ORTHOGONAL POLYNOMIALS

Definition Let again $X \equiv[a, b] \in R$, and $w: X \rightarrow R$ an almost everywhere positive and Riemann integrable function on X. The function w is called weighting function.

Definition Let fand g be two elements of $C[X]$. Given a weighting function w, we can define an inner product on $C[X]$ as:

$$
\langle f, g\rangle \equiv \int_{a}^{b} f(x) g(x) w(x) d x
$$

Definition Let $\Phi \subseteq C[X]$. The elements of Φ are mutually orthogonal with respect to the weighting function w if and only if:

$$
\left\langle\phi_{k}, \phi_{j}\right\rangle=\left\{\begin{array}{c}
0 \text { when } k \neq j \\
\alpha_{k}>0 \text { when } k=j
\end{array}\right.
$$

for all $k \neq j$.

Definition The elements of Φ are mutually orthonormal with respect to w if and only if they are mutually orthogonal and $\alpha_{j}=1$ for all j.

Theorem (Gram-Schmidt) Given a weighting function $w(x)$, the sequence of algebraic polynomials $\left\{Q_{j}\right\}_{j=0}^{\infty}$ defined by:

$$
\begin{aligned}
Q_{-1}(x) & \equiv 0 \\
Q_{0}(x) & \equiv 1 \\
Q_{j+1}(x) & \equiv\left(x-m_{j}\right) Q_{j}(x)-q_{j} Q_{j-1}(x)
\end{aligned}
$$

for $j \geq 0$, where:

$$
m_{j} \equiv \frac{\left\langle x Q_{j}, Q_{j}\right\rangle}{\left\langle Q_{j}, Q_{j}\right\rangle}, \quad q_{j} \equiv \frac{\left\langle Q_{j}, Q_{j}\right\rangle}{\left\langle Q_{j-1}, Q_{j-1}\right\rangle}
$$

is mutually orthogonal with respect to $w(x)$.

- The family $\left\{Q_{n}\right\}$ of algebraic orthogonal polynomials with respect to w is unique up to a multiplicative constant.
- More precisely, if $\left\{P_{n}\right\}$ is another family of orthogonal polynomials such that P_{n} has degree exactly n, then $P_{n}=\alpha_{n} Q_{n}$ for some $\alpha_{n} \neq 0$.
- Note that $p_{n}(x)$ and $\alpha p_{n}(x)$ where $\alpha \neq 0$ share the same zeros.

Corollary Given a family of algebraic orthogonal polynomials $\left\{Q_{n}\right\}$, each algebraic polynomial can be uniquely written as $p_{n}(x)=\sum_{j=1}^{n} \alpha_{j} Q_{j}(x)$ where $\alpha_{j} \equiv\left\langle p_{j}, Q_{j}\right\rangle\left\langle\left\langle Q_{j}, Q_{j}\right\rangle\right.$.

- Thanks to Weierstrass' Theorem, each family of orthogonal polynomials can be considered a basis for the space of all continuous real functions on X.

1. The Chebyshev polynomials T_{n} are orthogonal on $[-1,+1]$ with respect to the weighting function $w(x) \equiv\left(1-x^{2}\right)^{-\frac{1}{2}}$, since:

$$
\int_{-1}^{+1} T_{k}(x) T_{j}(x) \frac{d x}{\sqrt{1-x^{2}}}=\int_{0}^{\pi} \cos (k \theta) \cos (j \theta) d \theta=\left\{\begin{array}{cc}
0, & k \neq j \\
\pi, & k=j=0 \\
\pi / 2, & k=j \neq 0
\end{array}\right.
$$

