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Chapter 1

Probability Spaces

Probability deals with random experiments, which means observing something where
we don’t know the exact result, but we can say what are all the possible outcomes.

1.1 Definitions

Definition 1.1.1 (Sample space). In a random experiment, the sample space is the
space of all the possible outcomes of the experiment, and we denote it as 2.

Ezample 1.1.2 (Tossing a coin). The possible outcomes are "head" or "tail". Setting
"head"= 1 and "tail'= 0 as a convention, we say that {2 = {0,1}.

Ezample 1.1.3 (Tossing a coin infinitely many times). The sample space is a set of
sequences ) = {w = (wy,wa,...) rw; =0,1,i=1,2,...}.

Ezample 1.1.4 (Picking a random point from 0 to 1). Q = (0, 1].

Ezxample 1.1.5 (Pricing an asset from time ¢ = 0 to time t = T). Q = {w : [0,1] —
R s.t. w continuous and positive}

Definition 1.1.6 (Event). An event A is a subset of the sample space, A C ().

Ezample 1.1.7 (Head at first toss for two tosses). Toss a coin twice and consider the
event A "heads at first toss". We have

Q= {(0,0),(0,1),(1,0),(1,1)} = {0,1} x {0,1} = {0,1}?

and
A={(1,0),(1,1)} = {1} x {0,1}.

Ezxample 1.1.8 (Head at first toss for infinite tosses). Toss a coin infinitely many times
and consider the event A "heads at first toss". We have

Q={0,1}

and

A={w=(w1,ws,...):w; =1} = {1} x {0,1}°°.
If A and B are two events, then

e ACis the event "not A";
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e AN DB is the event "A and B";

e AU B is the event "A or B";

e B\ A= BN A€ is the event "B, but not A";

o If AC B, then "A implies B" and "B is implied by A".
Moreover,

o the empty set () corresponds to the impossible event;

o the whole set ) corresponds to the certain event.

If {A;}ier is a family of events,

e the union (J;cp A¢ is the event that occurs if and only if at least one of the A;’s
occur;

« the intersection (e A¢ is the event that occurs if and only if all the A;’s occur;
The following properties (De Morgan laws) hold

o (Uer At = Mier Af

o (Mier At)° = User Af

1.2 Algebra and o-algebra

Among all the events, we want to select a class having some stability properties with
respect to complementation and union; such a classed is called an algebra.

Definition 1.2.1 (Algebra). A class A of subsets of € is an algebra if
(i) Q€ A
(i) Ac A = A°c A
(i) A, Be A = AUBEe A
Given this definition, some properties follow
e A ash=0c A

e A closed under finite union, i.e.

{A1,4,.. ., A} CA = [JAi=((A1UA) U4y)---UA,) € A

=1

e A closed under finite intersection, i.e.

{Al,AQ,...,An}gA — ﬂAz: <UA§> cA

i=1 i=1
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So we can say that and algebra is a class stable by complementation and finite unions
(or finite intersections).

If we require our class of subsets to be also closed by countable union, then we
obtain a o-algebra.

Definition 1.2.2 (o-algebra). A class F of subsets of €2 is a o-algebra if
e Qe F;
e AcF = A°c F;
s {Ahen ©F = Ui dn € F.

Remark 1.2.3 (Finite union for a o-algebra). A o-algebra is an algebra because we
can write a finite union as a countable union: (J!' ; 4; = Ay UAsU---UA,UD....
However, an algebra is not a o-algebra in general.

Ezample 1.2.4 (An algebra not stable by countable union). @ = N, A C N, A is
finite if it contains a finite number of elements, A cofinite if A¢ is finite. Consider
C = {A C N : A finite or cofinite}. C is an algebra but not a o-algebra, indeed the set

o> 1{2n} is the set of even numbers, which is the union of finite sets, but it is neither
finite nor cofinite.

Ezample 1.2.5. Q = {0, 1}°°, for fixed n consider the sequences of length n, A C {0,1}".
A cylinder on A is defined as Cp,(A) = {w = (w1, w2,...) : (w1,...,wp) € A}. The
class C = {C,(A) : A C {0,1}",n > 1} is an algebra but is not a o-algebra. For
instance, w = (0,0,...) = N,en Cn((0,0,...,0)), but does not belong to C.

There are two particular o-algebras:
o Fo=1{0,Q}, the trivial o-algebra;
o« P(Q)={A:ACQ}, the power o-algebra.

Those are respectively the smallest and largest o-algebras on €2, i.e. for any F, o-
algebra on Q, Fy C F C P(Q).

Definition 1.2.6 (Generated o-algebra). Let C be a class of events of 2. Then the
o-algebra generated by C is
o(C) = ﬂ g.

Goc¢
G o-algebra

Note that o(C) is well-defined as
e the intersection is not empty because it contains at least the power o-algebra;
e it is a o-algebra because it is the intersection of o-algebras.
Moreover, it holds
e 0(C)DC;
o if G O C and G is a o-algebra, then G D o(C).

In other words, o(C) is the smallest o-algebra that includes C.
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Remark 1.2.7 (Expansion from the inside and generated o-algebra). The expansion of
a o-algebra is an expansion from the outside. Hence, in general, we cannot just add
events from the inside through complementation and countable unions/intersections.
This is possible only in the discrete case.

Ezample 1.2.8. If we take = (0,1] and C = {disjoint union of intervals (a,b] : 0 <
a < b <1} then C is an algebra and we define B((0, 1]) = o(C) the Borel o-algebra on
(0,1].

¢ B((0.1]) 3 {a} =M%y (a — £.al;
o B((0,1]) D {finite sets, countable sets};
o B((0,1]) 2 {open sets, closed sets}.

Ezxample 1.2.9. Q = {0,1}*°, C = {C,(A) : A C {0,1}",n > 1}, F = 0(C). Consider
a point = € (0,1] and its binary representation x = 272, 3},  ~ (x1,%2,...). This
suggests that Q@ = (0,1] and Q@ = {0,1}* are very similar and also F = o(C) and

B((0,1]) are similar.

1.3 Probability measures

Definition 1.3.1 (Finitely additive probability). Let A be an algebra of events on
a sample space 2. Then a finitely additive probability (FAP) on A is a function
P : A — R such that the following properties hold

(i) Non-negativeness: P(A) >0 VA € A;
(ii) Unitary total mass: P(Q) = 1,

(iii) Additivity: If {A,..., A,} C Ais a sequence of disjoint events (i.e. A;NA; =0

Remark 1.3.2 (Properties of a FAP). ¢ P(()) = 0, since QN0 = (), then P(Q) =
P(QUO) = P(Q) + P(0), hence P()) = 0.

e P(A) = 1— P(A°), since ANA® = () and AU A° = Q, then 1 = P(R) =
P(A) + P(A°).

« ACB = P(B\A) = P(B)— P(A), thus P(A)

< P(B), since AN(B\A) =10
and AU (B\ A) = B, then P(B) = P(A) + P(B\ A)

> P(A).

o P(ULAi)=>"7 (—1)”“”L Zi1<i2<-~~<ik P(A;, N---NA;,), as it can be proved
by induction. For n =2, P(A;UAs) = P(A;)+ P(Az) — P(A1 N Az). Forn =3,
P(AlUAQUAg) = P(A1)+P(A2)+P(A3)—P(A1 ﬂAg)—P(Al ﬂAg)—P(AQO
A3) + P(A1 NAsN Ag)

o P(UL;A;i) < >, P(4;), since we can consider Ay = Ay and A, = Ap \
(Ukzl ) C A, for n > 2 and obtain
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Definition 1.3.3 (Probability measure). Let A be an algebra of events on a sample
space €. A probability measure (PM) on A is a function P : A — R such that the
following properties hold

(i) Non-negativeness: P(A) >0 VA€ A;
(ii) Unitary total mass: P(Q) = 1,

(iii) Countable additivity (or o-additivity): If {Ay,}nen € A is a countable sequence
of disjoint events such that |J;=; A; € A, then P(Us2; 4;) = > 2 P(4;).

Remark 1.3.4 (Finite additivity of a PM). A probability measure is a finite additive
probability. Indeed, we just need to prove that finite additivity holds. First, let us
notice that for a PM P, P() = 0. In fact,

I

rwy=r(0o) =3 rm={0™ 17070

Now, let Ay,..., A, € F, then

P(AjU---UA,)=PAU---UA,UDU---UDU...)
P(A) 4+ P(A) +0+---40+...
P(Ay) +---+ P(A,).

+
+
1.3.1 Equivalent definitions to o-additivity

In general, for a FAP countable additivity fails to hold, i.e.
o0 o
i=1 i=1

Ezample 1.3.5 (A FAP not o-additive). Q = N, A4 = {finite and cofinite sets}. We
define

P(4) = {0 if A is finite

1 if A is cofinite

P is a FAP, since disjoint cofinite sets do not exists so we never have 1 4+ 1. But if we
consider N = [J22;{n} we can see that

o
1=P(N)# > P({n})=0
n=1
In general we are not allowed to go from the finite case to the countable case with
the equality, but only one inequality is satisfied.

Proposition 1.3.6 (Superadditivity). If P is a finitely additive probability measure,
{Ap}nen C A pairwise disjoint with \J;2—; An € A, then

P ([’j An> >3 P

n=1 n=1
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Proof. U2, Ai 2 Uj=; 4; and P is monotone. Hence,

P ([’j AZ) > p ((j Az) )

i=1
The statement holds by taking the limit as n — 4-oc0. O

This result is very useful because we only need to show the opposite inequality to
prove that a FAP is a PM, i.e. o-additivity holds.
Another way to prove if a FAP is og-additive is to show other equivalent properties.

Definition 1.3.7 (Increasing/decreasing sequence of events). We say that {A,}nen
is an increasing (decreasing) sequence of events if A, C A,11 (A, 2 Apy1), Vn € N
For an increasing (decreasing) sequence of events, we define

Ii;LnAn = G A, (hﬁnAn = ﬁ An> .

n=1 n=1

For short, we write

Ag /A= GAn (An\A: ﬁAn>.

n=1 n=1

Definition 1.3.8 (Continuity on monotone sequences). Let © be a sample space and
A be an algebra on ). We say that a FAP P on A is continuous on monotone spaces
if one of the following equivalent definition holds.

(1) For any {4, }neny € A such that 4,, /A € A, it holds
g <nL:Jl An) B ”glfoo P(An).
(2) For any {4, }neny € A such that A4, \, A € A, it holds
g <n@1 An) - "Erfoo P(An).

Definition 1.3.9 (Continuity on (}). Let 2 be a sample space and A be an algebra on
. We say that a FAP P on A is continuous on () if for any {4, },en € A such that
Apn N\ 0, it holds

ngrfoo P(A,) =0.
Remark 1.3.10 (Continuity on monotone sequences implies continuity on ). It is trivial
by the fact that P(()) = 0 to show that if P is continuous on monotone sequences, then
P is continuous on .

Actually the converse result holds as well as can be shown by the following theorem,
which primarily gives the equivalence between continuity on monotone sequences and
o-additivity.

Theorem 1.3.11 (Equivalent properties to o-additivity). Let Q be a sample space, A
an algebra on it and P be a FAP on A.
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(i) If P is countably additive, then P is continuous on monotone sequences;
(it) If P is continuous on 0, then P is countably additive.

Proof. (i) Let {A,}nen be an increasing sequence. Let us define

By = Ay;
By = Ay \ Ay;

B,=A,\ 4,1 forn>2.

Then, the B;’s are pairwise disjoint and (J;ey Ai = U;eny Bi- Hence,

i=1 i=1 i=1

=1

(i) Let {Bn}nen C A pairwise disjoint and let B := {J,cn Bn.
Let us define i
A =B\ | By,
n=1

k—

then Az N\, 0 and P(A;) —> 0. Consequently, since

k k
P(Ak):P<B\UBn>:P(B)_ZP(Bn)a

n=1

we get

P(A) = (B) — fj P(B,) 20 = P(B) = i P(B,).

n=1 n=1

1.4 Choice of the o-algebra

If © is finite or countable, we can take F = P(2). For instance, if Q = {wq,wo,...}
then p; := P({w;}) and P(A) = >, c 4 pi- But what if Q is not countable? We could
still use F = P(2) but that is not a good choice in general as shown in Vitali’s example.

Ezample 1.4.1 (Vitali’s example). We want to define a probability measure, A on
Q = (0,1] that is translation invam’anﬂ However, we will show that this is not
possible if we take F = P((0, 1]) as our o-algebra. Let us define

Oy = z+y r+y<1
r+y—1 z4+y>1.

"We require the property of being translation invariant, since it very useful: it assures that the
length of something does not change if we move it.
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and the following equivalence relation:
x~y if Ire QN (0,1] such that y =z D r.

Hence, we can split (0, 1] into equivalence classes; take one point from each equivalence
class for ~ and put them together into a single set H. Let us define for r € R,
Hor:={h®ry:he€ H}, then

e 1,72 €QN(0,1]:r1 #£1ry = (H&r)N(HBre) =0;

* UTEQO(O,l] Her=(0,1];

Now, let us suppose by contradiction that a translation invariant probability measure
A exists; then,

)\((0,1]):)\( U H@r): > ANHor)

] reQn(o,1] reQn(0,1]

_ Y am- {o MH) = 0;
reQN(0,1] oo A(H) > 0.
Here, the second equality is given by the countability of QN (0, 1] and the third by the
translation invariance of A. Thus, we have a contradiction. No translation invariant
probability measure A can be built on ((0,1],P(0, 1]). In general, the power set is not
appropriate when = R or {0,1}° because it is too large and imposes too many
constraints on P.

A better way to define a o-algebra and a measure consists in taking an algebra A
on Q and define P on A. Then consider 7 = o(.A) and then extend P can be on F.
The possibility of this extension is guaranteed by Caratheodory extension theorem.

Theorem 1.4.2 (Caratheodory). Let P be a probability measure on an algebra A.
Then there exists a unique probability measure P* on o(A) that coincides with P on
A, i.e.

P*(A)=P(A) VAe A
Ezample 1.4.3 (Solution to Vitali’s example). Let A = {finite union of disjoint intervals}
and consider B((0,1]) = o(A). If we define P on A as

P (U (ai, bz]) = (b —as),

i=1 =1

then P is a FAP on A, since P(A) > 0 and P((0,1]) = 1. Let us now show that P is
a PM by checking o-additivity. Let (A4;);en C A a sequence of disjoint sets such that
o1 A; € A, then

oo o0
P (U AZ-) > P(4A)
i=1 i=1
as in Proposition[1.3.6] For the other inequality, let us work with intervals, for the sake

of simplicity, i.e. A; = (a;,b;] such that |J72; A; = (a,b]. (This can be easily extended
to finite unions of disjoint intervals.) Now, we want to show that

P((a,0)) < P((ai, b))
i=1
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An intuitive way to prove this would be ordering the intervals; however, we may
have some accumulation points, that could make our reasoning fail. Let us prove the
inequality using compactness. Let € > 0, then

o

a+¢e,b] C(a,bl = a;, b;] C al,bz+£ .
o+ € 0= Ut € U (i 5)

Since [a + £,b] is a compact set and ((ai, b; + %)) o is a countable family of open
K3

countable sets, then, by the topological definition of compactness, there exists N such

that
N

N
£ €
b b i7bi ; ’iabi -
(a+e,b] Cla+e, ]Cil(a +2Z)Cill <a +21]

By monotonicity,
N
€
P b)) < P i+ =1 ).
((a+et) <3 ((asbit+2])

and using the definition of P on intervals and taking the limit

b—a—ESZ(bi—ai)—i—Z%S (b — ai) + <,
=1 =1 =1

which means

(o9}
b—aSZ(bi—ai)—i—Qe
i=1
and we can conclude since this holds for any € > 0.

