converges. So
define

g(x) = 1M (x) lim gn(x)
For any ω ∈ Ω, we have:

g(X(ω)) = lim
n→∞

gn(X(ω))1M (X(ω)) = lim
n→∞

Yn(ω) = Y (ω).

3. Finally, taking Y as a general random variable, we have Y = Y + − Y − and
both Y + and Y − are σ(X)-measurable since they are non-negative, so Y =
g1(X) − g2(X) = g(X).
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2.2 Probability distribution of a Random Vector
Definition 2.2.1 (Probability distribution). Let (Ω,F , P ) be a probability space and
X = (X1, . . . , Xk) a random vector. We define the probability distribution of X as a
probability measure µ on B(Rk) such that

µ(B) = PX(B) = P (X−1(B)) = P (X ∈ B), ∀B ∈ B(Rk).
We can show that also the converse is true

Theorem 2.2.2 (From distribution to r.v.). Let µ be a probability measure on B(Rk).
Then ∃ (Ω,F , P ) probability space, and X random vector on it such that µ = PX−1.
Proof. Take Ω = Rk and take F = B(Rk) and P = µ. With X(ω) = ω we are done.

2.2.1 Cumulative distribution function

∀x ∈ Rk let Sx be the set of "south-west of x", defined as
Sx = {(S1, . . . , Sk) ∈ Rk : Si ≤ xi∀i}.

Definition 2.2.3 ((Cumulative) distribution function). We define the (cumulative)
distribution function (CDF) of X as:

F (x) = µ(Sx) = P (X1 ≤ x1, . . . , Xk ≤ xk)
Knowing F , one can compute the probability that X belongs to any rectangle

R = (a1, b1] × (a2, b2] × · · · × (ak, bk] as follows.
Proposition 2.2.4 (Measure of a rectangle through a CDF). Let V = {v = (v1, . . . , vk) :
vi ∈ {ai, bi}, i = 1, . . . , k} be the set of vertices of the rectangle R = (a1, b1] × (a2, b2] ×
· · · × (ak, bk]. For any v ∈ V , we define its sign as:

sign(v) =
{

+1 if the number of ai is even or 0
−1 if the number of ai is odd

so that:
µ(R) = ∆R(F ) :=

∑
v∈V

sign(v)F (v) (2.1)

Proof.

µ(R) = P

(
k⋂
i=1

(ai < Xi ≤ bi)
)

= P (X1 ≤ b1, . . . , Xk ≤ bk) − P

 k⋃
i=1

(X1 ≤ b1, . . . , Xi ≤ ai, . . . Xk ≤ bk)︸ ︷︷ ︸
Ai


= F (b1, . . . , bk) −

k∑
j=1

(−1)j+1 ∑
i1<···<ij

P (Ai1 ∩ · · · ∩Aij )︸ ︷︷ ︸
F (b1,...,ai1 ,...,aij

,...,bk)

= F (b1, . . . , bk) −
k∑
j=1

(−1)j+1︸ ︷︷ ︸
n. of ai

∑
i1<···<ij

F (b1, . . . , ai1 , . . . , aij , . . . , bk)

= ∆R(F )
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Theorem 2.2.5 (Properties of a CDF). A function F : Rk → R is the distribution
function of some random variable if and only if the following conditions are satisfied:

1. lim
xi→−∞

F (x1, . . . , xk) = 0 ∀i

2. lim
x1→+∞

...
xk→+∞

F (x1, . . . , xk) = 1

3. F is continuous from above: lim
hi→0+∀i

F (x1 + h1, . . . , xk + hk) = F (x1, . . . , xk)

4. ∀R ∆R(F ) ≥ 0

Remark 2.2.6 (Monotonicity of a CDF in each argument). Note that property (4)
implies that F is monotone in each argument, however the reverse is not true. Indeed,
take F which is zero on the left of a line in the plane and one on the right. This
function satisfies the first three conditions and it is monotone in each component, but
it is not a distribution function: if we compute ∆R(F ) for a rectangle that has only
one vertex on the left of the line we get ∆R(F ) = 1 − 1 − 1 + 0 = −1.

0 −1

+1−1

R

F

F = 1
F = 0

Recap on measure theory

Definition 2.2.7 (Measure). µ : Ω → [0,+∞] is a measure if

• it is a set function: µ(∅) = 0

• it is σ-additive: µ(⋃∞
n=1An) = ∑∞

n=1 µ(An) where An’s are disjoint

Definition 2.2.8 (σ-finite measure). A measure µ is σ-finite if ∃A1, A2, · · · ∈ F such
that Ω = ⋃∞

i=1Ai and µ(Ai) < +∞

Definition 2.2.9 (Measurable function). f : (Ω,F) → (R,B(R)) is a measurable
function if and only if f−1(B) ∈ F where B ∈ B(R).

Definition 2.2.10 (Integration w.r.t. a measure). f measurable function, we can
define

∫
Ω fdµ

• f = ∑n
i=1 ai1Ai ≥ 0 =⇒

∫
Ω fdµ = ∑n

i=1 aiµ(Ai)

• f ≥ 0 =⇒
∫

Ω fdµ = sup{
∫

Ω gdµ : g ∈ B+
0 , g ≤ f}

• f general, then f = f+ − f− and
∫

Ω fdµ =
∫

Ω f
+dµ−

∫
Ω f

−dµ provided at least
one is finite
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Proposition 2.2.11 (Properties of the integral). • f = g a.e. means µ({ω : f(ω) ̸=
g(ω)}) = 0 and implies that

∫
fdµ =

∫
gdµ

•
∫
A fdµ where A ∈ F ,

∫
A fdµ =

∫
f1Adµ

• f = g a.e. ⇐⇒ ∀A ∈ F ,
∫
A fdµ =

∫
A gdµ

2.3 Radon-Nikodym theorem
Definition 2.3.1 (Absolutely continuous measures). Given two measures µ, ν on the
space (Ω,F). We say that ν is absolutely continuous with respect to µ if µ(A) = 0 =⇒
ν(A) = 0, and we write ν ≪ µ.

Example 2.3.2. f ≥ 0 and f : (Ω,F) → (R,B(Rk)), with σ-finite measure µ, and∫
A fdµ = 0 if µ(A) = 0 then ν defined as ν(A) =

∫
A fdµ is a σ-finite measure on F

and ν ≪ µ.

Definition 2.3.3 (Singular measures). Given two measures µ, ν on the space (Ω,F).
We say that µ and ν are (mutually) singular if ∃Sµ, Sν ∈ F such that Sµ ∩ Sν = ∅,
µ(Scµ) = 0, ν(Scν) = 0, and we write ν ⊥ µ.

Example 2.3.4. On Ω = R, consider the Lebesgue measure λ((a, b]) = b− a and µ the
counting measure on a countable set S, µ(A) = |A∩S|. Then λ ⊥ µ, take Sµ = S and
Sλ = R \ S, then λ(S) = 0 and µ(Sc) = 0

Theorem 2.3.5 (Radon-Nikodym). Let µ, ν be σ-finite measures on (Ω,F), then:

ν ≪ µ ⇐⇒ ∃f measurable and non-negative such that ν(A) =
∫
A
fdµ

Moreover, f is essentially unique, that is if ν(A) =
∫
A gdµ ∀A ∈ F , then f = g µ-

almost everywhere. The function f is called the Radon-Nikodym derivative (or density)
of ν with respect to µ and denoted by f = dµ

dν .

Theorem 2.3.6 (Lebesgue decomposition). (Ω,F) measurable space, µ, ν measures
on F , both σ-finite. Then

ν = νac + νs

with νac ≪ µ and νs ⊥ µ. This decomposition is unique, thus

ν(A) =
∫
A
fdµ+ νs(A)

2.3.1 Singular continuous distributions

Take X random vector with probability distribution µ, and take the Lebesgue measure
λ((a1, b1] × · · · × (ak, bk]) = ∏k

i=1(bi − ai) as the reference measure. Then µ = µac +µs
and we know that µac(A) =

∫
A fdλ, f density function. We now want to analyze the

singular part. Define D = {x ∈ Rk} : µ({x}) > 0}. Then for x ∈ D, µ({x}) = µs({x})
because the Lebesgue measure on a single point is zero.

Lemma 2.3.7 (Cardinality of the set of disjoint non-null events). Let (Ω,F , µ) be a
measured space, µ finite measure, and let C = {Bt}t∈T be a class of disjoint events
such that µ(Bt) > 0 ∀t. Then C is countable at most.
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Proof. Fix k and let t1, . . . , tn ∈ T be such that P (Bti) > 1
k ∀i. Then since

µ

(
n⋃
i=1

Bti

)
=

n∑
i=1

µ(Bti) ≥ n

k

n ≤ kµ(Ω) is bounded. Then:

C =
∞⋃
k=1

{Bt : µ(Bt) >
1
k

}

i.e. it is a countable union of finite sets (for a fixed k), that is countable at most.

Thanks to this lemma we can state that D is countable at most. Now define the
probability mass function as m(x) = µ({x}), x ∈ D. Then we have the discrete
component of µ as µD(A) = ∑

x∈A∩Dm(x) = µs(A ∩ D) ≤ µs(A), µD is a finite
measure. If we now consider µs(A) − µD(A) ≥ 0 ∀A is a measure, let’s call it singular
continuous component µsc = µs − µD (which means µs = µsc + µD). Then every
probability distribution µ can be decomposed as

µ = µac + µd + µsc

µ(A) =
∫
A
fdλ+

∑
x∈A∩D

m(x) + µsc(A)

. There are situations in which the singular continuous component is not trivial
Example 2.3.8. X,Y random variable such that X + Y = 1, X ∼ U [0, 1]. The joint
distribution of X,Y is PX,Y ⊥ λ (the support of (X,Y ) is a straight line, which has λ-
measure 0). Moreover PX,Y has no discrete component, hence it is singular continuous.