2. Define $\tilde{T}_{0} \equiv 2^{-\frac{1}{2}} T_{0}$ and $\tilde{T}_{n} \equiv T_{n}$ for $n \geq 1$. The \tilde{T}_{n} are orthonormal on $[-1,+1]$ with respect to the weighting function $w(x) \equiv \frac{2}{\pi}\left(1-x^{2}\right)^{-\frac{1}{2}}$, since:

$$
\frac{2}{\pi} \int_{-1}^{+1} \tilde{T}_{k}(x) \tilde{T}_{j}(x) \frac{d x}{\sqrt{1-x^{2}}}=\left\{\begin{array}{lc}
0, & k \neq j \\
1, & k=j=0 \\
1, & k=j \neq 0
\end{array}\right.
$$

1. The Hermite polynomials, defined as:

$$
H_{n}(x) \equiv(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}
$$

are orthogonal with respect to $w(x)=e^{-x^{2}}$ on $[-\infty,+\infty]$ and satisfy the recurrence relation:

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =2 x \\
H_{j+1}(x) & =2 x H_{j}(x)-2 j H_{j-1}(x)
\end{aligned}
$$

Note furthermore that:

$$
H_{j}(-x)=(-1)^{j} H_{j}(x)
$$

Least-squares approximation

- Let f be an element of $C[X]$ and $w(x)$ a weighting function.
- The function:

$$
\|f\|_{2} \equiv \sqrt{\int_{a}^{b} f(x)^{2} w(x) d x}=\sqrt{\langle f, f\rangle}
$$

is the L^{2}-norm in $C[X]$, and is strictly convex.

- Note that the sup norm measures the distance between to functions focusing on the "worst" scenario, i.e. the maximum distance in modulus between the two functions, while the L^{2}-norm is a measure of their "average" distance.
- The weighting function "weights" the squared approximation errors according to x

The weighting function $w_{c}(x)=\left(1-x^{2}\right)^{-\frac{1}{2}}$ on $[-1,+1]$.

- Given $\Phi=\left\{\varphi_{j}\right\}$ and f, both in $C[X]$, the nth degree least squares polynomial approximation of f w.r.t. a weighting function w is the polynomial of degree n in the φ_{j} that solves:

$$
\min _{c \in R^{n}} \int_{a}^{b}[f(x)-p(x)]^{2} w(x) d x
$$

Theorem Let Φ be a finite dimensional distinguished subset of $C[X]$. For any function $f \in C[X]$ and any weighting function w there is a unique $\hat{\phi} \in \Phi$ that solves the problem $\min _{\phi \in \Phi}\|f-\phi\|_{2}$.

- First order conditions:

$$
\left\langle f, \phi_{j}\right\rangle=\sum_{k=0}^{n} c_{k}\left\langle\phi_{k}, \phi_{j}\right\rangle, \quad j=0,1, \ldots, n
$$

- If Φ is a family of orthogonal polynomials, then the FOCs reduce to:

$$
c_{j}=\frac{\left\langle f, \phi_{j}\right\rangle}{\left\langle\phi_{j}, \phi_{j}\right\rangle}=\frac{\left\langle f, \phi_{j}\right\rangle}{\alpha_{j}}, \quad j=0,1, \ldots, n
$$

Definition Let $\Phi=\left\{T_{n}\right\}$ and $f \in C[X]$. The nth degree Chebyshev least

$$
\text { square approximation of fis }{\underset{\sim}{c}}_{n}(f)(x) \equiv \sum_{j=0}^{n} c_{j} \tilde{T}_{j}(x) \text { where }
$$

$$
c_{0} \equiv\left\langle f, \tilde{T}_{0}\right\rangle / \pi \text { and } c_{j} \equiv \frac{2}{\pi}\left\langle f, \tilde{T}_{j}\right\rangle \text { for } j=1,2, \ldots, n .
$$

Theorem (Lebesgue) $\left\|f-C_{n}(f)\right\|_{\infty} \leq 4\left[1+\frac{\ln (n+1)}{\pi^{2}}\right] E_{n}(f)$.

Corollary $\lim _{n \rightarrow \infty}\left\|f-C_{n}(f)\right\|_{\infty}=0$.

