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Chapter 1

Consumption

1.1 Introduction

To be added ...

1.2 Deterministic setting

We start our exposition of dynamic macroeconomics by studying the intertemporal con-
sumption/saving problem of a single infinitely living, price-taking individual. In other
words, we analyze the optimal consumption problem of an individual who lives for an in-
finite number of periods, being small enough with respect to the economy to consider all
market prices as given, and receives each period a strictly positive and exogenous income.
We assume that a competitive market for a single homogenous consumption good opens
each period: being a price-taker, the individual can purchase any desired quantity at the
given market price, normalized to unity for the sake of notational simplicity. Without fur-
ther assumptions, the individual would entirely allocate her income to consumption, since
our intertemporal problem collapses to a sequence of simple static utility maximization
problems.

To choose the optimal sequence of consumption levels, i.e. the optimal consumption
path, becomes a more complex dynamic problem if an intertemporal link between con-
sumption possibilities in different periods exist. We assume that a durable good, generally
called asset, allows the individual to store value and transfer it across periods, i.e. to re-
allocate the purchasing power of her income flow over time. Under these assumptions, the
intertemporal utility maximization problem becomes a fully-fledged dynamic optimization
problem, since the individual has to optimally choose between consumption and saving,
i.e. between current and future consumption.
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1.2.1 Preferences

The individual’s preferences on consumption streams can be summarized by the following
intertemporal utility function':

U= Zﬁs_tu (¢s) (1.1)

where ¢, € R, is the consumption level at date s, 5 € (0,1) the intertemporal subjec-
tive discount factor, and u: R, — R the instantaneous utility function. We define also
the intertemporal discount rate as p = (1 — 3) /8. In the optimal control jargon, the
intertemporal utility function is known as the objective function, and the instantaneous
utility function as the return function. The latter has to satisfy some regularity condi-
tions. Assume? that u is C*, strictly increasing, and strictly concave; furthermore, that
lim.ou (¢) = +00. Note that the last assumption has the straightforward implication
that it will never be optimal to set ¢; = 0.

1.2.2 Budget constraints

Our individuals may save and accumulate assets through the following technology:
A1 = Gt + S (12)

where a; € R is the assets stock at the beginning of date ¢, measured in units of consump-
tion good, and s; € R are savings at date ¢ (note that savings can be negative, i.e. the
asset stock can be freely disposed of).

For the sake of simplicity, we assume that assets may be held only as consumption loans
(debts) contracted with other individuals. By contracting a loan (debt), our individual
exchanges a non-negative (non-positive) share of her current income for a possibly higher
(lower) one in the next period. In each period, loans (debts) can be traded on a competitive
financial market, and pay (cost) a non-negative interest rate, which can be interpreted
as the market price of current purchasing power. We assume, for the sake of simplicity
again, that the interest rate is constant over time and strictly positive, and denote it as
1> 0.

The individual receives each period an exogenous income flow ¢ € (0, Ymax], Where
Ymax < 00, and faces the following intratemporal budget constraint?:

Ct + St :yt—i—iat (13)

!Three essential assumptions are hidden in (1.1): (i) stationarity, since the return function does
not depend on ¢; (ii) additive separability, since the return function evaluated at different dates enters
additively the objective function; (i) time impatience, since the discount factor is less than unity.

2The instantaneous utility function may be unbounded, i.e. we do not assume that |u(c)| < oo Ve €
R, . Without this assumption, the objective function may be unbounded too.

3More precisely, the budget constraint is ¢; +s; < v +ia,. However, as long as the marginal utility of
consumption is positive, it would never be optimal to waste resources, and the budget constraint holds
with equality.
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The natural borrowing limit

It would be unfeasible for any individual to finance her current indebtedness by con-
tinuously increasing it; in the long-run, such an outcome would not be sustainable in a
competitive market populated by rational agents. To avoid this possibility, we impose the
so-called No-Ponzi-Games (NPG) condition:

lim —9* > g (1.4)
for all feasible sequences {a} . ,. The NPG condition states that the present market value

of the asset stock cannot be Strlctly negative in the long-run. In other words, it rules out

free lunches.
Substitute (1.3) into (1.2):

A1 = (1"‘2) at—l—yt—ct (15)
and evaluate the result at date ¢ + 1:
Ao = (1 +0) Q1 + Yog1 — Cog1 (1.6)

Solve (1.5) for a;, and substitute (1.6) in the result:

Ct — Yt 1 Ct41 — Y1 | Qry2
a; = + + 1.7
N 1+¢( 1+ 1+J (1.7)

Iterate the same procedure to obtain:

. N . Qg1
1+d)a; = ——— + lim , 1.8
( ) t ; (1 _'_Z.)s—t j—00 (1 _'_Z)j ( )

Imposing the NPG condition and solving for the discounted consumption stream takes

us to:
o

Cs : — s
;mﬁ(ljtz)aﬂr;m (1.9)

Remark 1 FEquation (1.9) states that the present market value of the consumption stream
cannot be strictly greater than the present market value of lifetime resources, that is the
current asset income plus the present value of the exogenous income stream. Note that,
by imposing the NPG, the intratemporal budget constraint becomes an intertemporal one.

The intertemporal budget constraint (1.9) reveals another clarifying implication of the
NPG condition. The inequality (1.9) can be rewritten as:

o0

Ys
at>z 1+25t+1_z(1+)5 —t+1 (110)

Being consumption positive by assumption, i.e. ¢, > 0 for s > ¢, (1.10) implies that:

(o] Us
a; > — E —_— 1.11
- s=t (1 +i)s_t+1 ( )
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The inequality (1.11) summarizes the exogenous borrowing constraint implied by the
NPG condition, known as the natural borrowing limit. This borrowing constraint implic-
itly defines the mazimum level of debt that can be repaid from date ¢t onwards setting
consumption to zero, i.e. Y ys (1 + z’)_5+t_1. In general, the natural borrowing con-
straint takes the form a; > —b for all t > 0, where:

N s
b= inf [2 m] (1.12)

Remark 2 Sincec; = 0 for somet > 0 will never be optimal in equilibrium, the borrowing
constraint (1.11) will never actually bind.

1.2.3 The optimization problem

The individual maximizes (1.1) subject to (1.4) and (1.5), taking a;, 7, and {y,}.-, as
given. Formally, she solves a deterministic optimal control problem? of the form:

max U = i B° " (cy) (1.13)

{Cs ;As41 }:it

s.t. ai+1 = (1 + Z) a; + Yt — Ct

lim I+
j—oo (1417)7 —
We build a present-value Lagrangian:
L= 57 {ule) + A (1L + i) ay +y, — o — a1} (1.14)
s=t

and partially derive it with respect to cq, as11, and Ay, taking into account that:

L = ..+ B%u(cs)+ 5 [N (1+1i)ag +ys — s — agyq] + (1.15)
+3 (1) + B hagn (149) Qg1 + Yor1 — Cop1 — Gaga) + ..

The first order condition are the following (a hat identifies the optimal path):

u (&) = N (1.16)
BAyr (141) = A, (1.17)
dt+1 = (1"‘2) dt+yt_ét (118)

We know that these conditions are simply necessary but not sufficient for problem (1.13).
Under our strict concavity assumption, a well known result (see Maffezzoli, 2001, par.

6.4.2) states that, if:
lim 37,1 > 0 (1.19)

j—oo

4The consumption level is the only control variable, and the asset stock the only state variable. The
control and state variables take values in convex subsets of R; the return function and the equation of
motion are C'* and strictly concave. The problem is fully recursive; even if the planning horizon starts in
date 0, the individual is allowed to optimize again each period, solving the same problem with a different
initial condition.
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for all feasible sequences {a;},-,, then the first order conditions together with the so called
transversality condition® (TVC):

lim ;a1 =0 (1.20)

Jj—0
are jointly necessary and sufficient. The TVC has a clear economic interpretation:

Remark 3 The Envelope Theorem shows that the costate variable at date t represents
the current value of the state variable denominated in time t utils (units in which utility
is measured). The TVC implies that the present value in utils of the asset stock cannot be
strictly positive in the limit. Heuristically, since the asset stock may be freely consumed, it
18 not optimal to keep a positively valued asset stock when the economy reaches its “end”,
i.e. when time goes to infinite.

To summarize, the sequence (if any exists) {65 € Ry as41 € R, 5\5 € R} that satis-

s=t
fies the non-linear system of first order conditions, together with the initial condition a;
and the boundary condition (1.20), is the unique solution® to problem (1.13).

Exercise 4 Show that (1.4), (1.16), and (1.17) jointly imply (1.19).

The previous Exercise shows that the NPG is actually equivalent to condition (1.19).

1.2.4 The Euler equation

Consider (1.16) at dates t and ¢ + 1. Substitute the result into (1.17) to get (hats are
omitted for notational convenience):

U (¢;) = (1414) pu (ci41) (1.21)

Equation 1.21 is known as the Euler equation. The Euler equation formalizes the
so-called Keynes-Ramsey rule:

Remark 5 Ifwe decrease consumption at date t by dcy, the utility loss is equal to u' (c;) dey.
Next period, we can consume more, since the decrease in consumption at date t implies
an increase in savings. In particular, in date t + 1 consumption increases by (1 + 1) dc;.
If the plan is optimal, then there is no advantage in reallocating consumption, and (1.21)
holds.

We may rewrite the Euler equation as:

pu' (ciy1) 1
u (¢) 147

(1.22)

% As stated in Obstfeld and Rogoff (1996, p. 65, note 4), only the NPG condition is a true constraint on
the individual. It is certainly possible not to consume all lifetime resources if one wishes; the TVC implies
only that doing so would not be optimal, as long as the marginal utility of consumption is positive.

6Since the return function may be unbounded, we should impose the assumption that U; is bounded
for all feasible consumption plans. This assumption may be slightly weakened, since what we need is
simply that the superior of Uy on RS° is bounded (equivalently, that is bounded in the sup norm).
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Equation (1.22) states that the marginal rate of substitution between ¢; and ¢;,; along
an optimal plan is equal to the ratio between (1 + 2’)_1, the relative price of consumption”
at date t + 1, and 1, the relative price of consumption at date .

Rewrite (1.22) as:

wcr) _1+4p
u (¢) 141

Being u” < 0 for the strict concavity of the return function, equation (1.23) implies

that:

(1.23)

Act+1 >0 if i> 1%
ACt+1 =0 lf = P

Remark 6 If the interest rate is greater than the intertemporal discount rate then the
optimal consumption path is increasing over time. If, instead, the interest rate is lower,
the optimal consumption path is decreasing. Finally, if they are the same, the optimal
consumption path is constant.

1.2.5 The optimal consumption path

Focus on the last case®, i = p. By imposing the TVC, we make the intertemporal budget
constraint hold with equality:

— G . — U
—— =1+t Y —— (1.25)
S 0 S
Being ¢; = ¢ Vt , we can solve (1.25) for ¢, the optimal constant level of consumption:
_ . — U
c= (1 +12)ar + —_— 1.26
1"—2 ( ) t ;(1_'_2)5—1? ( )
. i Ys
=a; + -
t 1+Z;(1—|—Z)S_t
We can rewrite (1.26) as:
c= iat + gt (127)
where iq; is the current asset income and:
i Y
= . 1.28
v 1+z;(1+z’)5_t (1.28)

is the current permanent income®. The current transitory income is defined as ; = y; — ;.

"To obtain one unit of consumption good next period, the individual has to save (1 +4)~! units of
consumption good. This is the price of future consumption in terms of present consumption.

8For the moment, we are still in a partial equilibrium framework, since the interest rate is constant and
exogenous. If the interest rate were really different from the intertemporal discount rate, our individual
would either starve in the long-run, or consume the worldwide resources. These outcomes are quite
unlikely.

9We adapt the terminology introduced by Friedman (1957).
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Note that, by evaluating (1.26) at date ¢t and ¢ + 1, we obtain:

G+ Y Q4D Ty =a+ Y 140y, (1.29)
s=t

s=t+1

Reorganizing (1.29) leads to:

A
=y (1.30)

— (1 +i)s_t+1
Equations (1.27) and (1.30) tell us many interesting things:

Remark 7 Consumption depends only on asset income and permanent income.
The individual saves to smooth consumption over time; in other words, the individual
accumulates assets in order to transfer purchasing power from high income periods to low
income periods. She prefers to consume a constant amount of goods across time, instead
of large amounts in “good” periods and low ones in “bad” periods. This is basically
what is known as the life-cycle/permanent-income hypothesis, introduced by Modigliani,
Brumberg, and Friedman.

Remark 8 Saving depends only on transitory income, since s; = yj; — ia;. Saving
compensates the present value of future changes in exogenous income: in other words, it
anticipates future declines in disposable income. Assume that y; = y Vt. Equations (1.27)
and (1.30) tell us that, in this case, ¢ = ia; +y and s; = 0. In words, when the exogenous
income level is constant, the individual does not save. Assume now that exogenous income
decreases by one unit in period t + 1, and then returns to its previous, constant, value.
Savings increase in period t by (1 + i)_l, the exact amount needed to increase future asset
income by one unit, and compensate the decrease in erogenous income: the individual
saves for the “rainy days.”

Remark 9 The propensity to consume out of a transitory shock to income is
less than one. The effect on consumption of a windfall gain in period t, i.e. a marginal
and unexpected increase in y;, equals 0¢/dy; = i/ (1+1i) < 1.1° The reason is clear:
a marginal increase in Yy, leaving the future income stream unaffected, has only a very
limited effect on permanent income, and so a very limited effect on consumption. This

result has a somewhat Keynesian flavor, even if the theoretical underpinnings are radically
different.

Exercise 10 Which of the many assumptions imposed on the utility function is directly
responsible for the consumption smoothing behavior?

Isoelastic utility

Let us be more specific, and assume that the instantaneous utility function is isoelastic:

(1.31)

19Note that i/ (1 +1) < i as long as ¢ > 0.
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The isoelastic utility function is characterized by a constant elasticity of intertemporal
substitution, defined as —u’ (¢) / [cu” (¢)] and equal in this case to p.!* Substitute v’ (c¢) =
¢ Y1 in (1.21) and solve interactively for ¢, as a function of ¢, where s >t :

cs =B (1 +0)"]" "¢ (1.32)
Substitute'? (1.32) into (1.25):

(1+i)a + 22, (1+4) "y,

Cy = = . 175 (133)
Zs:t [ﬁ (1 + Z) }
and simplify to obtain:
: ito Vs
g =0+te)a+ : 1.34
t ( 90) t 1434 - (1 + i)s—t ( )
where p =1 — 8" (1 +4)". By defining the current permanent income as:
it s
Gp= 1% Y (1.35)

- . \S—t
1+ p— (1+14)

we can generalize the statement made in the previous Section: current consumption de-
pends only on the current asset income and the current permanent income.

Substitution, income, and wealth effects

A change in the constant interest rate, being a change in the relative price of consumption
in all future dates'?, has a substitution effect, an income effect, and a wealth effect on
the overall consumption path. These effects may or may not go in the same direction.
In other words, an increase (decrease) in the interest rate causes certainly an increase
(decrease) in the slope of the consumption path, as implied by (1.23), but its effect on
the current and future consumption levels is a priori indeterminate.

To develop a clearer intuition, we focus on a simple, two period intertemporal con-
sumption problem, depicted in Figure 1.1. The starting optimal allocation is point a,
located at the right of the endowment point. The slope of the intertemporal budget con-
straint is —(1 + ¢). An increase in the interest rate (a decrease in the relative price of
¢9) directly increases the budget constraint’s negative slope; of course, the new budget
constraint intersects the old one at the given endowment point e. The substitution ef-
fect, induced by the decrease in the relative price of cs, leads our individual to consume
more cp and less ¢;, moving the allocation from a to b. The decrease in the relative price
of future consumption implies an increase in the purchasing power of any given level of
lifetime resources, generating an income effect that moves the allocation from b to c¢. In

"' The isoelastic utility function converges to a logarithmic utility function when u — 1. Note that the
—11in (1.31) is essential for this result, being otherwise completely redundant.

2 Substituting (1.31) and (1.32) into (1.1) gets Uy = ¢y oo, [8*(1 —l—i)“_l]s_t, where ¢ is a constant
depending on ¢y. The objective function converges to a real number for any initial choice of ¢y, i.e. it is
bounded, if and only if 8#(1 +i)*~1 < 1. We impose this assumption.

13To consume one unit in period ¢ + j, where j > 1, the individual has to save (1+4)~7 units in period
t. So, (1+414)77 is the price of consumption at date ¢+ j in terms of consumption at date .
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¢y

A 4

Figure 1.1: Intertemporal substitution, income and wealth effects

our example, both ¢y and c¢; do increase; in general, however, we cannot determine a
priori the sign of the income effect. Finally, the decrease in the relative price of future
consumption decreases the value of the individual’s lifetime resources, generating a wealth
effect. Again, in our example, the wealth effect moves the allocation from c¢ to d, the new
optimal allocation, decreasing again both ¢y and ¢;. In general, however, also the sign of
the wealth effect is a priori undetermined, even if it is directly linked to the sign of the
income effect.

Summary 11 To summarize, an increase (decrease) in the interest rate implies:

1. A negative (positive) substitution effect that increases the slope of the optimal con-
sumption path, induced by the decrease in the relative price of future consumption;

2. An income effect, induced by the increase in the purchasing power of a given dis-
counted income stream,

3. A wealth effect, induced by the decrease in the present value of the future income
stream.

4. The overall effect on current and future consumption is a priori undetermined.

Assume however that the instantaneous utility function is isoelastic, as in the previous
Section, with = 1 (logarithmic utility). Equation (1.34) becomes:

o =(1-p) (1+i)at+z(1f72 (1.36)

)s—t
Remark 12 In this very particular case, the substitution and income effects cancel them-
selves out. Consumption is simply equal to a constant share, depending on the intertem-
poral discount factor, of the present market value of lifetime resources.
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Changes in the interest rate affect consumption only via their effect on the current asset
income and the prices of future consumption, i.e. the prices at which future endowments
can be sold on the market for consumption loans. The wealth effect is mixed: there is a
positive component, given by the increase in current asset income, and a negative effect,
given by the decrease in the present value of the future income stream. The negative
component is likely to dominate.

Exercise 13 The government introduces a proportional taxr on asset income, paying the
revenues back trough a lump-sum transfer. How does this policy affect consumption?
Discuss separately the substitution and income effects.

Potentially binding borrowing constraints

Let us now suppose that our individual faces a more stringent and potentially binding
borrowing constraint. More precisely, let us impose that a; > —¢ for all ¢ > 0, where
0 < ¢ < b is exogenously given. We can set, without loss of generality, ¢ = 0.*

The first order and slackness conditions for the dynamic optimization problem can be
combined to form the following “Euler inequality”:

u' () > (1 +14) Bu' (cry1) i apy =0
{ u' (Ct) = (1 +Z) Bul (Ctil) if atil >0 (137)

The implications of (1.37) as far as the dynamics of the optimal consumption path are
relatively straightforward, and evidently depend on the relationship between the interest
rate ¢ and the rate of intertemporal substitution p. There are three possible cases: let us
analyze them in turn:

1. The simplest case arises when ¢ > p. In that case, (1.37) implies that ¢;y1 > ¢; for
all ¢ > 0; hence, lim;_,, ¢; = o0 and consequently, being the exogenous income level
bounded by assumption, lim,_,., a; = oo.

2. Consider now the case in which ¢ = p. Evidently, (1.37) implies that ¢;11 > ¢ and
¢ = 1y, whenever a,; = 0, and ¢;41 = ¢; as soon as ay4; > 0.> The natural question
that follows is whether ¢; will converge or not to a finite limit in the long run. The
answer is reassuring: it can be shown!® that, in this case, lim; o, ¢; = sup, ¥ ,
where @, the current permanent income level, has been defined in (1.28). The
intuition behind this result is simple: the borrowing constraint may bind only when
our individual tries to transfer purchasing power from the future to the present
because income - and consequently the permanent income level - is expected to
increase; as soon as permanent income is expected to remain constant or decrease
over time, the incentive to borrow disappears. Hence, the increase in consumption
has to stop as soon as y; reaches its maximum value, and from that date onwards
consumption has to remain constant at sup, 4, being the individual finally free to
smooth consumption over time.

14 Chamberlain and Wilson (2000, p. 370) show that any problem characterized by an arbitrary bor-
rowing limit can be mapped into an equivalent problem in which income is nonnegative and borrowing
is not permitted.

15 Note that consumption will never decrease over time, since saving is freely permitted and the indi-

vidual prefers a constant consumption path.
16See Chamberlain and Wilson (2000, Th. 3, p. 375).
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3. Finally, consider the case in which ¢ < p. In this case, (1.37) clearly implies that
¢ > ¢y as long as the individual is not credit-constrained, i.e. as long as a;;q > 0.
Since consumption is a strictly increasing function of the current asset stock - more
precisely, the policy function for consumption, ¢ (a), is strictly increasing in a,'” i.e.
d (a) > 0 - the straightforward consequence is that a; > a1 as long as a;1 > 0:
hence, we can expect the individual to reach the borrowing limit in finite time.
Furthermore, we can conclude that once our individual becomes credit-constrained,
she remains constrained forever. The intuition is straightforward: if a; = 0 and
aty1 > 0, then (1.37) implies that «' [c(0)] < u'[c(a’)]. But if ¢ (a) is a strictly
increasing in a, then ¢ (a’) > ¢(0); hence «' [¢ (0)] > v/ [¢(a')]: a contradiction! Note
however that (1.37) alone is not enough to characterize the dynamics of ¢; when
the individual is credit-constrained, i.e. when a;;; = 0: we need further pieces of
information about the dynamics of exogenous income. A natural step forward is to
assume that income is constant over time at some strictly positive level . Under
this assumption, the previous discussion suggests that ¢; will converge from above
to 7 in finite time, and will remain constant form that date onwards.

