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LINEAR SYSTEMS

« Topic: How to efficiently (and accurately) solve a systems
of linear equations

* Problem of independent interest

 The solution of linear system 1s often an essential
intermediate step 1n more complex procedures

 The mathematical tools that we shall now introduce will
be extensively used 1n the following
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Preliminaries

* Consider a generic system of linear equations:
Ax=b
where:
e xand b are real nx1 vectors
* A 1s areal nxn matrix known as the coefficient matrix.

* Hence, any system of the form:

n

E aijxj:bi, | = 1,2,...,1/1

Jj=1
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 Theorem: The system Ax = b has a unique solution for any
b if and only if 4 is nonsingular.

 The obvious way (but not the best one, as we will see) to
numerically solve a linear system 1s to compute the inverse
of 4 and multiply both sides by 4 ™:

x=A7'b

 In principle, this procedure works as long as A4 1s
nonsingular.

 However, if A 1s nearly singular, the small round-off errors
that inevitably arise during computations on real-world
computers may propagate explosively and generate large
errors 1n the solution.
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 Hence, a linear system characterized by a nearly singular
coefficient matrix 1s unstable: small variations 1n b lead to
large variations in the solution.

* Unfortunately, a small determinant is not a direct sign of
near singularity:

* For instance, the matrix &/ , where ¢ 1s an arbitrarily
small number, has independent rows and columns, being
therefore clearly nonsingular, but presents an arbitrarily
small determinant, since |e/, |=¢".

* Hence, alternative indicators of near singularity have to be
used (the condition number).
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« Even 1f the coefficient matrix 1s invertible, to obtain the
inverse 1s computationally costly, and should be avoided.

» Fortunately, we don’t need to explicitly compute the inverse
of 4 1 order to solve Ax = b:

* Direct methods compute the solution 1n one step with
the highest accuracy, but can be costly 1f the system 1s
large.

e Iterative methods compute the solution 1n more steps
by successive approximation, and can be more efficient
in solving large (and sparse) system, even if
convergence 1s not guaranteed.
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The condition number

Definition Let X and Y be two normed vector spaces, and T : X - Y a
linear operator. We define the induced norm of T as:

T = sup |[7T(x)|
{xeX:||x||=1}

Note that || T|| is specific to the norms on X and Y.

Definition Let A be a real square matrix. The induced norm of the linear
operator T = Ax : R" — R" is called the induced matrix norm of

A, and is denoted ||A]].
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Definition Let X and Y be two normed vector spaces. Furthermore, let
T : X » Y be a bounded linear operator, and T™' : X —» Yits
bounded inverse. The condition number of T is defined as:

k(1) = ITINT|

Remark If A4 is a real square matrix, then x(4) = ||[A||||47"| is the
condition number of the linear operator T = Ax. Note that the
definition of k(A) makes sense only if A is nonsingular, by
convention, the condition number of a singular matrix is .
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We can formally prove that:

1. «(T7) = ||ITINT'| = ITT'|| = ||I,|| = 1; note that (/) = 1, and
therefore the “degree” of singularity increases with the condition number.

2. We know that A is an eigenvalue of 4 only if A7! is an eigenvalue of 47!
therefore, |A~" || > [Amn|'. This implies that x(4) > %

3. The condition number can be interpreted as the elasticity of the solution to
Ax = b with respect to b. More precisely, we can show that:

I =[] . o]l
K(A4) = +
2 1o]]
where ¥ = A7 (b + §) is the solution to a slightly perturbed version of the

system.
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In practical applications, the condition number depends clearly on the norm
on R" for which it is defined. The most commonly used norms on R” are:

1. the /., norm, for which:
Ko(d) = Al 47",

where ||4]|_ = maxj<2i|a,-j|>;
2. the Euclidean norm, or /», for which:

> (4) = |Bmax |
| Hmin |
where tmax and pumin are respectively the largest and smallest singular
values of A4, 1.e. the square roots of the largest and smallest eigenvalues of
A*A (A* 1s the adjoint of A4).

The number k*(4) = || lma"ﬂ is called spectral condition number of A, and is

often used as a norm-independent estimator for the true condition number.