P is translation invariant on A,and we can use Caratheodory extension theorem to
state that it exists a unique PM P on B((0,1]) such that P((a,b]) = b — a. However,
are we sure that P is translation invariant on o(A) = B((0,1])? We cannot address the
problem directly because we cannot define P on B((0,1]) but we can use the so-called
m-A theorem to show it.

Definition 1.4.4 (m-class). A class C C P(Q) is a m-class if it is closed under finite
intersections.

Remark 1.4.5 (Algebra as m-class). Trivially, an algebra is a m-class, a m-class is not
an algebra in general.

Definition 1.4.6 (A-class). £ C P(Q) is a A-class if
(i) Qe”L
(ii) Ae L = A°eL
(iii) {Ap}nen C L disjoint = U2 A, € L

Theorem 1.4.7 (Dynkin or 7\ theorem). If L is a A-class and C is a w-class such
that £ 2D C, then L 2 o(C).

Take the family of translation invariant sets
L={AeB((0,1]): P(A®dz)=P(A) Vze(0,1]}

is a A-class. In fact,
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(i) (0,1] € L, trivial;
(i) Ae L = A° € L, since

PA@®z)=P(A®z))=1—P(A®z)=1— P(A) = P(A°);

(iii) {Ai}tien C L disjoint = Uy Ai € L, since

P ((U Ai) @m) :P<U (Ai@x)) :ZP(AiEBx)
=Y P(4)=P (U Ai) :

i€EN €N

On the other hand,

C={(a,b],0<a<b<1}
is a m-class. Indeed, the intersection of a left-open right-closed interval is either a
left-open right-closed interval or the empty set. Lastly, £ O C. Hence, £ D o(C) =
B((0,1]), by Dinkyn theorem.

Definition 1.4.8 (Determining class of a o-algebra). Let P;, P» be probability mea-
sures on (2, F), a class C C F is a determining class for F if

Pi(A) = Py(A), VAeC = P,=P, (ie. Pi(A) = Py(A), VA€ F);

i.e. knowing that the probability measures coincides on C implies that they coincide
everywhere in F.

Theorem 1.4.9 (Sufficient condition for determining class). If C is a m-class and
F =0(C), then C is a determining class for F.

Proof. Let L ={A € F: Pi(A) = P»2(A)}, then L is a A-class. Indeed,
(i) Q€ L, since P1(Q2) =1 = P,(Q);
(i) Ae L = A€ L, since Pi(A°) =1—P1(A) =1— P(A) = P,(A%);

(iii) {Ap}neny C L disjoint = [J2; 4; € L, since
Py (U Ai> = Pi(A) =) Py(4A) =P (U AZ») :
i=1 i=1 i=1 i=1

Since C is assumed to be a m-class and C C L by definition of C, by Dynkin theorem
L2Oo(C)=F;ie Pi(A)=P(A) for any A € F. O
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1.5 Product spaces
Let (21, F1), (22, F2) be two measurable spaces and define

O x Qo= {w = (wi,w2) : w1 € Qy,ws € Na};
F1® Fo ::O'({Al X Ay : A1 € F1, Ay E.FQ}).

Proposition 1.5.1 (Rectangles as determining class). The class of rectangles
CZ{Al X Ay : Ay € F1, A E]:z}

s a determining class for F1 ® Fa.

Proof. By definition, F; ® Fo = o(C); hence according to Theorem we just need
to prove that C is a w-class.

(A1 X AQ) N (Bl X BQ) = {w = (wl,wg) tw1 € Aj,wo € Ay, w1 € Bi,wo € BQ}
= (Al ﬂBl) X (AQ N Bg)

d

Ezample 1.5.2. For Q = R* we can define the Borel o-algebra, B(R*) in many equiv-
alent ways,

o o ({(a1,b1] x ... (ak, bx]});

o o ({open sets});

e BR)® - @ B(R).

1.6 Regularity of probability measures

In this section, we consider a metric space (5,d) endowed with its Borel o-algebra
B(S), i.e. the o-algebra generated by open sets. We will prove that for a probability
measure{ﬂ any Borel set can be approximated arbitrarily by closed sets from below, and
by open sets from above.

Theorem 1.6.1 (Regularity of PMs). Every probability measure on (S,B(S)) is reg-
ular, that is, for every A € B(S) and € > 0, there exist F' closed and G open such
that

FCACG and P(G\F)<e

Proof. We will first prove the result when A is closed and subsequently extend it to
B(S) using the “good set technique”.
If A is closed, then

2 Actually, this result can be immediately extended to finite measures
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e V>0, let us define
Gs:={x e S :dxz,A) <d}.

If 6, \ 0, then G5, \, A since A is closed. Hence, by continuity on monotone
sequences,
lim P(Gs,) = P(A)

n—-+00

Hence, for every ¢ > 0, there exists n large enough such that P(G \ A) < ¢ for
G = Gy, open.

Consequently, for every closed set A,
FCACG and P(G\F)<e.
Now let C be the family of closed sets
C={ACS: Aclosed},
which is trivially a w-class. Let £ be
L={AeB(S):Ve>0, 3 F closed, Gopen: FCACGand P(G\F) <¢e},

then C C L. If we now prove that £ is a A-class, then o(C) = B(S) C £ by Dynkin
theorem.

(i) S € L. Trivial, as S is closed on itself;

(i) Ae L = A€ L. If A € L, then for any £ > 0, there exist F' closed, G open
such that
FCACGand P(G\F)<e

Consequently, for A it holds that
G°CA°CF°and P(F\G°)=P(G\F) <e.
And everything is correct since G° closed and F° open.
(iii) {Ap}tnen C L disjoint = ;2 A, € L. If {A,}nhen C L, then for any € > 0,
for any n € N, there exist F), closed and G,, open such that

9

Fo € An € Gy and P(G\ Fo) < 5oy

For (o2, A,,, we can take

o G:=U;2 Gp, which is open;
o Fy:= U2, Fy, which is not said to be closed. However, we can approximate

it up to an N < +o0, i.e. there exist N > 0 such that

N
where F = U F,, closed.

n=1

P(FO\F)<

| ™

Now it holds that

. FQFOQAQG,
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e P(G\F)=P(G\ Fy)+P(Fo\ F) <e¢. In fact, the term P(Fp\ F) < § for
N large enough. While, the term

P(G\FO):P(UGi\UFj> ZP(UGmﬂFjC)

€N JEN 1€N jEN

<P (U (Gi me))
1€N

<Y PGNE) <Y 57 =5

€N

€N
O
Does the opposite hold? Is it possible to approximate the probability of a measur-

able set by an open inner set and a closed outer set? It is not possible as shown in the
following example.

Ezample 1.6.2 (Impossible open inner and closed outer approximation of a PM). Let
S =1[0,1], A = QnNI[0, 1] and P defined on intervals as P([a,b]) = b—a. Then, P(A) =0,
while the probability of the closure of A (i.e. the smallest closed set containing A) is
P(A) = P([0,1]) = 1.

If we consider R as our metric space, we have a stronger result, i.e. that the inner
regularity is not given only by closed set, but also by compact set.

Proposition 1.6.3 (Regularity of PMs by compact sets on R). When S = R, then
for every A € B(R¥) and any € > 0, there exist G open and K compact such that

KCACG and P(G\K)<e.
Proof. Let B, = {x eRF: ||z| < n}, then B, ,/ R¥. Hence,
P(Rk \ Bn) T 0;

i.e. for any £ > 0, there exists ng such that P(R¥\ B,,) < 5. By Theorem there
exist F' closed and G open such that

FCACGand P(G\F) <

| ™

Now, let us set K = B, N F, which is compact as closed in a compact set (By,). Then

e P(G\K)=P(G\F)+P(F\K) <e. Indeed,

P(F\K)=P(FN(FNBy,))=P(FNF°)U(FNB,)) < PB) <

| ™
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1.7 Kolmogorov extension theorem

1.7.1 Cylinder sets

Let us take as sample space the space of functions from a time space T', which can be
either continuous or discrete, to R; i.e.

Q=R ={w:T—-R}={w €R:tcT}

We want to construct a o-algebra on €. In order to do so we start with the algebra of
cylinders. Fix n € N and ¢1,...,t, € T and define the cylinder set

Cirota(A) = {w €RT : (wiy,. . wp,) € A} for A € B(R"), (L.1)

For instance, if A = A; x --- X A, is a rectangle in B(R"), then we are fixing some
times t1,...,%, and check that at time ¢; the path is in A;.
The family of cylinder sets

A= {Ctl,...,tn(A) A€ B(Rn), t1,...,tp € T, n > 1}

is an algebra but not a o-algebra. Consequently, we consider the generated o-algebra
of cylinders, i.e. F = o(A).

However, we have that the representation of a cylinder is not unique. Hence, to
have consistency, we need that some necessary properties hold.

Proposition 1.7.1 (Consistency properties of cylinder sets). The family of cylinder
sets defined as in (1.1) satisfies the following consistency properties.

(I) For any Ay,..., A, € B(R), then

Ct1,...,tn,tn+1 (Al X e X An X R) = Ctl,...,tn(Al X e X An)

(II) For any Ay, ..., A, € B(R) and © a permutation of {1,...,n}, then

Ct (Aﬂ(l) X oo X Aw(n)) = Ctl,...,tn(Al X oo X An)

ﬂ(l)v"'at-/r(n)
Proof. (I) Let Ay,..., A, € B(R), then

Chi,otnstngr (A1 X oo X Ay X R) = {w eRT: (Wyse ooy why ) € A X o0 X Ay X R}
= {wERT:(wtl,...,wtn) €A X xAn}
=Cp (Al X - X Ay).

(IT) Let Ayq,..., A, € B(R) and 7 a permutation of {1,...,n}, then

Clr(ayseot(n) (Ar1) X -+ X Ar(n)) = {w eER": (wtm)v e thﬂn)) € Apy X -+ X Aﬂ(n)}

= {WERT : (Wt17...7wtn) EAI NEEE XATL}
=Cy,n (Al X - X Ap).
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1.7.2 Kolmogorov consistency conditions

Let us assume that there exists a PM P on A, and denote
Pt1,‘..,tn (A) = P(Ctl,...,tn (A)) for any A € ./4 (12)

the probability measure on B(R"™) for any n € N and any ¢1,...,t, € T. Then, given
the consistency conditions on cylinders as in Proposition[I.7.1] the following conditions
must hold for P.

(I) Let Aq,..., A, € B(R), then

Pyt (A1 X -+ X A X R) = P(Chy oty tyis (A1 X -+ X Ay X R)
= P(Chy,... 1, (A1 X -+ X Ay))
=Dy 4. (A X X Ay).

(IT) Let Ay,..., A, € B(R) and 7 a permutation of {1,...,n}, then

Ptﬂl),...,tﬁ(n) (Aw(l) X -ee X An(n)) = P(Ctﬁ“),...,tﬁ(n) (Aw(l) X o0 X Aﬂ(n)))
= P(Ctly-n,tn(Al X+ X An))
=D 4, (A X X Ay).

In particular, we say that our family of probability measures in ([1.2)) satisfies Kol-
mogorov consistency conditions.

Definition 1.7.2 (Kolmogorov consistency conditions). A family of probability mea-
sures
{P;,,.+, PMon B(R") : t1,...,t, € T,n € N}

satisfies Kolmogorov consistency conditions if
(I) for any Ay,..., A, € B(R), then

Pt1,...,tn,tn+1 (Al X oo X An X R) = Ptl,---,tn(Al X oo X An), (KCCl)

(IT) for any Ai,..., A, € B(R) and 7 a permutation of {1,...,n}, then

Pt (AT('(].) X oo X Aw(n)) = Ptl,...,tn (Al X oo X An) (KCCQ)

(1) 7"'7t7r(n)

Remark 1.7.3 (KCC for PM on Borel sets). We can actually extend Kolmogorov con-
sistency conditions from rectangles to Borel sets using a compact notation.

(I) If we iterate the reasoning in (KCC1)), then
Prytmrtnan (AL X o X A XRE) = Py 4 (A X X Ay).
Let us now set

t as the time vector i.e. t = (t1,...,tn, ., tnik);

¢k as the projection on R" ie. wp(z1,...,Tn,. s Tpyk) = (T1,. .., Tp).
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Then,

Hence,

for any Ay, ..
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Ap - x Ay xRF = o (A x - x Ay).

Pu(pp (A1 x -+ X Ap)) = Py (A1 X -+ X Ay).
, A, € B(R™). Applying Proposition then

Py(0;,1(A)) = Py (4)

for any A € B(R™), which is equivalent to (KCCIJ).

(IT) Let us set

t as the time vector i.e. t = (¢1,..

);

L tn
7 as a permutation on {1,...,n} i.e. m(21,...,Tn) = (Tr(1), - Tr(n))-

Then, by (KCC2)),

Hence,

for any Ay, ..

Aﬂ.—l(l) X X Aﬂ.—l(n) = 7T_1(A1 X X An)

Py(m YA x - x Ayp)) = Prgy (A1 x -+ x Ay)
, An € B(R™). Applying Proposition then

Pe(n71(A)) = Pr(y(A)

for any A € B(R"), which is equivalent to (KCC2]).

Hence, summing everything up, if ¢y = ¢ o w, where ¢}, is a projection and 7 is a

permutation, then
Py)(4) = P,

for any A € B(R"™).

o (r(6) (A) = Pr(ey (9, (A)) = Pe(n (01 (A))) = Pe(y™1(4))

Remark 1.7.4 (KCC for cylinders of Borel sets). For cylinders, we similarly have that

Cyw)(A) = Ci(1p~(A)) for any A € B(R™),

where ¢ = py, o m, with ¢ projection and 7 permutation.

Ezample 1.7.5 (Tossing a coin infinitely many times). Let © = {0,1}°°, then the
cylinders are defined as

Chyotn(A) ={w € {0, 1} : (wyy,...,wy,) € A} for A€ {0,1}7.

Let us define the family of probability measures of

_ Al

Py,tn(4) = o5

define the family of probability measures on ({0,1}",P({0,1}")). Then this family
satisfies Kolmogorov consistency conditions. Indeed,
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(D)
Ax {01} 214 |A
Ptl,---7tn,tn+1 (A X {07 1}) = | 27’;5—]_ }| = 27’L+:l. = |2n|7
A
Ptl,...,tn(A) = ’271‘
(II)

_ Ay X X Arm| AL [ A
AL 2n ’
_ Al A

2n

Ptﬂ(l),...,tﬂ.(n) (Aﬂ'(l) X oo X Aw(n))

Ptl,...,tn(Al X X An)

1.7.3 Kolmogorov extension theorem

If we have a probability measure defined on A, can we extend it to F? The answer is
that it is actually possible provided that Kolmogorov consistency conditions hold.

Theorem 1.7.6 (Kolmogorov extension theorem). Let us consider a family of prob-
ability measures {Py, . +,} on (R",B(R™)), defined for alln > 1 and t1,...,t, € T

time set, such that (KCC1|) and (KCC2)) are satisfied. Then, there exists a unique
probability measure P on (RT, F) where F is the cylinder o-algebra of RT, such that

P(Cy,...0,(A)) = Pyt (A)
forallty,...,t, € T,A e B(R").
Proof. We will proceed by steps:
(1) Define P on A;
2) Show P is "well defined";
3) Show P is a FAP on A;

5

(2)
3)
(4) Show P is continuous on ) (i.e. P is a PM on A);
(5) Apply Carathéodory.

(1)

1) We define

P(C¢(A)) = Fy(A).