In general, this happens when the random vector X = (X1, . . . , Xk) ∈ Rk and the
support of µ is a variety with lower dimension.
Example 2.3.9. X ∼ N (0,Σ) with Σ singular, which means that ∃a : aTΣa = 0. This
condition defines a plane: aTΣa = V (aTX) =⇒ aTX = c. So, since for x ∈ S, where
S = {x : aTx = c}, λ(S) = 0, µ ⊥ λ has no absolutely continuous component, and
since µ({x}) = 0 it has no discrete component =⇒ µ = µsc.
Example 2.3.10. Ω = {0, 1}∞ i.e. we toss a coin infinitely many times. If toss n is
heads, then the player wins 1

2n . We denote by X the total winnings. Thus we can
write

Xn =
{

1 ωn = 1
0 ωn = 0

X =
∞∑
n=1

Xn

2n , 0 ≤ X ≤ 1

• If p0 = p1 = 1
2 then X ∼ U [0, 1] and so X is absolutely continuous

• if p0 ̸= p1 then PX is singular continuous, P (X = x) = 0 so it has also no discrete
component, and it has no density

We are going to show that the probability distribution of X is singular continu-
ous. Consider a real number x ∈ [0, 1] and its binary representation x = ∑∞

i=1
ui
2i ,

x = (u1, u2, . . . ). On principle the representation is not unique, but if we discard
terminating sequences it is. We have that P (X = x) = P (Xi = ui, i = 1, 2, . . . ) =∏∞
i=1 P (ui) = 0, and so µD = 0, and we want to show that also the absolutely contin-

uous component is zero. We first need two results



2.4. INDEPENDENT RANDOM VECTORS 41

• Every monotone function is almost everywhere differentiable and F (b) −F (a) ≥∫ b
a F

′(x)λ(dx)

• If F (x) =
∫ x

−∞ f(u)λ(du), with f(u) ≥ 0 and
∫ x

−∞ f(u)λ(du) < ∞ then F ′(x) =
f(x) λ-a.e.

Let us denote by F = µ(−∞, x] and Fac(x) = µac(−∞, x]. Since µ = µac + µsc,
Fac(b) − Fac(a) ≤ F (b) − F (a) ∀a, b. If F ′(x) = 0 λ-a.e. =⇒ F ′

ac(x) = 0 λ-a.e., and
since Fac(x) =

∫ x
−∞ fdλ =⇒ f = 0 λ-a.e., so µac = 0. We now need to show that

F ′(x) = 0. Consider x such that ∃F ′(x) and let kn such that kn
2n ≤ x < kn+1

2n . Then

F ′(x) = lim
n→∞

F
(
kn+1

2n

)
− F

(
kn
2n

)
1

2n

= lim
n→∞

2nP (kn2n ≤ X <
kn + 1

2n ) =

= lim
n→∞

2nP (u1)P (u2) . . . P (un)

if F ′(x) ̸= 0, limn→∞
2nP (u1)P (u2)...P (un)

2n+1P (u1)P (u2)...P (un+1) = limn→∞
1

2P (un+1) = 1, which implies
limn→∞ P (un+1) = 1

2 , but this is not possible.

2.4 Independent Random Vectors
Theorem 2.4.1 (Fubini-Tonelli, Recap on measure theory). Let (Ω,F , µ), (Ω′,F ′, µ′)
measured spaces and consider the product space (Ω × Ω′,F ⊗ F ′, µ × µ′) where (µ ×
µ′)(B ×B′) = µ(B)µ′(B). Let g : (Ω × Ω′,F ⊗ F ′) → (R,B(R)) measurable. It can be
proved that ∫

Ω×Ω′
g(ω, ω′)d(µ× µ′)(ω.ω′) =

∫
Ω

∫
Ω′
g(ω, ω′)dµ′(ω′)dµ(ω)

We are going to consider integrals with respect to the Lebesgue measure, we denote
with λn the Lebesgue measure on B(Rn), λn = λ1 × λ1 × · · · × λ1. We’ll be dealing
with random vectors with different dimensions, so we drop the index and simply write
λ.

Definition 2.4.2 (Independent random vectors). The random vectors X1, . . . , Xn are
said to be stochastically independent if σ(X1), . . . , σ(Xn) are independent

This means that the information we have on one random vector does not include
information on the probability of other random vectors being in a Borel set, i.e.:

P (Xi ∈ Bi|X1 ∈ B1, . . . Xi−1 ∈ Bi−1, Xi+1 ∈ Bi+1, . . . , Xn ∈ Bn) = P (Xi ∈ Bi)

In fact, since σ(Xi) = {(Xi ∈ Bi) : Bi Borel set} and σ(X1) . . . σ(Xn) ⊥⊥, then P (X1 ∈
B1, . . . , Xn ∈ Bn) = P (⋂ni=1(Xi ∈ Bi)) = ∏n

i=1 P (Xi ∈ Bi) ∀B1, . . . , Bn.
If we denote by PX1,...,Xn the probability distribution of (X1, . . . , Xn) and by PXi

the probability distribution of Xi the above definition reads in terms of probabilities
distribution as

PX1,...,Xn(B1×· · ·×Bn) = PX1(B1)PX2(B2) . . . PXn(Bn) = PX1×PX2×· · ·×PXn(B1×· · ·×Bn).

This holds for every rectangle and rectangles are a determining class, so we can say
that

X1, . . . , Xn ⊥⊥ ⇐⇒ PX1,...,Xn = PX1 × PX2 × · · · × PXn .
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2.4.1 Criteria for independence

1. We can give a characterization in terms of distribution functions

FX1,...,Xn(x1, . . . , xn) = PX1,...,Xn(Sx1,...,xn) = PX1,...,Xn(Sx1 × · · · × Sxn)
= PX1 × PX2 × · · · × PXn(Sx1 × · · · × Sxn)
= PX1(Sx1)PX2(Sx2) . . . PXn(Sxn)
= FX1(x1)FX2(x2) . . . FXn(xn).

So we can say that

X1, . . . , Xn ⊥⊥ ⇐⇒ FX1,...,Xn(x1, . . . , xn) = FX1(x1)FX2(x2) . . . FXn(xn)

2. In the case where the probability distribution is absolutely continuous with re-
spect to the Lebesgue measure, PX1,...,Xn ≪ λ we want to show that PXi ≪ λ. We
know that there exists a density function f(x1, . . . , xn) such that PX1,...,Xn(B) =∫
B(x1, . . . , xn)dλ(x1, . . . , xn). If we want to compute

PXi(Bi) = PX1,...,Xn(Rd1 × · · · ×Bi × · · · × Rdn)

=
∫
Rd1 ×···×Bi×···×Rdn

f(x1, . . . , xn)dλ(x1, . . . , xn)

=
∫
Bi

[∫
Rd1 ×···×Rdi−1 ×Rdi+1 ×···×Rdn

f(x1, . . . , xn)dλ(x1, . . . , xi−1, xi+1, . . . , xn)
]
dλ(xi)

and the term in square brackets is a function such that integrated in dλ(xi) we
obtain PXi , so it is a density function of Xi. Note that in general the converse
is not true, PXi ≪ λ ≠⇒ PX1,...,Xn ≪ λ

Example 2.4.3. X,Y random variable such that X + Y = 1, X,Y ∼ U [0, 1].
U [0, 1] is absolutely continuous with respect to the Lebesgue measure but the
joint distribution of X,Y is PX,Y is singular continuous.

Now suppose PX1,...,Xn ≪ λ andX1, . . . , Xn ⊥⊥, which means P (X1 ∈ B1, . . . , Xn ∈
Bn) = P (X1 ∈ B1) . . . P (Xn ∈ Bn). Writing each side in terms of density func-
tions we obtain∫
B1×···×Bn

f(x1, . . . , xn)dλ(x1, . . . , xn) =
∫
B1×···×Bn

fX1(x1) . . . fXn(xn)dλ(x1) . . . dλ(xn)

from which we can deduce that f(x1, . . . , xn) = fX1(x1) . . . fXn(xn) λ-almost
everywhere.
In this case (X1, . . . , Xn ⊥⊥) the converse is also true: if PXi ≪ λ ∀i = 1, . . . , n
and X1, . . . , Xn ⊥⊥ then PX1,...,Xn ≪ λ

PX1,...,Xn(B1 × · · · ×Bn) = PX1(B1)PX2(B2) . . . PXn(Bn) =

=
∫
B1
fX1(x1)dλ(x1)· · ·

∫
Bn

fXn(xn)dλ(xn) =

=
∫
B1×···×Bn

fX1(x1) . . . fXn(xn)dλ(x1, . . . , xn)

so it exists the joint density of X1, . . . , Xn and it is fX1(x1) . . . fXn(xn).

X1, . . . , Xn ⊥⊥ ⇐⇒ f(x1, . . . , xn) =
n∏
i=1

fXi(xi) λ− a.e.
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3. Suppose we have PX1,...,Xn discrete, then there will be a probability mass function
m(x1, . . . , xn) and a set D countable at most such that PX1,...,Xn(D) = 1 and
PX1,...,Xn({(x1, . . . , xn)}) > 0 (x1, . . . , xn) ∈ D. Then, PXi is also discrete and
Di = π−

i (D) where πi projections and

mXi(xi) =
∑

(x1,...,xi−1,xi+1,...,xn):(x1,...,xn)∈D
m(x1, . . . , xn)

PX1,...,Xn is discrete if and only if PXi are discrete and D ⊂ D1 × · · · ×Dn. It is
an if and only if because projections cannot be singular continuous, while in the
absolutely continuous case this can happen.

X1, . . . , Xn ⊥⊥ ⇐⇒ m(x1, . . . , xn) = m(x1)m(x2) . . .m(xn)

Definition 2.4.4 (Independence for a family of r.v.’s). If you have a family of random
vectors {Xt}t∈T they are independent if and only if ∀n t1, . . . , tn ∈ T Xt1 . . . Xtn ⊥⊥

Example 2.4.5 (Gaussian white noise). {Xt}t≥0 ⊥⊥ ∀t, Xt ∼ N (0, σ2)

If {Xt}t∈T ⊥⊥ and we take a sub family T ′ ⊂ T then {Xt}t∈T ′ ⊥⊥, you never loose
independence reducing the family.

Theorem 2.4.6 (Disjoint block independence for r.v.’s). Let the following be an array
of independent random vectors

X11 X12 . . .
X21 X22

...
... . . .

Let Gi = σ({Xij}j∈N). Then {Gn}n≥1 are independent.

