NON-LINEAR SYSTEMS

- Topic: How to efficiently (and accurately) solve a systems of non-linear equations.
- Almost all static economic models can be characterized as systems of nonlinear algebraic equations.
- Moreover, the solution of nonlinear equations is often an essential intermediate step in other procedures.
- Hence, we will now consider the problem of finding a zero of a system of nonlinear equations:

$$
F(x) \equiv\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right], x \in X
$$

Preliminaries: Banach's Theorem

Definition Let X be a normed vector space. An operator $T: D \subseteq X \rightarrow X$ is a contraction operator (or contraction mapping) if there exists a $\gamma \in[0,1)$ such that $\left\|T\left(x_{1}\right)-T\left(x_{2}\right)\right\| \leq \gamma\left\|x_{1}-x_{2}\right\|$ for all $x_{j} \in D$.

Definition An element $\hat{x} \in X$ is a fixed point for an operator

$$
T: D \subseteq X \rightarrow X \text { if } T(\hat{x})=\hat{x}
$$

Theorem (Banach) If X is a normed vector space, D a complete subset of X, and $T: D \rightarrow D$ a contraction operator, then T has a unique fixed point.

Fixed point iteration

- The proof of Banach's Theorem is the theoretical basis of the fixed point iteration (or successive approximations) solution method for fixed point problems:

Corollary Let D be a complete subset of a normed vector space X, and
$T: D \rightarrow D$ a contraction operator. The successive approximations:

$$
x_{k+1}=T\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

converge to the unique fixed point of T for any initial guess $x_{0} \in D$.

- Some general sufficient conditions for a contraction are available in the literature (see Stokey and Lucas 1989, Th. 3.3, p. 54).

Convergence and stopping rules

- Successive approximation schemes convergence only asymptotically.
- Any iterative algorithm therefore needs a feasible stopping rule, i.e. a rule that terminates the iteration when a sufficiently good approximation has been reached.
- The most useful general stopping rule requires the iteration to stop as soon as the percentage change in $\|x\|$ becomes small relatively to some tolerance parameter ε.
- In other words, the iteration stops and returns the result as soon as $\left\|\Delta x_{k+1}\right\| \leq \varepsilon\left(1+\left\|x_{k}\right\|\right)$, where the unit in the righthand side takes care of the possibility that x goes to zero.

This rule is essentially based on the following result:

Lemma Let $x_{k} \in R^{n}$ for $k=0,1,2, \ldots, \infty$. If the sequence $\left\{x_{k}\right\}_{k=0}^{\infty} \in R^{\infty}$ converges superlinearly to $\hat{x} \in R^{n}$, then:

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}-\hat{x}\right\|}=1
$$

for any norm in R^{n}.

Remark In other words, if a sequence of real vectors converges at least superlinearly, then in the limit the size of the step, $\left\|x_{k+1}-x_{k}\right\|$, is essentially equal to the size of the approximation error, $\left\|x_{k}-\hat{x}\right\|$.

Fixed point iterations for non-linear equations

- Our problem can easily be transformed into a fixed point problem; define:

$$
G(x) \equiv F(x)+x=x
$$

- If X is complete and G a contraction operator on X, Banach's Theorem guarantees that the successive approximation scheme:

$$
x_{k+1}=G\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

converges to the unique solution for any $x_{0} \in X$.

- Of course, the point is that G is not necessarily a contraction operator.
- We present now a sufficient condition for a contraction, based on the assumption that G is a C^{l} operator:

Theorem (Mean Value) Let X be an open and convex subset of R^{n}, and let $G: X \rightarrow R^{n}$ be a C^{1} operator. Then:

$$
\|G(x)-G(y)\| \leq \max _{\lambda \in[0,1]}\left\|J_{G}[\lambda x+(1-\lambda) y]\right\|\|x-y\|
$$

for all $x, y \in X$ and all norms on R^{n}.

Theorem Let X be a bounded, closed, convex, and nonempty subset of R^{n}, and let
$G: X \rightarrow X$ be a C^{1} operator. If:

$$
\gamma \equiv \max _{x \in X}\left\|J_{G}(x)\right\|<1
$$

for some norm on R^{n}, then G is a (differentiable) contraction operator with Lipschitz constant γ.

Theorem (Ostrowski) Let $\hat{x} \in X$ be the fixed point of a C^{1} operator $G: X \rightarrow X$ such that $\left\|J_{G}(\hat{x})\right\|<1$ for some norm on R^{n}. Then the successive approximation scheme is locally convergent.

