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• Topic: How to efficiently (and accurately) solve a systems
of non-linear equations.

• Almost all static economic models can be characterized
as systems of nonlinear algebraic equations.

• Moreover, the solution of nonlinear equations is often an
essential intermediate step in other procedures.

• Hence, we will now consider the problem of finding a zero
of a system of nonlinear equations:

Fx ≡

f1x
f2x
⋮

fnx

=

0
0
⋮

0

, x ∈ X

NON-LINEAR SYSTEMS



Università Bocconi – PhD in Economics and Finance © 2012 by Marco Maffezzoli

2

Preliminaries: Banach's Theorem

Definition Let X be a normed vector space. An operator T : D ⊆ X → X
is a contraction operator (or contraction mapping) if there exists
a γ ∈ 0,1 such that ‖Tx1  − Tx2 ‖ ≤ γ‖x1 − x2‖ for
all x j ∈ D.

Definition An element x̂ ∈ X is a fixed point for an operator
T : D ⊆ X → X if Tx̂ = x̂.

Theorem (Banach) If X is a normed vector space, D a complete subset of
X, and T : D → D a contraction operator, then T has a unique
fixed point.
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Fixed point iteration

• The proof of Banach's Theorem is the theoretical basis of
the fixed point iteration (or successive approximations)
solution method for fixed point problems:

Corollary Let D be a complete subset of a normed vector space X, and
T : D → D a contraction operator. The successive
approximations:

xk+1 = Txk , k = 0,1,2, . . .   #   
converge to the unique fixed point of T for any initial guess
x0 ∈ D.

• Some general sufficient conditions for a contraction are
available in the literature (see Stokey and Lucas 1989, Th.
3.3, p. 54).
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Convergence and stopping rules

• Successive approximation schemes convergence only
asymptotically.

• Any iterative algorithm therefore needs a feasible stopping
rule, i.e. a rule that terminates the iteration when a
sufficiently good approximation has been reached.

• The most useful general stopping rule requires the iteration
to stop as soon as the percentage change in ||x|| becomes
small relatively to some tolerance parameter ε.

• In other words, the iteration stops and returns the result as
soon as ||Δxk+1|| ≤ ε(1+||xk||), where the unit in the right-
hand side takes care of the possibility that x goes to zero.
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This rule is essentially based on the following result:

Lemma Let xk ∈ Rn for k = 0,1,2, . . . ,∞. If the sequence
xkk=0

∞ ∈ R∞ converges superlinearly to x̂ ∈ Rn, then:

lim
k→∞

‖xk+1 − xk‖
‖xk − x̂‖

= 1

for any norm in Rn .

Remark In other words, if a sequence of real vectors converges at
least superlinearly, then in the limit the size of the step,
‖xk+1 − xk‖, is essentially equal to the size of the approximation
error, ‖xk − x̂‖.
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Fixed point iterations for non-linear equations
• Our problem can easily be transformed into a fixed point

problem; define:

Gx ≡ Fx + x = x   #   

xk+1 = Gxk , k = 0,1,2, . . .   #   

• If X is complete and G a contraction operator on X, Banach's
Theorem guarantees that the successive approximation
scheme:

converges to the unique solution for any x₀∈X.

• Of course, the point is that G is not necessarily a contraction
operator.
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• We present now a sufficient condition for a contraction,
based on the assumption that G is a C¹ operator:

Theorem (Mean Value) Let X be an open and convex subset of Rn, and let G : X → Rn be a
C1 operator. Then:

‖Gx − Gy‖ ≤ max
λ∈0,1

‖JGλx + 1 − λy‖‖x − y‖   #   

for all x,y ∈ X and all norms on Rn.

Theorem Let X be a bounded, closed, convex, and nonempty subset of Rn, and let
G : X → X be a C1 operator. If:

γ ≡ max
x∈X

‖JGx‖ < 1   #   

for some norm on Rn, then G is a (differentiable) contraction operator with Lipschitz
constant γ.