Remark 2.4.7. If we take Ti = ti(Xi1 . . . Xik1) function of some random vectors in row
i, we have that this is measurable with respect to Gi, which implies σ(Ti) ⊂ Gi =⇒
{σ(Ti)}i≥1 ⊥⊥ =⇒ {Ti}i≥1 ⊥⊥

Theorem 2.4.8 (Kolmogorow 0-1 law). If Xk1 , Xk2 , . . . are ⊥⊥ and if A ∈ Tk({Xk1 , Xk2 , . . . })
then P (A) = 0 or P (A) = 1.

Corollary 2.4.9 (Constancy of a r.v. in the tail σ-algebra). If a random variable Y
is measurable with respect to T ({Xn}) and {Xn} ⊥⊥ then there exists c ∈ R such that
Y = c almost surely.

Proof. P (Y ≤ y) = 0 or P (Y ≤ y) = 1 ∀y

Example 2.4.10. If (Xn) i.i.d. sequence and |Xn| ≤ C, then:

lim sup
n

Xn
a.s.= const. = ess-sup PX1

Where s = ess-sup Px if for any ϵ > 0, PX(s+ ϵ,+∞) = 0 and PX(s− ϵ, s) > 0
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2.5 Functions and transformations
Definition 2.5.1 (Riemann integral in R). Let g : [a, b] → R be a measurable function.
The Riemann integral, if it exists is a number r satisfying ∀ϵ > 0 ∃δ > 0 such that for
every finite partition {Ij : j ∈ J} of [a, b] with Ij intervals and λ(Ij) < δ and for every
xj ∈ Ij (j ∈ J). ∣∣∣∣∣∣r −

∑
j

g(xj)λ(Ij)

∣∣∣∣∣∣ < ϵ

Not all measurable functions are Riemann integrable. Note that Riemann integra-
bility requires the regularity of the function while Lebesgue not. However, Riemann
integrability implies Lebesgue one, and the integrals coincide.
Remark 2.5.2 (Riemann integrability of continuous functions). Continuous functions
are Riemann integrable by Fundamental Theorem of calculus, and we have that, if G
is continuously differentiable on [a, b] with derivative g, then∫ b

a
g dx = G(b) −G(a)

Proposition 2.5.3 (Radon Nikodym derivative of λT−1 with respect to λ). Let U, V
be two open subsets of Rk, and let T : U → V be one to one, continuously differentiable
with det JT−1 ̸= 0 on V , where JT−1 is the Jacobian matrix of T−1 then

d(λT−1)
dλ

= |det JT−1 |

Definition 2.5.4 (Integrals with respect the counting measure on Rk). Let D =
{x1, x2, . . . } be a countable subsets of Rk and let µc be the counting measure on D:

µc(A) = |A ∩D|︸ ︷︷ ︸
NumberofPoints

and in particular µc({xi}) = 1 ∀xi ∈ D. Let g : Rk → R+ be a measurable function∫
g(x)µc(dx) =

∫
D
g(x)µc(dx) = lim

n→∞

n∑
i=1

g(xi) =
∞∑
i=1

g(xi)

Note that for a general function we can work with g+, g−.

Proposition 2.5.5 (Function of independent random variables). Let X,Y be random
variables with X ⊥⊥ Y and X ∼ µ, Y ∼ ν. The probability distribution of (X,Y ) is
P ((X,Y ) ∈ B) = (µ× ν)(B). For fixed x let Bx = {y : (x, y) ∈ B} is the section of B
in x. Then

P ((X,Y ) ∈ B) =
∫

1B(x, y)d(µ× ν)(x, y)

=
∫ (∫

1B(x, y)dν(y)
)
dµ(x)

=
∫
ν(Bx)dµ(x).
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Example 2.5.6. X,Y random variables, i.i.d. and with density f(x) = αe−αx
1(0,∞)(x),

with α > 0. We want to find the probability distribution of Z = Y
X . Z > 0. Fix z > 0,

then

P (Z > z) = P (Y
X
> z) =

∫ ∞

0
P (Y
X
> z)αe−αxdx

=
∫ ∞

0
P (Y > zx)αe−αxdx =

∫ ∞

0
e−αzxαe−αxdx

= α

∫ ∞

0
e−αx(z+1)dx = 1

z + 1

while for z < 0 P ( YX > z) = 1. So

fZ(z) = d

dz
(1 − P (Z > z)) =

0 z < 0
1

(z+1)2 z > 0

and

FZ(z) =
{

0 Z ≤ 0
1 − 1

z+1 Z > 0

Definition 2.5.7 (Convolution). Let µ, ν be finite measures on B(Rk). The convolu-
tion between µ and ν is

(µ ∗ ν)(A) =
∫
ν(A− x)µ(dx)

where A− x = {y − x : y ∈ A}.

µ ∗ ν is a finite measure and (µ ∗ ν)(Rk) = µ(Rk)ν(Rk). If µ, ν are probability
measures then µ ∗ ν is a probability measure. There are some properties:

1. µ ∗ ν = ν ∗ µ

2. (ν ∗ µ) ∗ η = ν ∗ (µ ∗ η)

3. If F (x) = µ(−∞, x] and G(x) = ν(−∞, x] then (µ ∗ ν)(−∞, x] = (F ∗ G)(x)
where

(F ∗G)(x) =
∫
F (x− y)G(dy)

4. If ν ≪ η and µ ≪ η with f = dν
dη and g = dµ

dη , then µ ∗ ν ≪ η and

d(µ ∗ ν)
dη

(x) =
∫
f(x− y)g(y)η(dy)

Proposition 2.5.8 (Sum of independent r.v.’s). Let X ⊥⊥ Y be random vectors such
that X ∼ µ and Y ∼ ν. Then X + Y ∼ µ ∗ ν.

Proof.

P ((X + Y ) ∈ B) =
∫
P (Y ∈ B − x)dPX(x) =

∫
ν(B − x)dµ(x)
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Example 2.5.9. X,Y i.i.d. ∼ Poisson(λ). Then

m(x) = e−λλx

x! x = 0, 1, . . .

mX+Y =
∑
x

m(z − x)m(x) =
z∑

x=0

e−λλz−x

(z − x)!
e−λλx

x! = e−2λλx
z∑

x=0

1
(z − x)!x!

= e−2λλz

z!

z∑
x=0

z!
(z − x)!x!1

x1z−x = e−2λ(2λ)z
z!

That is to say X + Y ∼ Poisson(2λ)

Theorem 2.5.10 (Transformations of random vectors). Let X be a random vector
with absolutely continuous distribution and density fX . Let U be an open set such that
fX(x) > 0 for x ∈ U . Let g : U → V be a one to one, continuously differentiable
function such that

det(Jg−1) ̸= 0
Then Y = g(X) is absolutely continuous with density

fY (y) = fX(g−1(y))
∣∣∣det(Jg−1(y))

∣∣∣1V (y)

Proof. Let B ⊂ V

P (Y ∈ B) = P (g(X) ∈ B) = P (X ∈ g−1(B)) =
∫
U
1g−1(B)(x)fX(x)dλ(x)

=
∫
U
1B(g(X))fX(g−1(g(x)))dλ(x) =

∫
V
1B(y)fX(g−1(y))d(λg−1)(y)

=
∫
V
1B(y)fX(g−1(y))

∣∣∣det(Jg−1(y))
∣∣∣ dλ(y)

Example 2.5.11. X,Y ⊥⊥∼ ε(α), Z = X + Y , W = X
X+Y . Find P(Z,W )

f(Z,W )(z, w) = f(X,Y )(x(z, w), y(z, w))| det(Jg−1(z, w))|1V (z, w)

We start by looking for U , an open set such that

P ((X,Y ) ∈ U) = 1 V = g(U) (z, w) = g(x, y)

fX(x) = αe−αx
1(0,∞)(x) X ∈ (0,∞) and the same holds for Y

So we take U = (0,∞) × (0,∞). Now we look for g−1(z, w).{
z = x+ y y = z(1 − w)
w = x

x+y x = wz

And this is a 1-1 function. Also, z > 0 and 0 < x < 1 as a consequence of x > 0 and
y > 0.

det(Jg−1) = −wz − (1 − w)z = −z



2.6. CONVERGENCE OF SEQUENCE OF RANDOM VARIABLES 47

Therefore z > 0 =⇒ | det(Jg−1(z, w))| = z. We obtain the joint density

fXY (x, y) = αe−αxαe−αy
1(0,∞)(x)1(0,∞)(y) = α2e−α(x+y)

1U (x, y)

fZW (z, w) = α2ze−αz
1(0,∞)(z)1(0,1)(w)

We see that Z ⊥⊥ W , W ∼ U(0, 1) and Z ∼ Γ(2, α).

2.6 Convergence of sequence of random variables
In this section we have {Xn}n∈N sequence of random variables, i.e. functionsXn(ω), ω ∈
Ω defined on an underlying probability space (Ω,F , P ) .

Definition 2.6.1 (Almost sure convergence). We say that Xn converges to X almost
surely, and write Xn

as−−−→ X, if P ({ω ∈ Ω : Xn(ω) → X(ω)}) = 1.

Definition 2.6.2 (Convergence in probability). We say that Xn converges to X in
probability, and write Xn

p−−→ X, if for all ε > 0 P (|Xn −X| > ε) → 0 as n → ∞ .