Newton's method

- Newton's method proceeds by successive linearizations:
- at each iteration, the original system is linearized around the current guess x_{k}, and the linear system is typically solved using Gaussian elimination;
- the result is then used as the initial guess for the next iteration.
- Under some conditions, the method is locally quadratically convergent, and therefore convergence can be assessed with a standard stopping rule.
- More formally, let X be an open subset of R^{n}, and assume that $F: X \rightarrow R^{n}$ is a C^{l} operator.
- Furthermore, assume that $J(x)$, the Jacobian of F evaluated at x, is nonsingular for all x in X
- Given an initial guess x_{0} in X, the first-order Taylor expansion around x_{0} is

$$
F(x) \approx F(x) \equiv F\left(x_{0}\right)+J\left(x_{0}\right)\left(x-x_{0}\right)
$$

- The linear problem $F(x)=0$ can be rewritten as

$$
J\left(x_{0}\right)\left(x_{0}-x\right)=F\left(x_{0}\right)
$$

and solved using Gaussian elimination.

- The resulting x_{1} can then be used as the initial guess for a new iteration.

- Hence, Newton's method can be described by the following successive approximation scheme:

$$
x_{k+1}=G\left(x_{k}\right) \equiv x_{k}-J\left(x_{k}\right)^{-1} F\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

- The vector:

$$
d_{k} \equiv \Delta x_{k+1}=-J\left(x_{k}\right)^{-1} F\left(x_{k}\right)
$$

is known as Newton's step.

Theorem Let $F: X \subseteq R^{n} \rightarrow R^{n}$ be a C^{1} operator. If:
i) the equation $F(x)=0$ has a unique solution $\hat{x} \in X$;
ii) $J: X \rightarrow R^{n \times n}$ is a Lipschitz continuos operator with Lipschitz constant $\gamma>0$;
iii) $J(\hat{x})$ is nonsingular;
then there is a $\zeta>0$ such that $G: B(\zeta) \rightarrow B(\zeta)$, where $B(\zeta) \equiv\{x:\|x-\hat{x}\|<\zeta\} \in X$ and $G\left(x_{k}\right) \equiv x_{k}-J_{k}^{-1} F\left(x_{k}\right)$ is a contraction operator.

Corollary Assume that the hypotheses of the previous Theorem hold.
Newton's successive approximation scheme converges quadratically:

$$
\left\|x_{k+1}-\hat{x}\right\| \leq \varphi\left\|x_{k}-\hat{x}\right\|^{2}, \quad k=0,1,2, \ldots
$$

where $\varphi \equiv \gamma\left\|J(\hat{x})^{-1}\right\|$, for all $x_{0} \in B(\zeta)$.

- Given the quadratic convergence of Newton's method, the general stopping rule:

$$
\left\|d_{k}\right\| \leq \varepsilon\left(1+\left\|x_{k}\right\|\right)
$$

where $\varepsilon>0$, will stop the iterations as soon as the approximation error $\left\|x_{k}-x\right\|$ is of order ε, unless the system is particularly ill-behaved.

- However, if the initial guess is not good enough, i.e. if $x_{0} \notin B$, Newton's method may fail to converge to a zero of F.
- Since the size of B is generally unknown ex-ante, we should consider x_{k} a solution only if:

$$
\left\|F\left(x_{k}\right)\right\| \leq \delta\left(1+\left\|F\left(x_{0}\right)\right\|\right)
$$

where $\delta>0$ is another tolerance parameter.

Finite differences

- A critical step in Newton's method requires the computation of the Jacobian matrix of F at a given x.
- Often the Jacobian can not be easily computed analytically: in these cases, a numerical approach is needed.
- Numerical differentiation is an essential application of the finite difference method.
- Assume that $f: X \rightarrow R$ is C^{k} on X
- Consider the one-sided Taylor expansion of $f(x)$ around an arbitrary point x in $X($ where $h>0)$:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime}(x)+\ldots
$$

- The previous expression can be rewritten as:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O\left(\frac{h f^{\prime \prime}(x)}{2}\right)
$$

- This expression is known as the one-sided finite difference formula: the $O\left[(h / 2) f^{\prime \prime}(x)\right]$ term on right-hand side is called truncation error.
- Truncation is not the only source of error: the round-off error is, as always, an additional source of inaccuracy.
- The round-off error is on the order of $\varepsilon_{f}|f(x) / h|$, where ε_{f} is the accuracy with which f is computed: generally, it is comparable to ε_{M}, the machine's internal precision.
- The truncation error, instead, is on the order of $\left|(h / 2) f^{\prime \prime}(x)\right|$.
- These two errors can be jointly minimized by choosing:

$$
h=\sqrt{\varepsilon_{M}\left|\frac{2 f(x)}{f^{\prime \prime}(x)}\right|}=\sqrt{\varepsilon_{M}} x_{c}
$$

where $x_{c} \equiv\left(\left|2 f(x) / f^{\prime \prime}(x)\right|\right)^{1 / 2}$.

- If no specific information on the curvature of f is available, a standard choice is $x_{c}=1+|x|$.

