LINEAR SYSTEMS

- Topic: How to efficiently (and accurately) solve a systems of linear equations
- Problem of independent interest
- The solution of linear system is often an essential intermediate step in more complex procedures
- The mathematical tools that we shall now introduce will be extensively used in the following

Preliminaries

- Consider a generic system of linear equations:

$$
A x=b
$$

where:

- x and b are real $n \times 1$ vectors
- A is a real $n \times n$ matrix known as the coefficient matrix.
- Hence, any system of the form:

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1,2, \ldots, n
$$

- Theorem: The system $A x=b$ has a unique solution for any b if and only if A is nonsingular.
- The obvious way (but not the best one, as we will see) to numerically solve a linear system is to compute the inverse of A and multiply both sides by A^{-1} :

$$
x=A^{-1} b
$$

- In principle, this procedure works as long as A is nonsingular.
- However, if A is nearly singular, the small round-off errors that inevitably arise during computations on real-world computers may propagate explosively and generate large errors in the solution.
- Hence, a linear system characterized by a nearly singular coefficient matrix is unstable: small variations in b lead to large variations in the solution.
- Unfortunately, a small determinant is not a direct sign of near singularity:
- For instance, the matrix εI_{n}, where ε is an arbitrarily small number, has independent rows and columns, being therefore clearly nonsingular, but presents an arbitrarily small determinant, since $\left|\varepsilon I_{n}\right|=\varepsilon^{n}$.
- Hence, alternative indicators of near singularity have to be used (the condition number).
- Even if the coefficient matrix is invertible, to obtain the inverse is computationally costly, and should be avoided.
- Fortunately, we don't need to explicitly compute the inverse of A in order to solve $A x=b$:
- Direct methods compute the solution in one step with the highest accuracy, but can be costly if the system is large.
- Iterative methods compute the solution in more steps by successive approximation, and can be more efficient in solving large (and sparse) system, even if convergence is not guaranteed.

The condition number

Definition Let X and Y be two normed vector spaces, and $T: X \rightarrow Y a$ linear operator. We define the induced norm of T as:

$$
\|T\| \equiv \sup _{\{x \in X:\|x\|=1\}}\|T(x)\|
$$

Note that $\|T\|$ is specific to the norms on X and Y.

Definition Let A be a real square matrix. The induced norm of the linear operator $T \equiv A x: R^{n} \rightarrow R^{n}$ is called the induced matrix norm of A, and is denoted $\|A\|$.

Definition Let X and Y be two normed vector spaces. Furthermore, let $T: X \rightarrow Y$ be a bounded linear operator, and $T^{-1}: X \rightarrow Y$ its bounded inverse. The condition number of T is defined as:

$$
\kappa(T) \equiv\|T\|\left\|T^{-1}\right\|
$$

Remark If A is a real square matrix, then $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is the condition number of the linear operator $T \equiv A x$. Note that the definition of $\kappa(A)$ makes sense only if A is nonsingular; by convention, the condition number of a singular matrix is ∞.

We can formally prove that:

1. $\kappa(T)=\|T\|\left\|T^{-1}\right\| \geq\left\|T T^{-1}\right\|=\left\|I_{n}\right\|=1$; note that $\kappa\left(I_{n}\right)=1$, and therefore the "degree" of singularity increases with the condition number.
2. We know that λ is an eigenvalue of A only if λ^{-1} is an eigenvalue of A^{-1} : therefore, $\left\|A^{-1}\right\| \geq\left|\lambda_{\text {min }}\right|^{-1}$. This implies that $\kappa(A) \geq \frac{\left|\lambda_{\text {max }}\right|}{\left|\lambda_{\text {min }}\right|}$.
3. The condition number can be interpreted as the elasticity of the solution to $A x=b$ with respect to b. More precisely, we can show that:

$$
\kappa(A)=\frac{\|\tilde{x}-x\|}{\|x\|} \div \frac{\|\delta\|}{\|b\|}
$$

where $\tilde{x}=A^{-1}(b+\delta)$ is the solution to a slightly perturbed version of the system.

In practical applications, the condition number depends clearly on the norm on R^{n} for which it is defined. The most commonly used norms on R^{n} are:

1. the l_{∞} norm, for which:

$$
\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
$$

where $\|A\|_{\infty} \equiv \max _{j}\left(\sum_{i}\left|a_{i j}\right|\right)$;
2. the Euclidean norm, or l_{2}, for which:

$$
\kappa_{2}(A)=\frac{\left|\mu_{\max }\right|}{\left|\mu_{\min }\right|}
$$

where $\mu_{\max }$ and $\mu_{\min }$ are respectively the largest and smallest singular values of A, i.e. the square roots of the largest and smallest eigenvalues of $A^{*} A\left(A^{*}\right.$ is the adjoint of $\left.A\right)$.
The number $\kappa^{*}(A) \equiv \frac{\left|\lambda_{\text {max }}\right|}{\left|\lambda_{\text {min }}\right|}$ is called spectral condition number of A, and is often used as a norm-independent estimator for the true condition number.