Starting from the definition of almost sure convergence we can say that

P (Xn(ω) → X(ω)) = 1 ⇐⇒ P ({ω ∈ Ω : ∀ε > 0 ∃n0 : ∀n ≥ n0 |Xn −X| < ε}) = 1

⇐⇒ P

({
ω ∈ Ω : ∀k ∃n0 : ∀n ≥ n0 |Xn(ω) −X(ω)| < 1

k

})
= 1

⇐⇒ P

 ∞⋂
k=1

∞⋃
n0=1

∞⋂
n=n0

|Xn −X| < 1
k

 = 1

Since in general the probability of a countable intersection can be one if and only if
the probability of each event is one

P

( ∞⋂
k=1

Ak

)
= 1 ⇐⇒ P (Ak) = 1 ∀k

in our case we take
Ak =

∞⋃
n0=1

∞⋂
n=n0

{
|Xn −X| < 1

k

}
therefore

Xn
as−−−→ X ⇐⇒ ∀k P

 ∞⋃
n0=1

∞⋂
n=n0

{
|Xn −X| < 1

k

} = 1

is the same as
∀ε > 0 P (lim inf |Xn −X| < ε) = 1

or alternatively
∀ε > 0 P (lim sup |Xn −X| > ε) = 0

Therefore we can say

Xn
as−−−→ X ⇐⇒ ∀ε > 0 P (lim sup |Xn −X| > ε) = 0
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Finally note that since lim sup(P (An)) ≤ P (lim sup(An)), we have

Xn
as−−−→ X =⇒ P (|Xn −X| > ε) → 0

In other words, almost sure convergence implies convergence in probability, so conver-
gence in probability is a necessary condition to almost sure convergence. There is also
a sufficient condition. We collect these observation in the following proposition:

Proposition 2.6.3 (Properties of a.s. convergence and convergence in probability).
Given a sequence (Xn) and X of r.v. on (Ω,F , P ). Then:

• (Characterization of a.s.-convergence)

Xn
as−−−→ X ⇐⇒ P (lim sup |Xn −X| > ε) = 0 ∀ε

• (Necessary condition for a.s.-convergence)

Xn
as−−−→ X =⇒ Xn

p−−→ X

• (Sufficient condition, corollary of Borel-Cantelli)
∞∑
n=1

P (|Xn−X| > ε) < ∞ =⇒ P (lim sup |Xn−X| > ε) = 0 ∀ε ⇐⇒ Xn
as−−−→ X

Example 2.6.4. Let {Xn} ⊥⊥ be such that

Xn =
{

0 1 − 1
n2

1 1
n2

Then notice that Xn
p−−→ 0 because P (|Xn − 0| > ε) = P (Xn > ε) = 1

n2 → 0 and∑
P (Xn > ε) = ∑ 1

n2 < ∞, so Xn converges almost surely to X.
Example 2.6.5. Let {Xn} ⊥⊥ be such that

Xn =
{

0 1 − 1
n

1 1
n

Then notice that Xn
p−−→ 0 because P (|Xn − 0| > ε) = P (Xn > ε) = 1

n → 0. Does
Xn

as−−−→ 0? We need P (lim sup |Xn − X| > ε) = 0. But here, we would like that
P (lim sup{Xn > ε}) = 0. However, note that by BC2, ∑P (Xn > ε) = ∑ 1

n diverges,
hence P (lim sup{Xn > ε}) = 1 . So Xn does not converge almost surely to X.

Theorem 2.6.6 (Equivalent definition to convergence in probability). Xn
p−−→ X ⇐⇒

∀(n′) ⊆ (n) ∃ a subsequence (n′′) ⊆ (n′) such that Xn′′
as−−−→ X

Proof. ( =⇒ ) Let Xn
p−−→ X i.e. ∀ε > 0 P (|Xn −X| > ε) → 0, which means:

∀ε > 0, ∀δ > 0, ∃n0 : ∀n ≥ n0 P (|Xn −X| > ε) < δ

For any sequence (n′), for any k ∈ N take ε = 1
k , δ = 1

2k , then we can find nk ∈
(n′), nk > nk−1 : P (|Xnk

− X| > 1
k ) < 1

2k , and we call (n′′) = (nk). Therefore
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∑∞
k=1 P (|Xnk

− X| > 1
k ) = ∑∞

k=1
1

2k < ∞ and by Borel Cantelli 1 P ({|Xnk
− X| >

1
k i.o.}) = 0. Now we should have ε fixed instead of 1

k , but notice that for k large enough
1
k < ε, so ({|Xnk

− X| > ε i.o.}) ⊂ ({|Xnk
− X| > 1

k i.o.}) therefore P ({|Xnk
− X| >

ε i.o.}) ≤ P ({|Xnk
−X| > 1

k i.o.}) = 0.
( ⇐= ) Let’s suppose that Xn ↛ pX. Then (look at equation above):

∃ε > 0, ∃δ > 0, ∃(n′) : P (|Xn′ −X| > ε) > δ ∀n′ ∈ (n′)

In particular this will be true for any subsequence of (n′):

∀(n′′) ⊆ (n′) P (|Xn′′ −X| > ε) > δ ∀n′′ ∈ (n′′)

This means that Xn′′ ↛ pX =⇒ Xn′′ ↛ asX. This contradicts the assumption of the
existence of an a.s.-converging subsequence.

There are two useful applications of this theorem:

Proposition 2.6.7 (Uniqueness of the limit in probability). The limit in probability
is essentially unique: if Xn

p−−→ X and Xn
p−−→ Y then X = Y a.s.

Proof. ∃(n′) and (n′′) such that Xn′
as−−−→ X and Xn′′

as−−−→ Y , but along the subse-
quence the limit is the same so Xn′′

as−−−→ Y . This means X = Y a.s.

Proposition 2.6.8 (Convergence in probability through continuous functions). If
Xn

p−−→ X and f is a continuous function then f(Xn) p−−→ f(X).

Proof. Fix (n′′) ⊆ (n′) such that Xn′′
as−−−→ X. Then f(Xn′′) as−−−→ f(X). Using the

above result, we have found a sub-sequence converging a.s. to f(X) which means that
f(Xn) p−−→ f(X).

Recap on measure theory

Let (Ω,F , µ) a measured space, µ sigma-finite, g : (Ω,F) → (R,B(R)). We define the
integral of g on Ω with respect to the measure µ,

∫
Ω gdµ as

• if g = ∑n
i=1 ai1Ai then

∫
Ω gdµ = ∑n

i=1 aiµ(Ai)

• if g ≥ 0 it exists a non-decreasing succession gn of simple, non-negative such that
gn ↗ g, then

∫
Ω gdµ = limn→∞

∫
Ω gndµ

• if g is integrable, g = g+ − g−, then
∫

Ω gdµ =
∫

Ω g+dµ−
∫

Ω g−dµ

Definition 2.6.9 (Integrable function). g is said to be integrable if
∫

Ω g+dµ < +∞
and

∫
Ω g−dµ < +∞, that is ⇐⇒

∫
Ω |g|dµ < +∞.

Proposition 2.6.10 (Properties of the integral). • Monotonicity: g ≤ h =⇒∫
Ω gdµ ≤

∫
Ω hdµ

• Linearity:
∫

Ω(ag + bh)dµ = a
∫

Ω gdµ+ b
∫

Ω hdµ

• Linearity with respect to the measure:
∫

Ω gd(αµ+ βν) = α
∫

Ω gdµ+ β
∫

Ω gdν
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Definition 2.6.11 (push-forward measure). Let (Ω,F), (Ω′,F ′) be measurable spaces,
g : (Ω,F) → (Ω′,F ′) measurable function. Let µ be a sigma finite measure on F . The
measure induced by g on F ′ is defined as

µ′(B) = µ(g−1(B)).

It can be proved that µ′ is indeed a sigma-finite measure. We write µ′ = µg−1.

Proposition 2.6.12 (Change of variables). Let (Ω,F), (Ω′,F ′) be measurable spaces,
g : (Ω,F) → (Ω′,F ′) measurable function, h : (Ω′,F ′) → (R,B(R)) measurable func-
tion. Let µ be a sigma finite measure on F . It can be proved that∫

Ω′
h(ω′)d(µg−1(ω′) =

∫
Ω
h(g(ω))dµ(ω).

Proposition 2.6.13 (Change of measure). Let (Ω,F , µ) be a measured space, ν a
sigma-finite measure ν ≪ µ, g : (Ω,F) → (R,B(R)) measurable. It can be proved that∫

gdν =
∫
g
dν

dµ
dµ

and denoting by f = dν
dµ the density (Radon-Nikodym derivative) of ν with respect to µ∫

gdν =
∫
g · fdµ.

Let (Ω,F , µ) be a measured space, (gn) be a sequence of measurable functions
gn → g µ-a.e.

Proposition 2.6.14 (Fatou lemma). If gn ≤ 0 then∫
lim inf gndµ ≤ lim inf

∫
gndµ.

Theorem 2.6.15 (Monotone convergence). If gn ≤ 0 and gn ≤ gn+1 µ-a.e., then

lim
n→∞

∫
gndµ =

∫
gdµ.

Theorem 2.6.16 (Dominated convergence). If there exists h measurable such that
∀n |gn| ≤ h µ-a.e. and h is integrable then

lim
n→∞

∫
gndµ =

∫
gdµ.

Remark 2.6.17. In monotone convergence theorem the limit can also be +∞ while in
dominated convergence theorem the limit is always finite.

2.7 Expectation of Random Variable
Definition 2.7.1 (Expectation of a random variable). Let (Ω,F , P ) probability space,
X random variable, we define the expectation of X as E(X) =

∫
ΩXdP .

The expectation has the same properties of the Lebesgue integral, thus it is mono-
tone and linear and also linear with respect to the measure.
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• if X = ∑n
i=1 ai1Ai then E(X) = ∑n

i=1 aiP (Ai)

• if X ≥ 0 then ∃Xn sequence of simple, positive, Xn → X then E(X) =
limn→∞E(Xn). This can converge or be ∞.

• X = X+ −X− then E(X) = E(X+) − E(X−) provided at least one is finite.

and we say that X is integrable if E(X+) < ∞ and E(X−) < ∞ ⇐⇒ E(|X|) < ∞.
Denoting by L1(Ω,F , P ) = {X : E(|X|) < ∞} we say X integrable X ∈ L1.