(2) We need to show that if C¢(A) = Cs(B), then P(C¢(A)) = P(Cs(B)). We can
find a vector u containing all the elements of both t and s. Hence, there exist

Yr:t=11(u) and 1y :s=1(u).
Then, we obtain 17 ' (A) = 15 ' (B) since
Cu(¥11(A)) = Cyy w)(A) = Ce(4) = Cs(B) = Cyy()(B) = Culty ' (B)).
Consequently, for P holds
P(Cy(A)) = Po(A) = Py, w)(A) = Pa(y'(A))
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(3) Let us prove the properties of a FAP

« P(C)(A) = B(A) =
« P(RT) = P(Cy(R)) = ( ) =1
o If C4(A) N Cs(B) = 0, then, taking t = ¢1(u), s = ¥a(u),

Ca(¥7H(A) N Cu(v3'(B)) =0 = 71 (A) Ny L(B) = 0.

Hence,

P(Cy(A) U Cs(B)) = P(Culd
P(Cu(y7" A) Uty
Pu(tbf (
= Pua(yy ' (A) + Pu

= Py(A) + F(B)

= P(C(A4)) + P(Cs(B))

(4) We now want to show that if { A, },eny C A such that A, \, 0, then P(4,) — 0.
Since the A,’s are decreasing (A7 2O As D ...), we have that the time steps

are increasing (i.e. we are adding more constraints) as n increases. Indeed, let
Al = Ctl,...,tk (D1)7

w€A2:>w€A1:>(wt1,...,wtk)€D1
For instance,
A = Ct1 ..... thy (Dl);
A2 = Ct17-~~7tk1»~v~ytk1+k2 (D2)7
A3 = Ctl: )

tkl»~~-7tk1+k27~--7tk1+k2+k3(

Dj).

If there is no unitary increase in the indices (i.e. k1 = ko = k3 = 1), then we can
create one as

All = RT = Ct1 (R)§
Ay =RT = Cy, 1, (R x R);

/

o= A1 = Ch ., (D1);
/ .
k1 = A1 =G,y ey 0 (D1 X R);

/ . _ .
ks = A2 = Cry oty oty 1, (D2)5

/ = = .
ka1 = A2 = Ctlv---ytklv---vtk1+k27tk1+k2+1(DQ x R);

In general, we get that for every n € N,

A/n = Ctl,...,tn (Hn) with Hn € B(Rn)
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Hence, we obtain that A/, N\, () and P(4,) — 0 if P(A],) — 0. Hence, we now
want to show that P(A])) — 0. Let us drop the ’ for the sake of simplicity. By
contradiction, there exists € > 0 such that

P(A,) > VneN.

Since Py, . 4, is a PM on B(R"™), by Proposition m

3

3K, C H, compact : P, 1 (Hp,\ Kp) < ontl

Let By, = Cy, ...+, (Kp). We cannot take the sequence {By, },en directly as we do
not know whether it is increasing or not. Consequently, let

Cp= ﬂ B; forn e N. (1.3)

which is a decreasing sequence. Then,

J=1

p(An\cn):p(Anmcg):P(AnmCJB;)— (O(A \B))
j=1
_p(@mjw) i PA B
j=1 j=1
:ipth...,t

1

HM:

<223+l:7

<.
Il

Consequently, for any n € N

P(Cn) = P(An) — P(An \ Cy) >

w\m

This implies that C,, # 0 for all n € N, i.e. there exists w(™ e C,, for any n € N.

Hence, by (I3),

w™ ¢ Bj = Cyy,..4 (K;) for j <n,
ie.
(wgl),.. (n)) € K; forn>j.
For j =1, wgl) € Kj for any n > 1, then

I(n1) € (n) : ™ — uy € K.

This hols since K7 is compact, so for every sequence it exists a subsequence that
converges to a point in K. Now, For j = 2, (w,g?l),wt(:l)) € Ky for any ny > 2,
then

A(ng) C (nq) : (wgm) ngZ)) — (u1,u2) € Ko.

Continuing this way, for a generic j, we have

(wﬁ?ﬂ’,..,wglf)) — (u1,...,uj) € Kj
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Let us now take & € R” such that wi; = uy for any j, then
w € Ct17,_.7tj(Kj) = B; for any j.

Hence,
_EnngﬂA]’ (:> ﬂAJ#@)
j=1 j=1 j=1

And we have got to a contradiction.

1.8 Sequences of events

Let (Q, F, P) be a probability space, {4, }nen a general sequence of events in F

Definition 1.8.1 (Almost-sure/null events). An event A is called almost sure if
P(A) =1. An event A is called null if P(A) = 0.

Remark 1.8.2 (Intersection/union of almost-sure/null events). For a sequence of almost
sure events { A, nen, it holds P (N, An) = 1. For a sequence of null events {4, } nen,
it holds P (Us2; 4,) =0

Definition 1.8.3 (liminf/limsup of a sequence of events). For a sequence of events
{Ap}nen C F, we define

liminf A,, = U ﬂ A = hm ﬂ Ay

n—oo
n= lk n =n
hmsupAn— ﬂ U A = le U Ap.
n=1k=n e =n

Remark 1.8.4 (Relation between liminf and limsup). The relationship between liminf
and limsup is established by the complement operator as

(liminf A,,)¢ (U ﬂ Ak> = ﬂ U Aj, = limsup A;5;

n=1k=n n=1k=n
(lim sup 4,,) (ﬂ U Ak> U ﬂ Aj, = liminf A7 .
n=1k=n n=1k=n

Moreover, liminf A, C limsup A4,,.

What is the meaning of these two events? Let us call w the outcome of an ex-
periment. We say that an event A occurs if the result of the experiment is w € A.
Hence,

o0 o0
w € limsup 4,, < w € ﬂ U A
n=1k=n

— Vn>1 we UAk <~ Vn>1 dk>n:we A
k=n



1.8. SEQUENCES OF EVENTS 25

In other words, regardless of n, we can always find a subsequent occurrence of the
event, which means that infinitely many A,’s occur, i.e.

limsup A,, = {A, infinitely often} = {4,, i.0.}
On the other hand,

w e liminf A, <= we [J [ 4k

n=1k=n

o0
— dn>1 :we€ ﬂAk <~ dn>1:Vk>n:we A

k=n

In other words, starting from some event A,, every subsequent event occurs, which
means that the A,’s occur ultimately.

liminf 4,, = {A,, ultimately} = {A,, ult.}

Example 1.8.5. Tossing a coin infinitely many times can be represented with Q =
{0,1}*° where 0 = tails and 1 = heads. The event A, = {w : w, = 0} leads to
limsup A,, = {infinitely many tails} and liminf 4,, = {tails ultimately}.

Definition 1.8.6 (Limit of a sequence of events). We say that a sequence of events
{A,} has limit if

liminf A, = limsup A4,
n n
In which case the limit is

lim A,, = liminf A,, = limsup 4,
n n n

Proposition 1.8.7 (Properties of the limit of a sequence of events). 1. P(liminf A4,) <
liminf P(A,,) < limsup P(A,) < P(limsup 4,);
2. if 3lim A,, then P(lim A,) = lim P(A,,).

Proof. 1. Considering that lim inf P(A,) < limsup P(A;,) because of the properties
of sequences of numbers, let us prove that limsup P(A4,) < P(limsup A,).

P(limsup A,) = P (ﬂ U Ak> = lim P < U Ak> = limsup P (U Ak> > limsup P(A4,,).
n=1k=n k=n k=n

where we have used the fact that {{7=,, Ak }n>1 is a decreasing sequence and the
monotonicity of P on monotone sequences.

2. Setting P(lim A,) = L, then

L = P(liminf A,,) < liminf P(4,,) < limsup P(4,) < P(limsup 4,) = L.
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Ezample 1.8.8. Q@ ={0,1}*, A, = {w : w, =0}

P(liminf A,) = P({tails ult.}) = P(liTILn ﬁ Ag) = li}ln P( ﬁ Ag)

k=n k=n
X 1
= lim lim_ P(k(_]n Ap) =lim lim oo =0

P(limsup A,) = P({tails i.0.}) = 1 — P({limsup A, }°)
=1— P(liminf A°) =10 = 1.

In general, finding null or almost certain events for the limsup and liminf of a
sequence of events is important because they are related to the behaviour at infinity
of the sequence.

From Propositionwe can see that a necessary condition for P(limsup 4,,) =0
is that limsup P(4,) = 0, i.e. P(A,) — 0. The next lemma provides a sufficient
condition.

Lemma 1.8.9 (Borel-Cantelli first lemma). If >°° | P(A4,) < co then
P(limsup A4,) = 0.
Proof.
P(limsup A,) = lim P ( D Ak> < lim i P(A) =0,

k=n k=n
where the last equality follows because the remainder of a converging series converges

to 0. O]

Ezample 1.8.10. Take Q = {0,1}*° and define B,, as a block of "tails" of length r,
starting from toss n + 1. How can we define r;,, such that we have a finite number of

blocks, i.e. P(limsup B;,) = 07 In the previous example, we showed that P(B,, i.0.) =
1 when r, = 1. Now P(B,,) = 27", then

o0 [eo]

. 1 . .

if Y P(By)=) orn <00 then P(limsup B,,) = P(B, i.0.) =0
n=1 n=1

by Lemma If r, = n then P(B, i.0.) =0. If r,, = [(1 + ¢)logyn] with ¢ > 0,
then

00 00 1 00 1 ®© q
Z P(B”) - Z 9| (1+¢) logy 1] < Z 9(1+¢) logy n—1 =2 Z nlte < 0.
n=1 n=1 n=1 n=1

Hence, if r,, — oo at a rate (1 + ¢) logy n or faster, then P(B,, i.0.) = 0.

Definition 1.8.11 (Independent sequence of events). A sequence of events { A, },en
is said to be stochastically independent (and we write L) if

P(ﬂ Atl> :HP(Atz) VTL, th,...,tn,
=1 i=1

i.e. information on some of these events does not change the probability of the other
ones.
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Remark 1.8.12 (Independence for complement events). If the A,,’s are independent, so
are the AS’s. In fact, take A{, As,.... We have

P(ASNAsN---NA,) =P((A2N---NA)\ (A1 N---NA))
=[] P(4;) - [] P(4)
j=2 i=1

7j=2

= ﬁ P(Aj)(1 - P(Ay)) = ( P(Aj)> P(A7)

and we can repeat the same steps for all the A;’s.

Lemma 1.8.13 (Borel-Cantelli second lemma). Let {Ay,}nen be a sequence of inde-
pendent events. If >.0° | P(Ay) = +oo, then

P(A, i.0.)=1.

Proof. We want to show P(limsup A,) = 1 or equivalently P(liminf AS) = 0.

0o N

Pliminf A7) = lug P(() AD) = it P(() 40
N

=t i, 11 POAD)

N
- J, i 110 - P
k=n
N
< lim lim e Pl

n—00 N—o00
k=n

Ag)

N
= lim lim e~ e P(AR) — 0
n—00 N—o00

d

Ezample 1.8.14 (Importance of independence for BC second lemma). Is it possible to
get rid of the 1L assumption in Lemma [1.8.137 No. For example, take Q = {0,1}°°,
and A, = {w1 = 0,w2 =0,...,W|10g,n| = 0}. Then

0o 0o 1 [e's) 1 © 1
Z P(An) - Z 9logy 1| = Z 2logy - Z E = +0o0.
n=1 n=1 n=1 n=1

However, P(A, i.0.) = P({all tails}) =0

Ezample 1.8.15. With @ = {0,1}* and B,, = {wny1 = 0,...,wnyr, = 0}, take
rn, = |logyn]. In this situation we cannot apply Lemma [1.8.13| because the tosses
are overlapping. So let us consider disjoint blocks of tosses by defining a sequence of
integers:

ny =2, ngr1 = ng+ [logyng].
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Take C}, a block of tails of length |log, | starting from toss ny + 1, Cp = {wn,+1 =

0,...,wny ., = 0}, 7, = [logg x| = npy1 — ng. Now Cy L.
Z P(Ck) - Z 9logy ny | 2 Z 2logy ny, - Z ;k
k=1 k=1 k=1 k=1
(o] o

n —n n —n
_ L Tk, g Tkl T
= Uogyng)ne — f= nulogy nk

[ele} NEg41 1
=1 o1 Tk loga nk

Nk+1 1 [e%¢} 1

o0
ZZ 400

By Lemma [1.8.13] P(Cj i.0.) = 1, and since {Cj i.0.} C {B, i.0.} we have that
P({B, i.0.}) > P({C} i.0.}). Therefore P(B,, i.0.) =1 as well.

1.9 Independence

An important concept in probability is the one of conditional probability, i.e. the
probability of an event knowing that another event occurs.

Definition 1.9.1 (Conditional probability). In a probability space (2, F,P) , for
A, B € Q such that P(A), P(B) > 0, the probability of A given B is defined as

P(ANB)

PUAIB) = =55

Notice that we can write
P(A) = P(A|B)P(B) + P(A|B°)P(B¢) = P(A|B)P(B) + P(A|B°)(1 — P(B)).

Hence, P(A) is a convex combination of P(A|B) and P(A|B¢). In general, in fact,
P(A) depends on B occurring or not.

Definition 1.9.2 (Independent events). Two events A and B are independent (we use
the symbol 1) if P(AN B) = P(A)P(B).

And this can be written in terms of conditional probability as P(A|B) = P(A|B¢) =
P(A) meaning the events don’t influence each other.

Remark 1.9.3 (Independence for almost-sure/null events). If P(A) =0 = P(AN
B) =0so A 1L B VB. The null event is always independent on every other event and
the same holds for almost sure events.

Definition 1.9.4 (Independence of a sequence of events). Let {4, },en sequence of
events. They are mutually independent if VN,Vkq,..., ky distinct

P(Ak’1 mAkQ ﬁ"'ﬁAkN) = P(Akl)P(Akz)P(AkN)

and this is equivalent to Vj,Vki, ..., ky distinct, P(A;|Ag, NAg,N---NAg,) = P(4;),
knowing that some of these occur doesn’t change the probability of A;.
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Remark 1.9.5 (Independence for three event). If we have three events A,B and C we
have to prove four constraints for independence

1. P(ANB) = P(A)P(B);
2. P(ANC) = P(A)P(C);
3. P(C'NB) = P(C)P(B);
4. P(ANBNC) = P(A)P(B)P(C).

Ezample 1.9.6 (Independence and pairwise independence). Roll a die, Q = {1,2,3,4, 5,6},
and consider A = {1,2,3,4}, B ={2,3,4}, C = {4,5,6}, so that P(4) = %, P(B) = 3,
P(C) = . We have that P(LAN BN C) = % = P(A)P(B)P(C) but these events are
not mutually independent, as B C A, so the last condition alone is not sufficient.

Example 1.9.7. Toss a coin twice and consider A ="H" at first, B ="H" at second, C =
equal outcomes. We can see that these events are two by two mutually independent but

the three of them are not as P(ANBNC) = P(ANB) = P(A)P(B) # P(A)P(B)P(C).

Definition 1.9.8 (Independence of a family of events). Let {A;}er be a family of
events. They are independent if Vn, Vt1,...,t, € T Ay, ..., A, AL

n

Ezample 1.9.9. Toss a coin infinitely many times, A,, ="H" at toss n, {4, } 1L.

Independence is not really a definition that concerns events. If we have A 1. B we
have seen that

« P(A|B) = P(A) = P(A|B°)
« P(B|A) = P(B) = P(B|A°)

the point is that information about A occurring or not does not change the probability
of B, so it is really about information. In (€2, F, P) consider a sub-o-algebra G C F.
Information is about events in G.