Summary 14 Three possible cases:
1. Ifi > p, then lim;_ o, ¢; = 400 and lim;_,, a; = +00.
2. If 1 = p, then lim;_,o ¢; = sup, yi, converging from below.

3. Ifi < p and y, =y, then lim, ;_. ¢ =¥y, converging from above.

1.3 Stochastic setting

Assume now that the sequence {y,}:-, is an exogenous stochastic process'®. The future

income stream becomes uncertain. To deal with uncertainty, the framework has to be
slightly extended. In particular, we have to modify our assumptions on the individual’s
preferences, since the future consumption stream, depending on the income stream, be-
comes a stochastic sequence too.

1.3.1 Preferences

We assume that preferences of our individual may be represented by:

Ut:Et

> B (cs>] (1.38)

where E; is the mathematical expectation operator conditional on information available
at date . The information set contains the present and past values of all variables in the
model. The return function is C3, strictly increasing, and strictly concave, again with
lim.o ' (¢) = +o0.

I"More precisely, the policy function for consumption, ¢ (a), is a strictly increasing in a, i.e. ¢ (a) > 0.
For a formal proof, see Krueger (2002, Ch. 10, Proposition 102, p. 259).

¥ We follow Sargent (1987a, p. 364) and assume that {y;} ., is a stochastic process of mean exponential
order less than S~!. This implies that Et(ﬁjyt+j) — 0 as j — oo. Intuitively, we are assuming that
expected future incomes are not “too big”.
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Figure 1.2: Risk aversion

The objective function can be interpreted as a von Neumann-Morgenstern utility func-
tion, and the return function as a Bernoulli utility function reflecting the individual’s
attitude toward risk. The strict concavity of the instantaneous utility function implies
risk aversion (see Mas-Colell et al., 1995, ch. 6). Such a Bernoulli utility function is
depicted in Figure 1.2.

Under risk aversion, the utility generated by a certain level of consumption, say ¢, is
always higher than the expected utility generated by a lottery over two (or more) possible
consumption levels, say c¢; and co, giving the same expected outcome. We define the
Arrow-Pratt coefficient of relative risk aversion as:

(1.39)

The coefficient of relative risk aversion corresponds clearly to the reciprocal of the
elasticity of intertemporal substitution, and is therefore related to the curvature of the
instantaneous utility function.!”

1.3.2 The optimization problem

Being now ¢; and y; random variables, the NPG condition and the intertemporal budget
constraint have to hold in expectations. The individual maximizes (1.38) subject to (1.4)
and (1.5), taking again a;, 7, and the stochastic process governing y; as given. Having no
control over the actual sequences, she maximizes over the contingency plans for ¢; and

' The strict link between elasticity of intertemporal substitution and relative risk aversion is a strong
property of time-separable intertemproal utility functions.
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a;1. Formally, she solves a stochastic optimal control problem of the form:

max Ut = Et

{es,as+1}52

Zﬁs_tu (cs)] (1.40)
s=t
S.t. at+1 = (1 -+ Z) Q¢ —+ yt — C

lim Et[ it ] >0

We can build a present-value Lagrangian in expectations. Under some regularity
conditions?®’, we are allowed to partially derive it with respect to ¢, a1, and A, obtaining
the following first order conditions:

dt+1 = (1 + Z) dt -+ Y — ét (143)

We impose also a stochastic TVC:?

lim 37, (s ) =0 (1.44)

j—oo

1.3.3 The stochastic Euler equation

Substituting (1.41) into (1.42) we obtain a stochastic version of the Euler equation dis-
cussed in the previous Section:

(1 +4) BE [u' (ce41)] = v’ () (1.45)

Equation (1.45) is our key result. By rewriting it as:

1
(1414)p8
we reproduce the seminal result in Hall (1978). He concluded that, since the marginal

utility of consumption follows a univariate first order Markov process, no other variables
should Granger-cause it: quite a remarkable implication!??

Ei[u' (ci41)] = u' (¢) (1.46)

Remark 15 Ifi = p, equation (1.46) collapses to:
Ei[u'(ci1)] = ' (cr) (1.47)

In this special case, the marginal utility of consumption follows a martingale®.

20We have to justify the interchange of limits and integration. In our case, these conditions are generally
satisfied.

2INote that the NPG holds in expectations too; this implies that the first order conditions and the
TVC are jointly necessary and sufficient.

22 A stochastic process y; is said not to Granger-cause a process Ty if E (Tes1 | Tty Tp—1y ey Yty Yt—1,5 ) =
E (l’t_t,_l | Lty Lt—1y -0y )

23 A martingale is a stochastic process such that Ey(x41) = 2. See Shiryaev (1989, ch. VII, Def. 1, p.
474).
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Exercise 16 Assume that income is completely diversifiable, i.e. assume that the indi-
vidual can buy property claims to other individual s incomes, and sell property claims to
her own one. Furthermore, assume that the Bernoulli utility function is isoelastic. Obtain
a closed form solution for c¢; and interpret the result.

Potentially binding borrowing constraints

More generally, under a potentially binding borrowing constraint, the first order and
slackness conditions can be combined to obtain the following inequality:

_ 1
(1+4)p

Note that, being (1 +4)" 3° > 0 for all t > 0, we can rewrite (1.48) as:

By [u (cr41)] < u' () (1.48)

Et [(1 + i)t+1 ﬁt+1ul (Ct+1)j| S (1 + Z)t ﬁtul (Ct) (149)
Defining M, = (14 4)' ' (¢;) > 0, the previous expression becomes the following:
B, (Mys1) < M, (1.50)

Hence, the random variable M, behaves as a nonnegative supermartingale.**

This simple fact has some strong implications for the dynamics of the optimal con-
sumption level. A well known convergence theorem of Doob for supermartingales states
that:?

P (hm M, = M) —1 (1.51)

t—o0

where M is a random variable such that F (]\7[) < 4o00.

1. If i > p, then lim,_, (1 +14)' 3" = oo, and therefore M, can converge to a finite
limit only if lim; .., v’ (¢;) = 0. This evidently implies that lim; .., ¢; = oo and
consequently that lim;_,., a; = oo.

2. If i = p, then (1+4) 5 =1 and M; = u'(¢;). Can we conclude in this case that ¢,
will converge to a finite limit, i.e. to a bounded random variable? Quite surprisingly,
in general we cannot. It can be shown?® that, if the exogenous income process is
“sufficiently stochastic,” i.e. if there is a ¢ > 0 such that:

var, (Z #) > (1.52)

for all ¢ > 0, and the Bernoulli function u (-) is bounded, then:

P (hm c = oo) ~1 (1.53)

t—o0

and consequently P (lim; .., a; = o0) = 1 too. The same result obtains when the

24 A nonnegative supermartingale is a stochastic process such that: (i) z; > 0; (i) E (x;) < +o0; (ii1)
Ei(z41) < x¢. See again Shiryeev (1989, ch. VII, Def. 1, p. 475).

%5 See Shiryaev (1989, ch. VII, Th. 1, p. 508).

% For further details and formal proofs, see Chamberlain and Wilson (2000, Corollary 2, p. 381).
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exogenous income process is #d and the Bernoully function unbounded, or when
the marginal utility of consumption is convex, i.e. when u" (-) > 0.

Remark 17 This result contrasts sharply with its counterpart under certainty: when
income 1s non-stochastic, consumption tends to a finite limit; as soon as income be-
comes sufficiently stochastic, consumption has to diverge to infinite.

3. Finally, if i < p, then lim, ., (1 +4) 3* = 0, and therefore M will surely converge
to zero. Hence, the result P (lim;_,., M; = 0) = 1 does not necessarily imply that
lim; .o, ¢; = 00, but leaves open the possibility that both ¢; and a; converge in the
long run to stationary, and finite, random variables.

Summary 18 To summarize:
1. Ifi > p, then P (lim; .o ¢; = 00) =1 and P (lim; o, a; = 00) = 1.

2. Ifi = p, then P(lim; .o, c; = 00) = 1 and P (lim; o, a; = 00) = 1 if (i) income is
“sufficiently stochastic” and u (-) bounded, or (ii) income is iid and u (-) unbounded,
or (iti) u" (-) > 0.

3. If i < p, then P (limy oo c; =¢) =1 and P (limy_o, a; = a) = 1, where ¢ and a are

two random variables such that E (¢) < 400 and E (a) < +0o0.

1.3.4 Certainty equivalence

To easily obtain a close form solution, assume that the instantaneous utility function is
linear-quadratic in consumption®”:

a
u(c) =¢ — §ct2 (1.54)

where a > 0, so that u’ (¢;) = 1 — awe;. Under this assumption, (1.46) becomes:
Ey (civ1) = tho + 1y (1.55)

where ¢, = [(1+1) 8 —1] /[(1 +14) B and ¢, = [(1 + i) 5] ". If we furthermore assume
that ¢ = p, we conclude that the consumption level itself follows a martingale:

Ei(cii1) = (1.56)

Consider now the intertemporal budget constraint (1.25), in expectations:

i(Et(CS) = (1+i aﬁi 21 ys (1.57)

1414)"

2TThe linear-quadratic model is a useful example, but has some unpleasant properties (see Sargent,
1987a, p. 366, n. 5). For instance, note that there is a satiation level of consumption, ¢ = 1/a. To
bypass this problem, we assume that the satiation level is large compared to average income. More

specifically, we assume that E; [Z;’;O(l +1) "y, _H} < 1/« holds with probability one. Furthermore,

note that v’ — 1 as ¢ — 0: hence, consumption can be zero, and even negative, in equilibrium.
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Substitute (1.56) into (1.57); consider that, for the Law of Iterated Expectations™,
E, (¢5) = ¢; Vs > t, and solve the result for ¢;:

¢ = iay 4+ — i(Et(ys) (1.58)

- \Ss—t
1+ — 1+1)

Define the current expected permanent income as:

1.59
"= 1+ZZ 1+2 (1:59)

Equation (1.58) shows that, under our simplifying assumptions, current consumption
depends only on the current asset income and the current expected permanent income.

Remark 19 Compare (1.26) and (1.59); the similarity is striking. We are contemplating
what is known as the certainty equivalence principle. With linear-quadratic utility,
the individual acts under uncertainty as if future random variables will turn out equal to
their conditional mean.

Evaluating (1.58) at date t + 1 and taking the first difference:

o0

Acrir = ilaga+ D i(1+0)" B (ys) + (1.60)

Substitute (1.5) into (1.60):

Act+1 = ) (iat —+ yt — Ct) —+ (161)
+ Z (1+4) 7" B (ya) = > i (140" By ()
s=t+1 s=t

Substitute now (1.58) into (1.61) and simplify:

Acpr =iy + Y (L +0) " Epa(ys) — Y i(1+4)" " Eu(ys) (1.62)
s=t+1 s=t

A further reorganization of (1.62) takes us to:

l ~ By (ys) — B (ys
T (ys) — Ex (ys)

- s—t—1
L+i &= (144"

ACt+1 = (163)

Remark 20 FEquation (1.63) shows that the change in consumption between dates t and
t + 1 depends on the difference between the present value of the expected future income
stream, conditional on information available at date t + 1, and the present value of the
same expected income stream, conditional on information available at date t.

2 The Law of Iterated Expectations states that E; [Eiyj (z145)] = Bt (Te45)-
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In other words, consumption changes from dates ¢ to ¢t + 1 only if further pieces of
information on the future income stream become available at date ¢t + 1.

To further extend our analysis, we need to be more specific as far as the stochastic
process governing exogenous income is concerned. For the sake of simplicity'®, assume
that the income level follows a simple white noise process of the form y; = 4 + &; , where
g; is a zero-mean iid innovation. Clearly FE; (ys) = y for all s > i + 1. Substituting the
last result into (1.58) gets:

i
1.64
T+i! (1.64)

Here we see the certainty equivalence principle at work: the individual behaves as if
all future incomes will turn out equal to their conditional mean.
We easily show that:

¢ = iay + 7§ +

Acryr = %ﬂgm (1.65)

The change in consumption is a simple linear function of the unpredictable changes

in income. The propensity to consume out of the innovation is positive but less that one
(recall point 9, p. 10).

Exercise 21 Show that ¢; =9 + %ﬂ Zjoio Et—j-

Exercise 22 Define total income as Y; = ia; + y;. Show that ¢; = Y;.

We may slightly generalize these results by assuming that the income level follows a
stationary AR(1) process of the form y,.1 = ¢y + €441, where £, Is again a zero-mean
#d innovation and ¢ € (0,1]. This implies that Ej(y,) = ¢°’y; for all s > j and
E;i1(ys) — Ej (ys) = ¢" 77 ¢j41 for all s > j + 1. Substituting the last result into (1.63)
gets:

1
—
1+i—¢

Compare equations (1.65) and (1.66). The propensity to consume out of a unexpected
shock implied by (1.66) is higher than the same propensity implied by (1.65). The reason
is clear.

ACt+1 = (166)

Remark 23 If income follows an autoregressive process, each innovation has a transitory
but long-lasting effect that dies out only in the limit, since y; = Z;Z_OO ¢ ej. The
degree of income’s persistence depends positively on ¢. The more persistent income is, the
more reactive the expected permanent income is to unexpected shocks, and the higher the

propensity to consume.

Exercise 24 Assume that the income follows a random walk of the form yi11 = Yy +€141,
where ¢ is a zero-mean iid innovation. Obtain an expression for Acii1 (easy!) and
interpret the result.

Exercise 25 Assume that the first difference of income follows a stationary AR process
of the form Ay, 1 = ¢Ay, + 411, where g, is a zero-mean id innovation and ¢ € (0,1)
Obtain an expression for Acii1. Discuss the relative volatility of consumption vs. income
and interpret your results.

18Sargent (1987a, pp. 366-368) uses the general Wold representation.
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1.4 Precautionary savings

The previous Section was completely devoted to the so-called linear-quadratic case. We
showed that linear-quadratic utility implies certainty equivalence, i.e. that the individual
acts as if all future incomes will turn equal to their expected values. This kind of behavior
is a crude (and somewhat misleading) approximation of the observed consumption behav-
ior. Available empirical evidence suggests that consumption reacts also to changes in the
variability of future income streams. We extend our analysis in this direction, providing
a intuitive characterization of what is known as precautionary saving.

We already stressed that the strict concavity of the return function implies a positive
degree of risk aversion. A risk averter always prefers a certain outcome to a lottery that
yields the same expected outcome. In other words, under risk aversion, a higher degree
of uncertainty about future consumption decreases expected utility. However, equation
(1.46) shows that the individual’s consumption choices depend exclusively on the marginal
utility of consumption. An increase in uncertainty will affect the optimal consumption
path only through its effect on marginal utility.

In the literature on choice under uncertainty, it is customary to assume a non-increasing
level of relative risk aversion (see Mas-Colell et al., 1995, p. 193). Under this assumption,
the individual becomes less risk averse regard lotteries that are proportional to her wealth
as her wealth increases.” A necessary (but not sufficient) condition for the relative risk
aversion to be non-increasing is a strictly positive third derivative of the Bernoulli utility
function, i.e. u” > 0. In other words, we assume that the marginal utility of consumption
is a strictly convex function.

Under this assumption, the expected marginal utility of consumption depends posi-
tively on the degree of uncertainty. Since the first derivative of marginal utility is negative,
the Euler equation requires the optimal consumption path to become steeper if uncertainty
about the future income stream increases. In other words, under non-increasing relative
risk aversion, an increase in uncertainty leads to an increase in precautionary saving.

1.4.1 A simple example

To obtain a clearer intuition, assume that there are only two periods, ¢t € {1, 2}, and only
two possible states of the world, s € {1,2}, where the first state is the “bad” one, and
the second is the “good” one. The future income in the “bad” state is lower than in the
“good” ome, i.e. Yz < y3, where y; is future income in state s. The probability of the
“bad” state happening is equal to 1/2.
The expected future income, y§ = % (ya +y3), is equal to the current income level, y;.
The intertemporal budget constraint holds with probability one:
S

G Y5
1+ T (1.67)

c1+

The Euler equation becomes (assuming i = p):

[ (c3) + ' (3)] = v (1) (1.68)

N | —

Under certainty equivalence, i.e. when the marginal utility is linear in consumption,

29We know from p. 15 that the degree of relative risk aversion is equal to the inverse of the elasticity
of intertemporal substitution.
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- >
e
G ¢ ¢ € ¢
Figure 1.3: Precautionary savings
equation (1.68) implies that ¢§ = ¢;, where ¢§ = 1 (¢} + ¢3) is the future expected con-

sumption level. Since the intertemporal budget constraint holds with probability one, it
holds in expectations too. Substituting c¢§ = ¢; into the intertemporal budget constraint
in expectations, we show that, under certainty equivalence, ¢; = y; and ¢§ = y5 Vs. In
other words, given our assumptions, the individual would simply consume her exogenous
income without saving anything.

Assume now that the third derivative of the instantaneous utility function is strictly
positive, i.e. that marginal utility is a convex function of consumption. Figure 1.3 rep-
resents a possible allocation of present and future contingent consumption levels that
satisfies (1.68).

For the strict convexity of marginal utility, the optimal level of ¢; has to be lower
than c§, and this can be achieved only by saving a positive amount in period 1. In other
words, the individual saves a positive share of her income in the first period just because
she dislikes the variability of income in the second period, i.e. only for precautionary
motives.

In this simplified framework, we can easily increase the variability of future income
without affecting its expected value; we just decrease yi and increase y2 by the same
proportion. The intertemporal budget constraint (1.67) implies that, for any level of
current consumption c;, the future consumption levels contingent on state 1 and 2 have
respectively to decrease and increase by the same proportion. The previous allocation does
not satisfy the Euler equation anymore, as shown in Figure 1.4. Since the probability
does not change, the point ¢ moves straightly upwards; the marginal utility of current
consumption is now lower than the expected marginal utility of future consumption.

The new optimal allocation of present and future contingent consumption, represented
in Figure 1.5, is reached by decreasing the current consumption level and thereby increas-
ing by the same proportion both future contingent consumption levels. In other words,
an increase in uncertainty that leaves the expected value of future income unaffected,
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Figure 1.4: Increase in variability

decreases current consumption and increases expected future consumption. Again, the
corresponding increase in current savings is only due to a precautionary motive.

Unfortunately, we can hardly push further our qualitative analysis of the precautionary
saving behavior, since it’s generally impossible to obtain closed form solutions for optimal
consumption plans under risk aversion. The following exercise asks the reader to solve
indeed one of the few cases in which such a solution exists.

Exercise 26 Assume that u = (—1/a)exp (—ac;) and that income follows a random
walk, Y1 = Y + &, where g, ~ N (0,0?) is a iid innovation. Obtain a closed form
solution for c;. Show that consumption depends negatively on an increase in uncertainty.
Verify that your solution satisfies the intertemporal budget constraint for any realization
of income.

1.5 A numerical exercise

We will now numerically solve and simulate a very simple stochastic dynamic partial
equilibrium consumption model. The scope of this exercise is to quantitatively evaluate
the main theoretical predictions developed in the previous Sections.

We assume that the economy is populated by a continuum of identical and infinitely
living households of measure zero that can be aggregated into a single representative
household. These households can freely trade consumption loans and debts at the given
exogenous interest rate on a competitive asset market, and receive each period a stochas-
tic flow of exogenous income. To make the problem computationally manageable and
empirically sensible, we assume that:

e the households’ instantaneous utility function is isoelastic;
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Figure 1.5: New optimal allocation

e the stochastic process driving exogenous income follows a trend-stationary AR(1)
process;

e there is an extremely small quadratic cost of holding assets that pins down the
steady state.

More formally, we will study the optimal contingent consumption plan for a represen-
tative household that solves the following stochastic dynamic optimization problem:

oo Cl_g
U, =F, STt Zs 1.69
0 hys, U (;ﬁ 1—<> (169

s.t. &H—(Lw—%&)&+n—@

A.
.hmEt[ ol } >0
e (L iy

where Cj is per-capita consumption at date t, A, the per-capita stock of assets held by
the representative household, and Y, the exogenous income; ¢ > 0 is the reciprocal of the
elasticity of intertemporal substitution, and measures the degree of relative risk aversion;
[ the intertemporal discount factor; ¢ > 0 is the exogenous interest rate; and » > 0 a
parameter governing the quadratic cost of holding assets.

We assume that the exogenous income can be decomposed into a deterministic com-
ponent that grows at a constant rate v —1 > 0 and a stationary stochastic process. More
precisely, we assume that the logarithm of income can be decomposed into a linear time
trend and a stationary AR(1) component:

InYi,1=c+({t+1)Iny+¢InY; +¢ (1.70)
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where g, ~ N (0,0?%) is an 7d innovation.