We would like to be able to compute the expectation of a function of a random
vector, which we can do applying the change of variable formula. For instance, let
(Ω,F , P ) be a probability space, X a random vector of dimension k with probability
distribution µ which is a PM on B(Rk). Take g : (Rk,B(Rk)) → (R,B(R)). Then we
have

E(g(X)) =
∫

Ω
g(X(ω))P (dω) =

∫
Rk
g(x)µ(dx)

since the measure induced by X on (R,B(R)) is PX−1 = µ. How can we compute∫
Rk g(x)µ(dx)? We know that µ can be decomposed as µ = µac + µD + µsc, so∫

gdµ =
∫
gdµac +

∫
gdµD +

∫
gdµsc

• µac ≪ λ, call f = dµac

dλ , so that
∫
gdµac =

∫
Rk gfdλ

• D = {x : µ({x}) > 0}, µD ≪ λc where λc is the counting measure on D,
λc(A) = |A ∩ D| and dµD

dλc
(x) = m(x) . Then

∫
gdµD =

∫
g(x)m(x)dλc(x) =∑

x∈D g(x)m(x) because the only points that matter are the ones where λc puts
mass so λc is almost everywhere equal to a simple function

At the end we can say

E(g(X)) =
∫
Rk
g(x)f(x)dλ(x) +

∑
x∈D

g(x)m(x) +
∫
g(x)dµsc(x)

Suppose we have two random vectors X1, X2 ⊥⊥, µX1X2 = µX1 × µX2 . Then

E(g1(X1)g2(X2)) =
∫
g1(x1)g2(x2)d(µX1 × µX2)(x1, x2)

=
∫ [∫

g1(x1)g2(x2)dµX2(x2)
]
dµX1(x1)

=
∫
g1(x1)

[∫
g2(x2)dµX2(x2)

]
dµX1(x1)

=
∫
g2(x2)dµX2(x2)

∫
g1(x1)dµX1(x1)

= E(g2(X2))E(g1(X1))

2.7.1 Expectation and limits

In general Xn
as−−−→ X does not imply E(Xn) → E(X), but in the following we are

going to see some theorems to handle limits.

Proposition 2.7.2 (Fatou’s Lemma). If Xn ≥ 0 then E(lim inf Xn) ≤ lim inf E(Xn).
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Application 2.7.3. Xn ≥ 0, Xn ∈ L1 ∀n, Xn
as−−−→ X, under which conditions can we

say that X ∈ L1? If X = lim inf Xn then E(X) ≤ lim inf E(Xn), so if lim inf E(Xn) <
+∞ then X ∈ L1. More in general, Xn ∈ L1 ∀n, Xn

as−−−→ X, |Xn| as−−−→ |X| then
by Fatou lemma we can say E(|X|) ≤ lim inf E(|Xn|), so if the latter is < +∞ then
X ∈ L1.

Proposition 2.7.4 (Monotone convergence). If Xn ≥ 0 and Xn+1 ≥ Xn a.s. ∀n and
Xn

as−−−→ X then E(Xn) → E(X).

Application 2.7.5. To see an application of monotone convergence we will prove the
following formula: if X ≥ 0 then

E(X) =
∫ ∞

0
(1 − F (t))dt

where F is the distribution function of X.

Proof. • First suppose X is simple and takes values x1, . . . , xn with 0 ≤ x1 <
· · · < xn. Then X is a discrete random variable and

E(X) =
n∑
i=1

xiP (X = xi) =
n∑
i=1

∫ xi

0
1dtP (X = xi)

=
n∑
i=1

∫ xi

0
P (X = xi)dt =

n∑
i=1

∫ ∞

0
1[0,xi](t)P (X = xi)dt

=
∫ ∞

0

n∑
i=1

1[0,xi](t)P (X = xi)dt

=
∫ ∞

0

∞∑
i=1

1[t,∞)(xi)P (X = xi)dt

=
∫ ∞

0
P (X ≥ t)dt

Recall P (X ≥ t) = P (X > t) a.e. with respect to the Lebesgue measure because
P (X ≥ t) ̸= P (X > t) ⇐⇒ P (X = t) > 0 and there can be an at most
countable number of points where this is true – otherwise P (Ω) > 1. Therefore
the integrals are the same.

E(X) =
∫ ∞

0
P (X ≥ t)dt =

∫ ∞

0
P (X > t)dt =

∫ ∞

0
(1 − F (t))dt

• Now with a more general X such that X ≥ 0, then ∃{Xn}n≥1 a sequence of
increasing and simple random variables such that Xn → X ∀ω. From the above
point,

E(Xn) =
∫ ∞

0
(1 − Fn(t))dt =

∫ ∞

0
P (Xn > t)dt

On the left hand side, we apply the monotone convergence theorem: E(Xn) →
E(X). On the right hand side, P (Xn > t) = E(1(t,∞)(Xn)) where n → ∞ and
t is fixed. Let’s take t such that P (X = t) = 0. Then 1(t,∞)(·) is continuous
on a set O such that P (X ∈ O) = 0. Also, 1(t,∞)(Xn) ≤ I(t,∞)(Xn+1) because



2.8. MOMENT GENERATING FUNCTION 53

{Xn}n≥1 is increasing so Xn > t =⇒ Xn+1 > t. By the continuity of 1(t,∞)(·),
1(t,∞)(Xn) → I(t,∞)(X). By the monotone convergence theorem we have:

E(1(t,∞)(Xn)) → E(1(t,∞)(X))

because E(·) preserves the monotonicity. Therefore 1 − Fn(t) → 1 − F (t) ∀t :
P (X = t) = 0 and this set is at most countable. On the left hand side, since
P (Xn > t) → P (X > t), we obtain∫ ∞

0
P (Xn > t)dt →

∫ ∞

0
P (X > t)dt =

∫ ∞

0
(1 − F (t))dt

The limits on the right hand side and the left hand side must be the same, thus

E(X) =
∫ ∞

0
(1 − F (t))dt

Alternative proof. By Fubini’s theorem (everything is non-negative),∫ ∞

0
P (X > x)dx =

∫ ∞

0

∫
Ω
1(X(ω)>x)dP (ω)dx =

∫
Ω

∫ ∞

0
1(X(ω)>x)dx dP (ω) =

=
∫

Ω
X(ω)dP (ω) = E(X).

Proposition 2.7.6 (Dominated convergence). If Xn
as−−−→ X and ∃Y integrable such

that |Xn| ≤ Y ∀n a.s., then E(Xn) → E(X).

2.8 Moment generating function

Definition 2.8.1 (Moment generating function ofX). LetX be a random variable and
I = {s ∈ R : E(esX) < ∞} a set of real number. For s ∈ I we define M(s) = E(esX)
the moment generating function of X.

Note that 0 ∈ I, and I is convex, so it is basically an interval.

Theorem 2.8.2 (Taylor expansion at 0 of a MGF). If ∃s0 > 0 such that [−s0, s0] ⊆ I
then all the moments of X are finite ∀k E(|X|k) < +∞ and

M(s) =
∞∑
k=0

skE(Xk)
k!

for s ∈ [−s0, s0].

If the function can be written in this way it is analytic and the expression coincides
with the Taylor expansion in zero E(Xk) = M (k)(0).
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Proof. Fix k and consider |s|k|X|k
k! ≤

∑∞
j=0

|s|j |X|j
j! = e|sX| ≤ e|s0X| and E(e|s0X|) ≤

E(es0X + e−s0X) < +∞ so E(|X|k) < +∞. The goal is to show that we can exchange
the limit and the integral is to find a dominating random variable Y that is integrable
to apply the dominated convergence theorem. We have:∣∣∣∣∣

n∑
k=0

skXk

k!

∣∣∣∣∣ ≤
n∑
k=0

|s|k|X|k

k! ≤
∞∑
k=0

|s|k|X|k

k! = e|sX| ≤ e|s0X|

Therefore e|s0X| is dominating, and it is integrable. Therefore Y = e|sX| is integrable,
and by the dominated convergence theorem:

E

(
n∑
k=0

skXk

k!

)
=

n∑
k=0

skE
(
Xk
)

k! → E

( ∞∑
k=0

skXk

k!

)
=

∞∑
k=0

skE
(
Xk
)

k!

Therefore

E

( ∞∑
k=0

skXk

k!

)
=

∞∑
k=0

skE
(
Xk
)

k!

Example 2.8.3. If X ∼ exp(λ), and we want to find the moments we can compute

M(s) = E(esX) =
∫ ∞

0
esXλe−λxdx = λ

∫ ∞

0
e−x(λ−s)dx < ∞

for s < λ so our domain for the moment generating function is I = (−∞, λ)

M(s) = 1
1 − s

λ

=
∞∑
k=0

(
s

λ

)k
=

∞∑
k=0

sk

λk
=

∞∑
k=0

skE(Xk)
k!

i.e. if we can expand
E(Xk)
k! = 1

λk
∀k

Therefore
E(Xk) = k!

λk
.

If you cannot find [−s0, s0] ⊂ I the moment generating function is useless
Example 2.8.4. X ∼ Cauchy, f(x) = 1

π(1+x2) then I = {0} and MX(0) = 1. X ∼
lognormal, I = (−∞, 0].

2.9 Uniform integrability
Let X be an integrable random variable on (Ω,F , P ) . Then

lim
α→∞

E(|X|1(|X|>α)) = 0

since |X|1(|X|>α) → 0 as α → ∞ and |X|1(|X|>α) ≤ |X| < ∞. Now consider a
finite number of integrable random variables X1, . . . , Xn. We can find ∀ε > 0 ∃αi :
E(|Xi|1(|Xi|>αi)) < ε and if we take α = max(α1, . . . , αn) we get

E(|Xi|1(|Xi|>α)) ≤ E(|Xi|1(|Xi|>αi)) < ε
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so supiE(|Xi|1(|Xi|>αi)) < ε, that is supiE(|Xi|1(|Xi|>αi)) → 0 as α → ∞.
If instead we take a sequence X1, X2, . . . (so an infinite number) of integrable

random variables, we have again that ∀ε > 0 ∃αi : E(|Xi|1(|Xi|>αi)) < ε, but in this
case supi αi can be +∞ so in general we don’t have supiE(|Xi|1(|Xi|>α)) → 0 as α →
∞.

Definition 2.9.1 (Uniform integrability (UI)). A sequence of random variable {Xn}
is uniformly integrable if

∀ε > 0 ∃α : sup
n
E(|Xn|1(|Xn|>α)) < ε

which means supnE(|Xn|1(|Xn|>α)) → 0 as α → ∞.

Idea: uniformly in n, the tails of the sequence don’t matter.

Example 2.9.2. Xn ∼ N (0, n), then ∀n E(|Xn|) =
∫

|x| 1√
2πne

− 1
2

x2
n dx < +∞, so Xn

integrable. But Xn =
√
nZ in distribution, where Z = N (0, 1), thus

sup
n
E(|Xn|1(|Xn|>α)) = sup

n
E(

√
n|Z|1(

√
n|Z|>α)) = sup

n

√
nE(|Z|1(|Z|> α√

n
)) = +∞

so its not uniformly integrable.

