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• Topic: How to efficiently (and accurately) solve a systems
of linear equations

• Problem of independent interest

• The solution of linear system is often an essential
intermediate step in more complex procedures

• The mathematical tools that we shall now introduce will
be extensively used in the following

LINEAR SYSTEMS
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• Consider a generic system of linear equations:

Ax=b

where:

• x and b are real n×1 vectors

• A is a real n×n matrix known as the coefficient matrix.

• Hence, any system of the form:

∑
j=1

n

aijxj = bi , i = 1,2, . . . ,n   #   

Preliminaries
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• Theorem: The system Ax = b has a unique solution for any
b if and only if A is nonsingular.

• The obvious way (but not the best one, as we will see) to
numerically solve a linear system is to compute the inverse
of A and multiply both sides by A⁻¹:

x=A⁻¹b
• In principle, this procedure works as long as A is

nonsingular.

• However, if A is nearly singular, the small round-off errors
that inevitably arise during computations on real-world
computers may propagate explosively and generate large
errors in the solution.
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• Hence, a linear system characterized by a nearly singular
coefficient matrix is unstable: small variations in b lead to
large variations in the solution.

• Unfortunately, a small determinant is not a direct sign of
near singularity:

• For instance, the matrix εIn, where ε is an arbitrarily
small number, has independent rows and columns, being
therefore clearly nonsingular, but presents an arbitrarily
small determinant, since |εIn|=εⁿ.

• Hence, alternative indicators of near singularity have to be
used (the condition number).
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• Even if the coefficient matrix is invertible, to obtain the
inverse is computationally costly, and should be avoided.

• Fortunately, we don’t need to explicitly compute the inverse
of A in order to solve Ax = b:

• Direct methods compute the solution in one step with
the highest accuracy, but can be costly if the system is
large.

• Iterative methods compute the solution in more steps
by successive approximation, and can be more efficient
in solving large (and sparse) system, even if
convergence is not guaranteed.
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Definition Let X and Y be two normed vector spaces, and T : X → Y a
linear operator. We define the induced norm of T as:

‖T‖ ≡ sup
x∈X:‖x‖=1

‖Tx‖   #   

Note that ‖T‖ is specific to the norms on X and Y.

The condition number

Definition Let A be a real square matrix. The induced norm of the linear
operator T ≡ Ax : Rn → Rn is called the induced matrix norm of
A, and is denoted ‖A‖.
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Definition Let X and Y be two normed vector spaces. Furthermore, let
T : X → Y be a bounded linear operator, and T−1 : X → Y its
bounded inverse. The condition number of T is defined as:

κT ≡ ‖T‖‖T−1‖

Remark If A is a real square matrix, then κA = ‖A‖‖A−1‖ is the
condition number of the linear operator T ≡ Ax. Note that the
definition of κA makes sense only if A is nonsingular; by
convention, the condition number of a singular matrix is ∞.



Università Bocconi – PhD in Economics and Finance © 2012 by Marco Maffezzoli

8

We can formally prove that:

1. κT = ‖T‖‖T−1‖ ≥ ‖TT−1‖ = ‖In‖ = 1; note that κIn  = 1, and
therefore the “degree” of singularity increases with the condition number.

2. We know that λ is an eigenvalue of A only if λ−1 is an eigenvalue of A−1:
therefore, ‖A−1‖ ≥ |λmin |−1. This implies that κA ≥ |λmax |

|λmin | .

3. The condition number can be interpreted as the elasticity of the solution to
Ax = b with respect to b. More precisely, we can show that:

κA = ‖x̃ − x‖
‖x‖

÷
‖δ‖
‖b‖

  #   

where x̃ = A−1b + δ is the solution to a slightly perturbed version of the
system.
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In practical applications, the condition number depends clearly on the norm
on Rn for which it is defined. The most commonly used norms on Rn are:
1. the l∞ norm, for which:

κ∞A = ‖A‖∞‖A−1‖∞   #   
where ‖A‖∞ ≡ maxj ∑ i |aij | ;

2. the Euclidean norm, or l2, for which:

κ2A =
|μmax |
|μmin |

  #   

where μmax and μmin are respectively the largest and smallest singular
values of A, i.e. the square roots of the largest and smallest eigenvalues of
A∗A (A∗ is the adjoint of A).