Theorem (Ostrowski) Let x̂ ∈ X be the fixed point of a C1 operator G : X → X such that
‖JGx̂‖ < 1 for some norm on Rn. Then the successive approximation scheme is
locally convergent.
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Newton's method

• Newton's method proceeds by successive linearizations:

• at each iteration, the original system is linearized around
the current guess xk, and the linear system is typically
solved using Gaussian elimination;

• the result is then used as the initial guess for the next
iteration.

• Under some conditions, the method is locally quadratically
convergent, and therefore convergence can be assessed
with a standard stopping rule.
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• More formally, let X be an open subset of Rⁿ, and assume
that F:X→Rⁿ is a C¹ operator.

• Furthermore, assume that J(x), the Jacobian of F evaluated
at x, is nonsingular for all x in X

• Given an initial guess x0 in X, the first-order Taylor
expansion around x0 is

F(x)≈F(x)≡F(x0)+J(x0)(x-x0)

• The linear problem F(x)=0 can be rewritten as

J(x0)(x0-x)=F(x0)

and solved using Gaussian elimination.

• The resulting x1 can then be used as the initial guess for a
new iteration.
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• Hence, Newton's method can be described by the following
successive approximation scheme:

xk+1 = G( xk ) ≡ xk - J( xk )⁻¹ F( xk ),     k=0,1,2,... 

• The vector:

dk ≡ ∆xk+1 = - J( xk ) ⁻¹ F( xk )
is known as Newton's step.
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Theorem Let F : X ⊆ Rn → Rn be a C1 operator. If:
i the equation Fx = 0 has a unique solution x̂ ∈ X;
ii J : X → Rn×n is a Lipschitz continuos operator with Lipschitz
constant γ > 0;
iii Jx̂ is nonsingular;
then there is a ζ > 0 such that G : Bζ → Bζ, where
Bζ ≡ x : ‖x − x̂‖ < ζ ∈ X and Gxk  ≡ xk − Jk

−1Fxk  is a
contraction operator.

Corollary Assume that the hypotheses of the previous Theorem hold.
Newton’s successive approximation scheme converges
quadratically:

‖xk+1 − x̂‖ ≤ ϕ‖xk − x̂‖2, k = 0,1,2, . . .
where ϕ ≡ γ‖Jx̂−1‖, for all x0 ∈ Bζ.
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• Given the quadratic convergence of Newton's method, the
general stopping rule:

|| dk || ≤ ε ( 1 + || xk || )
where ε>0, will stop the iterations as soon as the
approximation error || xk-x || is of order ε, unless the system
is particularly ill-behaved.

• However, if the initial guess is not good enough, i.e. if x0∉B,
Newton's method may fail to converge to a zero of F.

• Since the size of B is generally unknown ex-ante, we should
consider xk a solution only if:

|| F( xk ) || ≤ δ ( 1 + || F ( x0 ) || )
where δ>0 is another tolerance parameter.
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• A critical step in Newton's method requires the computation
of the Jacobian matrix of F at a given x.

• Often the Jacobian can not be easily computed analytically:
in these cases, a numerical approach is needed.

• Numerical differentiation is an essential application of the
finite difference method.

Finite differences
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• Assume that f:X→R is Ck on X

• Consider the one-sided Taylor expansion of f(x) around an
arbitrary point x in X (where h>0):

fx + h = fx + hf ′x + 1
2 h2f ′′x + 1

6 h3 f ′′′x +. . .   #   

• The previous expression can be rewritten as:

f ′x =
fx + h − fx

h + O hf ′′x
2   #   

• This expression is known as the one-sided finite difference
formula: the O[(h/2)f′′(x)] term on right-hand side is called
truncation error.
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• Truncation is not the only source of error: the round-off
error is, as always, an additional source of inaccuracy.

• The round-off error is on the order of εf | f(x)/h |, where εf is
the accuracy with which f is computed: generally, it is
comparable to εM, the machine's internal precision.

• The truncation error, instead, is on the order of |(h/2)f′′(x)|.

• These two errors can be jointly minimized by choosing:

h = M
2fx
f ′′x

= M xc   #   

where xc ≡ ( | 2 f(x) / f′′(x) | )½.

