# **ORTHOGONAL POLYNOMIALS**

**Definition** Let  $again X \equiv [a,b] \in R$ , and  $w : X \to R$  an almost everywhere positive and Riemann integrable function on X. The function w is called **weighting function**.

**Definition** Let f and g be two elements of C[X]. Given a weighting function w, we can define an **inner product** on C[X] as:

$$\langle f,g\rangle \equiv \int_{a}^{b} f(x)g(x)w(x)dx$$

**Definition** Let  $\Phi \subseteq C[X]$ . The elements of  $\Phi$  are mutually orthogonal with respect to the weighting function w if and only if:  $\langle \phi_k, \phi_j \rangle = \begin{cases} 0 \text{ when } k \neq j \\ \alpha_k > 0 \text{ when } k = j \end{cases}$ for all  $k \neq j$ .

**Definition** The elements of  $\Phi$  are mutually orthonormal with respect to w if and only if they are mutually orthogonal and  $\alpha_j = 1$  for all j.

**Theorem (Gram-Schmidt)** Given a weighting function w(x), the sequence of algebraic polynomials  $\{Q_j\}_{i=0}^{\infty}$  defined by:  $Q_{-1}(x) \equiv 0$  $Q_0(x) \equiv 1$  $Q_{i+1}(x) \equiv (x - m_i)Q_i(x) - q_iQ_{i-1}(x)$ for  $j \geq 0$ , where:  $m_j \equiv \frac{\langle xQ_j, Q_j \rangle}{\langle Q_i, Q_j \rangle}, \quad q_j \equiv \frac{\langle Q_j, Q_j \rangle}{\langle Q_{i-1}, Q_{i-1} \rangle}$ is mutually orthogonal with respect to w(x).

- The family  $\{Q_n\}$  of algebraic orthogonal polynomials with respect to w is **unique** up to a multiplicative constant.
- More precisely, if  $\{P_n\}$  is another family of orthogonal polynomials such that  $P_n$  has degree exactly n, then  $P_n = \alpha_n Q_n$  for some  $\alpha_n \neq 0$ .
- Note that  $p_n(x)$  and  $\alpha p_n(x)$  where  $\alpha \neq 0$  share the same zeros.

**Corollary** Given a family of algebraic orthogonal polynomials  $\{Q_n\}$ , each algebraic polynomial can be uniquely written as  $p_n(x) = \sum_{j=1}^n \alpha_j Q_j(x)$  where  $\alpha_j \equiv \langle p_j, Q_j \rangle / \langle Q_j, Q_j \rangle$ .

• Thanks to Weierstrass' Theorem, each family of orthogonal polynomials can be considered a basis for the space of all continuous real functions on *X*.

1. The Chebyshev polynomials  $T_n$  are orthogonal on [-1,+1] with respect to the weighting function  $w(x) \equiv (1-x^2)^{-\frac{1}{2}}$ , since:

$$\int_{-1}^{+1} T_k(x) T_j(x) \frac{dx}{\sqrt{1-x^2}} = \int_0^{\pi} \cos(k\theta) \cos(j\theta) d\theta = \begin{cases} 0, & k \neq j \\ \pi, & k = j = 0 \\ \pi/2, & k = j \neq 0 \end{cases}$$

2. Define  $\tilde{T}_0 \equiv 2^{-\frac{1}{2}}T_0$  and  $\tilde{T}_n \equiv T_n$  for  $n \ge 1$ . The  $\tilde{T}_n$  are orthonormal on [-1,+1] with respect to the weighting function  $w(x) \equiv \frac{2}{\pi}(1-x^2)^{-\frac{1}{2}}$ , since:

$$\frac{2}{\pi} \int_{-1}^{+1} \tilde{T}_k(x) \tilde{T}_j(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} 0, & k \neq j \\ 1, & k = j = 0 \\ 1, & k = j \neq 0 \end{cases}$$

#### 1. The *Hermite polynomials*, defined as:

$$H_n(x) \equiv (-1)^n e^{x^2} \frac{d^n e^{-x^2}}{dx^n}$$

are orthogonal with respect to  $w(x) = e^{-x^2}$  on  $[-\infty, +\infty]$  and satisfy the recurrence relation:

$$H_0(x) = 1$$
  
 $H_1(x) = 2x$   
 $H_{j+1}(x) = 2xH_j(x) - 2jH_{j-1}(x)$ 

Note furthermore that:

$$H_j(-x) = (-1)^j H_j(x)$$

## **Least-squares approximation**

- Let *f* be an element of C[X] and w(x) a weighting function.
- The function:

$$||f||_2 \equiv \sqrt{\int_a^b f(x)^2 w(x) dx} = \sqrt{\langle f, f \rangle}$$

is the  $L^2$ -norm in C[X], and is strictly convex.