Direct solution methods

- The matrix A may be diagonal, lower triangular, or upper triangular:

1. If the matrix is diagonal, then $x_{i}=b_{i} / a_{i}$ for $\forall i$.
2. If the matrix is lower triangular, we may solve for x by forward substitution: $x_{1}=b_{1} / a_{11}, x_{2}=\left(b_{2}-a_{21} x_{1}\right) / a_{22}, x_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}}{a_{i i}}$.
3. If the matrix is upper triangular, we can proceed by backward substitution: $x_{n}=b_{n} / a_{n n}, x_{n-1}=\left(b_{n-1}-a_{n-1, n} x_{n}\right) / a_{n-1, n-1}$, and so on. 0

- Note that we solved the linear system without explicitly inverting the coefficient matrix: in other words, we applied a direct solution method.
- If A is neither diagonal nor triangular, a general approach is needed.
- Gaussian elimination solves linear systems characterized by nonsingular coefficient matrices by transforming them into equivalent upper triangular systems that can be solved via backward substitution.

Consider the following system:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] x=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
A^{[0]}
\end{array}\right]
$$

and assume that $a_{11} \neq 0$.

Subtract the first row multiplied by $l_{i 1}=a_{i 1} / a_{11}$ from the remaining $n-1$ rows, where $i=2,3, \ldots, n$, to obtain:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{[1]} & a_{23}^{[1]} \\
0 & a_{32}^{[1]} & a_{33}^{[1]}
\end{array}\right] x=\left[\begin{array}{c}
b_{1} \\
A^{[1]} \\
b_{2}^{[1]} \\
b_{3}^{[1]}
\end{array}\right]
$$

where $a_{i j}^{[1]} \equiv a_{i j}-l_{i 1} a_{1 j}$ and $b_{i} \equiv b_{i}-l_{i 1} b_{1}$.

Assume now that $a_{22}^{[1]} \neq 0$, and subtract the second row of $A^{[1]}$ multiplied by $l_{i 2}=a_{i 1}^{[1]} / a_{22}^{[1]}$ from the remaining $n-2$ rows of $A^{[1]}$, to obtain:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{[1]} & a_{23}^{[1]} \\
0 & 0 & a_{33}^{[2]}
\end{array}\right] x=\left[\begin{array}{c}
b_{1} \\
b_{2}^{[1]} \\
b_{3}^{[1]} \\
b_{3}^{[2]}
\end{array}\right]
$$

where $a_{i j}^{[2]} \equiv a_{i j}^{[1]}-l_{i 2} a_{2 j}^{[1]}$ and $b_{i}^{[2]} \equiv b_{i}^{[1]}-l_{i 2} b_{2}^{[1]}$.

The resulting upper triangular system $A^{[2]} x=b^{[2]}$ can now be solved by backward substitution. The procedure followed to obtain $A^{[2]}$ is known as row reduction.

For a generic $n \times n$ matrix A :

$$
\prod_{i=n-1}^{1} L^{[i]} A^{[0]}=A^{[n-1]}
$$

where:

$$
L^{[i]} \equiv I_{n}-\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & l_{i+1, i} & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & l_{n i} & \cdots & 0
\end{array}\right]
$$

Note that $\prod_{i=n-1}^{1} L^{[i]}$ is invertible by construction, and therefore:

$$
A=L U
$$

where $A=A^{[0]}$ by definition, $L \equiv\left(\prod_{i=n-1}^{1} L^{[i]}\right)^{-1}$ is a lower triangular matrix with only unit diagonal elements, and $U \equiv A^{[n-1]}$ is an upper diagonal matrix.

- This is called the $\boldsymbol{L} \boldsymbol{U}$ decomposition (or factorization) of the matrix A.
- Row reduction produces a unique $L U$ decomposition for any non singular square matrix.
- Once the $L U$ decomposition of A is available, we can complete the Gaussian elimination procedure and:
- replace $A x=b$ with the equivalent system $L U x=b$;
- solve the lower triangular system $L z=b$ for z;
- solve the upper triangular system $U x=z$ for x.
- Gaussian elimination computes efficiently both the determinant and the inverse of a matrix.
- We know that $|A|=|L||U|$, i.e. that the determinant of a triangular matrix is the product of its diagonal elements, and that L has unit diagonal elements. Therefore:

$$
|A|=|U|=\prod_{i=1}^{n} a_{i i}^{[i-1]}
$$

- A^{-1} can be efficiently computed by solving n linear systems of the form $A x_{i}=e_{i}$ where x_{i} corresponds to the $i_{t h}$ column of A^{-1} and e_{i} to the $i_{t h}$ column of I_{n}.