Intuitively, if income grows exogenously at a positive and constant rate, all other
aggregate variables will grow at the same rate in the long-run. Hence, the original model
is non-stationary, i.e. it will converge to a balanced-growth path, not to a steady state.?
However, our numerical procedures require the model to be stationary: hence, we need to
normalize it with respect to the growing component. In other words, we need to divide
everything by the deterministic component of Y;; note that:

SN A o st ChC
_ s—t s [ s _ 71=¢ s
Ui=)0 1—4(25) 2D (1.71)

s=t

where Z, = ¢v*, ¢, = C,/Z,, and § = [4'¢; furthermore, note that A,,,/Z, =
(At11/Z141)(Z411/Z:) = ~yars1. Hence, the normalized, and stationary, model can be
rewritten as:

1-¢
CS

max U, = E, (i i — C) (1.72)

{CS yAs+1 |yt }:it

s.t. Yas+1 = (1 +1— %as) as + Ys — Cs
Inyst1 =¢lnys +e&;

We can easily obtain the following Euler equation:
By |Bect (1+i = gay)| =6 (1.73)

In a deterministic setting, the previous equation evaluated at the steady-state would
imply that: 5
A 1 o)) (1.74)
Vg
The only steady-state allocation that is logically consistent with our assumptions is
a = 0. This statement can be motivated in two related ways: (i) an allocation such
that a # 0 would imply an ever increasing or decreasing asset stock A;, and this clearly
contrasts with our assumption of a constant interest rate (in other words, such a possibility
would be just an artifact of our partial equilibrium approach); (ii) in a deterministic
steady state, income and consumption remain both constant over time, and therefore the
incentive to keep a positive asset stock for precautionary reasons disappears, while the
cost of holding it does not.
Hence, to guarantee that asset holdings in the deterministic steady state were zero,
we impose that 3 = /(1 +4). Under this assumption, the first order conditions for the

30For more technical details, see Sec. 3.1.2, p. 43.
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model can be rewritten as:

Be[ecty (v - Bvar)| = e (1.75)
Va1 = Gy (% - %at) T Y — G (1.76)
lim ', (c,:fam) —0 (1.77)

Given the recursive and concave structure of our problem, the unique solution can be
characterized by a time-invariant policy function ¢ (a,y). Since no closed form solution
is generally available, we may exploit this property and use a proper numerical method
to approximate the policy function over a chosen interval. Hence, note that, under our
assumptions, the policy function has to satisfy the following functional equation:

E [C (d,y)" (7 - Bwa) | a, y} = yc(a,y)~° (1.78)
where:
_ _v,2
gLy c(a,y) —Sa
B Y
Iny =¢lny +e¢
e~ N(0,0?)

To obtain an approximated solution to (1.78), we will apply the simplest of the pro-
jection methods advocate by Judd (1992): orthogonal collocation (see the Appendix for
details). Before doing that, however, we need to parameterize the model, i.e. find empir-
ically sensible values for the parameters.

Following well established standards in the literature, we set ( = 2 and g = 0.9875.
The parameter ¢, which is directly related to the cost of holding assets, is arbitrarily
set to 0.0001. We are left with the parameters governing the stochastic properties of the
exogenous income component. We estimate them using U.S. quarterly data from 1947:1 to
2002:111 for the Real Gross Domestic Product (GDP) and the Real Personal Consumption
Expenditure (PCE), both expressed in chained 1996 prices.

The theoretical structure of our model implies that income and consumption share
the same determinist trend, at least in the long-run. To extract this common trend, we
can estimate using the Seemingly Unrelated Regression (SUR) technique the following

system:
GDPt . C1 t 21t
[rer =o)L a9

where the z;’s are the two cyclical components. The estimated common long-run quar-
terly growth rate is v = 1.0086. The cyclical components obtained from this multivariate
detrending procedure are plotted in Figure 1.6: note that they represent by construction
percentage deviations from the determinist trend, and that the latter can be interpreted
as the long-run balanced growth path.

We can now estimate the stochastic properties of y; by fitting an AR(1) process on
the cyclical component of real GDP:

2141 = Q21 + & (1.80)
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Figure 1.6: Cyclical components of income and consumption in the US.

The estimated parameters are ¢ = 0.982 and ¢ = 0.01. At the same time, this
procedure allows us to estimate the sequence of shocks ¢; that actually generated the
observed cyclical component. OQur benchmark parameterization is therefore the following;:

(=2, B=0.9875 1 =0.0001
v =1.0086, ¢ =0.982, o=0.01

We can finally solve the model numerically and obtain an approximated policy function
¢(a,y). Once the policy function is available, we can iteratively simulate all aggregate
time series for a given initial level of asset holdings and a given sequence of shocks.

We already noticed that the steady state of a deterministic version of the model will be
characterized by zero asset holdings. Our representative household is clearly risk averse:
hence, we may expect a positive level of precautionary savings. In other words, the long-
run asset holdings in the stochastic model, i.e. the unconditional mean of a;, will be
positive on average. To quantitatively asses the importance of precautionary savings, we
will now simulate our model for a very long time horizon, say 3000 quarters, starting from
the deterministic steady state. The simulated series, in levels, are plotted in Figure 1.7.

The long-run assets stock held by the representative household is clearly positive, and
actually equal to 54% of total long-run income, defined as ¢, = y; + ia,. Precautionary
savings amount to 0.47% of total income. The unconditional means of asset holdings, total
income, and consumption are respectively equal to a = 0.553, ¢ = 1.017, and ¢ = 1.012.
Under our benchmark parameterization, the steady-state cost of holding assets is just a
tiny share of total income, equal to 0.0015%.

To estimate the stochastic properties of exogenous income, we fitted an AR(1) model
to the cyclical component of GDP: as a by-product, we obtained the sequence of shocks
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Figure 1.7: Precautionary savings.

that generated that particular time series. We can now feed our model with this observed
innovations to exogenous income, and evaluate how well it can fit the time series for the
cyclical component of consumption. The simulated time series, expressed in deviations
from the steady state, are plotted in Figure 1.8.

By carefully examining the figures, we reach the following conclusions:

1. All time series are highly correlated; to be more precise, consumption, saving, and
asset holdings are positively correlated with income. In other words, the ”"shape” of
the simulated paths is extremely similar. This is not surprising, since innovations
to income are the only driving force in this simplified model.

2. The consumption level is less volatile than income, while the opposite is true for
saving. We are admiring consumption smoothing at work: the percentage deviation
of consumption from its mean is relatively smooth over time, when compared to the
percentage deviation of income. The reason, again, is clear: innovations to income
are highly persistent (¢ = 0.98) but still transitory, and this limits to a certain
extent the reaction of consumption.

In Figure 1.9 we jointly plot the observed and simulated series for the cyclical compo-
nent of aggregate consumption. The two series are remarkably similar, but the overlap is
clearly not perfect: the simulated series seems to be less volatile that the observed one.
Table 1.1 summarizes some stochastic properties of the simulated and observed series: as
we can see, the simulated series for consumption is highly correlated with the observed
one, but the correlation is less than unit. Note furthermore that the simulated series for
consumption and total income are much more correlated than the corresponding observed
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¢,c  q,c  qc
Cor. 0.87 099 0.71
Rel. Vol. - 0.60 0.84

Table 1.1: Simulated vs. observed consumption

one, while simulated consumption is less volatile with respect to total income than its ob-
served counterpart. In summary, our simple model fits the data surprisingly well, but
simulated consumption is too highly correlated with income and not volatile enough.

The reasons for these inconsistencies can be many: first of all, we are considering aggre-
gate data, not individual level ones, and heterogeneity among individuals may enhance
variability of aggregate consumption; then, our model clearly misses many important
aspects of reality, as the variability of real interest rates, the labor/leisure choice, the
presence of habit persistence in consumption, and so on. All these extensions may in-
troduce mechanisms that amplify the reaction of the marginal utility of consumption to
exogenous shocks.

By changing the value of some parameters, we can perform what is known as sensitivity
analysis. Table 1.2 shows what happens when the value of some of the parameters are
slightly changed.

Std. ¢=095 o0=0011 (=1 B=0.98
alqg 54%  11% 65% 6.7%  67%
ilg 047% 0.10%  0.56%  0.06%  0.60%

Table 1.2: Sensitivity analysis

As we can see, a drop in persistence generates a sharp decrease in the long-run asset
stock and investment share: the degree of overall uncertainty associated with a given stan-
dard deviation of the shocks is positively related to their persistence, and this amplifies the
incentive to save for a precautionary motive. Symmetrically, a rise in the shocks’ volatil-
ity clearly stimulates an increase in precautionary savings, just because the environment
becomes more uncertain. A drop in (, the reciprocal of the elasticity of intertemporal
substitution, i.e. the degree of risk aversion, has evidently to translate in a sharp decrease
in precautionary savings: the effect however is surprisingly strong. Finally, a slight drop
in 3, the intertemporal discount factor, makes the representative household more impa-
tient: the current consumption level becomes more important, and its variability more
undesirable; hence, precautionary savings increase.

1.6 Appendix: the collocation method

Following Judd (1992), we approximate the policy function over a rectangle D = [a,a] X
ly, 7] € R* with a linear combination of multidimensional basis functions taken from a
2-fold tensor product of Chebyshev polynomials. In other words, we approximate ¢ (a,y)

with:
d d
c(a,y;0 ZZHUdJU a,y) (1.81)

=0 7=0
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where:

a—a y—Yy
. =T (2 ——1)T; | 2=——=—1 1.82
vyla) =T (2522 1) 7, (222 1) (152
Each T,, represents a n-order Chebyshev polynomial, defined over [-1,1] as T,, (z) =
cos (narccos ), while the parameter d denotes the higher polynomial order used in our
approximation.
The functional equation (1.78) becomes:

E [C (a',y';0)"° (7 - Bwa) | a,y} = vc(a,y;0)~° (1.83)

where: ,

a =

a —c(a,y;0) — %a
a y=clayb) -3
B Y

Taking into account that Iny/ is distributed as ¢ Iny + oz, where z ~ N (0,1), we can
rewrite (1.83) as:

(1.84)

¥

Z

/_OO cla exp (pIny + 0z) ;0] ° (7 — Bwa) e\/_%dz = c(a,y;0)"¢ (1.85)

We are left now with a critical problem: how to select the appropriate value for the
vector of coefficients 6. The collocation method, extremely simple in principle, takes n?
points in D (as many points as coefficients in ) and requires equation (1.85) to exactly
hold at this points. In other words, it transforms the functional equation (1.85) into a
system of n? non-linear equations in n? unknowns. The Chebyshev Approzimation Theo-
rem shows that these points in D can be optimally chosen among the zeros of Chebyshev
polynomials; i.e. we can find n zeros of Chebyshev polynomials in [—1, 1], reverse the
normalization and transform them into the corresponding values respectively in [a,a] and
[y, 7], and finally obtain the vector of n? points in D as their Cartesian product.

The non-linear system of equations can be numerically solve for 0, using any standard
algorithm, like the Newton one; as an intermediate step, the integral in (1.85) can be
numerically approximated using Gauss-Hermite quadrature. All these algorithms are
usually part of the standard toolbox of any computer program specialized in numerical
analysis, like MATLAB or GAUSS.

Of course, the policy function ¢ (a, Y; 9) will exactly satisfy the Euler equation only

on an extremely limited subset of D; the hope is that it approximates the actual policy
function on the reaming part of D with a satisfying degree of precision. Some comparison
exercises show that collocation is a surprisingly efficient solution method, at least when
the number of state variables is low.



Chapter 2

Investment

The subject of our analysis will be a single, profit-maximizing competitive firm producing
a homogeneous consumption good using labor and capital. We assume that, while the
labor services are purchased from the households, the capital stock is directly owned
by the firm itself. Being physical capital a durable good, the firm faces a dynamic profit
maximization problem; its current investment decisions will influence its future productive
capacity.

More formally, the firm’s production technology can be summarized by a constant-
returns-to-scale production function of the form y, = F' (ny, ki), where y; is output at date
t, k, € R, the current physical capital stock, and n, € R, the labor input, hired on a
competitive market at a given wage rate w;.

We assume that:

e F': R? — R, is C?, with VF > 0;

F' is homogenous of degree one (constant-returns-to-scale), i.e. ty = F (tn, tk);

F is strictly quasi-concave;!

e F'(n,0)=0%n € Ry;
o F(0,k)=0Vke R,

OF(n,.k)
ok

hmk—>0

= 400 Vn € R++;

o limy o, 250K —0vn € Ry,.

The last two assumptions are known as Inada conditions.

For the sake of simplicity, assume furthermore that n, = 1 Vt. We define the intensive
production function as y; = f (k:); note that f(0) =0, f/ >0, f” <0, limg_ f (k) = oo,
and limy_ f (k) = 0.

The firm sells its output and purchases the investment good on competitive markets, at
the given prices p; and ;. Physical capital accumulates over time according to Ak, 1 = iy,
where i; represents net investment (depreciation is ruled out for the sake of notational
simplicity).

'Recall that the strict quasi-concavity of the production function implies the strict convexity of the
isoquants.

32
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2.1 The user cost model

The firm maximizes the market present value of its stream of future profits. Formally,
the firm solves the following optimal control problem?, taking {ps,vs, ws}o,, R, and the
initial condition k; as given:

o0

max I, = R [p.f (k) — ws — v Ak (2.1)

{ks+1}32, '

where R is a market discount factor, constant for simplicity. The first order condition
is the following:

R [pt+1f/ (fft—s-l) + Vt—&—l} =V (2.2)

Remark 27 We can interpret (2.2) as a no-arbitrage condition; along the optimal path,
the given market interest rate r = (1 — R)/R has to equal the rate of return on a marginal
unit of capital, given by the corresponding “dividend” (the value of its marginal product)
plus the future price of investment goods over their current price:

Pt (l%t—&-l) + Vit

1 = 2.3
+7r ” (2.3)

We define the user cost of capital as:
a=04+r)v,— v (2.4)

where v; corresponds to the direct cost of purchasing and additional unit of capital, rv;
measures the forgone asset income, while v;,; represents the future revenue from reselling
the unit of capital.

Solving (2.2) for ki1, we conclude that:

s = (7 () (25)
Pi+1

Being f” < 0, the future optimal capital stock depends negatively on the user cost of
capital and positively on the future price of output, as expected.

Note that (2.5) pins down the optimal level of future capital only; investment adjust
immediately to variations in ¢;. The available empirical evidence, however, suggests that
investment adjust slowly to changes in the user cost of capital. Appealing to a “time to
build” argument, the traditional literature relaying on the user cost model assumes that
investment is proportional to changes in the optimal capital stock:

iv=Y_ oAk, (2.6)
s=0

The previous formulation, however, has the strong implication that the actual capital
stock tends to the optimal level only in the limit.

2The Inada conditions guarantee (i) a bounded objective function; (ii) an interior solution, i.e.
~ o0
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2.2 Adjustment costs and Tobin’s ¢q

In the 60’s, James Tobin introduced an alternative theory of investment. He argued that,
if the market value of a firm exceeds the cost of capital, then the firm may increase its
value by investing more. In other words, investment should be positive as long as the
firm’s market value exceeds the replacement cost of capital. The ratio of a firm’s value
to the replacement cost of capital is known as Tobin’s average q. From another point
of view, firms should invest as long as the value of an extra marginal unit of capital
exceeds its cost. The ratio between the value of a marginal unit of installed capital and
its cost is known as Tobin’s marginal q. Hayashi (1982) shows how Tobin’s results can
be incorporated in the neoclassical framework by assuming the existence of some kind of
adjustment costs.

2.2.1 The Hayashi model

The key feature characterizing the Hayashi model is a cost of adjusting capital, that can
be interpreted as a deadweight installation cost. To be more precise, we assume that
the function 1) (i;/k;) k; summarizes the adjustment cost, in terms of additional units of
the investment good, corresponding to a given investment rate, with ¢» > 0, (0) = 0,
' >0, and ¥" > 0. In other words, the process of installing i, units of new capital simply
dissipates 1) (i;/k;) k; more units. The last two assumptions imply that adjustment costs
are strictly convex; the more rapidly the firm adjust its capital stock, the more costly the
investment process is. Note furthermore that the function ¢ is homogeneous of degree zero
in its arguments. Finally, we assume for the sake of notational simplicity that p, = 1 V¢t
and v, = v Vi.
Under these assumptions, profits at date t are given by:

= (k) —wi— v [it + (Z—i) /ft} (2.7)

Again, the firm maximizes the market present value of its stream of future profits,
taking {w,}.,, v, R , and the initial condition k; > 0 as given:

max I, = ZRS_t {f (ns, ks) —wy — v [2'5 + (Z—S) ks} } (2.8)
{iSka-&-l}:it s—t ks
s.t. Ak5+1 = is

As usual, to solve the problem we build a Lagrangian and partially derive it with
regard to iy and k., ;. The first order conditions are the following:

v e (1) o

A = R [f/ (Kig1) + vt + )\t+1} (2.10)

T Z't Z't Z't
Y= (E) 5 (8 (k_t) (2.11)

where:
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The trasversality condition for this problem is:

lim Rk =0 (2.12)

J—00
The Lagrange multiplier \; has a precise economic interpretation.

Remark 28 Thanks to the Envelope theorem, we know that \; can be interpreted as the
shadow wvalue of capital at the end of date t, i.e. the shadow price of installed capital.
From this point of view, the TVC simply states that it cannot be optimal for the firm to
“end” its life with a positively valued capital stock.

Equation (2.9) can be written as:

i =) (@ — 1) ke (2.13)

where ¢ = \;/v is Tobin’s marginal g, i.e. the ratio between the value to the firm of
increasing capital by one unit and the cost of purchasing the latter. Equation (2.13) is a
microfounded version of the investment equation proposed by Tobin.?

The firm’s Euler equation (2.10) states that the current shadow price of capital is equal
to the discounted future marginal product of capital, plus the future marginal contribution
of capital to lower installation costs, plus the future shadow price of capital. Rewriting it

as:

1y = L) +;17’t+1 + Ao (2.14)
t

shows that, along an optimal path, the rate of return on a marginal unit of installed
capital, defined as the corresponding “dividend” (marginal product plus decrease in ad-

justment costs) plus the future price over the current price, has to equal the given interest
rate r = (1 — R)/R.

2.2.2 Dynamics

Consider now equations (2.9) and (2.10), and rewrite them as:

@ = 1+9 (E) (2.15)
! kt 1 ~
G = Rl% +1/1t+1+qt+1] (2.16)

In steady-state, k; = k and i, = 0 for all t. Equation (2.15) implies that ¢ = 1; this
confirms Tobin’s intuition: investment is positive only as long as ¢; > 1. Equation (2.16),
instead, implies that k& = (f')"" (vr); the steady-state capital stock depends negatively
on the price of investment goods and on the exogenous interest rate.

Substitute now (2.13) into the equation of motion to obtain:

Akpyr = (1//)_1 (g — 1)k (2.17)

3Note that the marginal ¢ is a sufficient statistic for the investment rate.
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Figure 2.1: Dynamics of the g-model

Furthermore, rewrite (2.16) as:

Agiy1 =1q — %f/ [(1//)_1 (@ —1) ke + kt} - {Z}t-t,-l (2.18)
where:*
Do = ' |@) 7 (@ = D] @) (@ = ) = [ (a2 — 1) (2.19)

We can linearize the system of difference equations in ¢; and k; given by (2.17) and
(2.18) around the steady-state (quite a boring task), and show that the system is saddle-
path stable, i.e. that, for each initial condition k; > 0, there is a unique path converging
to the steady-state. The phase plan for the linearized system is depicted in Figure 2.1.

By assuming Ak;; = 0 and Ag;; = 0 in equations (2.17) and (2.18), we obtain the
functions describing the curves drawn in our figure. Point a corresponds to the steady-
state. If the initial capital stock is lower than k, and equal for instance to k;, the system
jumps immediately to point b; Tobin’s ¢ is greater than one, investment becomes positive,
and the capital stock increase until the steady-state is reached.

If the initial level of ¢; is lower than the one implied by b, the system will converge to the
origin at an increasing speed; the physical capital stock (and/or the marginal ¢) becomes
negative in a finite time, violating a feasibility constraint. This can not be an optimal
path. If, instead, the initial value of ¢; is higher, the system follows a path characterized
by ever increasing values of ¢; and k;; this violates the TVC, and the corresponding path
can not be optimal. To summarize, any diverging path can be ruled out, for violating the
TVC and/or the feasibility constraints. Similar arguments apply to paths starting with
a initial capital stock greater that k, as for instance k.

4Simply solve (2.13) for i;/k; and substitute the result into (2.11).
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2.2.3 DMarginal and average ¢

Solving equation (2.10) forward, we obtain:

o0

A= Rt [f’ (kea) v | + lim RNy, (2.20)

s=t

In the long-run, the capital stock k; converges to a strictly positive constant. The
TVC then implies that R/\;,; — 0 as j — oo, ruling out bubbles in the shadow price of
installed capital.

Equation (2.20), then, simplifies to:

= SR F () + 0 (221)

Remark 29 The current shadow price of installed capital is equal to the discounted stream
of future marginal products of capital plus the marginal contributions to the reduction in
adjustment costs.

Now, multiply both sides of (2.10) by k;. 1, and take into account the linear homo-
geneity of the production function®:

ki1 = R [f (K1) — wepr + V{Z}t—&—lkt-‘rl + )\t+1/ft+1} (2.22)

Substitute the definition of {Z’t+1 together with Ak o = izy1 into (2.22):

]
)\tkt+1 =R [f (kt+1) — W1 — Vw (kt+1 ) kt+1+ (223)
t+1

1 . .
+v1) (ktH ) U1 + Np1hiro — )\t+12t+1:|
t+1

Evaluating (2.9) at date t + 1, and multiplying by ¢;,1, we obtain:

? .
)\t+12t+1 =V [1 + 1/} (kt+1 ):| Te41 (224)
t+1
Substituting this result into (2.23) and simplifying gets:
)\tkt+1 =R [f (kt+1) — W1 — Vit+1 — Vw (kt—H) kt+1 + )\t+1kt+2:| (225)
t+1

By iterating on (2.25) and imposing the TVC, we obtain:

o ‘ /LS
Atk = ZRS_tH lf (ksr1) — Wepr — Vigyr — v ( H) s+1] (2.26)

s=t S—H

Remark 30 In other words, the shadow value of installed capital equals the current value
of the firm, i.e. the discounted stream of future profits, 11;,;.

’The Euler theorem states that f (k;) = f’ (ki) k¢ + wy.
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Dividing both sides of (2.26) by vk;,; we obtain another important result.