• Note that the sup norm measures the distance between to functions focusing on the "worst" scenario, i.e. the maximum distance in modulus between the two functions, while the  $L^2$ -norm is a measure of their "average" distance.

• The weighting function "weights" the squared approximation errors according to *x* 



• Given  $\Phi = \{\varphi_j\}$  and *f*, both in *C*[*X*], the *n*th degree **least** squares polynomial approximation of *f* w.r.t. a weighting function *w* is the polynomial of degree *n* in the  $\varphi_j$  that solves:

$$\min_{c\in R^n}\int_a^b [f(x)-p(x)]^2w(x)dx$$

**Theorem** Let  $\Phi$  be a finite dimensional distinguished subset of C[X]. For any function  $f \in C[X]$  and any weighting function w there is a unique  $\hat{\phi} \in \Phi$  that solves the problem  $\min_{\phi \in \Phi} ||f - \phi||_2$ .

• First order conditions:

$$\langle f, \phi_j \rangle = \sum_{k=0}^n c_k \langle \phi_k, \phi_j \rangle, \quad j = 0, 1, \dots, n$$

• If  $\Phi$  is a family of orthogonal polynomials, then the FOCs reduce to:

$$c_j = \frac{\langle f, \phi_j \rangle}{\langle \phi_j, \phi_j \rangle} = \frac{\langle f, \phi_j \rangle}{\alpha_j}, \quad j = 0, 1, \dots, n$$

**Definition** Let  $\Phi = \{T_n\}$  and  $f \in C[X]$ . The nth degree Chebyshev least square approximation of f is  $C_n(f)(x) \equiv \sum_{j=0}^n c_j \tilde{T}_j(x)$  where  $c_0 \equiv \langle f, \tilde{T}_0 \rangle / \pi$  and  $c_j \equiv \frac{2}{\pi} \langle f, \tilde{T}_j \rangle$  for j = 1, 2, ..., n.

**Theorem (Lebesgue)** 
$$||f - C_n(f)||_{\infty} \leq 4\left[1 + \frac{\ln(n+1)}{\pi^2}\right]E_n(f).$$

**Corollary** 
$$\lim_{n\to\infty} ||f - C_n(f)||_{\infty} = 0.$$



• In other words, the importance of **high-order monomials** in the *Chebyshev least squares approximation* is rapidly decreasing: the value of  $|c_i|$  is falling at the rate  $[j/(j+1)]^k$ -1.

### LINEAR QUADRATURE

- Let *X*≡*[a,b]*∈*R*, and let *f* be a *Riemann integrable* element of *C*[*X*].
- Numerical integration, or **quadrature**, is a method to approximate the value of a definite integral like:

$$I(f) = \int_{a}^{b} f(x) dx$$

using only linear combinations of values of *f*:

$$I(f) \approx I_n(f, \omega) \equiv \sum_{j=1}^n \omega_j f(x_j)$$

where  $\{x_{j}\}$  are the **quadrature nodes** and  $\{\omega_{j}\}$  the **quadrature weights**.

For the sake of exposition, let us for the moment assume that *f* is an algebraic polynomial of degree *n*, i.e.  $f(x) = p_n(x) \equiv \sum_{j=0}^n c_j x^j$ .

For a given set of nodes  $\{x_j\}_{j=0}^n$ , we already know that:

$$p_n(x) = \sum_{j=0}^n p_n(x_j) l_{j,n}(x_j)$$

Therefore:

$$\int_{a}^{b} p_{n}(x) dx = \sum_{j=0}^{n} p_{n}(x_{j}) \int_{a}^{b} l_{j,n}(x) dx$$

where the functions  $l_{j,n}(x)$  are the *Lagrange fundamental polynomials* of degree *n* defined as:

$$l_{j,n}(x) = \prod_{k=0,k\neq j}^{n} \frac{x-x_k}{x_j-x_k}, \quad j = 0, 1, \dots, n$$

**Theorem** Given n + 1 distinct nodes in X, there exists a unique set of weights  $\{\hat{\omega}_j\}_{j=0}^n$  such that:

$$\int_{a}^{b} p_{m}(x) dx = \sum_{j=0}^{n} \hat{\omega}_{j} p_{m}(x_{j})$$

for all algebraic polynomials of degree  $m \leq n$ , and:

$$\hat{\omega}_j = \int_a^b l_{j,n}(x) dx$$

More generally, let again *f* be an integrable element of C[X], and consider  $L_n(f)$ , the algebraic polynomial of degree *n* that interpolates *f* at the given set of nodes  $\{x_j\}_{j=0}^n$ .