Theorem Iff $\in C^{k}[X]$ with $k \geq 2$, then:

$$
\begin{array}{r}
\left|\hat{c}_{j}\right| \leq k \frac{\left\|f^{(k)}\right\|_{\infty}}{j^{k}} \\
\text { for } j \geq 1 \text {, and therefore } \sum_{j=0}^{\infty}\left|\hat{c}_{j}\right|<\infty .
\end{array}
$$

- In other words, the importance of high-order monomials in the Chebyshev least squares approximation is rapidly decreasing: the value of $\left|c_{j}\right|$ is falling at the rate $[j /(j+1)]^{k}-1$.

LINEAR QUADRATURE

- Let $X \equiv[a, b] \in R$, and let f be a Riemann integrable element of $C[X]$.
- Numerical integration, or quadrature, is a method to approximate the value of a definite integral like:

$$
I(f)=\int_{a}^{b} f(x) d x
$$

using only linear combinations of values of f :

$$
I(f) \approx I_{n}(f, \omega) \equiv \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)
$$

where $\left\{x_{j}\right\}$ are the quadrature nodes and $\left\{\omega_{j}\right\}$ the quadrature weights.

For the sake of exposition, let us for the moment assume that f is an algebraic polynomial of degree n, i.e. $f(x)=p_{n}(x) \equiv \sum_{j=0}^{n} c_{j} x^{j}$.

For a given set of nodes $\left\{x_{j}\right\}_{j=0}^{n}$, we already know that:

$$
p_{n}(x)=\sum_{j=0}^{n} p_{n}\left(x_{j}\right) l_{j, n}\left(x_{j}\right)
$$

Therefore:

$$
\int_{a}^{b} p_{n}(x) d x=\sum_{j=0}^{n} p_{n}\left(x_{j}\right) \int_{a}^{b} l_{j, n}(x) d x
$$

where the functions $l_{j, n}(x)$ are the Lagrange fundamental polynomials of degree n defined as:

$$
l_{j, n}(x)=\prod_{k=0, k \neq j}^{n} \frac{x-x_{k}}{x_{j}-x_{k}}, \quad j=0,1, \ldots, n
$$

Theorem Given $n+1$ distinct nodes in X, there exists a unique set of weights $\left\{\hat{\omega}_{j}\right\}_{j=0}^{n}$ such that:

$$
\int_{a}^{b} p_{m}(x) d x=\sum_{j=0}^{n} \hat{\omega}_{j} p_{m}\left(x_{j}\right)
$$

for all algebraic polynomials of degree $m \leq n$, and:

$$
\hat{\omega}_{j}=\int_{a}^{b} l_{j, n}(x) d x
$$

More generally, let again f be an integrable element of $C[X]$, and consider $L_{n}(f)$, the algebraic polynomial of degree n that interpolates f at the given set of nodes $\left\{x_{j}\right\}_{j=0}^{n}$.

Note that:

$$
\int_{a}^{b} L_{n}(f)(x) d x=\sum_{j=0}^{n} f\left(x_{j}\right) \int_{a}^{b} l_{j, n}(x) d x=\sum_{j=0}^{n} \hat{\omega}_{j} f\left(x_{j}\right)
$$

- Linear quadrature schemes are able, for a given set of $n+1$ nodes, to calculate the exact integral of any algebraic polynomial of degree less or equal to n by choosing the proper weights ω_{j}.
- If the weights and the nodes are jointly chosen to optimize the accuracy of the approximation, we have further $n+1$ degrees of freedom
- We can therefore expect to calculate the exact integral of algebraic polynomials of degree less or equal to $2 n$, which are characterized by $2(n+1)$ coefficients.

Suppose we want to find the weights $\left\{\omega_{0}, \omega_{1}\right\}$ and the nodes $\left\{x_{0}, x_{1}\right\}$ that satisfy:

$$
\int_{-1}^{+1} p_{m}(x) d x=\sum_{j=0}^{1} \omega_{j} p_{m}\left(x_{j}\right)
$$

whenever $m \leq 3$.