The number κ∗A ≡ |λmax |
|λmin | is called spectral condition number of A, and is

often used as a norm-independent estimator for the true condition number.
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Direct solution methods

• The matrix A may be diagonal, lower triangular, or upper
triangular:

Diagonal

a11 0 0
0 a22 0
0 0 a33

,

Lower triangular

a11 0 0
a21 a22 0
a31 a32 a33

,

Upper triangular

a11 a12 a13

0 a22 a23

0 0 a33

1. If the matrix is diagonal, then xi = bi/ai for ∀i.

2. If the matrix is lower triangular, we may solve for x by forward

substitution: x1 = b1/a11 , x2 = b2 − a21x1 /a22 , x i =
b i−∑j=1

i−1
aijxj

a ii .

3. If the matrix is upper triangular, we can proceed by backward
substitution: xn = bn/ann , xn−1 = bn−1 − an−1,nxn /an−1,n−1 , and so on.
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• Note that we solved the linear system without explicitly
inverting the coefficient matrix: in other words, we applied
a direct solution method.

• If A is neither diagonal nor triangular, a general approach is
needed.

• Gaussian elimination solves linear systems characterized
by nonsingular coefficient matrices by transforming them
into equivalent upper triangular systems that can be solved
via backward substitution.
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Consider the following system:

A 0

a11 a12 a13

a21 a22 a23

a31 a32 a33

x =

b0

b1

b2

b3

  #   

and assume that a11 ≠ 0.

Subtract the first row multiplied by li1 = ai1/a11 from the remaining n − 1
rows, where i = 2,3, . . . , n, to obtain:

A 1

a11 a12 a13

0 a22
1 a23

1

0 a32
1 a33

1

x =

b1

b1

b2
1

b3
1

  #   

where aij
1 ≡ a ij − li1a1j and b i ≡ b i − li1b1.
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Assume now that a22
1 ≠ 0, and subtract the second row of A1 multiplied by

li2 = ai1
1/a22

1 from the remaining n − 2 rows of A 1, to obtain:

A 2

a11 a12 a13

0 a22
1 a23

1

0 0 a33
2

x =

b2

b1

b2
1

b3
2

  #   

where aij
2 ≡ a ij

1 − li2a2j
1 and bi

2 ≡ b i
1 − li2b2

1.

The resulting upper triangular system A2x = b2 can now be solved by
backward substitution. The procedure followed to obtain A2 is known as row
reduction.



Università Bocconi – PhD in Economics and Finance © 2012 by Marco Maffezzoli

14

For a generic n × n matrix A:

∏
i=n−1

1

LiA0 = An−1   #   

where:

Li ≡ In −

0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮

0 ⋯ li+1,i ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮

0 ⋯ lni ⋯ 0

  #   

Note that ∏i=n−1
1 Li is invertible by construction, and therefore:

A = LU   #   

where A = A0 by definition, L ≡ ∏ i=n−1
1 Li −1

is a lower triangular matrix
with only unit diagonal elements, and U ≡ An−1 is an upper diagonal matrix.
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• This is called the LU decomposition (or factorization) of
the matrix A.

• Row reduction produces a unique LU decomposition for
any non singular square matrix.

• Once the LU decomposition of A is available, we can
complete the Gaussian elimination procedure and:

• replace Ax=b with the equivalent system LUx=b;

• solve the lower triangular system Lz=b for z;

• solve the upper triangular system Ux=z for x.
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• Gaussian elimination computes efficiently both the
determinant and the inverse of a matrix.