Note that:

$$\int_{a}^{b} L_{n}(f)(x) dx = \sum_{j=0}^{n} f(x_{j}) \int_{a}^{b} l_{j,n}(x) dx = \sum_{j=0}^{n} \hat{\omega}_{j} f(x_{j})$$
14

- Linear quadrature schemes are able, for a given set of n+1 nodes, to calculate the exact integral of any algebraic polynomial of degree less or equal to n by choosing the proper weights  $\omega_i$ .
- If the weights and the nodes are jointly chosen to optimize the accuracy of the approximation, we have further *n*+1 degrees of freedom
- We can therefore expect to calculate the exact integral of algebraic polynomials of degree less or equal to 2n, which are characterized by 2(n+1) coefficients.

Suppose we want to find the weights  $\{\omega_0, \omega_1\}$  and the nodes  $\{x_0, x_1\}$  that satisfy:

$$\int_{-1}^{+1} p_m(x) dx = \sum_{j=0}^{1} \omega_j p_m(x_j)$$

whenever  $m \leq 3$ .

Note that:

$$\int_{-1}^{+1} \left( \sum_{j=0}^{3} c_j x^j \right) dx = \sum_{j=0}^{3} c_j \int_{-1}^{+1} x^j dx$$

The monomials  $\{x^j\}_{j=0}^3$  are algebraic polynomials of degree less or equal 3 themselves.

Hence the solution to our problem is pinned down by the following 4 conditions:

$$\omega_0 1 + \omega_1 1 = \int_{-1}^{+1} 1 dx = 2$$
  

$$\omega_0 x_0 + \omega_1 x_1 = \int_{-1}^{+1} x dx = 0$$
  

$$\omega_0 x_0^2 + \omega_1 x_1^2 = \int_{-1}^{+1} x^2 dx = \frac{2}{3}$$
  

$$\omega_0 x_0^3 + \omega_1 x_1^3 = \int_{-1}^{+1} x^3 dx = 0$$

The unique solution to the system is:

$$\omega_0 = 1, \, \omega_1 = 1, \, x_0 = -\frac{\sqrt{3}}{3}, \, x_1 = \frac{\sqrt{3}}{3}$$

Hence, the quadrature formula that computes the exact integral of any algebraic polynomial of degree less or equal to 3 using only two quadrature nodes, i.e. the formula of precision 3, is:

$$\int_{-1}^{+1} f(x) dx = f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$
 17

**Theorem (Gauss)** Let  $\{Q_j\}$  be the sequence of orthogonal polynomials relative to a given weighting function w(x), and let  $\{x_j\}_{j=1}^n$  be the *n* zeros of  $Q_n$  in X. Then, the quadrature formula:

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{j=1}^{n} \hat{\omega}_{j}f(x_{j})$$

where:

$$\hat{\omega}_j \equiv \int_a^b l_{j,n-1}(x) w(x) dx$$

is exact for all polynomials of degree strictly less than 2n.

**Lemma (Stieltjes)** Let  $\{\hat{\omega}_j\}_{j=1}^n$  be the set of weights defined in (ref: eq10). *Then:* 

$$\hat{\omega}_j = \langle l_{j,n-1}, l_{j,n-1} \rangle > 0$$
  
for  $j = 1, 2, \dots, n$ .

**Theorem (Stieltjes)** The approximation error is bounded in modulus:  $|I(f) - I_n(f, \hat{\omega})| \le 2E_{2n-1}(f) \int_a^b w(x) dx$ Hence:

$$\lim_{n\to\infty}I_n(f,\hat{\omega})=I(f)$$

### The Golub-Welsch algorithm

Let us now discuss a general method to jointly solve for the quadrature nodes and weights when the orthogonal polynomials  $\{Q_n\}$  are characterized by a closed form recurrence formula.

We already know that the Gram-Schmidt procedure iteratively defines the algebraic polynomials that are mutually orthogonal with respect to a particular weighting function.