Note that:

$$
\int_{-1}^{+1}\left(\sum_{j=0}^{3} c_{j} x^{j}\right) d x=\sum_{j=0}^{3} c_{j} \int_{-1}^{+1} x^{j} d x
$$

The monomials $\left\{x^{j}\right\}_{j=0}^{3}$ are algebraic polynomials of degree less or equal 3 themselves.

Hence the solution to our problem is pinned down by the following 4 conditions:

$$
\begin{aligned}
\omega_{0} 1+\omega_{1} 1 & =\int_{-1}^{+1} 1 d x=2 \\
\omega_{0} x_{0}+\omega_{1} x_{1} & =\int_{-1}^{+1} x d x=0 \\
\omega_{0} x_{0}^{2}+\omega_{1} x_{1}^{2} & =\int_{-1}^{+1} x^{2} d x=\frac{2}{3} \\
\omega_{0} x_{0}^{3}+\omega_{1} x_{1}^{3} & =\int_{-1}^{+1} x^{3} d x=0
\end{aligned}
$$

The unique solution to the system is:

$$
\omega_{0}=1, \omega_{1}=1, x_{0}=-\frac{\sqrt{3}}{3}, x_{1}=\frac{\sqrt{3}}{3}
$$

Hence, the quadrature formula that computes the exact integral of any algebraic polynomial of degree less or equal to 3 using only two quadrature nodes, i.e. the formula of precision 3 , is:

$$
\int_{-1}^{+1} f(x) d x=f\left(\frac{-\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)
$$

Theorem (Gauss) Let $\left\{Q_{j}\right\}$ be the sequence of orthogonal polynomials relative to a given weighting function $w(x)$, and let $\left\{x_{j}\right\}_{j=1}^{n}$ be the n zeros of Q_{n} in X. Then, the quadrature formula:

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{j=1}^{n} \hat{\omega}_{j} f\left(x_{j}\right)
$$

where:

$$
\hat{\omega}_{j} \equiv \int_{a}^{b} l_{j, n-1}(x) w(x) d x
$$

is exact for all polynomials of degree strictly less than $2 n$.

Lemma (Stieltjes) Let $\left\{\hat{\omega}_{j}\right\}_{j=1}^{n}$ be the set of weights defined in (ref: eq10).
Then:

$$
\hat{\omega}_{j}=\left\langle l_{j, n-1}, l_{j, n-1}\right\rangle>0
$$

for $j=1,2, \ldots, n$.

Theorem (Stieltjes) The approximation error is bounded in modulus:

$$
\left|I(f)-I_{n}(f, \hat{\omega})\right| \leq 2 E_{2 n-1}(f) \int_{a}^{b} w(x) d x
$$

Hence:

$$
\lim _{n \rightarrow \infty} I_{n}(f, \hat{\omega})=I(f)
$$

The Golub-Welsch algorithm

Let us now discuss a general method to jointly solve for the quadrature nodes and weights when the orthogonal polynomials $\left\{Q_{n}\right\}$ are characterized by a closed form recurrence formula.

We already know that the Gram-Schmidt procedure iteratively defines the algebraic polynomials that are mutually orthogonal with respect to a particular weighting function.

In general, given the weighting function $w(x)$ and setting $Q_{-1}(x) \equiv 0$ and $Q_{0}(x)=1$, we have that:

$$
Q_{j+1}(x)=\left(x-m_{j}\right) Q_{j}(x)-q_{j} Q_{j-1}(x), j=0,1,2 \ldots
$$

For a given degree n, the recurrence relation can be rewritten in matrix form as:

$$
x \mathbf{Q}=\mathbf{T} \cdot \mathbf{Q}+Q_{n} \mathbf{e}_{n-1}
$$

where:

$$
\mathbf{Q} \equiv\left[\begin{array}{c}
Q_{0} \\
Q_{1} \\
\vdots \\
Q_{n-1}
\end{array}\right], \mathbf{e}_{n-1} \equiv\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right], T \equiv\left[\begin{array}{ccccc}
a_{0} & 1 & & & \\
b_{1} & a_{1} & 1 & & \\
& & \vdots & \ddots & \\
& & b_{n-2} & a_{n-2} & 1 \\
& & & b_{n-1} & a_{n-1}
\end{array}\right]
$$

To simplify the task, note that eigenvalues are preserved by similarity transformations.