ﬁ - I 4
v vk

(2.27)

Remark 31 Tobin’s marginal q is equal to Tobin’s average q, i.e. the ratio between the
firm’s market value and the replacement cost of its installed capital. Hayashi (1982) shows
that this result holds as long as:

1. the production function presents constant returns to scale;
2. perfect competition holds on product and factor markets;
3. the adjustment cost function is homogeneous of degree zero;

4. the are no bubbles in the valuation of firms.



Chapter 3

The Ramsey-Cass-Koopmans model

In previous Chapters we developed the dynamic theory of consumption and investment
separately. Furthermore, we presented a fully-fledged dynamic stochastic general equilib-
rium (DSGE) model, the Lucas’ “tree model”. The latter, however, was still based, for
the sake of simplicity, on a simple endowment economy. We will now merge these ana-
lytical tools into a complete dynamic macroeconomic model, the well-known neoclassical
optimal growth model, or Ramsey-Cass-Koopmans (RCK) model, initially proposed by
Frank Ramsey in 1928, and then fully developed by David Cass and Tjalling Koopmans
in 1965. The RCK model and its stochastic extensions can be considered the workhorses
of modern macroeconomics and growth theory.

Figure 3.1 briefly summarizes the model’s role in the history of economic thought. Cass
(1965) and Koopmans (1965) independently developed the neoclassical optimal growth
model by combining Ramsey’s optimal intertemporal consumption/saving model with the
neoclassical growth model introduced by Solow (1956) and characterized by an exogenous
constant saving rate. Brock (1974) showed that the Pareto-optimal solution, obtained
under the benevolent planner assumption, could be easily decentralized in a competi-
tive setting; Brock and Mirman (1972), in turn, developed a stochastic version of the
deterministic RCK model. Generalizations of the Brock-Mirman model have been used
by Kydland and Prescott (1982) and Long and Plosser (1984) to explain the stochastic
properties of US macroeconomic aggregates; their work lies at the heart of the well-known
Real Business Cycle literature. Finally, Romer (1986), Lucas (1988), and Rebelo (1991)
extended the RCK model by introducing, respectively, learning-by-doing and human cap-
ital accumulation; their models, being able to counterbalance the decreasing marginal
productivity of physical capital and endogenously generate a positive long-run growth
rate, were the first contributions to the so-called Endogenous Growth literature.

3.1 The basic framework

In its basic version, the RCK model is not decentralized, i.e. the existence of competitive
markets is not assumed. Instead, an ommnipotent and benevolent social planner maxi-
mizes the agents’ welfare, controlling the individual consumption streams, subject to the
aggregate feasibility constraints. The solution to this planning problem characterizes the
Pareto-optimal intertemporal allocation of consumption and investment. Under some
(well, many) regularity conditions, a Pareto-optimal allocation can be decentralized as a
competitive recursive equilibrium; in other words, by studying the properties of a solution
to the planner problem, we indirectly study a competitive equilibrium. A more direct link

39
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Figure 3.1: A brief history of the RCK model and its extensions.

between the two formulations will be established in the following.

3.1.1 Building blocks
Preferences

The economy is inhabited by a continuum of infinitely-living identical agents, each of
measure zero. Being all agents identical, they can be aggregated into a single representa-
tive agent, whose preferences on infinite consumption streams {¢; },-, may be represented
by the standard intertemporal utility function:

U= Zﬁtu (ct) (3.1)

where ¢; € R is the per-capita consumption level at date s, 8 € (0, 1) the intertemporal
subjective discount factor, and u: R, — R the instantaneous utility function. As usual
(see Section 1.2.1, p. 5), we assume that u(-) is C?, strictly increasing, and strictly
concave, with lim. o v’ (¢) = +oc.

Technology

A single consumption good is produced using a Constant-Returns-to-Scale (CRS) tech-
nology summarized by the following neoclassical production function:

Y = AF (kt,ntL) (32)

where y; € R, is the per-capita output level at date ¢, k; € R, the per-capita physical
capital stock, n; € [0,1] the time share devoted to labor, A € R, the so called Total
Factor Productivity (TFP), and L € R, the fixed time endowment (from now on, for
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the sake of simplicity, L = A = 1). The production function enjoys all the properties
listed in Section 2, p. 32.

Note that, since leisure is not valued in the utility function, it would never be op-
timal to consume it in a positive amount. We can safely anticipate this equilibrium
outcome, and assume from the beginning that n; = 1 Vt. This allows us to define the
intensive production function as f (k;) = F (k;, 1); note that f(0) =0, f' > 0, f” <0,
limy_.o f (k) = o0, and limy_,, f (k) = 0.

Resource constraints

Physical capital is the only durable good in the economy. An aggregate intratemporal
resource constraint, which is also an accumulation equation for physical capital, holds in
each period:

ki =0=08)ki+y— (3.3)

where 0 € [0, 1] is the depreciation rate.! We assume the existence of a strictly positive
initial capital stock k.

The consumption good can be freely transformed into physical capital, and vice-versa,
physical capital can be freely transformed into the consumption good (hence, investments
may be negative).

The planner’s problem

We assume the existence of a benevolent social planner who governs the economy by
choosing the per-capita consumption plans. Being benevolent, the planner aims to max-
imize the intertemporal utility function of the representative agent. Formally, she solves
the following deterministic optimal control problem:

max U= bu (e 3.4
o max., ;ﬁ (cr) (3.4)
S.t. kt+1 = f (kt) —+ (1 — 5) kt — G

ko > 0 given

The corresponding present-value Lagrangian can be written as:
L=> p"{ule) + M lf (k) + (1= 8) ke — ¢ — kyia]} (3.5)
=0

Optimality conditions

Deriving the Lagrangian with respect to ¢, ki1, and \;, we obtain the (by now) familiar
first order conditions (a hat identifies the optimal plan):

(&) = N (3.6)
No= B [f’ (1%,5+1)+1—5} (3.7)
for = f(/%t)+(1—5)/%t—at (3.8)

L At this stage, depreciation is a purely physical, exogenous process.
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Figure 3.2: Long-run balanced growth in the United States.

These first order conditions, together with the TVC:
Jim BNk =0 (3.9)

are necessary and sufficient for the planner’s problem.
Reorganizing the first order conditions, we easily obtain the (by now) well-known Euler
equation:

Bt (é31) [ f (/%m) Tl 5} — ' (&) (3.10)

Remark 32 The Fuler equation has the usual interpretation. If we decrease consumption
at date t by dc,, the welfare loss equals U'(cy)dc;. At date t+ 1, consumption will increase,
since the drop in current consumption implies higher investments and therefore an increase
in k1. In particular, future consumption will increase by [f' (ki11) + 1 — 8] de;. If the plan
is optimal, then there should be no advantage in reallocating consumption, hence (3.10)
holds.

3.1.2 The steady state

A clear and pervading empirical evidence, discussed in Kaldor (1963), suggests that real
economies tend to a balanced growth path in the long run. In other words, all main
macroeconomic variables, in particular real GDP and its components, seem to growth at
the same, constant, and possibly positive growth rate in the long run. Figure 3.2 shows
the clear long-run balanced growth experienced by the U.S. over the 1929-2005 period.
Any dynamic macroeconomic model, in order to reproduce this basic stylized fact, should
be reducible to a stationary dynamic system, i.e. to a system converging in the long run
to a balanced growth path.
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Existence

Physical capital is the only durable good in the basic RCK model. Obviously enough,
then, the process of capital accumulation is the only possible source of long-run growth.
We will now show that the RCK model follows a balanced growth path whenever the
growth rate of capital is constant, and, furthermore, that the only admissible constant
growth rate is zero. In other words, we conclude that the basic version of the RCK model
is unable to converge to any balanced growth path where all variables grow at a strictly
positive rate, being therefore unable to reproduce the Kaldorian stylized facts.

The dynamics of our model is driven by a system of two difference equations: (3.8)
and (3.10). Consider the latter, and rewrite it as:

u' ()

u' (Cry1)

= BLf (kip1) +1 = 6] (3.11)

Define the capital stock growth rate asy* = (k.1 — k;) /k¢, and assume that lim,_, ., yF =
7% > 0. Under this assumption, lim, . k; = oo, while lim;_., f’(k) = 0 for the Inada
conditions. Take the limit of (3.11) as t — oo:

' (cr)
t=o00 ' (Cp11)

=0(1-9) (3.12)

Being v < 0 and 0 < B(1 —6) < 1, equation (3.12) implies that lim; .. 7§ =7° < 0.

A constant, strictly negative long-run growth rate of consumption is incompatible
with a constant, strictly positive long-run growth rate of the capital stock. To see why,
substitute (3.6) in the TVC to obtain:

lim v’ (¢;) kjr1 =0 (3.13)
j—oo
If limy oo ¢; = 0, then lim; o' (¢;) = o0; being lim; .o kt = oo by assumption,

condition (3.13) cannot be satisfied.

Remark 33 Assuming a strictly positive long-run growth rate of capital along the optimal
path generates a contradiction. There is only one possibility left: v* necessarily equals zero
along the optimal path.

Consider (3.8), and rewrite it as:
kt+1 - kt = f (kt) — 5kt — Ct (314)

Divide (3.14) by k; to obtain:

RGO (3.15)

' ke ke
If lim; o ¥ = 0, equation (3.15) holds only if v* = ¥ = v° = 0.

Remark 34 If the growth rate of capital is constant and equal to zero, the system follows
a balanced growth path characterized by a common zero growth rate, i.e. it reaches a steady
state.’

2A direct consequence of this result is that the return function for our optimal control problem will
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Properties
Evaluate (3.8) and (3.10) at the steady-state:
u(c) = [f'(k)+1—=0]5u (c) (3.16)
0 = f(k)—ok—c (3.17)

Simplify (3.16) and (3.17), and solve them for the steady-state allocation:

- (fyi(%-1+5) (3.18)
¢ = f(k)— ok (3.19)

We note that:

e being f” < 0, the steady-state capital stock depends positively on § and negatively
on 0 (why?);

e steady-state investment is just large enough to counterbalance depreciation.

Consider now equation (3.19). Does the steady-state capital stock maximize steady-
state consumption?. To answer the question, consider the first order condition for the
corresponding maximization problem:

fr(k)=0 (3.20)

Equation (3.20) is known as the Golden rule, and k is the capital stock that would
maximize consumption as expressed in (3.19).
Consider now (3.18) and rewrite it as:

Frk)=6+p (3.21)

where p is the intertemporal discount rate. Being f” < 0 and p > 0, evidently k& < k and
c<c.

Remark 35 The planner does not follow the Golden rule, i.e. does not maximize the
steady-state consumption level.

There is a simple intuition behind this results: since the representative agent has a
strictly positive intertemporal discount rate (she is impatient) it would be sub-optimal for
the planner to decrease current consumption (saving more and increasing the steady-state
capital stock) beyond a certain point to get a higher consumption level in steady state.

3.1.3 Dynamics

The set of admissible points (or allocations) {c;, k;} coincides with R2. Any sequence
{er k)72, in R2 that satisfies (3.8) and (3.10) for a given initial point {co, ko} such that
co > 0 and ko > 0 is called a trajectory. Note that, under our assumptions:

be bounded in the long run; this implies that the objective function will be bounded (along the optimal
path) too.
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e for each point {c;,k;} € R% there is one and only one point {c.y1,ki11} € R?
satisfying (3.8) and (3.10);

e points in R% belong to one and only one trajectory;

e any trajectory contains infinitely many other ones, defined as {c;, k;}.2, C {cs, ki },2,
for s > 1.

Any trajectory satisfying (3.8), (3.10), and the TVC is defined as optimal, being the
unique solution to the planner’s problem. This section aims to study the qualitative
properties of these optimal trajectories from a graphical point of view.

The phase diagram
Consider again equation (3.14):
kiv1 — ke = f (ki) — 0ke — (3.22)
We note that:
e Ak;y =0if and only if ¢; = f (ki) — dky;
o Aki1 <0 iff v > f(kt) — ks
o Aki1 >0 iff e < f(kt) — Oky.
Reconsider also (3.11):

u ()

' (Cry1)

= Bf (k1) +1 = 9] (3.23)

Equation (3.23) depends on k1, which in turn depends on k; and ¢; through (3.22).
Substitute (3.22) into (3.23):

7@”::5 Folbet flh) =0k —e| +1—6 (3.24)
' (Crr1) ~ T~ d
t+1

If Acyyqy =0, then o/ (¢;) = v (¢441), and the previous equation can be rewritten as:

%—1+5—fﬂh+f@w—5h—Q] (3.25)

Note that:

(f/)_l (% -1+ 5) =k=k+f (kt) — 0k — ¢ (3.26)

Being u” < 0 by assumption, we conclude that:

o Acyyy =0if and only if ¢; = f (ki) — 0kt — (kK — ky);
o Acii1 <0 iff o < f (k) — 0ke — (k — ky);

o Acii1 >0 iff o > f (ki) — 0ke — (k — k).
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Figure 3.3: Dynamics in the RCK model.

Now, ¢; = f (ki) — 0k, defines the locus in R% where Ak, y = 0, while ¢, = f (k) —
Oky — (k — ky) the locus where Ac;, 1 = 0. If we measure consumption on the vertical axis,
we can represent the first equation as a strictly concave (why?) curve starting from the
origin and intersecting the horizontal axis again at b = {0, /Af} and the second equation
as a ever-increasing, strictly concave (again, why?) curve starting from a = {0, k}, where
i is defined implicitly by f(k) = 6k and k by f(k) — 6k = k — k. The curves intersect
at {c, k}, the steady-state. Both curves, together with the adjustment dynamics implied
by the previous results (summarized by a set of arrows), are shown in Figure 3.3.

Stability

Remark 36 The system is saddle-path stable, i.e. for each initial value of ko there is
one and only one trajectory converging to the steady state (point S); all other trajectories
diverge.?

There are three obvious possibilities:
o If kg = k, then k; = k Vt.

o If ky < k, there will be one and only one trajectory converging “from below” to the
steady state.

e Finally, if the system starts with kg > k, there will be one and only one trajectory
converging “from above”.

These three trajectories are represented in Figure 3.4.

3To prove formally the system’s saddle path stability, we could linearize it around the steady-state,
show the saddle-path stability of the resulting linear system, and then refer to the Poincaré-Lyapunov-
Perron theorem to extend this result to the original non-linear system. This procedure, simple but
cumbersome, is omitted here.
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Figure 3.4: Saddle-path convergence to the steady state.

We will now show that these converging trajectories are the optimal ones, since all the
other trajectories violate the TVC or the feasibility constraints.

Exercise 37 Check that the convergent trajectories satisfy the TVC.

Assume that kg < k. At date 0, the planner has to chose the optimal initial level of
consumption, co:

e If she picks a value for ¢y above ¢y, the system jumps on a diverging trajectory, and
the physical capital stock would necessarily become negative in a finite time span.
Clearly, such a diverging trajectory would violate the feasibility constraints.

e If instead, she picks a value for ¢y below ¢y, the system jumps on a trajectory that
will converge to b in the long run. Along this trajectory, the consumption level tends
asymptotically to zero, and this violates the TVC (try to get an intuition!).

Summary 38 For all ky < k, the unique optimal plan that solves the planner’s problem
for the given initial condition belongs to the trajectory converging “from below” to the
steady state. It is easy to show that, for all ky > k, the unique optimal plan belongs to the
trajectory that converges to the steady state “from above”. If kg = k, the optimal solution
will simply be: don’t movel

4There is a further possibility, typical of discrete systems, as noted in Gandolfo (1996). The unique
solution to the planner’s problem could be a sequence of points belonging alternatively to both convergent
trajectories. In other words, the model may oscillate while converging to the steady state without violating
the first order conditions and the TVC.
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¢

Figure 3.5: Transitional dinamics.

Transitional dynamics

Assume now that the system has already reached the steady-state. Suddenly the repre-
sentative agent becomes unexpectedly more impatient, i.e. 3 decreases. The steady-state
capital stock decreases. How does the system behave during the transition to the new
steady-state? The transitional dynamics is sketched in Figure 3.5. The system starts in
a; the sudden decrease in 5 moves the Ac; = 0 locus on the left. Consumption can freely
jump at date t, while capital is fixed. Therefore, the system jumps immediately to b on
the new saddle path, and then adjust slowly to the new steady-state c.

3.1.4 The Bellman equation
The planner’s problem represented in (3.4) can be easily generalized as:

o0

max U= B "u(c) (3.27)

{es kst1}oZ, s—t
S.t. kt+1 = f (kt) —+ (1 — 5) kt — G
k. > 0 given

Define the value function v;: R, — R as the maximal value attainable at date t by
the representative agent’s intertemporal utility function, along the optimal path, if the
current capital stock were k; > 0; in other words:

o0

v (k) = max_ Y B u(c) (3.28)

{CSka-&-l}:it st

s.t. kt+1 = f (kt) -+ (1 — 5) kt — Ct
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Assume, for the sake of exposition, that v, (-) were known. In this case, the previous
problem could be restated as:

v (k) = max u(e) + Pogr (k) (3.29)

{Ct 7kt+1

s.t. kt+1 = f (kt) -+ (1 — 5) kt — Ct

Now, the structure of the RCK model is completely recursive: i.e., the optimization
problem starting at date 0 for given kq is structurally identical to the problem starting at
date 1 for given k;. There is only one thing that matters: the current value of the state
variable, k;. Hence, the value function has to be time invariant, i.e. v, () = vy,q (+) Vt.

The planner’s problem, therefore, can be restated in the following recursive and time-
invariant form, known as the Bellman equation:

v(k) = maxu(c)+ v (k) (3.30)

ceER4

st. K =f(k)+(1—-0)k—c

where k' represents the next period capital stock. The value function is strictly related
to a time-invariant policy function that relates the optimal consumption choice to the
current capital stock:

c(k) = argm}z%xu(c)—l—ﬁv (k") (3.31)
celiqp
st. K =f(k)+(1—-90)k—c
Note that (3.30) and (3.31) are functional equations: they implicitly define both the
value and policy functions; these equations, in general, do not have close form solutions
but have to be solved numerically (one well-known exception to this rule is discussed
below).

Hence, we concluded that the solution to the planner’s problem can be represented as
a value function, together with its associated policy function.

3.1.5 A closed form solution

Let us be more specific as far as the involved functional forms are concerned, and assume
that u(c) = Inc, f(k) = k* with a € (0,1), and § = 1. This specification is one of the few
for which the RCK model admits a closed form solution.

Optimal control

We start by considering the corresponding system of first order conditions:

Ci1 = Oéﬂkﬁ__llct (332)
kt+1 = kta — G (333)
Rewrite (3.32) as:
kOé
R _ oL (3.34)

Ct Ct+1
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Substitute (3.33) into (3.34), and solve the result interactively for k;,1/c;, obtaining:

Bt _ $™ (0’ + iy e (B 2222 (3.35)

& &
t =1 t+j

Now, the TVC implies that:

lim @M =0 (3.36)

Jj—00 Cttj

Imposing the TVC on (3.35) and reorganizing gets:

kt 1 af
= = BZ (@Y = 1—o5 (3.37)

since 0 < a8 < 1. Substituting (3.37) into (3.33) and simplifying leads us to:
¢ =(1—ap)ky (3.38)

Equation (3.38) is the optimal policy function we were looking for. Together with
(3.34), it completely characterize the optimal plan solving the RCK model under this
very particular parameterization.

Dynamic programming

We can also tackle the problem with dynamic programming. In general, the Bellman
functional equation associated® with problem (3.4) is:

v(k) = max u [f (k) 4+ (1—=08)k— K]+ v (K) (3.39)

where k' represents next period’s capital stock. Feasibility requires that {c,k'} € R.
Under our parameterization, the Bellman equation specializes to:
v(k) = max In (k% — k') + v (K) (3.40)
In steady-state, both the investment-capital ratio, i;/k;, and the investment share,
it/ys, are constant. This implies that k = ny = nk®, where 1 = i/y since i = k. A good
guess for the stationary policy function may then be k' = nk®.

The Benveniste-Sheinkman rule states that v’ (k) = a/[(1 —n)k]. Integrate both sides
with respect to k to get:

where b = /(1 — 1), while a is a constant to be determined.

°In note 2, p. 44, we stressed that the objective function was actually bounded along the optimal
path. As we know, this implies that there is a one-to-one relation between optimal control and dynamic
programming.
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The value function at date 0 can be expressed as:
viko) =Y BIm(l—n)k=> p'ml-—n+a) fk (3.42)
=0 t=0 t=0

Iterating on our guess and taking logs, we obtain:

A 1—at
lnkt: 1

Inn+ o In kg (3.43)
—a

Substituting (3.43) into (3.42) we get:

o o0 1_ t
v(ko) = Zﬁtln(l—n)—i—ozz:ﬁt(l_z lnn—i—oflnko)— (3.44)
=0 =0
In(1—7n) «alnnp > . . a
= - 1
1-3 +1—@;6(1 )T ko

Comparing (3.41) and (3.44) we conclude that b = /(1 — aff) and, of course, that

n=apf.
Finally, since:

;Bt (1-a) = q _(;)_(f‘)_ﬁ&ﬁ) (3.45)

we obtain:

Y In(1 — af) N afIn(af)
1-5 (1-=5)(1—ap)

(3.46)

3.1.6 Decentralization

In the previous Sections we analyzed the benevolent planner’s problem, focusing on the
Pareto-efficient optimal plan without explicitly characterizing the corresponding market
structure and competitive equilibrium. Let us now introduce the simplest decentralization
scheme that allows us to easily highlight (once again) the strict relationship between
Pareto-efficient allocations and competitive equilibria in the RCK framework.

Assume that the representative household owns all factors of production, i.e. capital
and labor. Physical capital is the only asset available in the economy. Hence, the repre-
sentative household makes consumption /investment decisions under perfect foresight, and
rents capital and labor to a representative firm. The latter uses the services of capital and
labor to produce the final consumption (investment) good. All markets are competitive,
and all trades occur at date 0. For this economy, a price system is a sequence of prices
{qs,re, wi}°, where (i) g is the date-0 price of one unit of consumption at date ¢; (i) 7
is the date-0 price of one unit of capital rented at date ¢; (ii7) w, is the date-0 price of
one unit of labor rented at date ¢.