In general, given the weighting function w(x) and setting  $Q_{-1}(x) \equiv 0$  and  $Q_0(x) = 1$ , we have that:

$$Q_{j+1}(x) = (x - m_j)Q_j(x) - q_jQ_{j-1}(x), \ j = 0, 1, 2..$$

For a given degree *n*, the recurrence relation can be rewritten in matrix form as:  $x\mathbf{Q} = \mathbf{T} \cdot \mathbf{Q} + Q_n \mathbf{e}_{n-1}$ 

where:

$$\mathbf{Q} = \begin{bmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_{n-1} \end{bmatrix}, \ \mathbf{e}_{n-1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, \ T = \begin{bmatrix} a_0 & 1 \\ b_1 & a_1 & 1 \\ & \vdots & \ddots \\ & b_{n-2} & a_{n-2} & 1 \\ & & b_{n-1} & a_{n-1} \end{bmatrix}$$

To simplify the task, note that eigenvalues are preserved by similarity transformations.

Note that if  $x_j$  is an eigenvalue of **T**, then  $Q_n(x_j) = 0$ . Hence finding the eigenvalues of **T** is equivalent to finding the roots of  $Q_n$ .

We can apply a diagonal similarity transformation **D** to **T** obtaining:

$$\mathbf{J} = \mathbf{D}\mathbf{T}\mathbf{D}^{-1} = \begin{bmatrix} a_0 & \sqrt{b_1} & & \\ \sqrt{b_1} & a_1 & \sqrt{b_2} & & \\ & \vdots & \ddots & \\ & & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\ & & & \sqrt{b_{n-1}} & a_{n-1} \end{bmatrix}$$

The Jacobian matrix **J** is a symmetric tridiagonal matrix whose eigenvalues coincide with the eigenvalues of **T**, and therefore with the zeros of  $Q_n$ .

Furthermore, if  $\mathbf{v}_j$  is the eigenvector (normalized so that  $\mathbf{v} \cdot \mathbf{v} = 1$ ) associated to the eigenvalue  $x_j$ , then:

$$w_j = v_{j,1}^2 \int_a^b w(x) dx$$

where  $v_{j,1}$  is the first element of  $\mathbf{v}_j$ .

### **Gauss-Chebyshev quadrature**

- The Chebyshev polynomials are orthogonal with respect to  $w(x) \equiv (1-x^2)^{-1/2}$  over  $X \equiv [-1, +1]$ .
- The Gauss-Chebyshev weights happen to be constant and equal to  $\pi/n$ .
- Therefore, the **Gauss-Chebyshev quadrature formula** is simply the following:

$$\int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \sum_{j=1}^{n} f(x_j)$$

where:

$$x_j = \cos\left(\frac{2j-1}{2n}\pi\right), \quad j = 1, 2, \dots n$$
 23

• Using the change of variable x=(y+1)(b-a)/2+a we can write:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{+1} f\left[\frac{(y+1)(b-a)}{2} + a\right] \frac{\sqrt{1-y^2}}{\sqrt{1-y^2}} dy$$

• Hence:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \frac{\pi}{n} \sum_{j=1}^{n} f\left[\frac{(y_{j}+1)(b-a)}{2} + a\right] \sqrt{1-y_{j}^{2}}$$

### **Gauss-Hermite quadrature**

- The Hermite polynomials are orthogonal with respect to  $w(x) = e^{-x^2}$  over  $X \equiv [-\infty, +\infty]$ .
- The Gauss-Hermite quadrature formula is:

$$\int_{-\infty}^{+\infty} f(x) e^{-x^2} dx \approx \sum_{j=1}^{n} \omega_j f(x_j)$$

where the  $\omega_j$  are the Hermite weights and the  $x_j$  are the *n* zeros of  $H_n(x)$ .

• Recall that, if  $x \sim N(\mu, \sigma^2)$ , then:

$$E[f(x)] = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

• Using the change of variable  $y=(x-\mu)/(\sqrt{2\sigma})$  we can rewrite it as:

$$\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx = \frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}f(\sqrt{2}\sigma y + \mu)e^{-y^2}dy$$

• Hence, E[f(x)] can be approximated by:

$$E[f(x)] \approx \frac{1}{\sqrt{\pi}} \sum_{j=1}^{n} \omega_j f\left(\sqrt{2} \,\sigma y_j + \mu\right)$$

where the  $y_j$  are the Gauss-Hermite quadrature nodes.