Note that if x_{j} is an eigenvalue of \mathbf{T}, then $Q_{n}\left(x_{j}\right)=0$. Hence finding the eigenvalues of \mathbf{T} is equivalent to finding the roots of Q_{n}.

We can apply a diagonal similarity transformation \mathbf{D} to \mathbf{T} obtaining:

$$
\mathbf{J} \equiv \mathbf{D T D}^{-1}=\left[\begin{array}{ccccc}
a_{0} & \sqrt{b_{1}} & & & \\
\sqrt{b_{1}} & a_{1} & \sqrt{b_{2}} & & \\
& & \vdots & \ddots & \\
& & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\
& & & \sqrt{b_{n-1}} & a_{n-1}
\end{array}\right]
$$

The Jacobian matrix \mathbf{J} is a symmetric tridiagonal matrix whose eigenvalues coincide with the eigenvalues of \mathbf{T}, and therefore with the zeros of Q_{n}.

Furthermore, if \mathbf{v}_{j} is the eigenvector (normalized so that $\mathbf{v} \cdot \mathbf{v}=1$) associated to the eigenvalue x_{j}, then:

$$
w_{j}=v_{j, 1}^{2} \int_{a}^{b} w(x) d x
$$

where $v_{j, 1}$ is the first element of \mathbf{v}_{j}.

Gauss-Chebyshev quadrature

- The Chebyshev polynomials are orthogonal with respect to $w(x) \equiv\left(1-x^{2}\right)^{-1 / 2}$ over $X \equiv[-1,+1]$.
- The Gauss-Chebyshev weights happen to be constant and equal to π / n.
- Therefore, the Gauss-Chebyshev quadrature formula is simply the following:

$$
\int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx \frac{\pi}{n} \sum_{j=1}^{n} f\left(x_{j}\right)
$$

where:

$$
x_{j}=\cos \left(\frac{2 j-1}{2 n} \pi\right), \quad j=1,2, \ldots n
$$

- Using the change of variable $x=(y+1)(b-a) / 2+a$ we can write:

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2} \int_{-1}^{+1} f\left[\frac{(y+1)(b-a)}{2}+a\right] \frac{\sqrt{1-y^{2}}}{\sqrt{1-y^{2}}} d y
$$

- Hence:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2} \frac{\pi}{n} \sum_{j=1}^{n} f\left[\frac{\left(y_{j}+1\right)(b-a)}{2}+a\right] \sqrt{1-y_{j}^{2}}
$$

Gauss-Hermite quadrature

- The Hermite polynomials are orthogonal with respect to $w(x)=e^{-x^{2}}$ over $X \equiv[-\infty,+\infty]$.
- The Gauss-Hermite quadrature formula is:

$$
\int_{-\infty}^{+\infty} f(x) e^{-x^{2}} d x \approx \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)
$$

where the ω_{j} are the Hermite weights and the x_{j} are the n zeros of $H_{n}(x)$.

- Recall that, if $x \sim N\left(\mu, \sigma^{2}\right)$, then:

$$
E[f(x)]=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

- Using the change of variable $y=(x-\mu) /(\sqrt{ } 2 \sigma)$ we can rewrite it as:

$$
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(\sqrt{2} \sigma y+\mu) e^{-y^{2}} d y
$$

- Hence, $E[f(x)]$ can be approximated by:

$$
E[f(x)] \approx \frac{1}{\sqrt{\pi}} \sum_{j=1}^{n} \omega_{j} f\left(\sqrt{2} \sigma y_{j}+\mu\right)
$$

where the y_{j} are the Gauss-Hermite quadrature nodes.