• If no specific information on the curvature of f is available,
a standard choice is xc=1+|x|.
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• We can combine the previous one-sided Taylor expansion
with the symmetric one to points to the left of x to obtain:

fx + h − fx − h = 2hf ′x + 1
3 h3f ′′′x +. . .   #   

f ′x =
fx + h − fx − h

2h + O h2f ′′′x
3   #   

• This is known as the two-sided finite difference formula.

• Note that the truncation error is in this case on the order of
h² instead of h.

• The truncation and round-off errors are minimized by
choosing:

h = 3 M
3fx
f ′′′x

  #   
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• Assume now that F:Rⁿ→Rm is Ck at x

• The Jacobian of F can be numerically computed using a
one-sided finite difference formula:

∂f ix
∂xj

=
f ix + hjej − f ix

hj
+ Ohj   #   

where i=1,2,...,m, j=1,2,...,n, ej is a column vector of zeros
with just its jth element equal to one, and:

hj = F 1 + |x j |
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Quasi-Newton Methods

• Numerical differentiation is the most computationally
expensive step in Newton's method.

• Quasi-Newton methods use approximations of the Jacobian,
gaining in computational efficiency but loosing the
quadratic convergence of Newton’s method.

Frozen Newton's method

• The simplest Quasi-Newton method is the so-called frozen
(or simplified) Newton's method:

dk = −J0
−1fxk , k = 0, 1,2, . . .   #   

• This scheme is quite unstable and converges only linearly.
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Broyden’s Method

• Assume that f:R→R. Let x and y be two points in R.

• The first order derivative of f could be roughly
approximated near x and y by the slope of the secant line:

f′ ≈ f̂ ′ ≡ fx − fy
x − y   #   

• We could simplify Newton's method by substituting the
actual derivative with the equivalent of f′:

dk = − Δxk
fxk  − fxk−1

fxk , k = 1, 2, . . .   #   

• This secant method needs an initial condition for the
derivative: the obvious choice is a numerically computed
derivative at x0.
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• The secant method cannot be directly extended to the
multivariate case.

• Assume that F: Rⁿ →Rⁿ. Let x and y be two points in Rⁿ and
J(z) the Jacobian of F at z.

• We can show that the Jacobian approximately solves, near x
(or y):

Fx − Fy ≈ Jxx − y   #   

• However, given x, y, F(x), and F(y) this secant equation is
not enough to pin down an approximation of J(x) if n>1:

• F(x)-F(y) and x-y are column vectors, and therefore the
equation imposes only n constraints, while J(x) has n²
unknown.
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Given an initial guess for the Jacobian at x0, J0, Broyden’s method iterates
on the following successive approximation scheme:

dk = −Jk
−1Fxk , k = 0, 1,2, . . .   #   

where dk is generically known as quasi-Newton step.

The approximated Jacobian is updated at each iteration by imposing two
conditions:

1. the update Jk+1 has to be a good approximation of the Jacobian near xk and
xk+1; hence, it has to solve the secant equation:

Fxk+1 − Fxk  = Jk+1dk   #   

2. the change between Jk+1 and Jk has to be the smallest possible according to
the Frobenius matrix norm, defined as:

‖X‖F ≡ ∑
j,i=1

n

xji
2   #   
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• The second requirement is based on the observation that the
secant equation is the only new piece of information that
becomes available at each iteration.

• The iteration scheme should preserve as much as possible of
the information already acquired (summarized by the
current approximation Jk)

• The Frobenius norm takes into account changes to all
elements of J.

• The corresponding updating rule is:

ΔJk+1 =
Fxk+1 dk

′

dk
′ dk

  #   



Università Bocconi – PhD in Economics and Finance © 2012 by Marco Maffezzoli

27

• Broyden's method is much less computationally intensive
than Newton's method.

• However, this implies also slower convergence: Broyden’s
method can be shown to converge superlinearly when the
initial approximation of the Jacobin is good enough.

• Thanks to the Sherman-Morrison-Woodbury Lemma, we
can obtain an updating rule for the inverse of the Jacobian:

ΔJk+1
−1 =

zkdk
′ Jk

−1

dk
′ dk − zk

  #   

where:

zk ≡ −Jk
−1Fxk+1 