Households

The representative household faces the following intratemporal budget constraint:

qt [Ct + kt+1 — (1 — 5) kt] = Ttkt -+ wy (347)
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Iterating on (3.47), we get the present-value intertemporal budget constraint:
Z qiCt = Z {we + [ (1 =0) + 71 — o] by} — tlgglo Qrkt 1 (3.48)

where ¢_; = 0. Note that, if ' (-) > 0, then it will never be optimal to held a strictly
positive capital stock in the limit, because this would decrease the amount of resources
available for consumption.

Remark 39 Optimality requires the following terminal condition:
tllm tht—&-l — O (349)

This implies that the household’s problem can be reformulated as:

max U= Z Bu(cp) (3.50)

{Ct 7kt+1 }toio

S.t. Z q Ct —+ kt+1 — 1 — kt Z Ttkt —+ wt

t=0 t=0

where the sequence of prices {q;, 74, wt}fi o and the initial condition ko > 0 are taken as
given.

The corresponding present-value Lagrangian can be written as (note the single La-
grange multiplier):

= f: Btu (Ct) + A {Z Ttkt + wt Z q Ct + kiy1 — ( — 5) kt]} (3.51)

Deriving the Lagrangian with respect to ¢; and k;1; we obtain the (by now) familiar
first order conditions (a hat identifies the optimal plan):

B (&) = g (3.52)
Ti+1 = 4t — Gi+1 (1 - 5) (3-53)

Equation (3.53) above, a no-arbitrage condition, is known as “user cost of capital”
formula. The interpretation is straightforward: along an optimal path, the future return
on one additional unit of capital installed today has exactly offset its “user cost,” i.e. the
difference between the price at which the unit has to be purchased today and the price
at which what remains after depreciation has been take into account may be sold next
period.

Firms

The representative firm maximizes the present value of economic profits, given by:

= [af (k) — w; — riky] (3.54)
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The first order conditions for the services of labor and capital, as usual, equate the
value of the marginal productivity of each factor to its price:

Wy = G [f (fft) — Jr (fft) ff} (3.55)
e = Qifk (fft) (3.56)

Note that optimal control problem of the representative firm effectively boils down to
a sequence of static profit maximization problems.

Equilibrium

Definition 40 In the economy outlined in this section, a competitive equilibrium, for
a given kg > 0, is made of an allocation {c;, kip1},o, and a price system {q, T, we},,
such that:

1. the allocation {ct, ki1 },-, solves the representative household’s problem for the given
price system;

2. the allocation {ci, ki},- , mazimizes the profits of the representative firm for the given
price system;

3. demand equals supply in all markets, and in particular in the market for the final
consumption good:

¢ + kt+1 — (1 — 5) kt = f (kt) (357)
~ TV 4 v
demand supply

By combining equations (3.49), (3.52), (3.53), and (3.56) we can easily show that the
competitive equilibrium is characterized by the following dynamic system:

W (@) = Bu (éa) [ fu (/%m) Tl 5} (3.58)
for = (1—0) ket f (kt) _ (3.59)
lim S (&) kypiq 0 (3.60)

t—o0

Remark 41 Quite evidently, and not surprisingly, there is a one-to-one relationship be-
tween the Pareto-efficient optimal plan identified in the previous Sections and the compet-
itive dynamic equilibrium analyzed here.

3.2 Exogenous growth

In Section 3.1.2, p. 43, we argued that the basic RCK model is incompatible with long-
run growth. But we also know that long-run growth is clearly supported by empirical
evidence. How can we “convince” the RCK model to follow a balanced growth path in
the long-run?

The simplest way is to assume the existence of an exogenous engine of growth. This
mechanism may be naturally identified with technological progress, i.e. with a process
that improves the productivity of some factors over time. It is well known (we omit
the simple but cumbersome proof; see King, Plosser, and Rebelo, 1987, or McCallum,
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1996, Appendix B) that only labor-augmenting technological progress is compatible with
balanced growth. This means that only production functions of the form:

yt = F (kt’ Ztnt) (361)

where Z; is a technology index, are compatible with balanced growth. If Z; grows at a
positive exogenous rate v > 0, then Z;, = Z, (1 4+ )"

3.2.1 Constant elasticity of substitution

Another well know result (again, see King, Plosser, and Rebelo, 1987, or McCallum,
1996, Note 11, p. 46) states that only the utility functions characterized by a constant
elasticity of marginal utility with respect to consumption, defined as &, = [u"(c)c] /v (c),
are compatible with balanced growth.

The proof is rather simple. Along a balanced growth path, consumption grows at the
common constant rate. This implies that, in the long-run, ¢;;1 = (14 7)¢. Consider
(3.10):

u' (cr) = [f" (ker1, Zegr) +1 = 6] Bu’ (1) (3.62)

Note that, for consumption to grow at a constant rate, the term f’ (kiy1, Zi41) +1—0
has to be constant in the long-run. We can then rewrite (3.62) as:

U () = wu' [(1+7) ¢ (3.63)
Differentiate equation (3.63) with regard to ¢; :
u” (¢r) = wyd" [(1 +7) ¢ (3.64)
Dividing (3.64) by (3.63), multiplying both sides by ¢, and simplifying we obtain:

u () e v (G) G
' (ct) u (1)

(3.65)

The sole family of utility functions that satisfies this requirement is the so-called
isoelastic family, defined as u(c) = ¢'=Y#/(1 — 1/u) for p # 1, and® as u(c) = log(c)
for u = 1.7 The strict concavity assumption requires 1/ > 0. It is easy to show that
€.. = —1/p, and that the intertemporal elasticity of substitution is equal to p.

3.2.2 Normalization

The introduction of technological progress has a very important consequence: the system
will not converge to a steady-state in the long run (by the way, this was exactly our goal!).
However, to study its dynamics from a qualitative point of view, we need the phase-plane
techniques introduced in the previous Section. These techniques require the model to
have a steady-state.

A convenient solution to our problem is the following. We can normalize the model
with regard to some variable that grows at the common rate in the long-run. A natural

6Tt is easy to show, applying the I'Hopital rule, that lim, ., (¢'~* —1) /(1 — ) = In(¢). The constant
factor is dropped in our analysis for the sake of national simplicity.

"This family of CES utility functions is not invariant to monotone transformations. Hence, we are
moving from ordinal to cardinal preferences. This is a commonly overlooked fact.
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candidate may be Z;, the exogenous technical progress, since it can be easily recovered
knowing the initial condition Z; and the constant grow rate . In this case, there would
be a one-to-one relationship between the original and the normalized systems (i.e. they
would be isomorphic).

Denoting with a tilde the normalized variables, the intertemporal utility function
becomes:

[

1-1

1 1—
0 Zs " fe ' 1-1 & oy G
U:§ L =7 “E
¢ S:tﬁ 1— (ZS) t S:tﬁ 1_

1
m

I

(3.66)

T =

where 3 = 8 (1 + ’y)l_ﬁ.

Taking into account that the production function is homogenous of degree one, and
that ke 1/Z, = (kii1/Zs1)(Ziia ) Z) = (1 +7) kysq, we can write the normalized accumu-
lation equation as:

() s = (1= )+ f () — (3.67)

The normalized system is qualitatively similar to the basic RCK model (Check!). The
normalized system tends a steady-state in the long run.® If the normalized system tends
to a steady-state, the original model tends to a balanced growth path, where all variables
grow at the exogenous growth rate 7.

3.3 Endogenous growth

In the previous Section, we concluded that the mechanism at the heart of basic RCK
model, i.e. physical capital accumulation, is essentially incompatible with a positive rate
of long-run economic growth without further assumptions. Let us analyze the issue more
in detail. Consider the basic RCK framework again, and recall the accumulation equation
(3.3), rewriting it as:

v (k) Ct
= —0—— 3.68
"Yt kt kt ( )
In the long run:
. . f (k ) .G
foy = Jim S -0 - fim g (5.69)

Note that lim, . vF = v* > 0 only if:

lim; o z—i =+>0
lim, oo 2 =5 > 0 (3.70)
n>o0+ 7

Let us examine this three conditions in turn:

1. The first one, lim;_, e=53>0 simply requires that lim; .o, ¢ = v* > 0, i.e.

growth along a balanced growth path.

2. The second one, again requires that lim,_., 7/ = 7* > 0. Furthermore, note that if

81s there anything missing? Well, actually yes: what about the boundedness of the objective function?
Since the normalized model reaches a steady-state, we simply need to assume that g < 1.
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A% > 0 then lim,_,, k; = oco. Hence the condition can be rewritten as:

tim L) _ gy S F (k) =n>0 (3.71)

t—o00 kt k—oo kt k—o0
This amounts to a blatant violation of the second Inada condition.
3. Finally, the third one, limy_,o f’ (k) =1 > d + ¢/k.

Remark 42 Long-run growth in the basic RCK model is admissible along a balanced
growth path only, and requires the existence of a lower bound (left, for the moment, un-
specified) for the marginal productivity of physical capital.

This condition is however only necessary, not sufficient, for long-run growth. Consider
the Euler equation (3.11) and assume a isoelastic utility function of the form u (c¢) =
G (1= 1)

v =B f (kewr) +1 =0 =1 (3.72)

In the long run:
=0 n+1-0" -1 (3.73)

Hence, v¢ > 0 if and only if:
n>d+p (3.74)

where p = (1 — ) /3 is the intertemporal discount rate. Note that if 0 < 1 < § + p then
the only possible long-run growth rate remains 7* = 0.

3.3.1 The AK model

The simplest (simplistic?) way to impose condition (3.74) is to assume that the production
function enjoys constant returns to scale in the accumulable factor, i.e. in our case, that
it is linear in physical capital:

S (k) = Aky (3.75)

where f' (k) =A>d§+p>0.
If the utility function is isoelastic, the first order conditions for the planner’s problem
become the following ones:

City1 = ¢Ct (376)
kt+1 = wkt — Ct (377)
where:
b= A+1-6>1 (3.78)
o = () >1 (3.79)

These conditions are necessary and sufficient to identify the optimal path, together with
the usual TVC:
tllm /Bt)\tkt+1 — O (380)

Note that the Euler equation does not depend on k;!

Remark 43 The AK model has no transitional dynamics: once ¢y has been optimally
chosen, the system starts immediately to evolve along a balanced growth path.
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Iterating on the FOCs (and dropping the hats for notational simplicity) we obtain:

o = ¢l (3.81)
t
ko = o — Y e (3.82)
=0
Note that: ) )
A=c, "= (dlco) ¥ (3.83)
Hence, the TVC can be rewritten as:
1 ¢ .
lim B (¢'co) " (wt“ko - ;wt—fcj) =0 (3.84)
=

Note that:

e being ¢y > 0 along an optimal path, we can safely divide both sides of (3.84) by co;
° qﬁi = (v by definition.

Hence (3.84) becomes:

t
lim ' (39) ™ (wt“ko — Y g co> =0 (3.85)
j=0
Simplifying:
t é j
co lim (—) = ko (3.86)
t—o00 < 1/}
7=0
Being ¢ /1 < 1, we know that:
~ (o _ ¥
lim -] =— 3.87
t—o0 — (1/}) 1/} — ¢ ( )
j
This allows us to solve for cg:
Co = C]fo (388)

where ( = ¢ — ¢.
Let us now check that ¢; and k; actually move together along a balanced growth path.
Consider that:

o ¢'Cko _ ¢'Cko _
ke ko — Yo T e ko — YW T I Chy
¢'¢ _ ¢'¢ __
Vv - T (4) v [1 -y (2) e (ﬁ)ﬂ]

9'¢ e
sl (@) s @] e @)
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This obviously implies that ¢, = Ck; Vt.? The two variables share the same growth
rate; hence:
y=¢—1=[(A+1-9)]"-1 (3.89)

Remark 44 This long-run, positive growth rate depends exclusively on the deep parame-
ters of the model: growth is endogenous, being a result of the internal workings of the
model, i.e. capital accumulation in the presence of non-decreasing returns to capital.

Note that the investment share in income is given by:

gt _y—c_A-¢_ 40

yiy A A

(3.90)

There is a one-to-one relationship between the investment share and the long-run growth
rate. This strong implication has been used by Jones (1995) and others to test the
empirical validity of the AK model.

3.4 Numerical experiments

As in Section 1.5, p. 26, we can exploit the model’s recursive structure and numerically
solve it with respect to the time-invariant policy function for consumption, which depends
on the physical capital stock, the only state variable. As far as the actual functional forms
is concerned, we assume an isoelastic utility function, u (¢) = ¢'7#/ (1 — ), and a Cobb-
Douglas production function, f (k) = ¢k®.

Under these assumptions, the policy function has to satisfy the following functional
equation:

m

c(k) = e (k) {g [(m)(/a)“—l vl 5} } (3.91)

where:

okt (1—0)k — c (k)
B ¥

We again approximately solve (3.91) using Chebyshev collocation method, under the
following benchmark parameterization: § = 0.96, p = 2, a = 0.4, v = 1.016, and
d = 0.1.1% The value of the scale parameter ¢ is chosen so to make the steady-state
capital level equal to unity. Once an approximated policy function is at hand, we can
recursively solve the system for the given initial condition.

In Figure 6.6 we plot the model’s transitional dynamics for kg = 0.8. In other words,
we describe the adjustment process of output and capital for a RCK economy starting
at date 0 with a capital stock equal to 80% of its steady-state value. As we can see, the
variables grow over time and smoothly converge to their steady-state values, as expected.
Note however, that convergence is extremely rapid: half the way to the steady-state is
covered in about 8 years.

k/

(3.92)

9Tt also implies that lim;_, (¢;/k:) = (. The necessary condition for endogenous growth requires that
A > 0+ (. Tt can be easily shown that this requirement boils down to A > § + p.

10Gee the Appendix for more details. Another possibility, theoretically simpler but numerically less
efficient, is to use time iteration on the Euler equation, as again explained in the Appendix.
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Figure 3.6: Transitional dynamics in the RCK model.

In Figure 6.7 we plot the corresponding growth rates (we are considering normalized
variables, so these growth rates have to be added to the exogenous one, equal in this case
to 1.6% a year). Our results imply that, at date zero, the growth rate of physical capital
is about 2.2 points higher than in steady-state, but this difference practically disappears
in less than twenty years.

3.4.1 Sensitivity analysis

Once we fully characterized the model’s steady-state and transitional dynamics, it would
be interesting to study how the model reacts to unexpected changes in the deep parame-
ters. In particular, we may be interested in evaluating how and to which extent changes
in the parameterization affect both the steady-state and the transitional dynamics. This
kind of experiments are called sensitivity analysis.

Figure 3.8 shows the effect of a sudden increase in p (from 2 to 3), the preference
parameter inversely related to the elasticity of intertemporal substitution; we plot the
percentage deviations from the initial steady-state values. The economic intuition is
simple: if u increases, the elasticity of intertemporal substitution decreases, and the rep-
resentative individual is less willing to substitute current for future consumption. Current
consumption increases on impact by nearly four percentage points, while investment de-
creases by almost ten points; during the transition to the new steady-state, consumption,
investment, output and capital decrease, while the interest rate rises. In steady-state, the
consumption level is nearly three points lower, simply because the induced decrease in
investment implies a lower steady-state capital stock.

Figure 3.9, instead, shows the effect of a decrease in # (from 0.96 to 0.95), the in-
tertemporal discount factor. Our representative individual becomes more impatient, and
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Figure 3.9: Decrease in § (from 0.96 to 0.95).

so current consumption increases on impact by three percentage points, while investment
decreases by almost nine points; as before, during the transition to the new steady-state
all variables but the interest rate decrease. In steady-state, the consumption level is nearly
two points lower, again because the steady-state capital stock is ten points lower than
before.

The effect of a decrease in ¢ (from 0.10 to 0.09), the depreciation rate, is summarized
in Figure 3.10. If the depreciation rate decreases, a lower level of investment is needed to
accumulate a given level of future capital, and so investment decreases on impact while
consumption slightly increases. The sudden increase in the interest rate, however, quickly
drives the investment level back to its previous steady-state level and even further up; this
increases the capital stock, and consequently output and consumption, while the interest
rate converges back to its steady-state value. As a result, the steady-state levels of capital,
output, and consumption are higher than before.

Figure 3.11, finally, shows the effect of a decrease in v (from 1.016 to 1.015), the
exogenous growth factor. The decrease in v has, ceteris paribus, three effects: first, it
increases the “modified” intertemporal discount factor B = By'7# (note that 1 — p < 1);
second, it directly increases the slope of the consumption path, via the Euler equation
(3.91); third, it decreases the level of future (normalized) capital stock implied by a given
level of current investment, via the accumulation equation (3.92). As a result, current
consumption decreases on impact, while investment increases. During the transition, all
variable except the interest rate increase, and the (normalized) system reaches a new
steady-state where capital, output, consumption and investment are higher than before.
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3.4.2 Conditional convergence

All previous Sections were devoted to a pure qualitative analysis of the RCK model. We
reached the conclusion that, if the initial capital level is lower than the steady-state one,
consumption, capital, and output increase over time at a decreasing pace, converging
towards the steady-state allocation in the long-run. Furthermore, it can be shown that
the initial growth rates of output and capital are higher the lower the initial capital stock.
In other words, the basic RCK models implies that “poor” countries should growth faster,
ceteris paribus, than “rich” ones. Furthermore, it suggests that, once we rule differences
in technology and preferences out, all countries should converge to the same steady-state.
The available empirical evidence shows that:

1. different countries grow at different rates; in particular, poor countries tend to grow
faster, once the industrialization process takes off;

2. differences in growth rates tend to persist over time, even for decades.

The previously described RCK comparative dynamics seems consistent with these two
stylized facts. These implications, summarized as cross-country conditional convergence
(both in levels and growth rates) have been extensively tested in the literature, with
mildly positive results.

However, nothing in our analysis guarantees that the qualitative behavior of the RCK
model may also be quantitatively reasonable. In an influential paper, King and Rebelo
(1993) actually challenged the profession’s wisdom with a simple but surprising numerical
experiment. To partially replicate their results, let us now identify our toy economy with
the US, the “rich” country by definition. In the 50s, right after the end of WWII, per-
capita output level in the US was more than five times the per-capita level in Japan;
assuming identical technologies, the initial capital level in Japan, if the US one was 0.8,
should have been 0.0126. Figure 6.10 plots the growth rates for our two countries: well,
according to the RCK model, in the 50s the growth rate of per-capita output in Japan
should have been nearly 40 times higher than in the US. Furthermore, this tremendous
gap should have been covered in only ten years, more or less. There is not much to say
about these prediction: they are simply wrong!

There is an even more important problem. Figure 6.11 plots the interest rates (rental
rates minus depreciation) for our two countries. The RCK model predicts not only ex-
tremely high interest rates, even 140% in Japan, but implausible interest rate differentials:
the interest rate in Japan should have been nearly 14 times higher than in the US at date
zero, and a quantitatively significant difference lasts for nearly twenty years. These figures
are hard to reconcile with the empirical evidence suggesting that capital is at least par-
tially mobile across countries: why did individuals in the US not exploit these arbitrage
opportunities, if they really existed?

We are presenting, of course, an extreme case, but the message is clear. Under our
benchmark parameterization, the RCK model is unable to account for sustained dif-
ferences in growth rates of per-capita output and capital. Furthermore, quantitatively
relevant differences in initial growth rates translate into implausibly high interest rate
differentials. King and Rebelo (1993) show that these outcomes are robust to many gen-
eralizations, and do not depend on the chosen parameterization.!!

1 Actually, by increasing the intertemporal elasticity of substitution we may generate sustained growth
differentials, but produce even higher interest rate differentials.
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In other words, we may conclude that physical capital accumulation alone, in a neoclas-
sical optimizing framework, is not sufficient to explain sustained cross-country differentials
in growth rates, because the implications of diminishing returns are highly counterfactual.
King and Rebelo (1993) conclude that their results may point to the use of “endogenous
growth” models instead of “exogenous growth” ones.

As always, many caveats apply to our analysis. The most important one, at least
in our option, is that the real world is not a collection of closed RCK economies, since
countries trade in goods and to some extend in factors of production. International trade
may have interesting effects on the transitional dynamics in a world of RCK economies,
as suggested in Cunlat and Maffezzoli (2004).

3.5 Appendix: computational details

3.5.1 Chebyshev collocation

Following Judd (1992) again, we approximate the policy function c (k) over an interval
D = [k, k] € Ry with a linear combination of Chebyshev polynomials:

C(k;0) =30y (k) (3.93)
where: _—
v (k) =T, (QE—:; - 1) (3.94)

The functional equation (3.91) becomes:

i (BY [ Teera-ak—ewmp "
o (2) o prrmmie g

é[qskuu—a)k—a(k)}
v

We find n zeros of Chebyshev polynomials in [—1, 1], reverse the normalization and
transform them into the corresponding values in [k, E] Then, we numerically solve equa-
tion (3.95) at these points for the n parameters in 6. In other words, we approximate
a functional equation with a system of non-linear equations, which can be easily solved
with any standard algorithm. In our exercise, we choose k = 0.01, k = 1.99, and d = 14.
The relative simplicity of the problem guarantees a high numerical accuracy.