Other decompositions

Theorem Any real square matrix A can be decomposed as:

$$
A=Q R
$$

where Q is unitary matrix, i.e. $Q^{\prime} Q=Q Q^{\prime}=I$, and R is an upper triangular matrix.

The system $A x=b$ can then be rewritten as:

$$
Q R x=b
$$

and multiplied by Q^{\prime} to obtain an equivalent system easily solvable via backward substitution:

$$
R x=Q^{\prime} b
$$

Since QR decomposition does not require pivoting, it may seem a more reliable solution method, but unfortunately the currently available algorithms are far more computationally intensive than Gaussian elimination with pivoting.

In the (unlikely) case that the matrix A is symmetric and positive definite, a very efficient alternative to Gaussian elimination is available.

Theorem Any real square symmetric positive definite matrix A can be decomposed into:

$$
A=C C^{\prime}
$$

where C is a lower triangular matrix with positive diagonal elements.

This is known as Cholesky decomposition, and can be easily and efficiently computed.

The solution to $A x=b$ is then obtained in two steps: the lower triangular system $C z=b$ is solved for z, and the upper triangular system $C^{\prime} x=z$ for x.

- Let us build a random matrix A of order 500 so that its condition number is 10^{10} and its l_{2}-norm is 1 .
- By construction, the exact solution x is a random vector of length 500 , and therefore the right-hand side of the equation is defined as $b=A x$.
- Hence, the system is badly conditioned but internally consistent.
- Let us solve the system by direct computation of the inverse and by Gaussian elimination, and compare the 1_{2}-norm of the numerical errors.

```
n=1000;
Q=orth(randn(n));
d=logspace(0,-10,n);
A=Q*diag(d)*Q';
x=randn(n,1);
b=A*x;
tic, y=inv(A)*b; toc
err=norm(y-x)
res=norm(A*y-b)
tic, y=A\b; toc
err=norm(y-x)
res=norm(A*y-b)
```

```
Elapsed time is 0.106780 seconds.
err = 9.1007e-006
res = 6.9634e-007
Elapsed time is 0.056587 seconds.
err = 8.3066e-006
res = 6.0796e-015
```

```
n=1000;
Q=orth (randn (n)) ;
x=randn (n,1);
h=15;
err=zeros (h, 2);
res=zeros (h, 2);
condn=zeros (h,1);
for \(j=1: h\)
d=logspace(0,-j,n);
\(A=Q^{*} \operatorname{diag}(d) * Q^{\prime}\);
\(b=A * x\);
condn (j) =cond (A);
\(\mathrm{y} 1=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}\);
\(\mathrm{y} 2=\mathrm{A} \backslash \mathrm{b}\);
\(\operatorname{err}(j, 1)=\operatorname{norm}(y 1-x) ;\)
res \((j, 1)=n o r m(A * y 1-b) ;\)
\(\operatorname{err}(j, 2)=n o r m(y 2-x) ;\)
res \((j, 2)=\operatorname{norm}\left(A^{*} y 2-b\right) ;\)
end
```

subplot $(2,2,1)$, plot(1:h, condn,' LineWidth', 3)
title('Condition number')
xlabel('j')
subplot(2,2,2), plot(1:h,err,'LineWidth', 3)
title('Error: norm (y-x)')
xlabel('j')
legend('inv','backslash')
subplot $(2,2,3)$, plot (1:h,res,' LineWidth', 3)
title('Residual: norm(A*y-b)')
xlabel('j')
subplot(2,2,4), plot(1:h,100*(res(:,1)./res(:,2)-1),'LineWidth', 3)
title('\% diff between residuals')
xlabel('j')
pause
subplot $(2,2,1), p l o t(1: h, c o n d n, ' L i n e W i d t h ', 3)$
title('Condition number')
xlabel('j')
subplot $(2,2,2)$, plot (condn,err,'LineWidth', 3
title('Error: norm (y-x)')
xlabel('Cond number')
legend('inv','backslash')
subplot $(2,2,3)$, plot (condn,res,' LineWidth',3)
title('Residual: norm(A*y-b)')
xlabel('Cond number')
subplot (2,2,4), plot(condn,100*(res(:,1)./res(:,2)-1),'LineWidth', 3)
title('\% diff between residuals')
xlabel('cond number')

Residual: norm($\left.A^{*} y-b\right)$

Error: norm($y-x$)