Proposition 2.9.3 (Necessary condition for UI). Xn uniformly integrable =⇒ supnE(|Xn|) <
+∞

Proof. We can write supnE(|Xn|) = supn
[
E(|Xn|1(|Xn|>α)) + E(|Xn|1(|Xn|≤α))

]
. We

can fix α in order to have E(|Xn|1(|Xn|>α)) < ε and of course E(|Xn|1(|Xn|≤α)) ≤ α,
so supnE(|Xn|) ≤ α+ ε < +∞.

Example 2.9.4. The condition is not sufficient. Take

Xn =
{

0 1 − 1
n

1 1
n

Xn ≥ 0 and supnE(|Xn|) = 1 < +∞. However this sequence is not uniformly inte-
grable: supnE(|Xn|1(|Xn|>α)) = 1 ̸→ 0.

Proposition 2.9.5 (Sufficient condition for UI). If ∃p > 1 such that supnE(|Xn|p) <
+∞ then Xn is uniformly integrable.

Proof.

sup
n
E(|Xn|1(|Xn|>α)) = sup

n
E

( |Xn|p

|Xn|p−11(|Xn|>α)

)
≤ sup

n
E

( |Xn|p

αp−1 1(|Xn|>α)

)
≤ 1
αp−1 sup

n
E(|Xn|p)︸ ︷︷ ︸
<∞

→ 0

as α → ∞.
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Example 2.9.6. Xn ∼ N (0, σ2
n), σ2

n = E(X2
n), supn σ2

n < +∞ =⇒ Xn uniformly
integrable.

Theorem 2.9.7 (Uniform integrability criterion). Suppose we have a sequence of ran-
dom variables such that Xn → X almost surely and Xn ∈ L1, ∀n. Then the following
conditions are equivalent

1. Xn is uniformly integrable

2. X ∈ L1 and E(|Xn −X|) → 0 as n → ∞

3. E(|Xn|) → E(|X|) < +∞ (usually the easiest to verify)

Proof. We will write Xnα = Xn1|Xn|≤α and X
(α)
n = Xn1|Xn|>α. Analogously Xα =

X1|X|≤α and X(α) = X1|X|>α. We can always choose α such that P (X = α) = 0 and
this implies Xnα → Xα almost surely and X

(α)
n → X(α) almost surely.

• (1) =⇒ (2) AssumeXn uniformly integrable. ThenE(|X|) = E(lim infn |Xn|) ≤
lim infnE(|Xn|) ≤ supnE(|Xn|) < +∞ so X is integrable. Then in E(|Xn −
X|) ≤ E(|Xnα −Xα| + |X(α)

n | + |X(α)|) take α such that supnE(|X(α)
n |) < ε and

E(|X(α)|) < ε. Then |Xnα−Xα| → 0 as n → ∞ and is bounded by 2α (since they
are both smaller then α in absolute value) so we can use dominated convergence
and get that |Xnα − Xα| → 0. Then, ∀ε > 0 lim supnE(|Xn − X|) ≤ 2ε =⇒
lim supnE(|Xn −X|) = 0.

• (2) =⇒ (3) X ∈ L1, E(|Xn −X|) → 0 =⇒ E(|Xn|) → E(|X|) < +∞. Indeed,
|E(|Xn|) − E(|X|)| = |E(|Xn| − |X|)| ≤ E(|Xn −X|) → 0.

• (3) =⇒ (1) E(|Xn|) → E(|X|) < +∞ =⇒ ∀ε ∃α : lim supE(|Xn|1(|Xn|>α)) <
ε. We get rid of the absolute value assuming Xn ≥ 0, X ≥ 0. If we can prove
lim supnE(X(α)

n ) ≤ E(lim supnX
(α)
n ) then this is equal to E(X(α)) and for α

large enough this is less than ε. The inequality we want to prove is similar to
Fatou lemma but with lim sup. We get

lim sup
n

E(X(α)
n ) = lim sup

n
E(Xn −Xnα) ≤ lim sup

n
E(Xn) + lim sup

n
E(−Xnα)

≤ E(X) − lim inf
n

E(Xnα) ≤ E(X) − E(lim inf
n

Xnα)

≤ E(lim sup
n

(Xn −Xnα)) ≤ E(lim supX(α)
n )

Proposition 2.9.8 (Convergence of the expectation and UI). If Xn is uniformly
integrable and Xn → X almost surely then E(Xn) → E(X).

Proof. |E(Xn) − E(X)| = |E(Xn −X)| ≤ E(|Xn −X|) → 0 as n → ∞.

Suppose Xn → X, E(Xn) → E(X), Xn ≥ 0. Then Fatou lemma E(lim inf Xn) ≤
lim inf E(Xn) =⇒ E(lim supXn) ≤ lim supE(Xn), in this case the inequation is the
opposite.
Example 2.9.9. Toss a coin infinitely many times, Zi = 21Ai , Ai ="H" at toss i,
P (Ai) = 1

2 . Consider Xn = ∏n
i=1 Zi, then Xn → 0 almost surely because if you observe

a tail the product is zero. Then E(Xn) = ∏n
i=1E(Zi) = 1, so 0 = E(lim supXn) ̸≥

lim supE(Xn) = 1.
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2.9.1 Expectation and series

Proposition 2.9.10 (Expectation and series for non negative r.v.’s). Xn ≥ 0 ∀n =⇒
E (∑∞

n=1Xn) = ∑∞
n=1E(Xn).

Proof. E (limn→∞
∑n
i=1Xi) = limn→∞E (∑n

i=1Xi) = limn→∞
∑n
i=1E(Xi) = ∑∞

n=1E(Xi)
using monotone convergence.

Proposition 2.9.11 (Expectation and series for general r.v.’s). If
∑∞
n=1E(|Xn|) <

+∞ =⇒ E (∑∞
n=1Xn) = ∑∞

n=1E(Xn).

Proof. |
∑∞
n=1Xn| ≤

∑∞
n=1 |Xn| ∈ L1 and by dominated convergence E (∑∞

n=1 |Xn|) =∑∞
n=1E(|Xn|) < +∞.

2.10 Inequalities
Proposition 2.10.1 (Jensen inequality). Let X be a random variable with finite ex-
pectation E(X). Let U be an interval such that P (X ∈ U) = 1 and let φ a convex
function on U . Then

E(φ(X)) ≥ φ(E(X))

Moreover, if φ is strictly convex on an interval V such that P (X ∈ V ) > 0, then
E(φ(X)) > φ(E(X)).

Proof. ∀x0 ∈ U ∃a, b ∈ R such that φ(x0) = ax0 + b and φ(x) ≥ ax0 + b.
Now choose x0 = E(X), so that

φ(E(X)) = aE(X) + b.

Furthermore

φ(X(w)) ≥ aX(w) + b with probability 1
⇓

E(φ(X)) ≥ aE(X) + b = φ(E(X))
⇓

E(φ(X)) ≥ φ(E(X)).

Example 2.10.2. If φ(X) = |X|, then E(|X|) ≥ |E(X)|. If φ(X) = X2, then E(X2) ≥
E2(X).

Proposition 2.10.3 (Markov inequality). Let X be a random variable and p > 0.
Then

∀α > 0 P (|X| ≥ α) ≤ E(|X|p)
αp

.

Proof.

E(|X|p) = E(|X|p1(|X|<α)) + E(|X|p1(|X|≥α)) ≥ E(|X|p1(|X|≥α)) ≥
≥ αpE(1(X>α)) = αpP (|X| ≥ α).
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If we take p = 2 and we replace X with the centered variable X − E(X), we get
the Chebyshev inequality.

Proposition 2.10.4 (Chebyshev’s inequality). Let X be a random variable. Then

P (|X − E(X)| > α) ≤ V ar(X)
α2 ,

where V ar(X) is the variance of X.

Proof. Direct consequence of Markov inequality.

Definition 2.10.5 (Conjugate numbers). Two numbers p, q > 1 are conjugate if 1
p +

1
q = 1.

Example 2.10.6. Some couples of conjugate numbers are: (2, 2), (3, 3/2), (4, 4/3).

Proposition 2.10.7 (Hölder’s inequality). Let p, q be conjugate numbers and X,Y
random variables. Then

E(|XY |) ≤ (E(|X|p))1/p(E(|X|q))1/q.

We introduce the notation

∥X∥p = (E(|X|p))1/p.

Note that here it is just a notation, but later we will define the concept of norm in Lp
space, that uses this notation, in the same way.

E(|XY |) = ∥X∥p∥Y ∥q

Proof. We want to show that E|XY |
∥X∥p∥Y ∥q

≤ 1. First of all let us recall a property of
numbers:

1
p
ap + 1

q
bq ≥ ab, ∀a, b ≥ 0

To prove it, let’s assume that a, b > 0 (otherwise it is obvious). Let’s write a = es

and b = et. Then, by convexity of the exponential function and keeping in mind that
1
q = 1 − 1

p ,
1
p
ap + 1

q
bq = 1

p
esp + 1

q
esq ≥ e

1
p
ps+ 1

q
qs = eset = ab.

Hence we can take a = |X|
∥X∥p

and b = |Y |
∥Y ∥q

so that, assuming ∥X∥p, ∥Y ∥q > 0,

1
p

|X|p

∥X∥pp
+ 1
q

|Y |q

∥Y ∥qq
≥ |XY |

∥X∥p∥Y ∥q

We take expectations on both sides and we recall that ∥X∥pp = E(|X|p) and ∥Y ∥qq =
E(|Y |q):

1
p

· 1 + 1
q

· 1 ≥ E(|XY |)
∥X∥p∥Y ∥q

.

Hence
E(|XY |) ≤ ∥X∥p∥Y ∥q.

If ∥X∥p = 0 then (E(|X|p))1/p = 0, that is E(|X|p) = 0. This implies that X = 0 a.s.
and so the inequality would be 0 ≤ 0, that is true.
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A particular case of the last proposition is the Cauchy-Schwarz inequality, that is
obtained taking p = q = 2.

Proposition 2.10.8 (Cauchy-Schwarz inequality). Let X,Y be two random variables.
Then

E(|XY |) ≤
√
E(X2)E(Y 2).