3.5.2 Time iteration

An alternative approach is to approximate the policy function with cubic interpolation
over a fixed grid, and use time iteration on the Euler equation to converge to the solution:

Algorithm 45 Choose a suitable grid of points over an interval [k, k] € R, say k =
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{k:}7 )" and an initial guess for the optimal consumption levels at the nodes k;, say

co = {coi};_,. Then, for j > 0:

1. Given c;, compute:
oo Ok (1= 0) ki — ¢
j77’ /‘)/

2. Gwenk, c; , andk’; = {k}i}j:l,
if needed).

. , R ,
3. Guwen ¢}, compute €; as:

Cji = Cj, {g [04¢ (k},i)a_l +1- 5} }

4. Update the current guess:
cjr1 =v¢ + (1 —v)c;

where v € (0,1), and iterate on (1)-(4) until convergence.

obtain c; via cubic interpolation (or extrapolation,

2The gird has not to be uniformly distributed over the interval: it’s possible to concentrate a larger

mass of points in the region where the policy function is particularly nonlinear.



Chapter 4

Dynamic Stochastic (General
Equilibrium

4.1 Equilibrium with complete markets

We shall now characterize the concept of dynamic competitive equilibrium in a pure
exchange economy with infinitely living individuals and stochastic endowments.*
Consider a simple pure-exchange infinite-horizon economy, characterized by stochastic
endowments. In each period ¢t > 0, randomness is resolved with the realization of stochas-
tic event s; € S. The full history of events up to date ¢ is denoted s* = {so, s1, ..., s} and
is publicly observable by all agents: in other words, the vector s’, by summarizing the
sequence of actual realizations of s;, fully represents the current “state of the world.” The
unconditional probability associated with a particular sequence s’ is given by the prob-
ability measure m; (s*). All trading occurs after observing sy, hence 7 (so) = 1.2 Note
that the introduction of s' creates a wider commodity space in which economic goods are
differentiated not only by date of delivery, but also by history, or “state of the world.”
The economy is inhabited by a large but finite number of identical households, indexed
by i € {1,2,...,1}. Each household is approximately of measure zero,> hence price-taker
on the consumption good and asset markets. Households can purchase history-dependent
consumption streams of the form ¢; = {¢; (s')},2,; a collection of consumption streams,
one for each household, {{c;: (s")};~ 0}5:1, is called an allocation. Households’ preferences
on these consumption streams can be represented by the standard intertemporal utility

function:
Ulg) = Z Zﬁtu [ci (s")] ¢ (s") = Eq Zﬁtu (cit)] (4.1)

where Ey () = E(-|sg). As in Section 1.2.1, p. 5, we assume that u () is C?, strictly
increasing, and strictly concave, with lim._.o v’ (¢) = +oc.

In each period, the households receive a positive endowment of the single consumption
good that depends on the state of the world, y;; (s*) and is therefore eminently stochastic.

!The interested reader may find more details in Mas-Colell et al. (1995, Ch. 19) and Ljungqvist and
Sargent (2004, Ch. 8).

2For the sake of exposition, assume that S = {0,1} and sy = 0. In period 1, there will be two possible
states of the world: s} = {0,1} or s3 = {0,0}. In period 2, the possible states of the world become four:
s?2 ={0,1,1}, s3 = {0,1,0}, s2 = {0,0,1}, or s2 = {0,0,0}. Quite evidently, the number of possible
realizations of s increase dramatically with ¢.

3 An agent of measure zero is infinitely small relatively to the size of the economy.

67
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4.1.1 Pareto-efficient allocations

In order to identify the Pareto-efficient allocations in this economy, we set up a fictitious
social planning problem. Assume that a benevolent social planner assigns to the house-
holds a set of nonnegative Pareto weights 6; in order to define a social welfare function of
the form:*

W= Z@U (¢;) (4.2)

The planner then chooses the allocations that maximize social welfare under a feasi-
bility constraint:

max W = Z@U(ci) (4.3)

An allocation is Pareto-efficient if it solves the previous problem for a set of nonnegative
Pareto weights.
The corresponding Lagrangian is:

L= S S 0 u e ()] () + 0 () [ () — e ()]} (4

t=0 st %

To obtain the first order conditions we derive L with respect to ¢;; (s'), the consumption
level for each household, in each period, and for each state of the world:

0,5 [cit (st)] T (st) =\ (st) . Vit st (4.5)

Divide the first order condition (4.5) for a generic household i by the first order con-
dition for household 1 to get:

0, ,

o [cit (st)] = e—zu [clt (st)] (4.6)

and then solve for ¢;; (s'):

0,

e () = ) { G e (] (a7

(]

Substituting (4.7) into the feasibility constraint gets:

S 0™ {0 [en (1 = o (9 (19

. K3
K3

Remark 46 FEquation (4.8) has a very important implication. Note that the right-hand
side corresponds to the realized aggregate endowment: cy; (s') is implicitly a function of
the current realization of aggregate endowment only. The individual realized endowments
Yt (8') and the actual state of the world s' that generated the aggregate outcome do not
play an independent role.

4The weights can be arbitrarily normalized; one convenient possibility is to impose Zle 0; =1.
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4.1.2 Arrow-Debreu complete markets

Following Arrow and Debreu, we assume that a complete set of competitive markets for so
called Arrow-Debreu securities exist at date zero. In other words, households are allowed
to trade a complete set of date- and state-contingent claims to consumption (claims to
consumption can express a ”title to receive” or a ”duty to deliver”). All trades take place
at date zero, after sy has been realized, but before the uncertainty as far as the future
states of the world is resolved; from date one onwards, the individuals simply execute the
contracts signed at date 0. A price system for this economy is a sequence of functions
{q: (s")};2,, where ¢ (s') represents the date-0 price of claims to consumption good units
to be delivered in date ¢, contingent on history s, and expressed in terms of a numeraire
that is left for the moment unspecified.

Since all trades occur at date 0, the households face the following single intertemporal
budget constraint (that holds with probability one):

Z Z g (s") car ( Z Z qr () yir ( (4.9)

t=0 st t=0 st

Each household solves the following problem:
maxU; = Ky Zﬁtu (cit)] (4.10)

s.t. Z Z Qt Czt Z Z Qt let

t=0 st t=0 st

The corresponding Lagrangian becomes:

> Blu(c)

L; = FEy

+ i Z Z qe () [wie (") — ca ()] (4.11)

t=0 st

The first order conditions are the following:

Biu [clt ( )] e (st) = 1L;Q (st) .Vt st (4.12)

Being the units of the price system arbitrary, we can normalize one of the prices to
any positive value.’
Note that, for all pairs of households (4, j):

o [ea (s)] = B2 e (51)] (4.13)

Remark 47 The ratios of marginal utilities between pairs of households are constant
across all dates and all states of the world.

Example 48 This equilibrium condition has some important implications. Assume that

A convenient choice is gq (sg) = 1: this takes the date-0 consumption good as the numeraire. In this
case, equation (4.12) implies that p;, = u' [c;o (S0)].
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the Bernoulli utility function is of the Constant Relative Risk Aversion (CRRA) form:

u(c) = (4.14)

for v > 0. Condition (4.13) implies that:

c(s') _ (&)_% (4.15)

cji (s') e

Remark 49 If the utility function is of the CRRA form, in all periods and all states
of the world the individual consumption levels are a constant fraction of one another.
Hence, each household is assigned a constant fraction of the aggregate endowment, and
consumption is perfectly smoothed across time and states of the world.

Definition 50 A complete markets competitive equilibrium is a feasible allocation
and a price system such that, for the given price system, the allocation solves each house-
hold’s problem.

Hence, a competitive equilibrium is characterized by the following equilibrium condi-
tions:

o [cit (st)] — Hiy [Cjt (st)] . Vi, j (4.16)

X;th (") [cie (s') —wa (s")] = 0, Vi (4.17)
Z [cit (st) — Yit (st)] = 0, Vts' (4.18)

i

Condition (4.16) implies that:

e (o) = ) {25 [ ()} (4.19)

Substituting this result in (4.18) we get:

S ™ { A e (0]} = o (9 (120)

; 251

Equation (4.20) implies, together with (4.19), that ¢; (s') depends on the aggregate
realized endowment only: again, neither the individual endowments nor the actual state
of the world play an independent role.

Remark 51 By comparing (4.8) and (4.20) we immediately realize that the equilibrium
allocation is also Pareto-efficient, since it solves the Pareto problem for the following set
of nonnegative weights: 0; = 1/p, fori=1,2,...,1.

Furthermore, comparing (4.5) and (4.12) suggests that, for the previously specified
choice of Pareto weights, the Lagrange multipliers (shadow prices) \; (s') for the Pareto
problem are equal to the competitive prices ¢; (s").
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Example 52 Assume that s; takes values over the unit interval [0,1], and that there are
Just two types of households characterized by yi; (s') = s; and yor (s') = 1 — s;. The
aggregate endowment is constant and equal to unity, y; = Z?:l yi (') = 1. Hence there
is no aggregate uncertainty. Condition (4.20) implies that in equilibrium cy = ¢; for all
i, t, and s'. From equation (4.12):

q: (s') = B'me () . Vit st (4.21)
The household i’s budget constraint implies:

ul

18§ 5 () e ()] = 0 (122

(
/’L’L t:0 St

Solving for ¢; takes us to:
&= (1-75)Ey (Z ﬁtyz‘t> (4.23)
t=0

If 37' = 1 +r where r is the risk-free rate of interest, then equation (4.23) can be

rewritten as:
_ r Yit
C; = E, E 4.24
L+r °< (1+r)t> (124)

t=0

Remark 53 This is a version of Friedman’s permanent income model: a household with
zero financial assets consumes the annuity value of its human wealth defined as the expected
discounted value of its labor (endowment) income.

Implicit wealth dynamics

In the Arrow-Debreu complete market model, the household’s implicit financial wealth in
a given period t, contingent to the actually realized history s’, corresponds to the current
value of all household’s purchased net claims to current and future consumption (in all
possible states of the world) net of its outstanding liabilities. Note that only claims and
liabilities contingent on the particular realization of s' have to be taken into account: the
others have to be discarded.

More formally, the household’s implicit financial wealth, expressed in terms of date ¢,
history s* consumption good, is:°

Wi (s') = Z Z ¢’ (s7) [cir (87) — yir (87)] (4.25)

T=t S7‘|St

where:

t T qr (s7)
()= (4.26)

By setting ¢;; (s7) = 0 for all 7 > ¢ and all s we easily obtain the natural borrowing

6Note that, for the feasibility constraint, Zle Wit (st) =0 Vt, st
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limit at date ¢t and history s':

o0

Dy (s) = Z Z ¢ (sT)yir (s7), Vs (4.27)

T=t 57|st

In other words, household i at date t — 1 and history s'~! cannot promise to pay more

than the maximal value it can repay from date ¢ onwards by setting consumption to zero,
contingent on the realization of s;.

The Negishi algorithm

1. Set one of the Lagrange multipliers, say p,, to an arbitrary positive value. Guess
some positive values for the remaining multipliers p,, for i = 2,3,...,I.

2. Solve (4.20) for ¢y, (s*) and use (4.19) to recover the remaining c;, (s*). This generates
a candidate consumption allocation {{c; (s")};~ 0}5:1.

3. Solve (4.12) for the price system {g; (s") };—,-

4. For all households, compute »~.° >~ q; (s") ¢t (s*) and D72 Do 1 (8") yie (s*). For
the households for which the present value of consumption exceeds the present value
of their endowment, increase the corresponding i;, while for those households for
which the reverse holds, decrease p;.

5. Iterate until convergence on steps 2 — 4.

4.1.3 Arrow sequential markets

Arrow (1953) shows that the equilibrium allocation obtained under complete markets
is equivalent to the one obtained under a recursive sequential market structure when
individuals are endowed with rational, or self-fulfilled, expectations. In other words, a
competitive economy where financial trades occur only in a complete set of one-period-
ahead state-contingent claims to consumption reaches the same allocation as the complete
market economy if: (i) one-period markets reopen each period; (ii) individuals correctly
forecast future state-contingent market prices.

At each date t > 0, households are allowed to trade claims to t + 1 consumption that
are contingent on the realization of s;,1. Denote a; (s*) the total amount of net claims
to date ¢t consumption that household ¢ inherits from the previous period, contingent on
the realization of history s’, and @ (s;11]s") the price of one unit of consumption at date
t + 1, contingent on state s,y1, if the current history is s, expressed in units of date t,
history s’ consumption; the function ; is called pricing kernel.

The household faces a sequence of intratemporal budget constraints of the form:

cit (') + D Qr (seals) @i (serals’) = aar (s°) + v () (4.28)
St+1

where a; 141 (s¢11]$") represents the total amount of net claims to date ¢ + 1 consumption,
contingent on the realization of s;,1, if the current state of the world is s'.
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To avoid the possibility of Ponzi schemes, let us impose the following NPG condition:

lim q;,; (s7) aggey (s77) >0, Vs (4.29)
j—)
where g/, ; (s"7) = g (s"77) /g (s') is the Arrow-Debreu date-t price of claims to con-
sumption good units to be delivered in date ¢ + j, contingent on history s**7.
Each household solves the following optimal control problem:
max Uz = EO

B (c; )] (4.30)
CCORCITSCTSIED | N tz; t

s.t. i (') + Z Q: (504115 @ipsr (se4]s") = aie () + yar ()

sty1|st

lim g, (s49) qipsy (s7) >0, Vst

J—00

aio (o) given

The corresponding Lagrangian is:

S 8 e ()] m () + s

t=0 gt

Nit (St) Qi (St) + Y (St) — Cit (St) — Z Q: (St+1|5t) ;41 (St+1|5t)

st41]st

To obtain the first order conditions, derive the Lagrangian with respect to ¢; (s*) and
{ai (5t+1|5t)}5t+15

B [ei (s) ] m (s') = i () (4.32)
771‘1:( )Qt (St+1|3t) = Mit41 (StH) (4.33)

Combining the previous equations takes to:

Q: (se41]s") = B%EJF])]MH (s"s") (4.34)

since ;1 ('Y st) = myq (st41) [y (81).

The sequence of pricing kernels {Q- (s-11 | s7)}—,,; taken as given by our individuals
in problem (4.30) should be more precisely defined as the sequence of future expected, or
perceived, pricing kernels: recall that the markets for future one-period-ahead consumption
claims are closed. Nothing in the model guarantees a prior: that the sequence of perceived
state-contingent prices will eventually correspond to the actual sequence of equilibrium
prices. As already mentioned, we impose this outcome by assuming rational expectations,
1.e. that the expected state-contingent prices do actually clear the markets once the

corresponding date has arrived and the state of the world is revealed.

Definition 54 A sequentz'al trading competz'tz've equilibrium is an initial distribu-
tion of wealth {ai (s50)}1_,, an allocation {c;}!_,, and a set of pricing kernels {Q (se41]s') }32,
such that:
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1. For all i, the consumption allocation c¢; solves household i’s problem, given a; (o)
and the pricing kernels;

2. The households’ consumption allocation and the implied asset allocation satisfy the
following feasibility constraints:

Z [cie (s") = (s")] = 0 (4.35)
Zaitﬂ (st+1|st) = 0 Vst (4.36)

for all realizations of {s'};,.

Equivalence of allocations

Remark 55 We shall now show that the equilibrium allocation of the complete markets
model is also an equilibrium allocation for the sequential trading model if:

1. {aio (50)}_, = 0, i.e. each household must exclusively rely on its own endowment
flow to finance consumption;

sttl . ..
2. Qy (s411]8") = %st))’ i.e. the pricing kernel corresponds to the Arrow-Debreu

t+1

price at date t + 1 contingent on s'™' expressed in terms of date t, history s' con-

sumption good.

The first step is quite straightforward. Take the first order conditions for the Arrow-
Debreu model, equation (4.12), and divide the condition in period ¢ + 1 by the condition

in period ¢:
B (e (5] Ty (1) g (s74Y)
)

' [ci (st)] e (s7) o q(s

= Q: (s141]5") (4.37)

Remark 56 FEquation (4.37) is actually identical to the equilibrium condition (4.34):
hence, if the pricing kernel is properly defined, the equilibrium allocations in the complete
markets and sequential trade models follow the same time path.

However, it remains to be shown that the two equilibrium allocations share not only
the time path but also the initial consumption level. In the sequential trading framework,
the variable a; (s') represents household ¢’s financial wealth in date ¢ contingent on the
realization of s'. In the complete market framework, a comparable concept of financial
wealth was defined as Wj; (s') in (4.25).7

Consider the intratemporal budget constraint (4.28) evaluated at date 0 under the
assumption that a;y (so) = 0:

cio (So0) + Z Qo (s1]50) ain (s1]50) = yio (S0) (4.38)

S1

"Note that the NPG condition (4.29) imposes the natural debt limit at date t and history s*: —a; (s') <
Di (st) Vst.
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Being a;1 (s1]s9) = Wi1 (s') by construction, we have that:

ZQO (s1]50) @i1 (s1]s0) qu Wi (s') = (4.39)

1|50

S5 a5 e (57) — e (57)

T=1 s7|sg

since:

Loy 0y (ST au(sh)
¢ (s7)ai (s') = ¢1(s') o (s0)

Equation (4.38) can therefore be expressed as:

= g7 (s7) (4.40)

o (S0) o (S0) + ZZ% Czt — Yit ( )] = qo (50) Yio (s0) (4.41)

t=1 st

Remark 57 Note that equation (4.41) turns out to perfectly reproduce the intertemporal
budget constraint for the complete market model (4.9). This implies that ci(so) will
be identical in the two frameworks. Hence, the equilibrium allocations in the sequential
trading model and the complete markets model are identical, since they share the same
starting point and the subsequent dynamics.

4.2 Recursive competitive equilibrium

We shall now restrict our approach by imposing a particularly convenient form for the
exogenous stochastic forcing process, in order to allow a recursive formulation of the
sequential trading model.

Assume that the forcing process s; follows a discrete-state Markov chain characterized
by:

e a state space S

e a transition density 7 (s'|s) such that 7 (s'|s) > 0 and ), 7 (s'|s)ds =1, Vs € S;
e an initial density g (s) such that > 7 (s)ds = 1.

Hence:

7 (s'|s) = Prob(si41 = sy = s) (4.42)
7o (s) = Prob(so =) (4.43)

Note that the density over the history s' = {s;, $;_1, ..., s} is:
7 (s') =7 (s¢]si1) ™ (S¢-1]Se-2) - - 7 (s1]50) 70 (S0) (4.44)
If trading occurs after sq has been observed, then 7 (sg) = 1 for the given sq.

Remark 58 The Markov property guarantees that:

T (s's"71) = 7 (sefse-1) (4.45)
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Assume furthermore that the households’ endowments are time-invariant measurable
functions of s;:

yie (8') = yi (1) (4.46)

4.2.1 Recursivity
Consider (4.20) again:

50 e ()]} = St (1.47)

; Hq
Quite evidently, c1; (s*) = ¢1 (s;). Equation (4.19) then implies that c; (s*) = ¢; (s¢).

Remark 59 In a recursive framework, individual consumption in a complete market com-
petitive equilibrium is a time-invariant function of the current realization of s; alone.

The first order conditions (4.12):

B [e; (se)] 7 (') = piq (se), Vit s (4.48)
il that (seer) o e (5es)] 7 (secalsy)
q\St41) B’ [c; (8¢41)] T (Se41|5¢

(G0~ ) (1.49)

Remark 60 In a recursive framework, the pricing kernel in the sequential trading equi-
librium boils down to a time-invariant function of the current s; only:

Qs (St+1|5t) = % = Q (st11]81) (4.50)

4.2.2 The Bellman equation

Under the previous assumptions on the stochastic properties of the forcing process s;, the
sequential trading model can be easily restated in recursive form, using the dynamic pro-
gramming approach. For the generic household, the state of the economy is summarized
by a vector of two state variables, the exogenous aggregate state s; and the endogenous,
individual state financial wealth a. Hence, the solution to the household’s dynamic prob-
lem will be summarized by a pair of policy functions, one for consumption, ¢ = ¢ (a, s),
and one for next-period wealth, a (s') = d’ (a, s, s').

¢=cla,s), a(s)=d (a,s,s)

The Bellman equation for a generic household is the following:

v(a,s) = max {u (¢)+p ZU [a(s'),s'|m (s’|s)} (4.51)

{e.a(s)} ;
s.t. ¢+ Z a(s)Q(s'|s) =a+y(s)

s'|s

a(sy>-D(s), Vs

S
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where:

D)=y qq((‘it))y (s) (4.52)

t=0 s¢]s

The Lagrangian for the maximization problem in (4.51) is:

L=u(e)+ BZU la(s),s|m(s'|s)+ A |a+y(s)—é— Zd(s’) Q (s'|s) (4.53)

s'|s
The first order conditions:
(@) = X (4.54)

ovla(s),s]

b da

m(s's) = AQ(5]s) (4.55)

The Benveniste-Scheinkman formula implies that:

o (a,s) .
5y U (¢) (4.56)
Hence: L .
Q(5']s) = Bu (;)(7;)(8 |s) (457)

Definition 61 A recursive competitive equilibrium is an initial distribution of wealth

{aio}i[:l, a set of policy functions {¢;, di}le, a set of value functions {Ui}i[:l, and a pricing

kernel Q (s'|s) such that:

1. For all v, the policy functions solve household i’s problem, given a;y and the pricing
kernel;

2. The households’ consumption and asset allocations implied by the policy functions
satisfy the following feasibility constraints:

Z[@(S)—yi(s)] = 0, Vs (4.58)
Zdi(s’) = 0 V¢ (4.59)

4.3 The stochastic growth model

The economy is inhabited by a continuum of infinitely-living identical agents that can
be aggregated into a single representative agent, whose preferences on infinite history-
dependent consumption streams ¢ = {¢; (s")},-, may be represented by the intertemporal
utility function defined in (4.1):

Ul(c) = io: Zﬁtu [c: (s")] ™ (s") = Eo

t=0 st

Z Bu (Ct)] (4.60)
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The final consumption good is produced using a CRS technology summarized by the
following production function:

yi (%) = A (') F [k (87 e () L] (4.61)

where y; (s') is the per-capita output level at date ¢ and history s', k; (s'"!) the per-
capita contingent physical capital stock, n; (s*) € [0, 1] the contingent time share devoted
to labor, A; (s') the so called Total Factor Productivity (TFP), and L the fixed time
endowment (from now on, for the sake of simplicity, L = 1). The production function
enjoys all the properties listed in Section 2, p. 32. Being leisure not valued in the
utility function, can safely assume that n; (s') = 1 V¢,s'. This allows us to define the
intensive production function as f (k) = F (k,1); note that f(0) =0, f' > 0, f” <0,
limy_o f (k) = o0, and limj_, f (k) = 0.