Ezample 1.9.10. Roll a die, G = {Q, 0, even, odd}. We still don’t know the outcome,
but if we know which event of G it is we have some information.

Definition 1.9.11 (Independence of classes of events). Let Ci,...,C, be classes of
events. They are said independent if VA, € Cy,..., A, € C, we have Aq,..., A, 1L

Ezample 1.9.12. Roll a die. Consider C; = {even, odd}, Co = {< 2,> 2}. Then
Cy 1L Cy because probability of the outcome being even or odd has nothing to do with
the outcome being smaller or grater than two.

Suppose Cy,...,C, 1L and consider subclasses C; C Cy,...,C5 C C,. Then if we
take events VA; € Cf,..., A, € C], they are also in Cy, ..., C,, so they are independent.
We never loose independence while restricting a class, but can we keep independence
extending?

Theorem 1.9.13 (Independence of generated o-algebras). Let Cy,...,C, be indepen-
dent m-classes. Then o(Cy),...,0(Cy) are independent o-algebras.
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Proof. Without loss of generality we can assume that Vi, C; 3 Q. It is enough to show
that 0(C1),Ca,...,C, are Ll because then we have o(C1) as another m-class and we can
apply the same reasoning again. Let By € Cs,..., B, € C,. Take the set £ defined as
follows:

L={BeF:P(BNByN---NB,)=P(B)P(B2)---P(B,)}

L is a A — class, and £ D C; because C; is a class that is independent of the others,
hence it satisfies the condition in £. By Dynkin’s lemma, £ O o(C;). We also have
that VB € O‘(Cl),

P(ByNByN---NB,) = P(By)--P(B,)

We can repeat this VBs,..., B, and by taking some of the B; =  we have the
independence condition for a subset of events. O

Ezample 1.9.14. Toss a coin twice, Q@ = {0,1}? and take A} = {w; = 1}, Ay = {wy =
1}, As = {w1 = we}. Take two classes: C; = {A, A2} and Co = {A3}. The two classes
are independent but ¢(C;) and o(Cq) are not independent, because A; N Ay € C; and
AN Ay C Az € Co.

Theorem 1.9.15 (Disjoint block independence). Take this array (with finite or infinite
number of rows each with finite or infinite length) of independent events:

A A
Agr Ago

Let G = 0({Aij,7 € N}). Then {Gn}n>1 are independent.

It is convenient to put the events in an array, but in general it means that o-algebras
generated by blocks of independent events are independent.

Proof. Take the m-classes C; = {(;jc; Aij : J finite}. When J = 0, N;cp Aij = Q.

These generate G; and are also independent. Indeed, let us take B;, € C;,,...,B;, €
Cl'n. Then
Bik = ﬂ Aikjk
k€K
and

P ) :P(ﬁ N Aim) I Pl - f[P( N Az-m)

k=1 jreJi k=1 jr€Ji k=1 JE€Jk
n
= H P(Bik)

k
So o(C1),...,0(C;,) AL Viq,...ip, and Vn. O

Definition 1.9.16 (Tail o-algebra). Let {A,} be a sequence of events. The tail o-
algebra is defined as T ({A4n}) = Npe1 0({An, Ant1, .. }).

T is the o-algebra of the events such that it is possible to establish whether A
occurs by looking at the tail of the sequence. So for example lim inf A,, is a tail event
and belongs to T.
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Ezxample 1.9.17. limsup A, is a tail event, indeed
[e.e] [e.e] oo o0
limsup 4,, = ﬂ U A = ﬂ U Ay
n=1k=n n=N k=n

because we don’t care when we start, so for every N limsup A,, € 0({An, Ani1,--.}).
The same holds for lim inf A4,,.

Theorem 1.9.18 (Kolmogorov 0-1 Law). If {A,}nen are independent and if A €
T({An}), then

Proof. Using the sequence, fix n and construct this array:

Ay
Ao
A,
At Anig. ..

Then by the disjoint blocks theorem we have
0(A1),0(A2),...,0(An),0({Ant+1, Anto,... }) 1L

And A € o({An+1,Ant2,...}). Therefore A, Ay, Ag,..., A, are 1L, ¥n. This means
A, Ay, Ag, ... are 1. Now take another array:

A
A Ay As...

By the disjoint blocks theorem, o(A) 1 o({A1,As2,...}) 2 A. This means that
A 1L A, therefore P(A) = P(AN A) = P(A)P(A) = P(A)? and P(A) is either 0 or
1. O

Example 1.9.19. Toss a coin infinitely many times. We want to know if it exists a limit
frequency of heads, so we consider the event

Z?:1 Ws
n

n
i=1Wi

A = {w: liminf = limsup =*——}

and the sequence A, = {w : w, = 1}.

21 Wi 2o wz‘) i inf 2i=2Yi
n n n

lim inf = lim inf Li=N Wi

= liminf (wl +
n

so A € T(A,) and A, are independent, so P(A) =0 or P(A) = 1.
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Chapter 2

Random Variables and Random
Vectors

Recall that a function g : (Q,F) — (€, F) is F/F'-measurable if g~!(B) € F for
every B € F'. Here are some properties of functions on measurable spaces:

o Let g: (Q,F)— (V,F'). Then {g~}(B) : B € F'} is a sigma-algebra;
o Let g: (Q,F)— (,F). Then {B € F': g~1(B) € F} is a sigma-algebra;

o Let C' C F' be a class of subsets of ' such that 7/ = ¢(C’) and let g : (2, F) —
(Y, F). If g-Y(B) € F for every B € C', then g is F/F'-measurable;

o If g: (Q,F) — (QF) is measurable and h : (0, F') — (Q".F") is measurable,
then h(g) is F/F"-measurable;

o If S and S’ are metric spaces and g : (S, B(S)) — (S, B(5")) is continuous, then
g is measurable.

2.1 Definitions of random variable and random vector

Definition 2.1.1 (Random Variable). A random variable on (€2, F, P) is a measurable
function X : (2, F) — (R, B(R)), so by definition VB € B(R), X~ }(B) € F.

The meaning of the inverse image is X }(B) = {w € Q : X(w) € B} € F. The
measurable condition is needed to talk about the probability P(X € B), indeed we
want P defined on events like (X € B) = {w: X(w) € B}.

Definition 2.1.2 (Indicators). For a set A € F, we define the indicator function on
A
lifwe A
14 =
0 otherwise
which is always measurable.

Definition 2.1.3 (Simple Random Variable). A random variable which takes a finite
number of values is called a simple random variable and can be written as a combination

of indicators -~
X =) aily,
i=1

33
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where a; € R and A; € F.

Proposition 2.1.4 (Simple random variable approximation). We can approzimate a
random variable with a sequence of simple random variable. Namely, VX 3(X,,) simple
random variables such that Vw X, (w) — X (w).

Proof. Assume X > 0, then:

n2"—1 k
K= 2 rl(dexeti)
k=0

this is a simple measurable function by measurability of X. For any fixed w € £,
Ing : ¥n > ng,n > X (w); by construction X (w) — X, (w) < 57 — 0 for n — oco. For a
general X we can define the positive and negative part as

Xt =maz(X,0) X~ =-min(X,0)

which are both positive and satisfy X = X* — X~. Once we have the converging
sequences for X+ and X, we sum them to get a sequence converging to X. O

Proposition 2.1.5 (Equivalent definitions to measurability for a r.v.). X : (2, F) —
(R, B(R)), X is measurable if and only if one of the following conditions hold

X<a)eF VaeR

)
X <a)eFVaeR
)

X>a)eF VaeR

(
(
(
(

X >a)e F YVaeR

Definition 2.1.6 (Random vectors). A random vector is a vector of random variables.
We can also see it as a measurable function X : (Q,F) — (R¥, B(R¥)) such that
X(w) = (X1(w), ..., Xp(w))-

Proposition 2.1.7 (Measurability as a component-wise property). X : (2, F) —
(R*, B(R¥)) is measurable if and only if X; is measurable for any i.

Proof. Suppose X; measurable and let us take C = {By x -+ x By : B; € B(R),i =
1,...,k}, then

XY By x--xBy)=(X1,...Xp) €By x---xB)=((Xi € Bi) € F

3

2

Il
—_

is measurable and it can be trivially extended on B(R™) using Dynkin’s theorem.
Conversely, suppose X : (2, F) — (R¥ B(RF)) is measurable, then the coordinates
X = (Xy,...,X}) are measurable:

X '(B)=(X;€B)=((X1,...,X3) ERx---x BixRx---xR) € F.

7

O]

Proposition 2.1.8 (Measurability of functions of r.v.s). Since random vectors are
measurable functions the following properties hold:
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o If X is a random vector and g : R¥ — RJ is a measurable function, then Y = g(X)
is a random vector

o If X is a random vector, then max(Xy,..., Xx) and min(X1, ..., Xy) are random
variables

o If X, is a random variable Vn (a sequence of random variables) then the follow-
ing are random variables: sup X, inf X,,, limsup X,,, liminf X,, and lim X,, (if it
exists).

Remark 2.1.9 (Sub o-algebra). We usually call F the universe o-algebra and we inter-
pret it as the set of all possible events that one might be interested in. Consider now
a sub-sigma-algebra G C F and assume that for any event A € G, we know whether
A occurs or not. This means that, even if we don’t know the precise outcome of the
experiment, we still have some information about it (look at the next examples). We
interpret sub-c-algebras as container of (partial) information on the outcome of the
experiment.

Ezample 2.1.10. e 0 =1{1,2,3,4,5,6} and F = P(Q) then knowing whether any
element of G = {0),Q,{2,4,6},{1,3,5}} occurs or not, means that we have infor-
mation on whether the outcome is even or odd.

o 2 = {0,1}* and F = cylinder sigma-algebra, then information on the first
n tosses is represented by the set of cylinders G, = {C1,. n(A) : where A C

{0,137}
Definition 2.1.11 (G-measurability). Let (€2, F, P) probability space and G C F a
sub-o-algebra of F. We say that X is G-measurable if X : (Q,G) — (R¥, B(R¥)) is

measurable, that is
(X € B) € G VB € B(RF)

and if this is true, then VB € B(RF) we can say whether (X € B) or not based on
information in G.

If X is G-measurable then the information contained in G allows to determine the
value of X.

Example 2.1.12. Toss a coin infinitely many times. 2 = {0,1}° and consider for each
n the o-algebra of cylinders of dimension n G,, (defined above). Let X = # heads until
toss m. Here, X is G,-measurable if and only if n > m i.e. we know the number of
"H" in the first m tosses only once we have observed them.

Definition 2.1.13 (Sigma-algebra generated by a random vector). In (92, F, P), with
X random vector, the sigma-algebra generated by X is:

oX)= () ¢
goF

X is G-meas.

o(X) is the smallest sigma-algebra with respect to which X is measurable. Indeed,
if X is G-measurable, then o(X) C G.

Theorem 2.1.14 (c-algebra generated by a r.v.). Let (2, F, P) be a probability space,
X a random vector. Then

o(X)={X"YB): BeBR"}.
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Proof. Let G be the right hand side, one can easily see that it is a sigma-algebra.

e (C) By construction X is G-measurable and G is a sigma algebra. Then o(X) C G,
by def. of o(X).

« (D) Since X is o(X)-measurable, X }(B) € o(X) for any B € B(R")
0

Theorem 2.1.15 (Doob-Dynkin). Let (2, F, P) be a probability space, X : (2, F) —
(R*, B(R¥)) a random vector and Y a random variable. Then:

Y is o(X)-measurable <= 3Jg: (R¥, B(R*) = (R, B(R)) measurable: Y = g(X)

Idea: if Y is o(X)-measurable then the information about X allows to determine
Y, so there must be a way of recovering X from Y.

Proof. (<= )IfY = g(X), then (Y € B) = (9(X) € B) = (X € g }(B)) € o(X) and
so Y is measurable with respect to o(X).
(=) Suppose Y is o(X)—measurable.

1. Let’s start by assuming that Y is a simple random variable, i.e. it takes on
a finite number of different values. This means that for ai,...,ay we have
A = (Y = a;) = (X € B;) for some B; Borel set, so the representation is
not unique. But we can find By, ..., By such that B; C {X(w) : w € Q} and
B; N B;j =0 Vi # j, and we can restrict to the range of X and discard the rest.
We define g as

a1 x € B

as T € By

g(x) =

ay x € By

0 x € (BLU---UBy)©

if we take a point w € Q, g(X(w)) = a; if X(w) € B;, andso Y = SN, a;la, =
Yy ail(xen) = Ly ailp (X) = g(X).

2. Consider Y > 0. Using the construction in [2.1.4] we can approximate Y from
below with a sequence of simple random variables Y,, T Y. Since Y, is a function
of Y, then it is measurable with respect to o(X). Moreover, since Y, is simple,
Y, = gn(X), Vn. Now define the set M = {x € R: g,(x) converges} and notice
that Vw € Q, X(w) € M, since g,(X(w)) = Yp(w) and Y, (w) converges. So
define

9(x) = Ty () lim gn ()
For any w € €2, we have:
9(X(w)) = lim g, (X (w))ly(X(w)) = lim ¥y (w) =Y (w).

3. Finally, taking Y as a general random variable, we have Y = Y+ — Y~ and
both Y and Y~ are o(X)-measurable since they are non-negative, so Y =

g1(X) — g2(X) = g(X).
OJ
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2.2 Probability distribution of a Random Vector

Definition 2.2.1 (Probability distribution). Let (£2, F, P) be a probability space and
X = (X1,...,Xk) a random vector. We define the probability distribution of X as a
probability measure p on B(R¥) such that

w(B) = Px(B) = P(X"Y(B)) = P(X € B), VB e B(R").
We can show that also the converse is true

Theorem 2.2.2 (From distribution to r.v.). Let u be a probability measure on B(RF).
Then 3 (Q, F, P) probability space, and X random vector on it such that p = PX 1.

Proof. Take Q = R* and take F = B(RF) and P = p. With X (w) = w we are done. [

2.2.1 Cumulative distribution function

Yz € RF let S, be the set of "south-west of z", defined as
Sy ={(S1,...,5) € R¥: §; < x;Vi}.
Definition 2.2.3 ((Cumulative) distribution function). We define the (cumulative)
distribution function (CDF) of X as:
F(I‘) :M(Sx) = P(X1 S .%'1,...,Xk S .f(,'k)

Knowing F', one can compute the probability that X belongs to any rectangle
R = (al,bl] X (ag,bg] X oo X (ak,bk} as follows.
Proposition 2.2.4 (Measure of a rectangle through a CDF). Let V = {v = (v1,...,vg) :
v; € {a;,bi},i=1,...,k} be the set of vertices of the rectangle R = (a1, b1] x (az, ba] X

X (ag,bx]. For any v € V, we define its sign as:

. +1 if the number of a; is even or 0
sign(v) = ) )
—1 if the number of a; is odd
so that:
u(R) = Ag(F) = Y sign(v)F(v) (2.1)
veV
Proof.
k
(ﬂ (a; < Xi < b; )
k
=P(X1<by,..., X, <bp) =P | |J(X1<by,.., Xi < ag, . Xy < by)
=1 A
k .
= F(by,...,bg) — z:(—l)JJrl Z P(A;; N NA)
=1 <<y F(b1 sy yeonsireensbl)

J

k
:F(bl,...,bk)—Z(—l)]+1 Z F(bl,...,ail,...,aij,...,bk)

n Of a; 21 <---<1j
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Theorem 2.2.5 (Properties of a CDF). A function F : R¥ — R is the distribution
function of some random variable if and only if the following conditions are satisfied:

1. lim F(xy,...,z5) =0 Vi

Ti—>—00

2. lim F(zy,...,2)=1
e ( 1 ) k’)
Tp—5400

3. F is continuous from above: lim F(xy+ hy,...,xx+ hg) = F(x1,...,2k)
hi~)0+Vi

4. VR Agr(F) >0

Remark 2.2.6 (Monotonicity of a CDF in each argument). Note that property (4)
implies that F' is monotone in each argument, however the reverse is not true. Indeed,
take F' which is zero on the left of a line in the plane and one on the right. This
function satisfies the first three conditions and it is monotone in each component, but
it is not a distribution function: if we compute Ar(F') for a rectangle that has only
one vertex on the left of the line we get Ap(F)=1—-1-1+0= —1.