Proof. Hölder inequality with p = q = 2.

Application 2.10.9. By Jensen and Cauchy-Schwarz inequalities we get

|E(XY )| = E(|XY |) ≤
√
E(X2)E(Y 2)

Then taking X − E(X) and Y − E(Y ) in place of X and Y

|Cov(X,Y )| ≤
√
V ar(X)V ar(Y ).

Furthermore it can be proved that

|Cov(X,Y )| =
√
V ar(X)V ar(Y ) ⇐⇒ Y − E(Y )

V ar(Y ) = X − E(X)
V ar(X) .

Proposition 2.10.10 (Lyapounov’s inequality). If β ≥ α ≥ 1 then ∥X∥β ≥ ∥X∥α

Proof. Consider Holder’s inequality

E(|XY |) ≤ (E|X|p)
1
p (E|Y |q)

1
q

and apply it taking Y = 1, X = |X|α and p = β
α

E(|X|α) ≤
(
E(|X|α

β
α )
)α

β = (E(|X|β))
α
β

⇕

E(|X|α)
1
α ≤ (E(|X|β))

1
β

⇕
∥X∥α ≤ ∥X∥β.

Proposition 2.10.11 (Minkowsky’s inequality). Let X,Y be two random variables
and p ≥ 1. Then

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p

Proof. If p = 1, by the triangular inequality E(|X + Y |) ≤ E(|X| + |Y |) = E(|X|) +
E(|Y |). If p > 1,

E(|X + Y |p) = E(|X + Y |p−1|X + Y |)
(1)
≤ E(|X + Y |p−1|X|) + E(|X + Y |p−1|Y |)

(2)
≤
[
E
(
|X + Y |(p−1)q

)] 1
q (E|X|p)

1
p +

[
E
(
|X + Y |(p−1)q

)] 1
q (E|Y |p)

1
p

≤ [E(|X + Y |p)]
1
q ∥X∥p + (E|X + Y |p)

1
q ∥Y ∥p.

Where
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(1) Triangle inequality;

(2) Holder inequality on both addends using |X + Y |p−1 as first random variable
(of the two of the Holder inequality) in both cases and X,Y as second random
variables respectively in the first and second addend.

Therefore we have

E(|X + Y |p) ≤ [E(|X + Y |p)]
1
q (∥X∥p + ∥Y ∥p)

⇕

(E|X + Y |p|)1− 1
q ≤ ∥X∥p + ∥Y ∥p
⇕

(E|X + Y |p|)
1
p ≤ ∥X∥p + ∥Y ∥p

⇕
∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p



Chapter 3

Lp spaces

3.1 Random variables and Lp spaces

Definition 3.1.1 (Lp space). Let p ≥ 1 and consider (Ω,F , P ) .

Lp(Ω,F , P ) = Lp = {X on (Ω,F , P ) : E(|X|p) < ∞}.

Proposition 3.1.2 (Lp as a vector space). Lp is a linear/vector space:

1. if X ∈ Lp and a ∈ R, then aX ∈ Lp;

2. if X,Y ∈ Lp, then X + Y ∈ Lp.

Proof. 1. X ∈ Lp and E(|X|p) < ∞. Let (Zn)n∈N be a sequence of simple, ≥ 0 ran-
dom variables such that Zn ↑ |X|p, then lim

n
E(Zn) < ∞ (by Monotone conver-

gence). Then |a|pZn ↑ |a|p|X|p = |aX|p and lim
n
E(|a|pZn) = |a|pE(|X|p) < ∞.

2. X,Y ∈ Lp.

E(|X + Y |p) ≤ E(2p max(|X|p, |Y |p)) ≤ 2pE(|X|p + |Y |p) =
= 2p[E(|X|p)︸ ︷︷ ︸

<∞

+E(|X|q)︸ ︷︷ ︸
<∞

] < ∞.

Introduce the norm ∥X∥p = (E(|X|p))
1
p .

1. ∥X∥p ≥ 0 and ∥X∥p = 0 if and only if X = 0 a.s.

2. ∥aX∥p = |a|∥X∥p

3. ∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥q by Minkowski

Definition 3.1.3 (Convergence in Lp). Xn
Lp

−−−→ X if ∥Xn −X∥p → 0 as n → ∞.

Xn
Lp

−−−→ X ⇐⇒ (E(|Xn −X|p))
1
p → 0

⇐⇒ E(|Xn −X|p) → 0.

61
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Proposition 3.1.4 (Inclusion of Lp spaces). Take Lp, Lq with 1 ≤ p < q. Then
Lq ⊂ Lp, that is

E(|X|q) < ∞ =⇒ E(|X|p) < ∞.

Furthermore by Lyapounov ∥X∥p ≤ ∥Y ∥q.

Proposition 3.1.5 (Relationship between Lp

−−−→ and p−−→). Convergence in Lp im-
plies convergence in probability:

∥Xn −X∥p → 0 =⇒ Xn
p−−→ X.

Proof.
P (|Xn −X| > ε) ≤ E(|Xn −X|p)

εp
→ 0 as n → ∞

Where the inequality is given by Markov inequality.

Definition 3.1.6 (Cauchy sequence). (xn)n∈N is a Cauchy sequence if ∥xn−xm∥ → 0
as n,m → ∞.

Definition 3.1.7 (Complete space). A space is complete if every Cauchy sequence
converges.

Example 3.1.8. R is complete.

Theorem 3.1.9 (Completeness of Lp). Lp is complete.

Proof. (Xn)n∈N Cauchy means that

∀ε > 0 ∃n0 : ∥Xn −Xm∥p < ε ∀n,m ≥ n0.

This can be written as

∀k ∈ N ∃nk : ∥Xn −Xm∥pp <
1

2kp
1
2k ∀n,m ≥ nk.

Then
∞∑
k=1

P (|Xnk
−Xnk+1 | > 1

2k ) ≤
∞∑
k=1

E(|Xnk
−Xnk+1 |p)

1/2kp ≤
∞∑
k=1

1/2kp1/2k
1/2kp = 1 < +∞,

where the first inequality is by Markov inequality. By Borel-Cantelli first lemma

P

(
|Xnk

−Xnk+1 | > 1
2k i.o.

)
= 0.

Hence, if we take

H =
{

|Xnk
−Xnk+1 | > 1

2k i.o.
}c

=
{

|Xnk
−Xnk+1 | ≤ 1

2k ult.
}
,

then P (H) = 1 and ∀ω ∈ H,

|Xnk
(ω) −Xnk+1(ω)| ≤ 1

2k

for nk large enough.
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Hence, for h > k,

|Xnk
(ω) −Xnh

(ω)| ≤ |Xnk
(ω) −Xnk+1(ω)| + · · · + |Xnh−1(ω) −Xnh

(ω)|

≤
h∑
j=k

1
2j ≤

∞∑
j=k

1
2j → 0 as k → +∞,

that means that (Xnk
(ω))n∈N is a Cauchy sequence in R. This implies that

∀ω ∈ H ∃ lim
k→∞

Xnk
(ω) = X(ω) with X r.v.

and so Xnk

as−−−→ X. Now we want to show also convergence in Lp.

E(|Xnk
−X|p) ≤ E(lim inf

j→∞
|Xnk

−Xnj |p) ≤ lim inf
j→∞

E(|Xnk
−Xnj |p)

≤ lim inf
j→∞

1
2kp2k → 0 as k → +∞,

where the second inequality is due to Fatou Lemma. Hence, Xn
Lp

−−−→ X, indeed

∥Xn −X∥p ≤ ∥Xn −Xnk
∥p + ∥Xnk

−X∥p → 0.

because both addends are smaller than every ε > 0, respectively because (Xn)n∈N is
Cauchy and because of almost sure convergence.

So Lp is a complete, normed, linear space, that is Lp is a Banach space. However
Lp is not separable. In general, you can always approximate X with simple random
variables

Xn =
kn∑
i=1

a
(n)
i 1

A
(n)
i

with a(n)
i ∈ Q, the problem is with A(n)

i ∈ F . If F is not too large we can approximate
{A(n)

i } with a countable set, so that the following theorem holds

Theorem 3.1.10 (Separability of Lp). If F is countably-generated (i.e. there exists
a sequence {An} of subsets of X, such that F = σ(A1, A2, . . . )), then Lp(Ω,F , P ) is
separable.

3.1.1 L2 as an Hilbert space

An interesting case is L2: on this space we can define an inner product

E(XY ) = ⟨X,Y ⟩

which is linear, symmetric and ⟨X,X⟩ ≥ 0 and ⟨X,X⟩ = 0 ⇐⇒ X = 0. So the L2

norm
∥X∥2 =

√
⟨X,X⟩ =

√
E(X2)

comes from an inner product, which means that L2 is an Hilbert space.
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Chapter 4

Laws of large numbers

Let {Xn}n∈N be a sequence of random variables on a probability space (Ω,F , P ) . For
every n, let

Sn =
n∑
k=1

Xk

then Sn
n is the average of X1, . . . , Xn.

4.1 Weak and strong laws

Definition 4.1.1 (Weak law of large numbers (WLLN)). We say that {Xn} obeys a
weak law of large numbers if Sn

n converges in probability.

Definition 4.1.2 (Strong law of large numbers (SLLN)). We say that {Xn} obeys a
strong law of large numbers if Sn

n converges in almost surely.

There are many theorems ensuring the convergence that differ in the assumptions
and in the limit.

Theorem 4.1.3 (WLLN for uncorrelated random variables). Let {Xn}n∈N be a se-
quence of square integrable random variables, i.e. Xn ∈ L2 ∀n, such that ∀n E(Xn) =
µ, V ar(Xn) = σ2 and Cov(Xn, Xn+k) = 0 ∀k ≥ 1. Then:

Sn
n

p−−→ µ

Proof. We will prove Sn
n → µ in L2 because, as shown above, this implies convergence

in probability. Notice that

E

(
Sn
n

)
=

n∑
k=1

E

(
Xk

n

)
= 1
n

n∑
k=1

E(Xk) = µ

Therefore, since the Xk are uncorrelated and so V ar(∑n
k=1Xk) = ∑n

k=1 V ar(Xk),

E

(
Sn
n

− µ

)2
= V ar

(
Sn
n

)
= 1
n2V ar(Sn) =

∑n
k=1 V ar(Xk)

n2 = σ2

n
→ 0

and the argument follows by Chebychev’s inequality.
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If the correlation is not zero but is weak for random variables far apart then the
WLLN still holds.
Theorem 4.1.4 (WLLN for asintotically uncorrelated random variables). Let {Xn}n∈N
be a sequence of square integrable random variables, i.e. Xn ∈ L2 ∀n, such that ∀n
E(Xn) = µ, V ar(Xn) = σ2, Cov(Xn, Xn+k) = γ(k) ∀k ≥ 1. If γ(k) → 0 as k → ∞,
then:

Sn
n

p−−→ µ.