Universita Bocconi — PhD in Economics and Finance © 2012 by Marco Maffezzoli

Direct solution methods

 The matrix A may be diagonal, lower triangular, or upper

triangular:
ain 0 0 an 0 O ai a2 an
0 a»n O , ay axn 0 , 0 ax ax
0 0 ass as asz ass 0 0 ass

Diagonal Lower triangular Upper triangular

1. If the matrix is diagonal, then x; = b;/a; for V1.

2. Ifthe matrix is lower triangular, we may solve for x by forward

i—1
bi_Zj:I aijX;

substitution: x1 = bi/ay1, x> = (by —axix1)/an,x; = a5

3. Ifthe matrix 1s upper triangular, we can proceed by backward
substitution: X, = bu/ann, Xn-1 = (bu-1 — An-1,2Xn)/An-1,-1, and so on. ,
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 Note that we solved the linear system without explicitly
inverting the coefficient matrix: in other words, we applied
a direct solution method.

» If A4 1s neither diagonal nor triangular, a general approach 1s
needed.

* Gaussian elimination solves linear systems characterized
by nonsingular coefficient matrices by transforming them
into equivalent upper triangular systems that can be solved
via backward substitution.

11
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Consider the following system:

ail a2 dais bi
ai ax» as x=| b
as1 azxp axy b3

B 4001 B oo

and assume that a;; # 0.

Subtract the first row multiplied by /;1 = a;1/a11 from the remaining n — 1
rows, where i = 2,3, ..., n, to obtain:

ail aix ais b1

0 ol ald [x| bl
1 1 [1]

0 af) as by
41 pl]

[1]

where a;;

= dajj — lilalj and b; = b, — 1;1b;.
12
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Assume now that asy # 0, and subtract the second row of Al') multiplied by

l, = anl/aby from the remaining 7 — 2 rows of 4111, to obtain:

a ai an ) b1 )
0 ol |we| bl
0 0 by
- 4[2] N - pt2! -
where ai’ = a;;’ — lnasy and by = by — 1xb3).

The resulting upper triangular system 4?lx = b2l can now be solved by
backward substitution. The procedure followed to obtain 4! is known as row
reduction.

13
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For a generic n x n matrix A4:

where:
0 0 0
LO=1,~| 0 - Ly - 0
0 [ 0

Note that H;:n_l LU is invertible by construction, and therefore:
A=LU
AN -1
where A = A9 by definition, L = (Hl Lm) is a lower triangular matrix

i=n—1
with only unit diagonal elements, and U = A1) is an upper diagonal matrix.
14
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 This 1s called the LU decomposition (or factorization) of
the matrix A4.

 Row reduction produces a unique LU decomposition for
any non singular square matrix.

 Once the LU decomposition of 4 1s available, we can
complete the Gaussian elimination procedure and:

* replace Ax=b with the equivalent system LUx=b;
* solve the lower triangular system Lz=b for z;

« solve the upper triangular system Ux=z for x.

15
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Gaussian elimination computes efficiently both the
determinant and the inverse of a matrix.

We know that |4|=|L||U|, 1.e. that the determinant of a
triangular matrix 1s the product of its diagonal elements, and
that L has unit diagonal elements. Therefore:

n

Al = U = | |ai"

i=1

A! can be efficiently computed by solving n linear systems
of the form Ax,=e; where x; corresponds to the i,, column of

A" and e, to the i, column of /,.
16
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Other decompositions

Theorem Any real square matrix A can be decomposed as:
A = OR

where Q is unitary matrix, i.e. Q'O = Q0' = I, and R is an upper
triangular matrix.

The system Ax = b can then be rewritten as:

ORx = b
and multiplied by Q' to obtain an equivalent system easily solvable via
backward substitution:

Rx = Q'b

Since QR decomposition does not require pivoting, it may seem a more reliable
solution method, but unfortunately the currently available algorithms are far

more computationally intensive than Gaussian elimination with pivoting. 17
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In the (unlikely) case that the matrix 4 is symmetric and positive definite, a
very efficient alternative to Gaussian elimination is available.

Theorem Any real square symmetric positive definite matrix A can be
decomposed into:

A=CC

where C is a lower triangular matrix with positive diagonal
elements.

This 1s known as Cholesky decomposition, and can be easily and efficiently
computed.

The solution to Ax = b 1is then obtained in two steps: the lower triangular
system Cz = b is solved for z, and the upper triangular system C'x = z for x.