-1 +1

F

Recap on measure theory

Definition 2.2.7 (Measure). p: ) — [0, +0o0] is a measure if
e it is a set function: u(@) =0
o it is o-additive: p(UpZ; An) = Y oneq 1(Ay) where A,,’s are disjoint

Definition 2.2.8 (o-finite measure). A measure p is o-finite if 34;, Ag,- -+ € F such
that Q = U2, A; and p(4;) < 400

Definition 2.2.9 (Measurable function). f : (2, F) — (R,B(R)) is a measurable
function if and only if f~1(B) € F where B € B(R).

Definition 2.2.10 (Integration w.r.t. a measure). f measurable function, we can
define [, fdu

o [=20aila, 20 = o fdp =37 aip(Ay)
« [20 = Jofdu=sup{ygdp:ge By, g<f}

o f general, then f = f* — f~ and [, fdu = [o fTdu— [o f~dp provided at least
one is finite
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Proposition 2.2.11 (Properties of the integral). o f=gae meanspu({w: f(w) #
g(w)}) = 0 and implies that [ fdu = [ gdu

o [ fdp where Ac F, [, fdu= [ fladp
e f=guae <= VAcF, [,fdu= [,g9du

2.3 Radon-Nikodym theorem

Definition 2.3.1 (Absolutely continuous measures). Given two measures u, v on the
space (2, F). We say that v is absolutely continuous with respect to p if u(A) =0 =
v(A) =0, and we write v < f.

Ezample 2.3.2. f > 0 and f : (0, F) — (R, B(R¥)), with o-finite measure , and
Ja fdp = 0if p(A) = 0 then v defined as v(A) = [, fdp is a o-finite measure on F
and v < pu.

Definition 2.3.3 (Singular measures). Given two measures pu, v on the space (2, F).
We say that p and v are (mutually) singular if 35,5, € F such that S, NS, = 0,
p(S;) =0, v(S7) = 0, and we write v L .

Ezample 2.3.4. On Q = R, consider the Lebesgue measure A((a,b]) = b — a and pu the
counting measure on a countable set S, u(A) =|ANS|. Then X\ L p, take S, = S and
Sy =R\ S, then A(S) =0 and u(S°) =0

Theorem 2.3.5 (Radon-Nikodym). Let p,v be o-finite measures on (2, F), then:
v < p <= 3f measurable and non-negative such that v(A) = / fdu
A

Moreover, f is essentially unique, that is if v(A) = [, gdu YA € F, then f = g p-
almost everywhere. The function f is called the Radon-Nikodym derivative (or density)
of v with respect to p and denoted by f = ’;—’lf.

Theorem 2.3.6 (Lebesgue decomposition). (2, F) measurable space, p,v measures
on F, both o-finite. Then
V = Vge + Vs

with vee < p and vs L p. This decomposition is unique, thus
v(A) = [ fdu+vi(a)

2.3.1 Singular continuous distributions

Take X random vector with probability distribution u, and take the Lebesgue measure
A(a1,b1] x -+ x (ag, br]) = Hf’:l(bi —a;) as the reference measure. Then p = pige + s
and we know that pi4.(A) = [, fdA, f density function. We now want to analyze the
singular part. Define D = {z € R*} : pu({z}) > 0}. Then for x € D, u({z}) = ps({z})
because the Lebesgue measure on a single point is zero.

Lemma 2.3.7 (Cardinality of the set of disjoint non-null events). Let (2, F, i) be a
measured space, [ finite measure, and let C = {Bi}ier be a class of disjoint events
such that pw(By) > 0 Vt. Then C is countable at most.
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Proof. Fix k and let t1,...,t, € T be such that P(B;,) > % Vi. Then since

2 (U Bti) = Z:U’(Bti) 2 %
=1 =1

n < ku(2) is bounded. Then:

C= G{Bt cu(By) > %}
k=1

i.e. it is a countable union of finite sets (for a fixed k), that is countable at most. [J

Thanks to this lemma we can state that D is countable at most. Now define the
probability mass function as m(x) = p({z}), * € D. Then we have the discrete
component of g as up(A) = > canpm(z) = ps(AN D) < pg(A), pup is a finite
measure. If we now consider ps(A) — up(A) > 0 VA is a measure, let’s call it singular
continuous component ps. = ps — pp (which means ps = pse + pp). Then every
probability distribution p can be decomposed as

B = Hac + Hd + Hsc

pA) = [ fir+ 3 mla) + pee(4)

reEAND

. There are situations in which the singular continuous component is not trivial

Ezample 2.3.8. X,Y random variable such that X +Y =1, X ~ UJ0,1]. The joint
distribution of X,Y is Pxy L A (the support of (X,Y") is a straight line, which has \-
measure 0). Moreover Py y has no discrete component, hence it is singular continuous.

In general, this happens when the random vector X = (X1,..., X3) € R¥ and the
support of y is a variety with lower dimension.

Ezample 2.3.9. X ~ N(0,%) with ¥ singular, which means that 3a : a’ Ya = 0. This
condition defines a plane: a”Ya = V(a”X) = a’ X = ¢. So, since for z € S, where
S ={z:a"z =c}, M(S) =0, 4 L X has no absolutely continuous component, and
since p({z}) = 0 it has no discrete component —> 1 = fis.

Ezample 2.3.10. Q = {0,1}*° i.e. we toss a coin infinitely many times. If toss n is

heads, then the player wins 2% We denote by X the total winnings. Thus we can

write

1 =1 =X
X,=1{ “" X=>r  0<X<1
0 w,=0 —_ 2

o Ifpg=p1 = % then X ~ UJ0,1] and so X is absolutely continuous

o if pg # p1 then Px is singular continuous, P(X = x) = 0 so it has also no discrete
component, and it has no density

We are going to show that the probability distribution of X is singular continu-
ous. Consider a real number z € [0,1] and its binary representation x = >, i,
x = (u1,ug,...). On principle the representation is not unique, but if we discard
terminating sequences it is. We have that P(X = z) = P(X; = u;,i = 1,2,...) =

21 P(u;) =0, and so pup = 0, and we want to show that also the absolutely contin-

uous component is zero. We first need two results
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o Every monotone function is almost everywhere differentiable and F'(b) — F'(a) >
Ji F' (@)X )

. If(F)(a:) = [T f(w)A(du), with f(u) > 0 and [*_ f(u)\(du) < oo then F'(x) =
f(x) Aa.e.

Let us denote by F' = p(—o0,z] and Fue(z) = pige(—00,x]. Since g = fige + fhse
Fuc(b) — Fye(a) < F(b) — F(a) Ya,b. If F'(z) =0 Ma.e. = F.(z) = 0 Ma.e., and
since Foe(z) = [* fdX = f =0 Aa.e., 50 pge = 0. We now need to show that
F'(z) = 0. Consider z such that 3F'(z) and let k, such that &2 <z < #2#l Then

F(fkfl) —F (&
F'(z) = lim ( 2 )1 (2 ) — lim 2"P(k—"§X<M):
n—oo 5m n—oo on mn
= 711520 2"P(uy)P(u2) ... P(uy)

limy, 00 P(Upy1) = %, but this is not possible.

2.4 Independent Random Vectors

Theorem 2.4.1 (Fubini-Tonelli, Recap on measure theory). Let (2, F, ), (@, F', 1)
measured spaces and consider the product space (2 x Q' F @ F',u x p') where (pu X
wW)(Bx B =uB)(B). Let g: (Ax Y, FRF') = (R,B(R)) measurable. It can be
proved that

[ gt sy = [ [ g, n!@aute)

We are going to consider integrals with respect to the Lebesgue measure, we denote
with A, the Lebesgue measure on B(R"™), A\, = A1 X A\; X -+ X A\;. We'll be dealing
with random vectors with different dimensions, so we drop the index and simply write
A

Definition 2.4.2 (Independent random vectors). The random vectors X1, ..., X,, are
said to be stochastically independent if o(X1),...,0(X,,) are independent

This means that the information we have on one random vector does not include
information on the probability of other random vectors being in a Borel set, i.e.:

P(Xz S BZ“Xl S Bl, .. -Xi—l € Bi—17Xz'+1 S Bz'-i-l: . ,Xn S Bn) = P<Xz S Bz)

In fact, since 0(X;) = {(X; € B;) : B; Borel set} and 0(X1)...0(X,) 1L, then P(X; €
Bi,..., X, € Bn) = P( ?:1(XZ‘ S Bz)) = ;’-7':1 P(XZ S Bz) VBi,...,By,.

If we denote by Py, . x, the probability distribution of (Xji,...,X,) and by Pk,
the probability distribution of X; the above definition reads in terms of probabilities
distribution as

PXl,...,Xn(le' . ~><Bn) = PX1 (Bl)PX2 (Bg) . PXn(Bn) = PX1 ><PX2 X - 'XPXn(Bl><~ . 'XBn).

This holds for every rectangle and rectangles are a determining class, so we can say
that
Xl, R ,Xn 1l <~— PXl,...,Xn = PX1 X PX2 X e X PXn-
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2.4.1 Criteria for independence

1. We can give a characterization in terms of distribution functions

Fxy,..x,(®1,...,20) = Pxy .. X, (Seq,.zn) = Pxy, X, (Szy X -0 X Sz,)
= Px, X Px, X +-+ x Px, (S, X -+ x Sg,)
= Px,(82,)Px,(S1,) - - - Px,, (Sz,,)
= Fx,(x1)Fx,(x2) ... Fx, (zp).

So we can say that

Xl,. . .,Xn 1l <— FXl,...,Xn(afl,--wxn) = FXI(:L’l)FXQ(.CCQ) FXn(«Tn)

2. In the case where the probability distribution is absolutely continuous with re-
spect to the Lebesgue measure, Py, . x, < A we want to show that Px, < A. We
know that there exists a density function f(z1,...,2,) such that Px,  x,(B) =
Jp(x1, ... zp)dA (21, ..., 2y,). If we want to compute

= flze, .. xp)dN(x, ... xp)

RA1 XX By X -+ xRdn

:/Bi

and the term in square brackets is a function such that integrated in dA(z;) we
obtain P, so it is a density function of X;. Note that in general the converse
is not true, Py, K A =5 Px,, . x, <A

Ezample 2.4.3. X,Y random variable such that X +Y =1, XY ~ UJ[0,1].
U[0,1] is absolutely continuous with respect to the Lebesgue measure but the
joint distribution of X,Y is Px y is singular continuous.

/]Rdl X xR%—1 xR%i+1 x ... xRdn

Now suppose Px, . x, < Aand Xi,...,X, 1, which means P(X; € By,..., X, €
B,) = P(X; € By)...P(X, € By). Writing each side in terms of density func-
tions we obtain

f(.%‘l, . ,$n)d)\($1, s i1, L1y - - - ,J?n) d)\(aj‘z)

/ Flan, . n)dN@1, ) :/ P @) oo fx (@n)dN@1) . . dA\ ()
Bi1Xx-+XBpn BiXx--XBp

from which we can deduce that f(z1,...,2,) = fx,(z1)... fx,(xn) A-almost
everywhere.

In this case (X1,..., X, 1L) the converse is also true: if Px, < A Vi=1,...,n
and X1,..., X, 1 then Px,  x, <A

Px,..x,(B1 x - x By) = Px,(B1)Px,(B2) ... Px,(By) =
= le (xl d)\ {L'l / an Tn d/\(xn) =

= le (:L‘l) e an (l‘n)d)\(l‘l, e ,:En)

Bi XX Bp

so it exists the joint density of Xi,..., X, and it is fx,(x1)... fx, (zn).

Xl,...,XnJ_L<:> f(:cl,...,xn) = Hle(CL‘Z) A —a.e.

i=1
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3. Suppose we have Py, . x, discrete, then there will be a probability mass function
m(z1,...,2,) and a set D countable at most such that Px,  x,(D) =1 and
Px, . x,{(z1,...,20)}) > 0 (z1,...,2,) € D. Then, Py, is also discrete and
D; = m; (D) where m; projections and

mx,(x;) = Z m(z1,...,Tp)

(@100 s Ti— 15T 4 15y T ) (T 1500y T ) ED

Px, ..x, is discrete if and only if Px, are discrete and D C D1 x --- x D,,. It is
an if and only if because projections cannot be singular continuous, while in the
absolutely continuous case this can happen.

X1, , Xp L= m(xy,...,z5) = m(z1)m(z2) ... m(zy)

Definition 2.4.4 (Independence for a family of r.v.s). If you have a family of random
vectors { X }ier they are independent if and only if Vn ¢1,...,t, € T Xy, ... Xy, 1L

Ezample 2.4.5 (Gaussian white noise). {X;}1>0 1L V¢, X; ~ N(0,02)

If {X;}ier 1L and we take a sub family 7" C T then {X;};e 1L, you never loose
independence reducing the family.

Theorem 2.4.6 (Disjoint block independence for r.v.s). Let the following be an array
of independent random vectors

X1 X2
Xo1 Xoo

Let G; = o({Xij}jen). Then {Gp}n>1 are independent.

Remark 2.4.7. If we take T; = ¢;(X;1 ... Xk, ) function of some random vectors in row
i, we have that this is measurable with respect to G;, which implies o(T;) C G; =
{o(Ti)}iz1 L= {Ti}i>1 L

Theorem 2.4.8 (Kolmogorow 0-1 law). If Xj,, X,,... are 1L and if A € T, ({ Xuy, Xkoy - -+ })
then P(A) =0 or P(A) = 1.

Corollary 2.4.9 (Constancy of a r.v. in the tail o-algebra). If a random variable Y
is measurable with respect to T ({X,}) and {X,} 1L then there exists ¢ € R such that
Y = ¢ almost surely.

Proof. P(Y <y)=0or P(Y <y)=1Vy O
Ezxample 2.4.10. If (X,,) i.i.d. sequence and |X,| < C, then:

. a.s.
limsup X,, = const. = ess-sup Px,
n

Where s = ess-sup Py if for any € > 0, Px (s +¢,+00) =0 and Px(s —¢,s) >0
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2.5 Functions and transformations

Definition 2.5.1 (Riemann integral in R). Let g : [a, b] — R be a measurable function.
The Riemann integral, if it exists is a number r satisfying Ve > 0 36 > 0 such that for
every finite partition {/; : j € J} of [a, b] with I; intervals and A(I;) < d and for every
IS Ij (] eJ )

<€

r— Zg(l‘j))\(fj)
J

Not all measurable functions are Riemann integrable. Note that Riemann integra-
bility requires the regularity of the function while Lebesgue not. However, Riemann
integrability implies Lebesgue one, and the integrals coincide.