- We can combine the previous one-sided Taylor expansion with the symmetric one to points to the left of x to obtain:

$$
\begin{gathered}
f(x+h)-f(x-h)=2 h f^{\prime}(x)+\frac{1}{3} h^{3} f^{\prime \prime \prime}(x)+\ldots \\
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(\frac{h^{2} f^{\prime \prime \prime}(x)}{3}\right)
\end{gathered}
$$

- This is known as the two-sided finite difference formula.
- Note that the truncation error is in this case on the order of h^{2} instead of h.
- The truncation and round-off errors are minimized by choosing:

$$
h=\sqrt[3]{\varepsilon_{M}\left|\frac{3 f(x)}{f^{\prime \prime}(x)}\right|}
$$

- Assume now that $F: R^{n} \rightarrow R^{m}$ is C^{k} at x
- The Jacobian of F can be numerically computed using a one-sided finite difference formula:

$$
\frac{\partial f_{i}(x)}{\partial x_{j}}=\frac{f_{i}\left(x+h_{j} e_{j}\right)-f_{i}(x)}{h_{j}}+O\left(h_{j}\right)
$$

where $i=1,2, \ldots, m, j=1,2, \ldots, n, e_{j}$ is a column vector of zeros with just its $j_{t h}$ element equal to one, and:

$$
h_{j}=\sqrt{\varepsilon_{F}}\left(1+\left|x_{j}\right|\right)
$$

Quasi-Newton Methods

- Numerical differentiation is the most computationally expensive step in Newton's method.
- Quasi-Newton methods use approximations of the Jacobian, gaining in computational efficiency but loosing the quadratic convergence of Newton's method.

Frozen Newton's method

- The simplest Quasi-Newton method is the so-called frozen (or simplified) Newton's method:

$$
d_{k}=-J_{0}^{-1} f\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

- This scheme is quite unstable and converges only linearly.

Broyden's Method

- Assume that $f: R \rightarrow R$. Let x and y be two points in R.
- The first order derivative of f could be roughly approximated near x and y by the slope of the secant line:

$$
f^{\prime} \approx \hat{f}^{\prime} \equiv \frac{f(x)-f(y)}{x-y}
$$

- We could simplify Newton's method by substituting the actual derivative with the equivalent of f^{\prime} :

$$
d_{k}=-\frac{\Delta x_{k}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} f\left(x_{k}\right), \quad k=1,2, \ldots
$$

- This secant method needs an initial condition for the derivative: the obvious choice is a numerically computed derivative at x_{0}.

- The secant method cannot be directly extended to the multivariate case.
- Assume that $F: R^{n} \rightarrow R^{n}$. Let x and y be two points in R^{n} and $J(z)$ the Jacobian of F at z.
- We can show that the Jacobian approximately solves, near x (or y):

$$
F(x)-F(y) \approx J(x)(x-y)
$$

- However, given $x, y, F(x)$, and $F(y)$ this secant equation is not enough to pin down an approximation of $J(x)$ if $n>1$:
- $F(x)-F(y)$ and $x-y$ are column vectors, and therefore the equation imposes only n constraints, while $J(x)$ has n^{2} unknown.

Given an initial guess for the Jacobian at x_{0}, J_{0}, Broyden's method iterates on the following successive approximation scheme:

$$
d_{k}=-J_{k}^{-1} F\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

where d_{k} is generically known as quasi-Newton step.
The approximated Jacobian is updated at each iteration by imposing two conditions:

1. the update J_{k+1} has to be a good approximation of the Jacobian near x_{k} and x_{k+1}; hence, it has to solve the secant equation:

$$
F\left(x_{k+1}\right)-F\left(x_{k}\right)=J_{k+1} d_{k}
$$

2. the change between J_{k+1} and J_{k} has to be the smallest possible according to the Frobenius matrix norm, defined as:

$$
\|X\|_{F} \equiv \sqrt{\sum_{j, i=1}^{n} x_{j i}^{2}}
$$

- The second requirement is based on the observation that the secant equation is the only new piece of information that becomes available at each iteration.
- The iteration scheme should preserve as much as possible of the information already acquired (summarized by the current approximation J_{k})
- The Frobenius norm takes into account changes to all elements of J.
- The corresponding updating rule is:

$$
\Delta J_{k+1}=\frac{F\left(x_{k+1}\right) d_{k}^{\prime}}{d_{k}^{\prime} d_{k}}
$$

- Broyden's method is much less computationally intensive than Newton's method.
- However, this implies also slower convergence: Broyden's method can be shown to converge superlinearly when the initial approximation of the Jacobin is good enough.
- Thanks to the Sherman-Morrison-Woodbury Lemma, we can obtain an updating rule for the inverse of the Jacobian:

$$
\Delta J_{k+1}^{-1}=\frac{z_{k} d_{k}^{\prime} J_{k}^{-1}}{d_{k}^{\prime}\left(d_{k}-z_{k}\right)}
$$

where:

$$
z_{k} \equiv-J_{k}^{-1} F\left(x_{k+1}\right)
$$