• We know that |A|=|L||U|, i.e. that the determinant of a
triangular matrix is the product of its diagonal elements, and
that L has unit diagonal elements. Therefore:

|A| = |U| = ∏
i=1

n

aii
i−1

• A-1 can be efficiently computed by solving n linear systems
of the form Axi=ei where xi corresponds to the ith column of
A⁻¹ and ei to the ith column of In.
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Other decompositions

Theorem Any real square matrix A can be decomposed as:
A = QR   #   

where Q is unitary matrix, i.e. Q ′Q = QQ′ = I, and R is an upper
triangular matrix.

The system Ax = b can then be rewritten as:
QRx = b   #   

and multiplied by Q ′ to obtain an equivalent system easily solvable via
backward substitution:

Rx = Q ′b   #   

Since QR decomposition does not require pivoting, it may seem a more reliable
solution method, but unfortunately the currently available algorithms are far
more computationally intensive than Gaussian elimination with pivoting.
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In the (unlikely) case that the matrix A is symmetric and positive definite, a
very efficient alternative to Gaussian elimination is available.

Theorem Any real square symmetric positive definite matrix A can be
decomposed into:

A = CC ′   #   
where C is a lower triangular matrix with positive diagonal
elements.

This is known as Cholesky decomposition, and can be easily and efficiently
computed.

The solution to Ax = b is then obtained in two steps: the lower triangular
system Cz = b is solved for z, and the upper triangular system C ′x = z for x.
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• Let us build a random matrix A of order 500 so that its
condition number is 1010 and its l2-norm is 1.

• By construction, the exact solution x is a random vector of
length 500, and therefore the right-hand side of the equation
is defined as b=Ax.

• Hence, the system is badly conditioned but internally
consistent.

• Let us solve the system by direct computation of the inverse
and by Gaussian elimination, and compare the l2-norm of
the numerical errors.
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Elapsed time is 0.106780 seconds.
err = 9.1007e-006
res = 6.9634e-007
Elapsed time is 0.056587 seconds.
err = 8.3066e-006
res = 6.0796e-015

n=1000;
Q=orth(randn(n));
d=logspace(0,-10,n);
A=Q*diag(d)*Q’;
x=randn(n,1);
b=A*x;
tic, y=inv(A)*b; toc
err=norm(y-x)
res=norm(A*y-b)
tic, y=A\b; toc
err=norm(y-x)
res=norm(A*y-b)
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n=1000;
Q=orth(randn(n));
x=randn(n,1);

h=15;
err=zeros(h,2);
res=zeros(h,2);
condn=zeros(h,1);

for j=1:h

d=logspace(0,-j,n);
A=Q*diag(d)*Q’;
b=A*x;

condn(j)=cond(A);

y1=inv(A)*b;
y2=A\b;

err(j,1)=norm(y1-x);
res(j,1)=norm(A*y1-b);
err(j,2)=norm(y2-x);
res(j,2)=norm(A*y2-b);

end

subplot(2,2,1), plot(1:h,condn,’LineWidth’,3)
title(’Condition number’)
xlabel(’j’)
subplot(2,2,2), plot(1:h,err,’LineWidth’,3)
title(’Error: norm(y-x)’)
xlabel(’j’)
legend(’inv’,’backslash’)
subplot(2,2,3), plot(1:h,res,’LineWidth’,3)
title(’Residual: norm(A*y-b)’)
xlabel(’j’)
subplot(2,2,4), plot(1:h,100*(res(:,1)./res(:,2)-1),’LineWidth’,3)
title(’% diff between residuals’)
xlabel(’j’)

pause

subplot(2,2,1), plot(1:h,condn,’LineWidth’,3)
title(’Condition number’)
xlabel(’j’)
subplot(2,2,2), plot(condn,err,’LineWidth’,3)
title(’Error: norm(y-x)’)
xlabel(’Cond number’)
legend(’inv’,’backslash’)
subplot(2,2,3), plot(condn,res,’LineWidth’,3)
title(’Residual: norm(A*y-b)’)
xlabel(’Cond number’)
subplot(2,2,4), plot(condn,100*(res(:,1)./res(:,2)-1),’LineWidth’,3)
title(’% diff between residuals’)
xlabel(’Cond number’)
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