Remark 2.5.2 (Riemann integrability of continuous functions). Continuous functions
are Riemann integrable by Fundamental Theorem of calculus, and we have that, if G
is continuously differentiable on [a, b] with derivative g, then

/abg dx = G(b) — G(a)

Proposition 2.5.3 (Radon Nikodym derivative of AXT~! with respect to \). Let U,V
be two open subsets of R¥, and let T : U — V be one to one, continuously differentiable
with det Jp—1 # 0 on V, where Jp-1 is the Jacobian matriz of T~' then

d(\T~1)
d\

Definition 2.5.4 (Integrals with respect the counting measure on R¥). Let D =
{x1,22,...} be a countable subsets of R¥ and let y. be the counting measure on D:

= |d€t JT—1|

pe(A) = [AND]
~——
Numberof Points
and in particular u.({z;}) =1 Vz; € D. Let g : R¥ — R* be a measurable function

n

[ s@netdr) = [ gapuda) = im 3 glas) = > g(s:)

i=1

Note that for a general function we can work with g4, g_.

Proposition 2.5.5 (Function of independent random variables). Let X, Y be random
variables with X 1LY and X ~ u, Y ~ v. The probability distribution of (X,Y) is
P((X,Y) € B) = (uxv)(B). For fized x let By = {y : (x,y) € B} is the section of B
in x. Then

P((X.Y) € B) = [ 1n(@y)d(u x v)(w.y)

= / (/lg(w,y)dV(yO du(z)

= [ v(B)duto)
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Ezample 2.5.6. X,Y random variables, i.i.d. and with density f(z) = ae™**10, c0)(x),
with a > 0. We want to find the probability distribution of Z = % Z >0. Fix z >0,
then

Y © Y
P(Z > z) = P(} > z) = / P(} > z)ae” “dz
0

o0 oo
= / P(Y > zz)ae” “dr = / e “ae  “dx
0 0

_ a/oo e_agc(z—&-l)dx _ L
0 z4+1

while for z < 0 P(¥ > z) = 1. So

d 0 z2<0
fz2(z)=—(1—=P(Z>2z2)= L
dZ m Z>0
and
0 7 <0
FZ(Z):{ 1 _
1—Z+1 Z >0

Definition 2.5.7 (Convolution). Let y,v be finite measures on B(R¥). The convolu-
tion between y and v is

(5 v)(4) = [ (A = w)u(da)
where A —x={y—xz:y € A}

@+ v is a finite measure and (u * v)(R¥) = p(RF)w(RF). If u,v are probability
measures then u * v is a probability measure. There are some properties:

1. pxv=vx*xp
2. (vxp)xn=vx*(uxn)
3. If F(z) = p(—o0,z] and G(x) = v(—o0,z] then (u* v)(—o0,z] = (F x G)(x)

where
(F *G)( /F:c— dy)
4. If v < pand p < n with f = andg—%,thenu*y<<nand
,u*y
/f:v— )n(dy)

Proposition 2.5.8 (Sum of independent r.vs). Let X Il Y be random vectors such
that X ~pandY ~v. Then X +Y ~ puxv.

Proof.

P(X+Y)eB) = /P(Y € B — 2)dPyx () = /V(B _ 2)du(z)
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Ezample 2.5.9. X,Y ii.d. ~ Poisson(\). Then

-\
e A
m(zx) = . x=0,1,...
z efAAzfz ef)\A:r o z 1
mx+y = y» m(z—x)m(x) = I =e Ny —
Zx: ;) (z—z)! x! ;)(z—a:)!x!
_ e 2N\ i 2! 1o _ e 2 (2))?
zl — (z— )l 2!
=0

That is to say X + Y ~ Poisson(2)\)

Theorem 2.5.10 (Transformations of random vectors). Let X be a random vector
with absolutely continuous distribution and density fx. Let U be an open set such that

fx(x) >0 forx € U. Let g: U — V be a one to one, continuously differentiable
function such that

det(Jgfl) #0
Then'Y = g(X) is absolutely continuous with density
fr () = fx (97" (v) [det(Jy-1 (4))| Ty (1)

Proof. Let BCV
PY € B) = Pg(X) € B) = PX € g'(B)) = [ 1,1 (@) fx(2)dA(2)
= [ 1)) x( g@)dN@) = [ 150 fx(s™ m)d0g ™)
= /V La(y)fx (97" (1) |det(Jy1 (4))| dAw)

Ezample 2.5.11. X,Y ll~e(a), Z=X+Y, W = 25 Find Pz
fizw)(z,w) = fix ) (@(z,w),y(z,w))| det(Jg-1 (2, w)) [Ty (2, w)
We start by looking for U, an open set such that
P(X,Y)eU)=1 V=4U) (zw)=g(zy)

fx(x) = ae” 1 (o) (x) X € (0,00) and the same holds for V'
So we take U = (0, 00) x (0,00). Now we look for g71(z, w).

w =

z=x+y y==z(1-w)
T =wz

And this is a 1-1 function. Also, z > 0 and 0 < x < 1 as a consequence of x > 0 and

y > 0.

det(Jy-1) = —wz — (1 —w)z = —2
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Therefore z > 0 = |det(J,-1(z,w))| = 2. We obtain the joint density

fxy(z,y) = ae*ae™ 1 (g 00) (%) L(0.00) (y) = a®e @1y (2, y)

2 az

faw (z,w) = aze” "1 g o0y (2) L(0,1)(w)

We see that Z 1L W, W ~ U(0,1) and Z ~I'(2, a).

2.6 Convergence of sequence of random variables

In this section we have { X, },en sequence of random variables, i.e. functions X, (w),w €
) defined on an underlying probability space (€2, F, P) .

Definition 2.6.1 (Almost sure convergence). We say that X,, converges to X almost
surely, and write X,, —— X, if P({w € Q: X,,(w) = X(w)}) = 1.

Definition 2.6.2 (Convergence in probability). We say that X,, converges to X in
probability, and write X,, —— X, if for all e > 0 P(|X, — X| >¢) = 0 as n — 0o .

Starting from the definition of almost sure convergence we can say that
P(Xp(w) = X(w))=1 <= P{weQ:Ve>0 Ing:Yn>ny | X, — X|<e})=1

= P({WEQZV]C Ing : Vn > ngy | Xp(w) — X(w)] <}> =1

k
= PO U N |Xn—X\<l =1
k=1no=1n=no ki

Since in general the probability of a countable intersection can be one if and only if
the probability of each event is one

P(ﬁAk> =1 << P(Ak):1 Vk
k=1

in our case we take

4-U N {\Xn—X|<]1€}

no= 1n=np

therefore
o0 o0 1
X, 243X < Vk P {Xn—X <} =1
(ngl TLD"LO ‘ | k )

is the same as
Ve >0 P(liminf|X, — X|<e)=1

or alternatively
Ve >0 P(limsup|X,, — X|>¢e)=0

Therefore we can say

X, 23 X < Ve>0 P(limsup |X, — X|>¢)=0
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Finally note that since limsup(P(A,)) < P(limsup(A4,)), we have
X, 23X = P(|X,—X|>e)=0

In other words, almost sure convergence implies convergence in probability, so conver-
gence in probability is a necessary condition to almost sure convergence. There is also
a sufficient condition. We collect these observation in the following proposition:

Proposition 2.6.3 (Properties of a.s. convergence and convergence in probability).
Given a sequence (X,,) and X of r.v. on (Q,F,P). Then:

o (Characterization of a.s.-convergence)

X, 2 X < P(limsup|X, — X|>¢e)=0 Ve

o (Necessary condition for a.s.-convergence)

X, 25X = X, 2 X
o (Sufficient condition, corollary of Borel-Cantelli)

o
Y P(Xp—X|>e) <oo = P(limsup|X,—X|>e) =0 Ve <= X, == X
n=1

Ezample 2.6.4. Let {X,,} 1L be such that

0 1-%
n_{ 1 n2
e

n

Then notice that X,, —— 0 because P(|X, — 0| > ¢) = P(X,, > ¢) = # — 0 and
YP(X,>e)=3 # < 00, 80 X, converges almost surely to X.
Ezample 2.6.5. Let {X,} 1L be such that
0 1-1
wofot
1 3

Then notice that X,, —— 0 because P(|X,, — 0| > ¢) = P(X,, > ¢) = 1 0. Does
X, 2+ 0? We need P(limsup|X,, — X| > ¢) = 0. But here, we would like that
P(limsup{X, > e}) = 0. However, note that by BC2, 3> P(X,, > ¢) = > 1 diverges,
hence P(limsup{X, >¢}) =1. So X,, does not converge almost surely to X.

Theorem 2.6.6 (Equivalent definition to convergence in probability). X, L X =
Y(n') C (n) 3 a subsequence (n") C (n') such that X,» —=— X

Proof. (=) Let X,, %= X i.e. Ve >0 P(|X,, — X| > &) — 0, which means:
Ve >0, V6 >0, Ing:Vn>ng P(|X,—X|>¢) <9

For any sequence (n’), for any k € N take ¢ = %, 6 = 2%, then we can find ng €
(n'),ng > ng—1 + P(| Xy, — X| > 1) < 2%, and we call (n”) = (ng). Therefore
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Sy P(| X, — X| > 1) = 3721 95 < oo and by Borel Cantelli 1 P({|X,, — X| >

% i.0.}) = 0. Now we should have ¢ fixed instead of %, but notice that for k large enough

+ <eg, 50 ({|Xn, — X| >cio}) C ({|Xn, — X|> 7 i.0.}) therefore P({|X,, — X| >
ei0.}) < P({|Xn, — X|> 1 10.}) =0.
( <= ) Let’s suppose that X,,  ,X. Then (look at equation above):

Je >0, 36 >0, 3(n): P(| Xy — X| >¢)>6 vn' € (n)
In particular this will be true for any subsequence of (n’):
V(n") C (n') P(| Xy — X| >¢)>d Vn" € (n")

This means that X,» 4 ,X = X,» 4 4,sX. This contradicts the assumption of the
existence of an a.s.-converging subsequence. O

There are two useful applications of this theorem:

Proposition 2.6.7 (Uniqueness of the limit in probability). The limit in probability
1s essentially unique: if X, L5 X and X,, 25 Y then X =Y a.s.

Proof. 3(n’) and (n”) such that X,, = X and X,» —=— Y, but along the subse-
quence the limit is the same so X,,» —— Y. This means X =Y a.s. U

Proposition 2.6.8 (Convergence in probability through continuous functions). If
X, 2 X and f is a continuous function then f(X,) —— f(X).

Proof. Fix (n") C (n') such that X,» -~ X. Then f(X,») -2~ f(X). Using the
above result, we have found a sub-sequence converging a.s. to f(X) which means that

F(Xn) == f(X). O

Recap on measure theory

Let (2, F, ) a measured space, u sigma-finite, g : (2, F) — (R, B(R)). We define the
integral of g on Q with respect to the measure p, [, gdu as

o if g =3 aila, then fogdu =35, aip(Ai)

o if g > 0 it exists a non-decreasing succession g, of simple, non-negative such that
gn /g, then [o gdp = limy 00 [ gndp

o if g is integrable, g = g+ — g—, then [, gdp = [ g+dp — [ 9-dp

Definition 2.6.9 (Integrable function). g is said to be integrable if [, g+dp < 400
and [, g—du < 4oo, that is <= [, |g|dpu < +o0.

Proposition 2.6.10 (Properties of the integral). e Monotonicity: g < h —
Jagdu < Jo hdu

o Linearity: [o(ag+bh)dy = a [ogdp+b [o hdp

o Linearity with respect to the measure: [, gd(ap+ Bv) = a [o gdp + 5 [, gdv
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Definition 2.6.11 (push-forward measure). Let (Q2, F), (€', F') be measurable spaces,
g:(Q,F)— (@, F) measurable function. Let u be a sigma finite measure on F. The
measure induced by g on F' is defined as

W(B) = (g~ (B)).
It can be proved that p' is indeed a sigma-finite measure. We write 1/ = pug™1.

Proposition 2.6.12 (Change of variables). Let (Q,F), (2, F’) be measurable spaces,
g: (F) = (Y, F) measurable function, h : (', F') — (R,B(R)) measurable func-
tion. Let p be a sigma finite measure on F. It can be proved that

[ h@)dlug ™ @) = [ hlg())du(e).

Proposition 2.6.13 (Change of measure). Let (Q,F, ) be a measured space, v a
sigma-finite measure v < pu, g : (Q,F) — (R, B(R)) measurable. It can be proved that

/gdv = /gdydﬂ
dp

and denoting by f = g—z the density (Radon-Nikodym derivative) of v with respect to

[oiv=[g-ran.

Let (Q,F,u) be a measured space, (gn) be a sequence of measurable functions
Gn — g p-a.e.

Proposition 2.6.14 (Fatou lemma). If g, <0 then
/lim inf g,dp < lim inf/gnd,u.
Theorem 2.6.15 (Monotone convergence). If g, <0 and g, < gn+1 p-a.e., then
Jim [ gndp = / gdp.

Theorem 2.6.16 (Dominated convergence). If there exists h measurable such that
Vn |gn| < h p-a.e. and h is integrable then

Jim / gndp = / gdp.

Remark 2.6.17. In monotone convergence theorem the limit can also be +o0o while in
dominated convergence theorem the limit is always finite.

2.7 Expectation of Random Variable

Definition 2.7.1 (Expectation of a random variable). Let (€2, F, P) probability space,
X random variable, we define the expectation of X as E(X) = [, XdP.

The expectation has the same properties of the Lebesgue integral, thus it is mono-
tone and linear and also linear with respect to the measure.
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o if X =371 a;la, then BE(X) =37, a;P(4;)

o if X > 0 then 3X,, sequence of simple, positive, X,, — X then E(X) =
lim,, oo F(X,). This can converge or be oc.

e X =X"—X" then E(X)=E(X*")— E(X") provided at least one is finite.

and we say that X is integrable if E(XT) < oo and E(X™) < 0o < FE(|X]) < oo
Denoting by LY(Q,F,P) = {X : E(|X|) < oo} we say X integrable X € L.

We would like to be able to compute the expectation of a function of a random
vector, which we can do applying the change of variable formula. For instance, let
(Q, F, P) be a probability space, X a random vector of dimension k with probability
distribution z which is a PM on B(R¥). Take g : (R¥, B(R¥)) — (R, B(R)). Then we
have

Blg(x) = [

Q

9(X@)P() = [ gla)n(da)

since the measure induced by X on (R,B(R)) is PX ! = j. How can we compute
Jrr 9(x)p(dx)? We know that p can be decomposed as p1 = fige + pp + flsc, SO

/gd,u: /gdﬂac+/gduD+/gdﬂsc

o flac <, call f=%ae 50 that [ gdpee = [pr gfdX

e D = {z: u({x}) > 0}, up < A, where A is the counting measure on D,
Ac(A) = |AN DJ| and d“D( ) = m(z) . Then [gdup = [g(z)m(z)dA.(xz) =
> zep 9(z)m(x) because the only points that matter are the ones where . puts
mass so A, is almost everywhere equal to a simple function

/ d/lsc

Suppose we have two random vectors Xy, Xo I, ux, x, = tx, X px,. Then

At the end we can say

B(g(X) = [ g@)f@)a\@) +

ccED

E(g1(X1)g2(X2)) = /91(951)92(952)d(MX1 X g ) (@1, 22)
:/[/gl(:nl)gz(l‘Q)dlle(iUZ)] dNX1($1)
= [0 [ [ g2t )] dix, (1)

— /gg($2)dﬂx2(x2)/gl(xl)dﬂxl (1)
= E(g2(X2))E(g1(X1))

2.7.1 Expectation and limits

In general X,, —+ X does not imply E(X,) — E(X), but in the following we are
going to see some theorems to handle limits.