Physical capital is the only durable good in the economy. An aggregate intratemporal
resource constraint holds in each period:

kren (8) = (1= 8) ke (871) +ye (s") — e (59) (4.62)

where § € [0, 1] is the depreciation rate. We assume the existence of a strictly positive
initial capital stock ky. The consumption good can be freely transformed into physical
capital, and vice-versa, physical capital can be freely transformed into the consumption
good (hence, investments may be negative).

4.3.1 The planning problem

In order to identify the Pareto-efficient allocation, se set up the usual fictitious social
planner problem:

max Ulc) = Ey

{ee(st),ker1(st) 2o

> Bl (ct)] (4.63)

s.t. ki1 (st) =(1—-0)k (st_l) + A, (st) f [/ft (st_l)] — ¢ (st)
ko >0 given

The usual Lagrangian is:

L= SN [Fufer ()] 7 () + (4.64)

t=0 st

Av () {1 =0) ke (1) + A (') [k ()] = e (5) = e (57) 1]

To obtain the first order conditions derive the Lagrangian with respect to ¢; (s*) and
kt+1 (St)l

o [ct (st)] m (st) =\ (st) (4.65)
u e (sY)] mi () = (4.66)
55 s ()] e (57) (v (1) 1 [l ()] + 1)

stt+1
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Note that (4.66) can be rewritten as:

U e (sY)] = (4.67)
83 e (1)) mean (5°167) (g (547) £ P (5] +1— 0}
sttl|st
| W (c) = BE A (cosr) [Ararf (ksn) +1— 0]} (4.68)

4.3.2 Arrow-Debreu complete markets

Assume that the representative household owns all factors of production, makes con-
sumption/investment decisions under perfect foresight, and rents capital and labor to a
representative firm. The latter uses the services of capital and labor to produce the fi-
nal consumption (investment) good. All markets are competitive, and all trades occur
at date 0. For this economy, a price system is a sequence of history-dependent prices
{q: (s"),re (s") ,wy (') },2, where (i) g; (s") is the date-0 price of one unit of consumption
at date t and history s'; (#i) r; is the date-0 price of one unit of capital rented at date ¢
and history s'; (i7i) wy is the date-0 price of one unit of labor rented at date ¢ and history

st.

Households

The representative household faces the following intratemporal budget constraint:

I (st) [ct (st) + ki (st) —(1—10)k (st_l)] =1 (st) ky (st_l) + wy (st) (4.69)

Iterating on (4.69), we get the present-value intertemporal budget constraint:
Z Z qt (St) Cy (st) —
t=0 gt
5 o )+ o () 004 () s (7)) )

t=0 st

where ¢_; (s7!) = 0. Note that, if u’ (-) > 0, then it will never be optimal to held a strictly
positive capital stock in the limit, because this would decrease the amount of resources
available for consumption.

Remark 62 Optimality requires the following terminal condition:

lim th ) ki1 () =0 (4.70)
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This implies that the household’s problem can be reformulated as:

(st ()24 v="h ;ﬁ K (Ct)] (4.71)
s.t. Z S a (57 [er (1) + hor (7)) = (L= 8) e (s1)] =
Z > [re (s7) ke (877 + we (s7)]

where the sequence of prices {¢; (s),r: (s') ,w; (s")},. and the initial condition kg > 0 are
taken as given.
The corresponding present-value Lagrangian can be written as:

Z Blu(c)

,ui Z {re (s") ke (s"71) +wy (8")] + (4.73)

t=0 st

—q () [ce (8") + kegr () = (1= 0) ke (s'71) ]} (4.74)

Deriving the Lagrangian with respect to ¢ (s*) and k.1 (s') we obtain the first order
conditions:

L = E + (4.72)

B [ (s)] m (s") = @ (s")p (4.75)
qt (St) = Z [Tt+1 (StH) + Qi1 (StH) (1-— 5)} (4.76)
st+1|st

Firms
The representative firm maximizes the present value of economic profits, given by:
1= Z Z {a (s") A (8) [ [k (1)) —we (8") —re (") K (871) } (4.77)
t=0 st
The first order conditions:

wels) = () A () LF b ()]~ fell (S k)Y @)
() = o () A () fo b (7] (4.79)

Equilibrium

In equilibrium, we have:

u' () = BE AW (1) [Arsr fi (Fera) + (1= 6)]} (4.80)
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Implicit wealth dynamics

In this setting the household’s implicit financial (non-human) wealth in a given period t,
contingent to the actually realized history s!, corresponds to the current net value of all
household’s purchased claims to current and future consumption (in all possible states
of the world) net of its labor income. Hence, the value off all household’s current and
future consumption claims, net of labor income and expressed in terms of date ¢ , history
s’ consumption good is:

W, (s') = Z Z [qt (s7) er (s7) — wh (s7)] (4.81)
T=t sT|st
where: (1)
w! (st) = (5 (4.82)

Note that, after a slightly cumbersome and tedious derivation, (4.81) boils down to:

W, (s') = Z Z [dh (s7) er (s7) —wlh (s7)] = (4.83)

T=t 57‘|5t

SN S AC ) F b ()] 4 (1 ) ke (57 = hya () p — i (57) | =

=Tl (57 Yer (57 1) e (57)
(4.84)
DD AGE) [ =0k (5771 = ke (D] + 75 (5T ke (571} = (4.85)
T=t s7|st
[ (s) + (L= )] ka (s") + (4.86)

S XY ) ()M =0)] —aghy (s p ke (57 = (4.87)

T=t+1 S7‘—1|5t 57‘|S7‘—1
N

[ (s") +1—6] ke (s") (4.88)

where:

(4.89)

4.3.3 Arrow sequential markets

At each date t > 0, the representative households is allowed to trade claims to date
t + 1 consumption that are contingent on the realization of s, ;. Denote a; (s') the total
amount of net claims to date ¢ consumption that the household inherits from the previous
period, contingent on the realization of history s, and Q; (syy1]s") the price of one unit
of consumption at date ¢ + 1, contingent on state s;,;, if the current history is s’. The
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household faces a sequence of intratemporal budget constraints of the form:

Ct (St) + Z Qs (St+1|5t) Q41 (St+1|5t) + ki (St) =

sty1]st

ar (") + [re (") + 1= 6] ke (s"7) +wy (s")

where a;,1 (s;41]$") represents the total amount of net claims to date ¢ + 1 consumption,
contingent on the realization of s;,1, if the current state of the world is s’.
To avoid the possibility of Ponzi schemes, let us impose the following NPG condition:
St t+j t+j t+j
jlirglo G (s7) ay (s7) >0, V' (4.90)
where gf,; (s"77) = g4, (s"7) /g4 (s') is the Arrow-Debreu date-t price of claims to con-

sumption good units to be delivered in date ¢ + j, contingent on history s*7.
The household solves the following optimal control problem:

max U = E Bu(c )] (4.91)

{en(st) dern () fara (sealst}, ) tz; t
s.t. Ct (St) + Z Qi (St+1|8t) Q41 (St+1|8t) + i1 (St) =

Stt1]st

ar (s) + [re (") + 1= 6] b (s77) + o ()
lim ¢, ; (s"") ayy (s"77) >0, Vs
j—00

a(sp) given

The corresponding Lagrangian is:

L= 33 (e () e () +

o 7, (st) {at (St) + [rt (st) +1— (5} k; (st_l) + wy (st) +

—C (St) - Z Q: (5t+1|5t) Q41 (St+1|5t) — ke (St)

Sp41]st

To obtain the first order conditions, derive the Lagrangian with respect to ¢ (s'),

ki1 (s), and {az (St+1|st)}st+1'

B [e (s)] me (sY) = m, (s") (4.92)
D e (37 [(rea (") +1=0)] = i (1) (4.93)

st+1|st

Mt (St) Qs (St+1|5t) = My (StH) (4.94)
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Combining the previous equations takes to:

L= > Q(sels) [(reer (s7) +1-9)] (4.95)
st+l|st
Q (se41]s) = BMWH (s"*s") (4.96)

u'[ci ()]

Note that, if Q; (s¢41|s") = ¢/, (s"), then:

ZQt sena[s') arn (seals’) + kg (s Z Qi1 (577) Whaa (5771) =

St+1 sttl|st
Z Q: St+1|3 (Tt 1 ( t+1) +1- 5)] ki1 (St)l
St+1|st WH.:(rsH‘l)

Is to say:

ZQt (St+1|5t) Q41 (St+1|5t) + ki (St) =

St41

kt+1 Z Q: st+1|s (rt 1( t+1) +1-— (5)] (4.97)

sttl|st
A

J/

-~

=1

or:

ZQt (5t+1|5t) Qpq1 (St+1|3t) =0 (4.98)

St41

4.3.4 Recursive formulation

Assume again that the forcing process s; follows a discrete-state Markov chain charac-
terized by a state space S, a transition density 7 (s'|s), and an initial density g (s), so
that:

7 (s') = 7 (se]si—1) ™ (Se-1]8e=2) - - 7 (s1]50) ™0 (S0) (4.99)

Assume that the aggregate productivity level A, (s') is a time-invariant measurable func-
tion of its own past level and the current state s;:

Ay (s') = A A (7)) 8] (4.100)
For simplicity, assume that:
t
At (St) = StAt—l (St_l) = H SjA_l (4101)
=0

for a given initial value of A_;.
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Pareto-efficient allocations

The Bellman equation for the planning problem is:

V(K,As) = mgxu(C)+BZV(K',A',S')W(S'|S) (4.102)
s.t. K’:(l—é)Ks—kAsf(K)—C
A = As

The solution to this problem can be represented as a policy function C' = C (X),
where X = {K, A, s} is the vector of state variables. The first order condition for the
maximization problem on the right-hand side of problem (4.102) is:

uc (C) =B Vi (X') 7 (s']s) (4.103)

The envelope condition:
Vi (X) =uc (C)[1 =6+ Asfr (K)] (4.104)

Hence, the policy functions solve the following functional equation:

uc [C(X)] =B ucC(X[1 =6+ A fic (K] (s'|s) =
BE {uc [C(X)][1 =6+ A's'fr (K')] |s}
where:

K = (1-0)K + Asf (K)—C(X) (4.105)
A = As (4.106)

Sequential trading

The vector X = {K, A, s} is a complete description of the aggregate state of the econ-
omy, in terms of which the one-period contingent payoffs are defined. In a decentralized
economy with sequential trading the spot prices will depend on X. Hence, we are allowed
to define a set of price functions, r (X)), the rental rate of capital, and w (X), the wage
rate, both measured in units of consumption good to be delivered in the current period.
Note that while the aggregate value of K, the endogenous element of X, is determined by
the households’ decisions on consumption and investment, each single household, being
a price taker, considers the aggregate capital stock K as beyond its control. Households
know that only the individual capital stock, k, is under their direct control.

As already described in (4.102), the aggregate capital stock and the aggregate pro-
ductivity level evolve according to the following laws of motion:

K' = (1-0)K + Asf(K)—C (4.107)
A = As (4.108)

The representative household forms believes regarding the price functions, the aggre-
gate laws of motion for K and A, and the transition probability 7 (s'|s), formally denoted
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7(X),w(X), K'=K(X),A =A(X),and 7 (s'|s). Given these believes, the households
solve the following dynamic programming problem:

v(k,X) = maxu(c)+ vk, X" 7 (ss 4.109
(5, X) = macu(e)+ 530 (K, X)7(15) (4.109)
s.t. K=1-0+7X)]k+w(X)—c
K' =K (X)
A= A(X)
The first order condition:
ue () =B v (K, X') % (s']s) (4.110)
The envelope condition:
v (b, X) =u.(c)[1 —0 4+ 7 (X)] (4.111)

The Euler equation:

u, (¢) = ﬁZuc ()[1 =647 (X7 (s|s) = BE{uc. () [1 =6+ 7(X)]|s} (4.112)

The representative firm forms believes on the price functions, 7 (X) and w (X), and
solves the following static profit maximization problem:

mkaXAsf (k) —7(X)k—w(X) (4.113)
The first order conditions:

(X)) = Asfi (k) (4.114)

w(X) = Asf(k)— Asfy (k) k (4.115)

In equilibrium, under rational expectations:

k = K
c(K,X) = C(X)
FX) = 7(X)=r(X) = Asfk (K)
w(X) = v X)=w(X)=Asf(K)—r(K)K
K(X) = (1-0)K+Asf(K)—-C(X)
A(X) = As
)

= 7 (s]s)
More formally:

Definition 63 A recursive competitive equilibrium is a value function v (k, X) and
a policy function c(k, X) for the representative household, an aggregate per capita policy
function C (X), factor price functions r (X) and w (X)) such that these functions satisfy:

1. the representative household’s Bellman equation (4.109);
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2. the necessary and sufficient first order conditions for profit maximization (4.114)-

(4.115);
3. the consistency between individual and aggregate decisions, ¢ (K, X) = C(X);

4. the aggregate resource constraint (4.107).

Note that C'(X) = C (X), since they solve the same dynamic programming problem.
In other we showed once again that a recursive competitive equilibrium is Pareto-efficient.



Chapter 5

Asset pricing

5.1 The consumption CAPM

In our first Chapter we analyzed the intertemporal consumption/saving problem under
the assumption that households had the possibility to accumulate assets, focusing however
on the characteristics of the optimal consumption path. We will now discuss the role of
assets in greater detail, and, in particular, how different assets (shares, bonds, securities,
and so on) can be competitively priced in our dynamic and recursive macroeconomic
framework.

5.1.1 Equity shares and the equity premium

As a first step in this direction, we slightly modify the previously developed model by
assuming that assets may be held as equity shares, i.e. as property claims on income
flows, and as risk free one-period financial bonds.! Denote respectively ¢; and b; the
number of shares and bonds held by the household. We furthermore assume that:

e During each period, shares are traded on a competitive market. The state-contingent
price of a share, measured in consumption good units, is denoted p;.

e At the beginning of each period, shares pay a non-negative stochastic dividend d;,
measured in consumption good units too; dividends are governed by an exogenous
stochastic Markov process.?

e Bonds purchased during period ¢ pay with probability one an interest rate 7., at
the beginning of period ¢ + 1.

e Finally, for the sake of simplicity, non-asset income is zero, u.e. y, = 0 Vt.

The household solves the following (fully recursive) stochastic optimal control problem
taking the sequence of state-contingent prices {p;,711},-, and the stochastic process

!One-period financial bonds pay both the capital and the interest at the end of the period.
2 As usual, we assume that {d}oc, is of mean exponential order less than gt

87
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driving d; as given:

max UO = EO
{ct,st+1,be+1}72,

Zﬁtu(ct)] (5.1)

st. PG b= e +d) g+ (14+7) by — ¢
{q0,b0} given (5.2)

By deriving the Lagrangian with respect to c¢;, b;11, and ¢;11, and reorganizing the
first order conditions we obtain the following standard Euler equations:?

BE [u' (Gr)] (1 +Te1) = u' (&) (5.3)
) A Per1 + disq — J (e
98 [of G PR ) (5.4)

As usual, we impose the transversality conditions:

lim & By (Abyi1) =0 (5.5)
j—o0
lim (7, (ijquj-H) =0 (5.6)

Risk neutrality and bubbles

Consider now equation (5.4), and rewrite it as:

pr = Ei [Bm_u (Peg1 + diy) (5.7)

where: ,
3 — B’ (Cetj)
Lttt Ty (ét)
is the intertemporal marginal rate of substitution between date t and ¢ + j, better known
as the stochastic discount factor.
Given that E; (zy) = E; (z) E; (y) + Cov, (x,y), we can rewrite (5.7) as:

(5.8)

pe=E; (Bt7t+1) Ey (pry1+ diy1) + Covy (Bt7t+17pt+l + dt+1) (5.9)

Under risk neutrality, i.e. if the Bernoulli utility function is linear and the marginal
utility of consumption constant, (5.9) would collapse to:

e = BE (D41 + dig1) (5.10)

Note that (5.10) does not endogenously determine the sequence of state-contingent
prices that satisfy the individual’s Euler equation; we are still in a partial equilibrium
framework, and the sequence of state-contingent prices is exogenous. Equation (5.10)
simply describes how a sequence of prices should behave to make the Euler equation hold.

Remark 64 Under risk neutrality (a very restrictive assumption, stronger than certainty

3Note that the risk-free interest rate will be paid in the future but is currently known with certainty;
the dividend on shares, being stochastic, is instead currently unknown.
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equivalence) the current share price should depend on its conditionally expected future
value and the conditionally expected future dividend only.

In other words, once discounting and the future dividends have been accounted for,
no other aggregate variable should Granger-cause the share price.

Equation (5.10) is a linear stochastic difference equation and therefore admits the
following general class of solutions (check!):

= E (Z ﬁjdt+j> + % (5.11)

where ¢, is a martingale, i.e. Fy(§,,,) =&,

Remark 65 FEquation (5.11) is a forward-looking pricing rule relating the current share
price to: (i) the expected discounted value of future dividends; (ii) a stochastic exogenous
term following a martingale. The latter is called a “bubble”, since the corresponding
stochastic process is completely unrelated to any fundamentals.

The bubble is a quite disturbing component of our pricing function, but unfortunately
cannot be ruled out in the current partial equilibrium framework.

The equity premium

Define the rate of return on shares as ri11 = (pry1 + diy1) /pe — 1, and rewrite (5.9) as:

Ey (Bt,t—&—l) [1+ E; (ri41)] =1 — Cou, (Bt,t+17rt+1) (5.12)

Remark 66 FEquation (5.12) tells us some interesting things:

e Neither the variance of the stochastic discount factor, nor the variance of the rate
of return play an explicit role in the FEuler equation (of course, uncertainty plays an
indirect role via precautionary saving).

e The covariance between the stochastic discount factor and the rate of return, instead,
plays an explicit, and essential, role. Note, in particular, that there is a relationship
between covariance and savings for a given value of E; (ri11) (make sure you see it!
Hint: note that Bm 41 depends on the slope of the consumption path).

When the return to any asset covaries positively with non-asset income, the corre-
sponding asset income will be high (low) when non-asset income is high (low). Evidently,
a risk averse individual would prefer a high asset income in “bad” states, and a low asset
income in “good” states, in order to smooth consumption over states of the world. A
risky asset, i.e an asset whose returns covary positively with consumption, does not help
the owner to hedge the risk associated with the volatility of income.

If the asset return covaries positively with consumption, then it covaries negatively
with the marginal utility of consumption. The return to a risky asset, then, covaries
negatively with the stochastic discount factor. Combining (5.3) and (5.12) we obtain:

E; (re41) — Tt = —Covy (Bt,t+1a7“t+1) (1 + Te41) (5.13)

When equation (5.13) holds, the individual is indifferent between investing in shares
or bonds.
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Remark 67 The left-hand side of (5.13) is called conditional equity premium, while
the whole equation is also known as the Consumption-based Capital Asset Pricing
Model (CCAPM).

As we can see, the equity premium is proportional to minus the covariance between
the stochastic discount factor and the rate of return. Note that:

e If the covariance in (5.13) is zero, then the expected rate of return on shares has to
equal the interest rate on risk free bonds to make the individual indifferent between
shares and bonds.

e If the covariance is negative, i.e. if shares are risky, then the individual demands a
higher expected rate of return on shares, in order to compensate their riskiness.

The economic motivation behind the individual’s behavior is always the same: con-
sumption smoothing, not only across time but also across states of the world.
The empirical puzzles

We reconsider now equation (5.7), and assume an isoelastic Bernoulli utility function;
taking the unconditional expectation of both sides, we obtain*:

(@) B (1+ ml)] =1 (5.14)

Ct

BE

where ( is the curvature parameter in the Bernoulli function, equal to the reciprocal of
the intertemporal elasticity of substitution.

Furthermore, we assume that both the consumption growth and the rate of return on
shares are jointly log-normally distributed:

3= S = et (5,19
1471 = (14 7)et+173% (5.16)

where {¢;,¢;} is a vector of 7id innovations, jointly distributed as a multivariate normal
with zero means, variances {02, 0%}, and covariance o...
Substituting (5.15) and (5.16) into (5.14) and simplify, we get:
(1+r)pE (e‘get“*%f"zest“_%”g) =7 (5.17)
Equation (5.17) can be rewritten as:

(1+7)8E (e—cet+1+%fas+6t+1—%o§) — C (5.18)

It can be shown that, if z and y are normally distributed variables with means p, and
11, variances o> and o7, and covariance o4y, then:

o2 o2
Bloww o+ ] =exp (i + G 4+ G+ ) (5.19)

1A straightforward extension of the Law of Iterated Expectations states that E [E; (x:)] = E (z).
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Taking this result into account, equation (5.18) can be rewritten as:
(1+7) 6€(1+C)§%03—5065 — 74 (5.20)

Taking logs of (5.20) we obtain:

In(l14+7r)=—-In(B)+ln(y) — (1 +¢) C%O’? + &0 (5.21)

Consider now equation (5.3). The same procedure leads us to:

In(147) = ~In(8) + CIn (3) ~ (1+0) (507 (5.22)

Combining (5.21) and (5.22) and taking into account that In (1 + z) ~ z, we obtain
an expression for the long-run average equity premium:

r—7T /&0 (5.23)

Now, consider that the historical average values of r, 7, and 0. for the US® are
respectively equal to 0.01, 0.07, and 0.00219. Substituting these values in (5.23), we obtain
a curvature parameter equal to ( = 27.39. Unfortunately, a vast empirical literature
suggests that a value of ( higher than 5 is at odds with available evidence on consumption
behavior. This incongruence between theory and data is known as the equity premium
puzzle.