Proof. We compute V ar(Sn
n )

V ar

(
Sn
n

)
= 1
n2V ar

(
n∑
i=1

Xi

)

= 1
n2

n∑
i,j=1

Cov(Xi, Xj)

= 1
n2 (nσ2 + 2(n− 1)γ(1) + 2(n− 2)γ(2) + · · · + 2γ(n− 1))

≤ 1
n2 (2n|γ(0)| + 2n|γ(1)| + 2n|γ(2)| + · · · + 2n|γ(n− 1)|

= 2
n−1∑
i=0

|γ(k)|
n

→ 0

Theorem 4.1.5 (Kolmogorov SLLN). Let {Xn}n∈N be a sequence of independent,
identically distributed random variables with finite expectation, i.e. Xn ∈ L1 ∀n,
E(Xn) = µ < ∞. Then:

Sn
n

as−−−→ µ.

Proof. (1) If the thesis is true for non-negative random variables, then it is true in
general:∑n

k=1Xk

n
=
∑n
k=1X

+
k

n
−
∑n
k=1X

−
k

n
as−−−→ E(X+

1 ) − E(X−
1 ) = E(X1) = µ,

where the positive and the negative part of the Xk’s converge to their mean by
assumption of this point.

(2) We have not assumed a finite variance (L2) for Xk’s. In order to get a finite
variance, we truncate the Xk by defining X∗

k = Xk1(Xk≤k). Notice how X∗
k is

closer and closer to Xk as k increases. Also define S∗
n = ∑n

k=1X
∗
k .

We want to show that S∗
n
n

as−−−→ µ implies that Sn
n

as−−−→ µ. In order to do this,
we prove that P (X∗

k ̸= Xk i.o.) = 0, indeed if the two sums differ only for a finite
number of elements, then the limit is the same. Now observe that:

∞∑
k=1

P (X∗
k ̸= Xk)

(1)=
∞∑
k=1

P (Xk > k) =
∞∑
k=1

∫ k

k−1
P (Xk > k)dt

(2)
≤

∞∑
k=1

∫ k

k−1
P (Xk > t)dt (3)=

∫ ∞

0
P (X1 > t)dt = E(X1)

< ∞,



4.1. WEAK AND STRONG LAWS 67

where (1) is due to definition of K∗
k , (2) is because t < k inside the integral, since

the domain of integration is (k − 1, k), and (3) is due the identical distribution
of the Xk’s.
Therefore by BC1 we obtain P (X∗

k ̸= Xk i.o.) = 0 and so we now have that

S∗
n

n
as−−−→ µ =⇒ Sn

n
as−−−→ µ

which would mean that we can continue with X∗
k .

(3) Now it remains to prove that S∗
n
n

as−−−→ µ (it will be done in the following three
points).
Let α > 1 and un = ⌊αn⌋. un is a subsequence of n and we want to show that

S∗
un

− E(S∗
un

)
un

as−−−→ 0

that has as a sufficient condition
∞∑
n=1

P

(∣∣∣∣S∗
un

− E(S∗
un

)
un

∣∣∣∣ > ε

)
< +∞.

So we compute the summands of this series

P

(∣∣∣∣S∗
un

− E(S∗
un

)
un

∣∣∣∣ > ε

)
Cheb.

≤
V ar(S∗

un
)

u2
nε

2 =
∑un
k=1 V ar(X∗

k)
u2
nε

2 ≤
∑un
k=1E(X∗2

k )
u2
nε

2

=
∑un
k=1E(X2

k1(Xk≤k))
u2
nε

2 ≤
∑un
k=1E(X2

k1(Xk≤un))
u2
nε

2

iid=
unE(X2

11(X1≤un))
u2
nε

2 =
E(X2

11(X1≤un))
unε2 .

Now summing these terms we obtain (we remove ε2, but this does not change
anything):

∞∑
n=1

E(X2
11(X1≤un))
un

MCT= E

(
X2

1

∞∑
n=1

1
un
1(X1≤un)

)
= (⋆)

Let us define N = N(ω) = inf{n ∈ N : un > X1(ω)}. Then

(⋆) = E

(
X2

1

∞∑
n=N

1
un

)
≤ E

(
X2

1

∞∑
n=N

2
αn

)
= E

(
X2

1

∞∑
n=0

2
αn+N

)

= E

(
X2

1
2
αN

∞∑
n=0

1
αn

)
≤ 2

1 − 1
α

E

(
X2

1
αN

)
≤ 2E

(
X2

1
uN

)
≤ 2E

(
X2

1
X1

)

= 2E(X1) 1
1 − 1

α

< ∞.

Therefore the series converges and by BC1 the sufficient condition is verified and
so we obtain the result we were aiming at, that is S∗

un
−E(S∗

un
)

un

as−−−→ 0.
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(4) From Step 3 we know that (S∗
un

−E(S∗
un

))
un

as−−−→ 0, now we want to show that
S∗

un
un

as−−−→ µ (and the last point will be S∗
n
n

as−−−→ µ).
We also have that

E(X∗
k) = E(Xk1(Xk≤k)) = E(X11(X1≤k)) → µ,

by MCT, since X11(X1≤k) ↑ X1. On the other hand, we have

E(S∗
un

)
un

= E
(∑un

k=1X
∗
k

)
un

=
∑un
k=1E (X∗

k)
un

We now use Cesàro sums: if an → a, then 1
n

∑n
k=1 ak → a. In our case, an =

E(X∗
n) → a = µ. Therefore

E(S∗
un

)
un

=
∑un
k=1E(X∗

k)
un

→ µ.

Now, applying the triangle inequality, we obtain:∣∣∣∣S∗
un

un
− µ

∣∣∣∣ ≤
∣∣∣∣S∗

un
− E(S∗

un
)

un

∣∣∣∣+ ∣∣∣∣E(S∗
un

)
un

− µ

∣∣∣∣ as−−−→ 0

Where the first term in the sum converges a.s. to 0 for the third point and the
second is a sequence of real numbers that converges to 0 for what we have just
shown.

(5) Up until now we have a.s. convergence for a subsequence represented by un. We
now want to show that

S∗
k

k
as−−−→ µ.

With α fixed, ∀k ∃n = n(k) such that un−1 ≤ k ≤ un and so

(⋆1) =
S∗
un−1

k
≤
S∗
un

k
≤
S∗
un

k
= (⋆2).

But then

(⋆1) ≥
S∗
un−1

un−1
=
S∗
un−1

un−1

un−1
un

as−−−→ µ
1
α
,

since
S∗

un−1
un−1

as−−−→ µ and un−1
un

∼ αn−1

αn → 1
α , and also

(⋆2) ≤
S∗
un

un−1
=
S∗
un

un

un
un−1

→ µα,

since S∗
un
un

as−−−→ µ and un
un−1

∼ αn

αn−1 → α.
To conclude, ∀α > 1, with probability 1

µ
1
α

≤ lim inf S
∗
k

k
≤ lim sup S

∗
k

k
≤ µα.
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Now we take α of the kind 1 + 1
j , j ∈ N (indeed if we took ∀α we would have

had some problems with the following step, however it is sufficionet to take a
countable number of α).

P


∞⋂
j=1

(
µ

1 + 1/j ≤ lim inf S
∗
k

k
≤ lim sup S

∗
k

k
= µ

) = 1.

Hence
P

{
lim inf S

∗
k

k
= lim sup S

∗
k

k
= µ

}
= 1.

Example 4.1.6. Let {Xn} be i.i.d. random variables with distribution function F . Let

Fn(x) = 1
n

n∑
k=1

1(−∞,x](Xk)

the empirical distribution function. Then

E(1(−∞,x](Xk)) = P (Xk ≤ x) = F (x)

so we can say that Fn(x) → F (x) almost surely as n → ∞.
What can we say if E(Xn) = +∞?

Theorem 4.1.7 (SLLN: infinite case). Let {Xn}n∈N be a sequence of independent,
identically distributed random variables with expectation E(Xn) = +∞. Then:

Sn
n

as−−−→ +∞

Proof. Without loss of generality, we can assume that Xn ≥ 0. Fix M > 0 and let
X∗
n = Xn1(Xn<M). Then

Sn
n

=
∑n
k=1Xk

n
≥
∑n
k=1X

∗
k

n
as−−−→ E(X∗

1 ),

where the convergence is guaranteed by the Kolmogorov SLLN. Then as M → ∞ we
have that E(X∗

1 ) → ∞ by MCT and so

lim inf
n

Sn
n

≥ E(X∗
1 ) → ∞.

Theorem 4.1.8. Let {Xn}n∈N be a sequence of independent, identically distributed
random variables such that ∃E(Xn). Then Sn

n
as−−−→ E(X1), both if the expectation is

finite or infinite.

Proof. Just join last theorem and Kolmogorov SLLN.

Remark 4.1.9 (Behaviour of an i.i.d. sequence with no expectation defined). If {Xn}n∈N
are i.i.d. and ∄E(Xn) then there are three possibilities

1. Sn
n → +∞ almost surely
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2. Sn
n → −∞ almost surely

3. P ((lim inf Sn
n = −∞) ∩ (lim sup Sn

n = +∞)) = 1

Example 4.1.10. Xn ∼ Cauchy, independent, with density f(x) = 1
π(1+x2) .

E(X+
n ) = +∞ and E(X−

n ) = +∞, so ∄E(Xn) ∀n.
Then P ((lim inf Sn

n = −∞) ∩ (lim sup Sn
n = +∞)) = 1.
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