Proposition 2.7.2 (Fatou’s Lemma). If X;,, > 0 then E(liminf X,,) < liminf E(X,,).
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Application 2.7.3. X,, > 0, X,, € L' Vn, X,, —— X, under which conditions can we
say that X € L'? If X = liminf X,, then E(X) < liminf F(X,,), so if liminf E(X,,) <
400 then X € L'. More in general, X,, € L' ¥n, X,, -2~ X, |X,| =2~ | X| then
by Fatou lemma we can say E(]X|) < liminf E(|X,]), so if the latter is < +o00 then
X el

Proposition 2.7.4 (Monotone convergence). If X, > 0 and X,+1 > X,, a.s. Vn and
X, 2+ X then BE(X,) — E(X).

Application 2.7.5. To see an application of monotone convergence we will prove the
following formula: if X > 0 then

where I’ is the distribution function of X.

Proof. e  First suppose X is simple and takes values x1,...,x, with 0 < z1 <
-+ < xp. Then X is a discrete random variable and

EX)=) aP(X =)= /OM 1dtP(X = x;)
i=1 i=1
- Zl/o P(X = )t = Z:/O g o (DP(X = 2;)dt
- /O°° > Mo (O P(X = z;)dt
i=1

= /00 Z ﬂ[t,oo) (xl)P(X = J}i)dt
0 =1

_ / T PX > t)de
0

Recall P(X > t) = P(X > t) a.e. with respect to the Lebesgue measure because
P(X >t) # P(X >t) < P(X =1t) > 0 and there can be an at most
countable number of points where this is true — otherwise P(£2) > 1. Therefore
the integrals are the same.

B(X) = /OOO P(X > t)dt = /OOO P(X > t)dt = /000(1 — F(t))dt

o Now with a more general X such that X > 0, then 3{X,,},>1 a sequence of
increasing and simple random variables such that X,, — X Vw. From the above
point,

B(X,) = /000(1 — Eo(6))dt = /Ooo P(X, > t)dt

On the left hand side, we apply the monotone convergence theorem: E(X,) —
E(X). On the right hand side, P(X,, > t) = E(1,00)(X»n)) where n — oo and
t is fixed. Let’s take ¢ such that P(X =t) = 0. Then 1 (-) is continuous
on a set O such that P(X € O) = 0. Also, 1;0)(Xn) < L(1,00)(Xny1) because
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{Xn}n>1 is increasing so X, >t = Xp41 > t. By the continuity of 1 )(-),
Lt,00)(Xn) = L(,00)(X). By the monotone convergence theorem we have:

E(1(,00)(Xn)) = E(L100)(X))

because E(-) preserves the monotonicity. Therefore 1 — F,(t) — 1 — F(t) Vt :
P(X =t) = 0 and this set is at most countable. On the left hand side, since
P(X, >t) — P(X >t), we obtain

/OOO P(X, > t)dt — /OOO P(X > t)dt = /000(1 — F()dt

The limits on the right hand side and the left hand side must be the same, thus

B(X) = /000(1 _ F(t))dt

O
Alternative proof. By Fubini’s theorem (everything is non-negative),
/ P(X > x)dx = / / H(X(w)>x)dp(w)d.7} = / / H(X(w)>x)dl' dP(w) =
0 0o Jo QJo
_ / X(w)dP(w) = B(X).
Q
O

Proposition 2.7.6 (Dominated convergence). If X,, —=~— X and 3Y integrable such
that | Xp| <Y Vn a.s., then E(X,) - E(X).

2.8 Moment generating function

Definition 2.8.1 (Moment generating function of X). Let X be a random variable and
I={scR:E*¥X) < oo} aset of real number. For s € I we define M (s) = E(e*¥X)
the moment generating function of X.

Note that 0 € I, and [ is convex, so it is basically an interval.

Theorem 2.8.2 (Taylor expansion at 0 of a MGF). If 3sg > 0 such that [—so, so] C I
then all the moments of X are finite Vk E(|X|¥) < +o00 and

< sFE(XF)

for s € [—so, 0]

If the function can be written in this way it is analytic and the expression coincides
with the Taylor expansion in zero E(X*) = M®)(0).
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Proof. Fix k and consider W@% < X520 [sPIX |]|X‘J = elsXl < elsoXl and E(eloX]) <
E(e*oX 4 e7%0X) < 400 s0 B(|X|¥) < +o0. The goal is to show that we can exchange
the limit and the integral is to find a dominating random variable Y that is integrable
to apply the dominated convergence theorem. We have:

n Ska
2

k=0

s IXE S JsFIX TR
—L

6‘5X| S elszl

Therefore e/*0X| is dominating, and it is integrable. Therefore Y = el*X| is integrable,
and by the dominated convergence theorem:

k=0 k=0 k=0 k=0

Therefore ( )
> gk xk o sHE(X*
b (Z k! ) =2

Ezample 2.8.3. If X ~ exp(A), and we want to find the moments we can compute
o0 o
M(s) = E(e®X) = / eSX e Mdy = )\/ e A8 dy < 0o
0 0

for s < A\ so our domain for the moment generating function is I = (—oo, \)

B B X gk B >, sFE(XF)
o =r5=2(5) =S5

1—32
pY —

i.e. if we can expand

B(Xk) 1
Ak R
Therefore 0l
E(X*) = )\"f

If you cannot find [—sg, s9] C I the moment generating function is useless

Ezxample 2.8.4. X ~ Cauchy, f(x) = then I = {0} and Mx(0) = 1. X ~
lognormal, I = (—o0, 0].

1
m(1+z2)

2.9 Uniform integrability

Let X be an integrable random variable on (2, 7, P) . Then

lim E(|X[1(x|5a)) =0

a—0o0

since |X|1(|x|>a) — 0 as @ — oo and |X|1(x>q) < [X]| < co. Now consider a
finite number of integrable random variables X1,...,X,,. We can find Ve > 0 da; :
E(1Xi|1(x,|>a,)) < € and if we take a = max(az, ..., an) we get

E(Xi|Tx,150) < E(1Xi|1(x,/>0,)) <€



2.9. UNIFORM INTEGRABILITY 95

S0 sup; E(|Xim(|Xi|>ai)) < g, that is sup; E(‘Xi|]l(|Xi|>ai)) — 0 as a — o0.

If instead we take a sequence Xp,Xs,... (so an infinite number) of integrable
random variables, we have again that Ve > 0 Ja; : E(|Xi|1(|x,>q,)) < &, but in this
case sup; o; can be +00 so in general we don’t have sup; F(|X;|1(x;>q)) — 0 as a —
00.

Definition 2.9.1 (Uniform integrability (UI)). A sequence of random variable {X,,}
is uniformly integrable if

Ve >0 Ja: sup E(|Xn|1(x,|>a) <€
n

which means sup,, F(| Xu|1(x,|>a)) — 0 as a — oo.

Idea: uniformly in n, the tails of the sequence don’t matter.

{L'2
Ezample 2.9.2. X,, ~ N(0,n), then Vn E(|X,|) = f|a:|\/21ﬂfne_%7dx < 400, so X,

integrable. But X,, = /nZ in distribution, where Z = N(0, 1), thus

sup E(|1Xn|Ll(x,>a) = S%PE(\/H|Z|]1(\/E|Z|>Q)) = sup VRE(|Z]1 2> 2)) = +00

so its not uniformly integrable.

Proposition 2.9.3 (Necessary condition for UI). X,, uniformly integrable — sup,, E(|X,|) <
400

Proof. We can write sup,, E(|X,,|) = sup,, {E(‘Xn’]l(|Xn|>a)) + E(‘Xn‘]l(\Xn\ga))}- We
can fix a in order to have E(|X,|1(|x,|>a)) < € and of course E(|X,|1(|x,|<qa)) < @,
so sup,, E(|X,|) < a+e < +oo. O

Ezample 2.9.4. The condition is not sufficient. Take

0 1-1
-

n

Xy, > 0 and sup, E(|X,|) = 1 < 4+00. However this sequence is not uniformly inte-
grable: sup,, E(’Xnm(|Xn|>o¢)) =1 7L> 0.

Proposition 2.9.5 (Sufficient condition for UT). If 3p > 1 such that sup,, E(|X,|P) <
400 then X, is uniformly integrable.

Proof.

X p
sup E(| Xn|1(x,|>q)) = sup E (Tl‘_lﬂ(|xn|>a)>
n n | X [P
| X [P
< B (1w
sup E(| X,P) =0
n

—_—————
<o

<

ap~1

as a — 00. OJ
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Ezample 2.9.6. X, ~ N(0,02), 02 = E(X2), sup,, 02 < +co = X, uniformly
integrable.
Theorem 2.9.7 (Uniform integrability criterion). Suppose we have a sequence of ran-

dom variables such that X, — X almost surely and X, € L', Yn. Then the following
conditions are equivalent

1. X, is uniformly integrable
2. X € L' and E(|X, — X|) = 0 as n — ¢
3. E(|Xn|) = E(|X|) < 400 (usually the easiest to verify)

Proof. We will write X,,o, = Xn]l|Xn|§a and Xy(la) = Xn]l|Xn|>a. Analogously X, =
X1 x|<o and X (@) — X1|x|>q- We can always choose a such that P(X = a) = 0 and
this implies X, — X, almost surely and XT(LO‘) — X (@ almost surely.

e (1) = (2) Assume X,, uniformly integrable. Then E(|X|) = E(liminf, | X,|) <
liminf, E(|X,|) < sup, E(|X,|) < 400 so X is integrable. Then in E(|X, —
X|) € E(|Xna — Xa| + |X\%| + |X@)]) take a such that sup, E(|X\"|) < e and
E(|X@|) < e. Then |X,o — Xa| — 0 asn — oo and is bounded by 2« (since they
are both smaller then « in absolute value) so we can use dominated convergence
and get that | X, — Xo| = 0. Then, Ve > 0 limsup, E(|X,, — X|) < 26 =
limsup,, E(|X,, — X|) = 0.

e 2) = (3) X el B(|X,— X|) -0 = E(|X,]) = E(|X]) < +o0. Indeed,
[E(|Xn]) = E(XD] = [E(Xa] = [X]))] < E(1X, = X]) = 0.

e (3) = (1) E(|Xya]) = E(IX]) < 400 = Ve 3a: limsup E(|Xn|1(x,|5a)) <
€. We get rid of the absolute value assuming X, > 0, X > 0. If we can prove
lim sup,, E(X,(La)) < E(limsup,, XT(LO‘)) then this is equal to F(X(®) and for o
large enough this is less than . The inequality we want to prove is similar to
Fatou lemma but with lim sup. We get

lim sup E(X(*) = limsup E(X,, — X,,a) < limsup E(X,,) + lim sup E(—X,a)
< EBE(X) - limninfE(Xna) < E(X)- E(limninf Xna)
< E(limsup(X,, — Xpna)) < E(limsup X))

O]

Proposition 2.9.8 (Convergence of the expectation and Ul). If X, is uniformly
integrable and X,, — X almost surely then E(X,) — E(X).

Proof. |[E(X,)— E(X)|=|E(X, - X)| < E(|X, —X|) — 0as n— occ. O

Suppose X,, = X, E(X,,) — E(X), X,, > 0. Then Fatou lemma E(liminf X,) <

liminf £(X,) = E(limsup X,,) < limsup E(X,,), in this case the inequation is the
opposite.
Ezample 2.9.9. Toss a coin infinitely many times, Z; = 214,, A; ="H" at toss ¢,
P(A;) = % Consider X, = [\, Z;, then X,, — 0 almost surely because if you observe
a tail the product is zero. Then E(X,) = [[iv; E(Z;) = 1, so 0 = E(limsup X,,) 7
limsup E(X,) = 1.
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2.9.1 Expectation and series

Proposition 2.9.10 (Expectation and series for non negative r.v.’s). X,, > 0Vn —
E (i Xn) = X0k BE(Xn).

Proof. E (limy o0 Y ieq Xi) = limp oo B (O Xi) = limy o0 2oieq E(Xi) = > 02 E(X5)

using monotone convergence. O

Proposition 2.9.11 (Expectation and series for general r.vs). If Y >°, E(|X,]) <
+oo = E (X5l Xn) = 205 E(Xn).

Proof. |3°2° 1 X,,| <3°%° | X,| € L' and by dominated convergence E (3°°, | X,,|) =
21 B (| Xnl) < +oo. -

2.10 Inequalities

Proposition 2.10.1 (Jensen inequality). Let X be a random variable with finite ex-
pectation E(X). Let U be an interval such that P(X € U) = 1 and let ¢ a convex
function on U. Then

E(p(X)) = o(E(X))
Moreover, if ¢ is strictly convexr on an interval V such that P(X € V) > 0, then
E(p(X)) > o(E(X)).
Proof. ¥xy € U Ja,b € R such that ¢(xg) = axg + b and p(z) > axo + b.
Now choose xg = E(X), so that
e(E(X)) =aE(X) +0.

Furthermore

(X (w)) > aX (w) + b with probability 1
U
E(p(X)) 2 aE(X) +b = p(E(X))
U
E(p(X)) > p(E(X)).
O
Ezample 2.10.2. If p(X) = |X|, then E(|X|) > |E(X)|. If ¢(X) = X2, then E(X?) >
E%(X).

Proposition 2.10.3 (Markov inequality). Let X be a random wvariable and p > 0.
Then

B(XP)

Va >0 P(|X|>a) <
oP

Proof.

E(|XP) = E(|X[P1(x|<a)) + E(XPL(x1>0)) = E(IXP1(x|>a)) =
> a’E(1(x>a)) = a"P(IX] = a).
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If we take p = 2 and we replace X with the centered variable X — F(X), we get
the Chebyshev inequality.

Proposition 2.10.4 (Chebyshev’s inequality). Let X be a random variable. Then

Var(X
P(X ~ BX)| > 0) < V),
where Var(X) is the variance of X.
Proof. Direct consequence of Markov inequality. O

Definition 2.10.5 (Conjugate numbers). Two numbers p,q > 1 are conjugate if 1% +

i=-1.
q
Ezample 2.10.6. Some couples of conjugate numbers are: (2, 2), (3, 3/2), (4, 4/3).

Proposition 2.10.7 (Hoélder’s inequality). Let p,q be conjugate numbers and X,Y
random variables. Then

E(IXY]) < (E(IX[P)/P(E(|X|7))!/9.
We introduce the notation
X ||, = (B(IX[P)!/P.

Note that here it is just a notation, but later we will define the concept of norm in L?
space, that uses this notation, in the same way.

E(XY]) = [ XplY1lq

E|XY]|

Proof. We want to show that XLV T

numbers:

< 1. First of all let us recall a property of

1 1
—aP + -b?1>ab, Va,b>0
p q

To prove it, let’s assume that a,b > 0 (otherwise it is obvious). Let’s write a = €*
and b = ef. Then, by convexity of the exponential function and keeping in mind that
1_ 1

1 1 1 1 logy 1
—aP 4+ 2bT = ZeP 4 2 > enPSTeT = eSel = g,

X Y .
Hence we can take a = ”|X”‘p and b = ﬁ so that, assuming || X[, |[Y |l > 0,

LIXP 1Y XY
PIXIE " 2IVIE = TXT, 0T,

We take expectations on both sides and we recall that || X||) = E(|X|P) and [|Y[|¢ =
E([Y]9):
L BxYD
p q Xl 1Y g
Hence
E(XY]) < [1X[lp[Y g

If | X, = 0 then (E(|X|[P))'/? = 0, that is E(|X|?) = 0. This implies that X = 0 a.s.
and so the inequality would be 0 < 0, that is true. O
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A particular case of the last proposition is the Cauchy-Schwarz inequality, that is
obtained taking p = q = 2.

Proposition 2.10.8 (Cauchy-Schwarz inequality). Let X, Y be two random variables.

Then
B(XY]) < JE(X)E(V?).

Proof. Holder inequality with p = g = 2. O
Application 2.10.9. By Jensen and Cauchy-Schwarz inequalities we get

[E(XY)| = E(|XY]) </ E(X?)E(Y?)