18
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e Let us build a random matrix 4 of order 500 so that its
condition number is 10'° and its /,-norm is 1.

* By construction, the exact solution x 1s a random vector of
length 500, and therefore the right-hand side of the equation
1s defined as b=Ax.

 Hence, the system 1s badly conditioned but internally
consistent.

e Let us solve the system by direct computation of the inverse
and by Gaussian elimination, and compare the l,-norm of
the numerical errors.

19
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n=1000;

O=orth (randn(n)) ;
d=logspace (0,-10,n) ;
A=Q*diag (d) *Q’;
x=randn(n, 1) ;
b=A*x;

tic, y=inv (A) *b;
err=norm (y-x)
res=norm (A*y-Db)
tic, y=A\b; toc
err=norm(y-x)
res=norm (A*y-Db)

toc

Elapsed time 1s 0.106780 seconds.
err = 9.1007e-006
res = 6.9634e-007
Elapsed time 1s 0.056587 seconds.
err = 8.3066e-006
res = 6.0796e-015

© 2012 by Marco Maffezzoli
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n=1000;
QO=orth (randn(n)) ;
x=randn(n,1l);

h=15;

err=zeros (h,2);
res=zeros (h, 2);
condn=zeros (h, 1) ;

for j=1:h
d=logspace(0,-3,n);
A=Q*diag(d) *Q’;
b=A*x;

condn (j)=cond (A) ;

yv2=A\Db;
err(j,l)=norm(yl-x);
res(j,l)=norm(A*yl-Db)
err(j,2)=norm(y2-x) ;
res(j,2)=norm(A*y2-Db)
end

N~

N~
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subplot (2,2,1), plot(l:h,condn,’LineWidth’, 3)
title (' Condition number’)

xlabel ("j")

subplot(2,2,2), plot(l:h,err,’LinewWidth’, 3)
title ('Error: norm(y-x)')

xlabel ("j")

legend (’inv’, ’backslash’)

subplot (2,2,3), plot(l:h,res,’LineWidth’, 3)
title ('Residual: norm(A*y-b)’)

xlabel ("j")

subplot(2,2,4), plot(l:h,100*(res(:,1)./res(:,2)-1), LineWidth’, 3)
title(’% diff between residuals’)

xlabel ("j")

pause

subplot (2,2,1), plot(l:h,condn,’LineWidth’, 3)
title (' Condition number’)

xlabel ("j")

subplot (2,2,2), plot(condn,err,’LineWidth’, 3)
title ('Error: norm(y-x)')

xlabel (' Cond number’)

legend (’inv’, ’backslash’)

subplot (2,2,3), plot(condn,res,’LineWidth’, 3)
title ('Residual: norm(A*y-b)’)

xlabel (' Cond number’)

subplot(2,2,4), plot(condn,100* (res(:,1)./res(:,2)-1),"LineWidth’, 3)
title(’% diff between residuals’)
xlabel (' Cond number’)

21
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x10™ Condition number Error: norm(y-x)
10 . . 0.5 . . .
—inv
8t 0.4} | = backslash
6 0.3F
4+ 0.2r
2 0.1r
0 2 4 6 8 10 0 2 4 6 8 10
j j
Residual: norm(A*y-b) 14 % diff between residuals
x 10
0.03 T 0 ‘ ‘ ‘ 6 ‘ . . .
0.025+ 5L
0.02+ 4l
0.015+ 3L
0.01F ol
0.005 1r
0 0
2 4 6 8 10 2 4 6 8 10

22



Universita Bocconi — PhD in Economics and Finance © 2012 by Marco Maffezzoli

14 Condition number Error: norm(y-x)
x10
10 . . 0.5 . : .
=—inv
=== backslash
8r 0.4}
6+ B 0.3¢ N
4r B 0.2 »
2r B 0.1 »
0 s s L i i i
0 5 10 15 00 2 4 6 8 10
j Cond number x10™
Residual: norm(A*y-b) x10™ % diff between residuals
0.03 . : 6 . ‘ .
0.025r k 5 R
0.02r B 4r §
0.015r k 3 R
0.01r B 2t §
0.005+ B 1 §
0 0 [ [ [ [
0 2 4 6 8 10 0 2 4 6 8 10
Cond number x10" Cond number x10™
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