Then taking X — E(X) and Y — E(Y) in place of X and Y

Cov(X,Y)| < /Var(X)Var(Y).

Furthermore it can be proved that

Y- E(Y) X-E(X)
Var(Y)  Var(X) '

Cov(X,Y)| = \/Var(X)Var(Y) <=

Proposition 2.10.10 (Lyapounov’s inequality). If 8 > o > 1 then | X||g > || X||a

Proof. Consider Holder’s inequality
E(IXY]) < (E|X]")» (B|Y|")s

and apply it taking Y =1, X = |X|* and p = g

E(X]*) < (E(IXlo‘g))% — (B(X|%)?
i
E(IX|")% < (B(IX|))7

)
[ Xl < [1XT]s-

O

Proposition 2.10.11 (Minkowsky’s inequality). Let X,Y be two random wvariables

and p > 1. Then
X + Y, <Xl + 1Yy

Proof. If p =1, by the triangular inequality E(|X +Y|) < E(|X|+ |Y]) = E(|X]|) +
E(Y]). If p > 1,

o)
E(X+YP)=E(X+Y[P X +Y]) < E(X + Y[ X]) + E(X +Y[P~HY])
(2) 1 1
< [E(1x + Y00 (21X P + [B(1X + Y|#-09) |7 (B|Y|P)»
1 1
< [E(X +YP)]a I X]lp + (E]X + Y[P)a[[Y]].

Where
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(1) Triangle inequality;

(2) Holder inequality on both addends using |X + Y|P~! as first random variable
(of the two of the Holder inequality) in both cases and X,Y as second random

variables respectively in the first and second addend.

Therefore we have
1
E(X+YP) <[E(X+Y[")]s (X, + 1Y)
3
1-1
(BIX +Y[P)) e < | X[lp +Y]lp

)
1
(BIX + YD)y <[ X1l + 1Y [l
)

1X + Ylp < {1 XIlp + Y1l
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LP spaces

3.1 Random variables and L” spaces
Definition 3.1.1 (LP space). Let p > 1 and consider (2, F, P) .
LP(Q,F,P)=LFP ={X on (Q,F,P): E(|X|P) < c0}.
Proposition 3.1.2 (L? as a vector space). LP is a linear/vector space:
1. if X € L? and a € R, then aX € LP;
2. if X, Y € LP, then X +Y € LP.

Proof. 1. X € LP and E(|X|P) < co. Let (Z,)nen be a sequence of simple, > 0 ran-
dom variables such that Z,, T |X|P, then lim E(Z,) < oo (by Monotone conver-
n

gence). Then |a|PZ, 1 |a|P|X|P = |aX|P and lim E(|a?Z,,) = |a|PE(|X|P) < oc.
n
2. X,Y € LP.

E(X +Y[) < EQ2"max(|X]", [Y")) <2"E(|XP + [Y]*) =
= 2[BE(|X ") + E(|X]|7)] < oc.
—_———  —

<oo <oo

hSA

Introduce the norm || X ||, = (E(|X|P))>.
L. || X|lp > 0and || X|, =0 if and only if X =0 a.s.
2. laX]p = lall X},

3. X +Y, < |1 X|lp + Y lg by Minkowski

Definition 3.1.3 (Convergence in LP). X, X | X7 — X||p = 0as n — oo.

Xy P X = (B(Xn— X[P))7 -0
<~ E(|X, - X|P) — 0.

61
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Proposition 3.1.4 (Inclusion of LP spaces). Take LP,L9 with 1 < p < q. Then
L1 C LP, that is
E(|X]9) <00 = E(|XP) < .

Furthermore by Lyapounov || X|[, < ||Y|q-

P

Proposition 3.1.5 (Relationship between L" 5 and ). Convergence in LP im-

plies convergence in probability:

| Xn — Xl =0 = X, 2= X.

Proof.
E(X, — X|P
P(|X, — X| >6)§w—>0asn—>oo
€
Where the inequality is given by Markov inequality. O

Definition 3.1.6 (Cauchy sequence). (z,)nen is a Cauchy sequence if ||, — x| — 0
as m,m — 0o.

Definition 3.1.7 (Complete space). A space is complete if every Cauchy sequence
converges.

Ezample 3.1.8. R is complete.
Theorem 3.1.9 (Completeness of LP). LP is complete.

Proof. (X,)nen Cauchy means that
Ve >0 Jng : | Xy — Xinllp <€ Vn,m > no.
This can be written as

Vk e N dnyg @ [|[ Xy — XD < Vn,m > ny.

55 3%
Then

> 1 O E(| Xy, — Xnpy|P) X 1/2kP1 /2K
I N N
k=1

=1 < o0,
k=1 k=1

where the first inequality is by Markov inequality. By Borel-Cantelli first lemma

I
P <|Xnk — X | > oF 1.0.) = 0.

Hence, if we take

I
—
2
ES
S
S
ES
£
IN
2
=
=5
o
——

1 . ¢
H = {‘Xnk —XnkJrl‘ > 27]{: 1.0.}

then P(H) =1 and Vw € H,

for ny large enough.
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Hence, for h > k,

[ Xng (W) = Xy, ()] < [ Xy (W) = Xy (@) - 4 [ Xy (@) = Xiny, (W)

that means that (X, (w))nen is a Cauchy sequence in R. This implies that

Ywe H Elklim X, (w) = X (w) with X r.v.
—00

and so X,,, —— X. Now we want to show also convergence in L?.
E(| Xy, — X[P) < E(liminf | X, — X,,|P) <liminf B(|X,, — Xn,[F)
Jj—o0 Jj—00

< lim inf

Hn W—)()ask%"_oo,
j—vo0

where the second inequality is due to Fatou Lemma. Hence, X, L x , indeed
1 Xn = Xllp < [[Xn = Xnllp + [[ X, — X]lp = 0.

because both addends are smaller than every € > 0, respectively because (X, )nen is
Cauchy and because of almost sure convergence. O

So LP is a complete, normed, linear space, that is LP is a Banach space. However
LP is not separable. In general, you can always approximate X with simple random
variables

kn
Xo=3a"1
i=1 ¢

(n

i ) e Q, the problem is with Agn) € F. If F is not too large we can approximate
{Al(-n)} with a countable set, so that the following theorem holds

with a

Theorem 3.1.10 (Separability of LP). If F is countably-generated (i.e. there exists
a sequence {An} of subsets of X, such that F = (A1, Ag,...)), then LP(Q2, F, P) is
separable.

3.1.1 L? as an Hilbert space

An interesting case is L?: on this space we can define an inner product
E(XY)=(X,Y)
which is linear, symmetric and (X, X) > 0 and (X, X) =0 <= X = 0. So the L?

X1z = (X, X) = \/E(X?)

comes from an inner product, which means that L? is an Hilbert space.
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Chapter 4

Laws of large numbers

Let { X, }nen be a sequence of random variables on a probability space (2, F, P) . For
every n, let

Sp=>_ X
k=1

then % is the average of X1,...,X,,.

4.1 Weak and strong laws

Definition 4.1.1 (Weak law of large numbers (WLLN)). We say that {X,,} obeys a
weak law of large numbers if % converges in probability.

Definition 4.1.2 (Strong law of large numbers (SLLN)). We say that {X,,} obeys a
strong law of large numbers if Sn—" converges in almost surely.

There are many theorems ensuring the convergence that differ in the assumptions
and in the limit.

Theorem 4.1.3 (WLLN for uncorrelated random variables). Let {X,},en be a se-
quence of square integrable random variables, i.e. X, € L? V¥n, such that ¥n E(X,) =
u, Var(X,) = o2 and Cov(Xn, Xpix) =0 Vk > 1. Then:

Sn p

— =i
n

Proof. We will prove S—rz’ — u in L? because, as shown above, this implies convergence
in probability. Notice that

Sh, = Xk 1 &
p(2) =y e (3E) = L ) =
" k=1 " =t
Therefore, since the X}, are uncorrelated and so Var(}p_; Xi) = > p—; Var(Xg),

2 n 2
E(Srl—,u> :Var<5n>:12Var(Sn):M:U—>0
n n n

n? n

and the argument follows by Chebychev’s inequality. O

65
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If the correlation is not zero but is weak for random variables far apart then the
WLLN still holds.

Theorem 4.1.4 (WLLN for asintotically uncorrelated random variables). Let { X, }nen
be a sequence of square integrable random variables, i.e. X, € L? ¥n, such that Vn
E(X,) = u, Var(X,) = 02, Cov(Xpn, Xpnik) = v(k) Yk > 1. If y(k) — 0 as k — oo,
then: s

n

Proof. We compute Var(22)

n

Var (22) - (i Xz)

1 n
=3 Z v(Xs, Xj)

iz(na F2(n = 1)7(1) + 2(n — 2)7(2) + - - - + 2v(n — 1))

< ﬁ(%lv(o)! +2nly (D] + 2n/y(2)] + -+ + 2n[y(n — 1)

QTS v (k)
i—0

O]

Theorem 4.1.5 (Kolmogorov SLLN). Let {X,,}nen be a sequence of independent,
identically distributed random variables with finite expectation, i.e. X, € L' ¥n,
E(X,)=p < oco. Then:

n as

— — pu.
n
Proof. (1) If the thesis is true for non-negative random variables, then it is true in
general:
S Xk ha Xp Yhai Xp _
LT S SR SRSt B(X) - B(XT) = B(X) =

where the positive and the negative part of the X’s converge to their mean by
assumption of this point.

(2) We have not assumed a finite variance (L?) for Xj’s. In order to get a finite
variance, we truncate the Xy by defining X} = Xj1x, <x). Notice how X} is
closer and closer to X}, as k increases. Also define S;; =37 X;.

We want to show that 22 —%%, w implies that S” —2% 4. In order to do this,
we prove that P(X} # X i 1.0.) = 0, indeed if the "two sums differ only for a finite
number of elements, then the limit is the same. Now observe that:

S P(X] A X)L f: P(X), > k) = i /:1 P(X), > k)dt

k=1
? Z (P(X > t)de G )/ P(X; > t)dt = BE(X))
0

< 00,
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where (1) is due to definition of K7, (2) is because ¢t < k inside the integral, since
the domain of integration is (k — 1, k), and (3) is due the identical distribution
of the X}’s.

Therefore by BC1 we obtain P(X} # X} i.0.) = 0 and so we now have that

*

n as Sn as
LTy = = sy
n n
which would mean that we can continue with X} .

(3) Now it remains to prove that 22 2% w (it will be done in the following three
points).

Let @ > 1 and u,, = |a™]. u, is a subsequence of n and we want to show that

qun B E(SZH) as

>0
Un
that has as a sufficient condition
Z (( i) >£> < +00.
— Up,

So we compute the summands of this series

p (| L) ) O VorlSL) _ S Varth) _ B PG

U, uZe? uZe? - u2 g2
_ L B <) _ Nk B <u)
u2e? - uZe?
iid un B(XF1(x,<u,)) _ E(X?1(x,<un))
uZe? UpE2 '

Now summing these terms we obtain (we remove 2, but this does not change
anything):

> Lix)<un ) McT =1
3. B VT (35 Ly ) = 9

n=1""

Let us define N = N(w) = inf{n € N: u,, > X;(w)}. Then

hE

1 2 <2
(*):E<X12 )gE(X%Ejn>:E<X12§jM>
n=n Un n=N % n=0 <
2 X1 2 X2 X2 X2
—E(Xx2 N )< El|ZL) <o (2L | <2E | 2L
<1aNZa”>_1—1 <QN>_ (uN - X4
n=0 «@
1
:2E(X1)1_l < 0.

«

Therefore the series converges and by BC1 the sufficient condition is verified and

. A .Sk —E(S}
so we obtain the result we were aiming at, that is —»— (Siy) _as 0.
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(Sa,—E(S5,)) _as

Un

From Step 3 we know that 0, now we want to show that

Sup a8, u (and the last point will be Sn—;; ).

Un

We also have that
E(Xy) = E(Xk1(x,<k)) = E(X11(x,<r) = #
by MCT, since X711 (x,<x) T X1. On the other hand, we have

B(S5,) _ E(Sim Xp) _ Xin B(X))

Un Un Un

We now use Cesaro sums: if a,, — a, then %Zzﬂ ar — a. In our case, a, =
E(X}) — a = p. Therefore

B(S,) _ Thn B

Unp, Un

Now, applying the triangle inequality, we obtain:

*
“n_'u‘gl
Un

Szn as

SCAINELA

Un

Up,
Where the first term in the sum converges a.s. to 0 for the third point and the
second is a sequence of real numbers that converges to 0 for what we have just
shown.

Up until now we have a.s. convergence for a subsequence represented by u,,. We

now want to show that
*

Ok _as
k p-

With « fixed, Yk In = n(k) such that u,—1 <k < u, and so

Se Sk Sk
(*1) — Un—1 S Un S Un __ (*2)'
k k k
But then
* *
(*1) > Sun,1 o Sun71 Un—1 as . Ml
puiy - )
Un—1 Up—1 Un «
: S’jnfl as Un—1 an~! 1
since —*~+ —— p and 2= ~ “—— — —~ and also
Un—1 Un 0% a’
* S
u
(ko) < o = o n — pov,
Unp—1 Up Un—1

*

S as
n 5 1, and

“Un
Un

. n
since Un_ & o — q.
Un—1 (0%

To conclude, Vo > 1, with probability 1

1 S
p— < liminf ZE <lim sup k< o
o k k
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Now we take « of the kind 1 + %, j € N (indeed if we took Yo we would have
had some problems with the following step, however it is sufficionet to take a
countable number of «).

~ 1 G SE S )
P < liminf =& <1 Zk — =1.
{ﬂ(1+1/j_1m1n k_lmsupk 7!

J=1

Hence g g
P {liminfkfC = lim sup ?k = u} =1.
O
Example 4.1.6. Let {X,,} be i.i.d. random variables with distribution function F'. Let

1 n
Fn(x) = E Z ]1(—00712} (Xk)
k=1

the empirical distribution function. Then
E(L(—000)(Xk)) = P(Xy < ) = F(x)
so we can say that F,(z) — F(x) almost surely as n — oo.
What can we say if F(X,,) = +oc0?

Theorem 4.1.7 (SLLN: infinite case). Let {X,}nen be a sequence of independent,
identically distributed random variables with expectation E(X,) = +o00. Then:

Su s, .
n

Proof. Without loss of generality, we can assume that X,, > 0. Fix M > 0 and let
X;; = Xn:ﬂ-(Xn<M) Then

Su _ Tk Xn o Tha X as
n n - n

E(X7),

where the convergence is guaranteed by the Kolmogorov SLLN. Then as M — oo we
have that E(X]) — oo by MCT and so

liminf& > E(X{) — oo.
noon
O

Theorem 4.1.8. Let {X, }nen be a sequence of independent, identically distributed
random variables such that IE(X,,). Then %‘ 22 E(X1), both if the expectation is
finite or infinite.

Proof. Just join last theorem and Kolmogorov SLLN. O

Remark 4.1.9 (Behaviour of an i.i.d. sequence with no expectation defined). If { X}, }en
are i.i.d. and #E(X,,) then there are three possibilities

1. % — 400 almost surely
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2. % — —oo almost surely

3. P((liminf%" = —00) N (limsup %" =+400)) =1
Ezample 4.1.10. X,, ~ Cauchy, independent, with density f(x) =

B(X;5) = 400 and E(X,) = +o0, so BE(X,) Vn.
Then P((lim inf %‘” = —00) N (lim sup %‘” =+00)) = 1.

1
m(l4+x2) "
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