We may however decide that there is something wrong with these empirical estimates,
and accept that the curvature parameter is large®. In this case, another puzzle shows up.
Consider equation (5.22). The average consumption growth factor v is equal to 0.018,
while its variance o2 is equal to 0.00127. Given these numbers, equation (5.22) may
hold only if the intertemporal discount factor is very close to one. Furthermore, if we
use the summary statistics from post-WWII US data, which imply a lower variance of
consumption growth, the same equation is compatible only with a discount factor greater
than one. This second incongruence is known as the risk-free rate puzzle.

Finally, assume that we could be satisfied with both a large curvature parameter and
a discount factor greater than one. Equation (5.22) would imply an extremely high sensi-
tivity of the risk-free interest rate to changes in the average growth rate of consumption.
Unfortunately, the available empirical evidence, both across time and across countries,
supports exactly the opposite view.

5.1.2 Financial bonds and the term structure

Assumes that n competitive markets for risk-free n-period financial bonds exist. Denote
bi++; the amount of j-period bonds purchased by the representative individual at date
t. The interest rate on a j-period bond purchased at date ¢, denoted 7, ;, is known

®Summary statistics for US annual data from 1889 to 1978. See Kotcherlakota (1996, Table 1), who
uses the same data as Mehra and Prescott (1985).

6Campbell and Cochrane (1999, pp. 243-245) discuss the issue, suggesting that the high risk aversion
implied by this class of models is not implausible as it seemed, and that microeconomic empirical evidence
is not completely at odds with their conclusions. Furthermore, they argue that high risk aversion may
be an inescapable feature of identical-agent models that want to be consistent with the equity premium
facts in both the short and the long-run.
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with certainty at the beginning of period ¢. For the sake fo simplicity, let us rule out the
existence of secondary bond markets, i.e. once the representative individual has purchased
a bond, she cannot resell it before the maturity date. The exogenous non-asset income y;
follows a stochastic Markov process.

The individual solves the following stochast(ix(): optimal control problem, taking the
sequence of state-contingent prices {{ft7t+j }?:1}15 . and the stochastic process driving v,

as given:

max - UO = EO
{eudbrers); oo

Zﬁtu (ct)] (5.24)

s.t. Z biryj = Z (L4 Tejt) beji + e —
j=1 j=1

{6070+j}j given (525)

Deriving the Lagrangian with respect to ¢; and {by ¢4, }?:1, and reorganizing the first
order conditions, we obtain the following n Euler equations:

B E ' (cori)] (1 + Frpg) = u' (), V) (5.26)

We may then rewrite (5.26) as:
Riyvj = By (Bt,t+j) (5.27)

_ -1
where Ry = (1+7445) , Or as:

t+5—1
Riyvj = By ( H ﬁs,s—‘rl) (5.28)

s=t

We apply the Law of Iterate Expectations to obtain:

t4j—1
Eiyja ( 1T BS,5+1>] (5:29)

s=t

Ry =Ey

At date t + j — 1, all factors B&S“ such that s <t + j — 2 are known. Therefore:

Rirj=FE

s=t

t+j—2 i
H Bs,s+1Et+j—1 <Bt+j—1,t+j)] (5.30)
Rewrite (5.30) as:

Rtﬂf—&-j =E [Bt,t—&-j—lEt-&-j—l (Bt—&-j—l,t-&-j)} (5-31)

Substitute now (5.27) into (5.31):

Riivj = E (Bt,t+j—1Rt+j—1,t+j) (5.32)
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A by now familiar result tells us that:

Rty = By (Bt,t+j—1) By (Ritj-1.4+5) + Covy (Btﬂf—&-j—l’ Rt+j—1,t+j) (5.33)

Finally, we can substitute (5.27) into (5.33):

Rt,t+j = Rt,t+j—1Et (Rt+j—1,t+j) + Cov, (Bmﬂ‘—la Rt+j—1,t+j) (5-34)

Under the following strong assumption:
Covy (Bt7t+j_17Rt+j—l,t+j) =0, Vj=2, (5.35)

equation (5.34) boils down to a version of the well-known Pure Ezpectation Theory of
the term structure of interest rates:

J
Rt,t+j = Rt,t+1 H E, (Rt+s—1,t+s) (5-36)

s=2

Remark 68 As implied by (5.36), the pure expectation theory states that the term struc-
ture is downward-sloping (upward-sloping) only if the individual expects a decreasing (in-
creasing) sequence of future one-period interest rates.

Equation (5.34) generalizes the approach by introducing of a risk premium component
that depends on the covariance between the stochastic discount rate and the future one-
period interest rate.

5.1.3 Discount bonds and the term premium

Consider now a slight modification of the previous setting. Each period, a set of risk-free
discount bonds” with maturity length going from one to n periods are issued. We assume
that competitive markets for bonds with maturity length from one to n exist in all periods,
i.e. that secondary markets for issued bonds are always open. Note that bonds issued at
date ¢t with a maturity length of j periods are therefore materially indistinguishable form
bonds issued at any previous date with the same maturity length left. In other words,
bonds issued in the past with a current maturity length of j periods have to be traded
at the same price of bonds issued in the current period with the same maturity length:
bonds are characterized by their current maturity length only. Denote b; ; the number of
j-period bonds held at the beginning of period ¢ by the household. The price of a j-period
bond, denoted R; ;, is known at the beginning of period ¢ (note that R;o = 1). As before,
exogenous income y; follows a stochastic Markov process.

The individual solves the following stochas’g(i)c optimal control problem, taking the

sequence of state-contingent prices {{Rt,j };‘11} and the stochastic process driving y;
=0

TA j-periods discount bond issued at date t delivers one unit of consumption good at date ¢+7.
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as given:

max Uo = Eo
{et.{be+1,5}5} 2,

s.t. Z Rt,jbt-‘rl,j = Z Rt7j—lbt,j—l + Y — G
j=1

J=1

> B (cs)] (5.37)

Note that in the previous budget constraint b;.; ; represents the stock of bonds with
current maturity j that will be available to the household at the beginning of next period,
when their maturity will clearly be j — 1. Deriving the Lagrangian with respect to ¢; and
{bi41, }?:1, and reorganizing the first order conditions, we obtain the following n Euler
equations:

BE [u' (cer1) Revrja] = v (cr) Ry V) (5.38)
We may then rewrite (5.38) as:
Ry; = Ei (Bt,t+1Rt+1,j—1) (5.39)
Iterating on (5.39) gets:
Ry; = Eq (ﬁm-s-j) (5.40)

Compare (5.27) and (5.40). Evidently, the price of a risk free j-periods discount bond
has to be equal to the reciprocal of the gross interest rate on a j-period risk-free bond.
Applying our well known result to (5.40), we get:

Ri; = Ey (Bt,t—&-l) E; (Rt+1,j—1) + Cov; (Btﬂf—&—l? Rt+1,j—1) (5.41)

Divide both sides of (5.41) by R;;, and define h; 1 ; = Rii1-1/Rij — 1 as the one
period holding return, i.e. the rate of return to holding a j-period bond for one period
and then sell it on the secondary market.

Remark 69 FEven if our discount bonds are intrinsically risk-free assets, the fact that
future prices on secondary markets are currently unknown with certainty transforms the
risk-free multi-period assets into possibly risky one-period assets.

Substituting (5.27) into (5.41) we obtain:
Et (h't—‘,—l,j) — ft71 = —COUt (Bt,t—‘rl? ht+17j) (1 + f@l) (542)

Remark 70 The left side of (5.42) is known as the term risk premium. When the
J-period bond is risky, i.e. when its return is positively correlated with non-asset income,
the representative individual requires a higher expected holding return to be indifferent
between the risky bond and a risk free one-period bond.

Exercise 71 Prove that E; (hyis ;) — Tts = —Cov (BLHS, ht+57j) (1+75), where hyis;
18 the rate of return to holding a j-period bond for s periods.
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5.2 The Lucas model

5.2.1 The basic framework

We present now the simplest general equilibrium asset pricing model, developed by Lucas
(1978) and generally known as the “tree model”. The model is based on the following
assumptions:

e The economy is populated by a large number of identical individuals, whose prefer-
ences satisfy the usual regularity conditions.

e "Trees” are the only durable good in the economy. Each individual is endowed with
one and only one tree at date 0. In each period, then, there are as many trees as
individuals; we denote ¢; the amount of trees held at the beginning of each period;

e All trees yield d; non-storable fruits, or dividends, measured in consumption good
units at the beginning of each period. Dividends are the only source of income, and
they follow an exogenous stochastic Markov process.

e During each period, competitive markets for consumption goods and trees exist. As
before, we denote p; the price of a tree measured in consumption good units, and
we normalize to unity the price of current consumption.®

Since all individuals are alike, we can summarize them in a representative individual,
who solves the following simplified stochastic optimal control problem, taking the sequence
of state contingent prices {p;},-, and the stochastic process driving d; as given:

max UO = EO
{ct,qe+1}72,

Zﬁtu (Ct)] (5:43)
=0
st pegr1 = (pr+di) @ — ¢

We easily obtain the corresponding Euler equation:

d
98 [of () 20| ) (5.44)
t

and the transversality condition:

i 5B [ (¢) pjgj] = 0 (5.45)
The perceived sequence of state-contingent asset prices {p;}.-, taken as given by the
representative individual may a priori be different from the actual sequence of state-
contingent equilibrium prices. Under rational expectations, however, these two sequences
coincide. We therefore impose rational expectations, and interpret the asset prices in
(5.44)-(5.45) as the actual equilibrium prices.
We can now push further our analysis by imposing a set of equilibrium conditions.
Note that:

8 An alternative but perfectly equivalent framework would be the following: each individual is endowed
with a tree; equity shares, representing property claims to flows of dividends, are traded on a competitive
market; p; represents the price of shares measured in consumption goods.
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e since all individuals are identical, the only possible equilibrium outcome is that each
individual owns one and only one tree, i.e. ¢; = 1 V¢ (if one individual wants to buy
or sell a tree, all other individuals want to do the same; the only possible equilibrium
outcome is that everybody keeps its tree);

e as long as lim, ,ou' (¢) = 400, it would never be optimal to waste resources.

Note that, to analytically solve the model, we have to anticipate these equilibrium out-
comes and impose them on the first order conditions from the very beginning. Together,
they imply that, in equilibrium:

o =dy, Vit (5.46)

The dynamics of consumption, as described by (5.44), depends on the current asset
price, the expected future asset price, and the expected future dividend. The asset price is
determined on the competitive market for trees, by equating aggregate demand and sup-
ply. The aggregate supply of trees is fixed and exogenous, while the aggregate demand
depends on the saving behavior of the representative individual. However, we concluded
that in equilibrium ¢; = d;, where d; is an exogenous stochastic process. In some sense,
then, in equilibrium consumption and savings are exogenous too (note that in equilibrium
savings are zero all the way long). We have to find a sequence of state-contingent asset
prices that equate the exogenous aggregate supply of trees to the corresponding aggregate
demand determined by “exogenous” savings. Those prices, once announced by the “auc-
tioneer,” make the households happy with their current asset stocks, and therefore inhibit
actual trade on the asset market. In other words, the asset market never sees a single
transaction taking place. This does not mean, however, that it can be considered just a
“virtual market”: the model is based on the assumption that the institution called “asset
market” exists and works properly in all periods, 7.e. that a “Walrasian auctioneer” is
always ready to announced equilibrium prices, independently of the actual trade volume.

To find the sequence of equilibrium prices, we have to solve equation (5.44) once the
equilibrium condition ¢; = d; has been imposed:

pe=Ey [Bt7t+1 (Pes1 + dig1) (5.47)
where: ot (des)
7 B’ (det

= 5.48

Bt,t-‘r] u' (dt) ( )

To solve (5.47) for p;, we evaluate it at date ¢ + 1, substitute the result in (5.47) again,
and reorganize:

p = E [Et—H (Bt7t+2pt+2)} + (5.49)

+Ey [Et+1 (Bt7t+2dt+2)} + Ey (Bt,t+1dt+1)

Using the Law of Iterated Expectations and iterating, we obtain:

pe=Ey (Z Bt7t+jdt+j> + jh_{glo Ey (Bt,t+jpt+j) (5.50)
j=1
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Now, recall that in equilibrium s; = 1; we can divide (5.45) by «’ (d;) > 0 and rewrite
it as: ~
Jim E, <5t,t+jpt+j) =0 (5.51)

Note that, by combining the TVC with an equilibrium condition, we are now able to
rule out asset price bubbles.
This takes us to:

pe = Ey (Z Bt,t+jdt+j> (5.52)
j=1

Remark 72 FEquation (5.52) shows that the value of a tree is simply equal to its expected
discounted stream of dividends. Note that the tree’s past performances are completely
irrelevant. Only the future matters!

Exercise 73 Assume that the Bernoulli utility function is isoelastic, and that diy; =
dier11, where ¢ is a iid log-normal innovation, with In (¢;) ~ N (0,02). Show that 3, and
r¢ are themselves id and jointly log-normally distributed (not so easy ...).

The stochastic discount factor revisited

The previous exposition of the Lucas model was silent about the possibility of trading
state-contingent consumption claims. It should be by now clear that the complete-market
or sequential-trading Arrow-Debreu machinery would be redundant in this case,® since
in equilibrium, being all households identical, state-contingent consumption claims, that
have to be in aggregate zero net supply, would not be traded. However, casting the Lucas
model in terms of the Arrow sequential trading framework discussed in Section 4.1.3, p.
72, may help us to gain some insights on the very nature of the stochastic discount factor
in general equilibrium.

Assume that the forcing process s; follows a discrete-state Markov chain characterized
by a state space S, a transition density 7 (s'|s), and an initial density 7o (s), so that
7 (s") = m (se|se—1) -7 (s1]80) mo (S0). At each date t > 0, the representative households
is allowed to trade a full set of j-period-ahead contingent consumption claims. Denote
at; (st+;) the date t end-of-period holdings of contingent claims to one unit of consumption
J periods ahead at date ¢+ j, contingent on the state at date t+j being s;, ;. Furthermore,
let the j-period-ahead pricing kernel Q); (s'|s) denote the price of one unit of consumption
j periods ahead, contingent on the future, j-period-ahead, state being s, given that the
current state is s, and expressed in terms of current consumption.

In this case, the household faces a sequence of intratemporal budget constraints of the
form:

¢ (se) + Z Z Qj (Strj15¢) arj (Sewjlse) + pe (s¢) qeen (s¢) =

I=1 sp4j]st

ato (st) + [pe (st) + di (s¢)] @ (se)

90r, more precisely, that the shares themselves are redundant assets in a general equilibrium frame-
work, since a full set of state-continent securities already does the job.
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The household solves the following optimal control problem: !’

max U=E,

{Ct(st)Ht-s-l(St)v{at,,j(5t+j|5t)}}

st o (s) + Z Z Qj (Serjlse) ary (serjlse) + pe (se) qren (s¢) =

J=1 sy jlst

aro (st) + [pe (1) + di (s1)] g (s¢)

Jim. Uiyj (Se4g) Arg (Se41) 2 0, Vs

> B (ct)] (5.53)

Qg j (So) given
The corresponding Lagrangian is:

L= Z Z [B'ulee (so)] e (1) +

t=0 s

e (se) {aco (s¢) + [pe (1) + di (s0)] g (s1) +

—ci (st) — Z Z Qj (st418¢) ar (Sewjlse) — pe (st) G (5e)

I=1 st jlst

The first order conditions, taking recursivity fully into account, are:

Bl e (s 7 (s0) = 1(s) (5.54)
p(s) = Wt%[p(st+l>+d<st+1>1 (5.55)
_ 1 (St41)
Ql (St+1|8t) - n(st)
. 77(St+2)
O

Qo) = 30 Lo (5.56)

St4j—1|st U
Note that:
ar t4i
Qsels) = 3 P o)) = 650

St4j—1|st t

'd (se4 J
= Z %Hﬂ(é}-‘r’r|st+’r—l)
St+j—1]st t 7=1

""We impose the following NPG condition: limj_.oc ¢f,; (St45) arj (se45) > 0, Vspyj, where
i1 (8e45) = Qe (Se45) /e (8¢) is the Arrow-Debreu date-t price of claims to consumption good units to
be delivered in date ¢ + j, contingent on the state s;;.
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Furthermore, note that:

Q2 (St42ls1) = Z Q1 (42]5041) Q1 (Se41]s:)

St+1|st

Qs (stalse) = Y Qu(sesalsire) Qi (seaalseen) @ (sea1lse) =

St+2|st

= D1 DL @i (seralsira) Qi (sepalsin) | Qu(sials) =

st1lse | seq2lsit

— Z QQ (St+3|5t+l) Ql (St+1|st)

st41lst

Hence, from the first order conditions, imposing the equilibrium conditions:

c(s) = d(s)
q (St) = 1
apj (Sijlse) = 0, Vj

we get:

pls) = > Qulsinals) [p(sirn) +d (s041)]

St+1|st
Qj (sewjls)) = Z Q)1 (St4415041) Q1 (Se415¢)
St+1|st
"ld (5441
Q1 (st41]81) = %W(SHH&)

For the Law of Iterated Expectations:

E : E : Qj (St+4l8t) dij (Se45) = (E ﬁttﬂdtﬂ)
I=1 setjlst
since:

Z @5 (seejlse) = Z B ] H (St4r|Str-1) = Ei (Bt,t—&—j)

St4jlst Styj|se =1

5.2.2 A “many-trees” extension

99

(5.58)

(5.59)

(5.60)
(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

Let us extend the Lucas model in a straightforward direction. Assume there are n different
kinds of tree, and as before each individual is endowed with one of each kind at date 0.
Denote ¢;; the number of j-kind trees held at the beginning of each period, when all j-kind
trees yield dj; dividends, measured in consumption goods. Again, dividends are the only
source of income. During any period, each kind of tree can be traded on a competitive
market. As before, we denote p;; the price of a j-kind tree measured in consumption
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goods. Assume that the n-dimensional vector {djt}?zl follows a multivariate Markov
process.
The individual solves the following stochastic optimal control problem!!, taking the se-

o0
quence of state-contingent prices § {p;;}"_ and the stochastic process driving {d;;}"_
g Jt) =1 =0 Jt) =1

as given:

max - UO = EO
{Ctv{th+1}]-}S:t

> B (ct)] (5.68)

s.t. ijtqjt-H = Z (Pje + dj) 40 — i
j=1

j=1

{gjo};_, given (5.69)

We easily obtain the n Euler equation:

= (¢), Vj (5.70)

58, P

Djt
As before, we note that, in equilibrium, ¢; = d;, where d; = Z?Zl d;;. Substituting this
condition in (5.70) leads to:

pjt = Ei [Bt,t—&-l (pje+1 + djt+1)} (5.71)

where Bt,t+1 = ﬁjul (diyr) /0’ (dy)-
Iterating on (5.71) and ruling out asset price bubbles, we obtain:

Dt = E, (Z Bt,t+sdjt+s> (5-72)
s=1

Note that:

e The price of each kind of tree is equal to the corresponding expected discounted
future stream of dividends.

e All asset prices share the same stochastic discount factor; this common factor de-
pends on the total flow of dividends d; only.

e The price of each kind of tree is influenced by the performance of the remaining
kinds only via the common discount factor.

We may reconsider the model from a slightly different point of view. We may assume
that, as in the basic Lucas model, there exists only one kind of tree for each individual,
and that each tree produces a sequence of dividends denoted {d,}.-,. However, the
corresponding property claims are divided between n equity shares. A j-kind share entitles

the owner to receive a sequence of dividends {dj},”,, with d; = 7, djs.

" Consumption remains the only control variable; there is now a vector of endogenous state variables
{sj+}"_, and a vector of exogenous state variable {d;;}""
G5 =1 g Gt j=1-
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The value of a tree at date t, denoted p;, is equal to the total value of all shares that
represent property claims to its fruits. In other words, from (5.72):

=) E (Z Bt,t+sdjt+8> = E; (Z Bt,t+sdt+s> (5.73)
7=1 s=1 s=1

The value of a tree depends only on the expected discounted value of its dividends.
It is completely independent from the structure of ownership claims. This result is a
simplified version of the Modigliani-Miller theorem.

5.2.3 Ricardian equivalence

Let us introduce the government in the Lucas model. We assume that the government:

e consumes (i.e. throws away, for analytical convenience) a per capita share of current
output equal to g;;

e imposes a lump-sum per capita tax 7;

e issues a one-period risk free government bond.

We assume that government consumption follows a nonnegative exogenous stochastic
process satisfying each period the constraint 0 < g; < d; with probability one. The lump-
sum tax 7, follows an exogenous stochastic Markov process too. Furthermore, we denote
as b, the amount of government bonds held by the representative individual at date ¢, and
assume that bonds purchased during period ¢ pay with probability one an interest rate
7411 at the beginning of period ¢ + 1. Each period, the government has to satisfy with
probability one the following intratemporal budget constraint:

Gt =Tt +biyr — (L +7) by (5.74)

Since it would be unfeasible for the government to repay existing debt contracting
always new debt, we impose a NPG condition, lim; o, Eo (Rhbi+1) < 0, where R} =
[ (T+ 7)) " and R! = 1.

Iterating on (5.74) and imposing the NPG condition, we obtain the intertemporal

government budget constraint:

Ey < Ey

io: Rfﬂ't

t=0

> " Rigi + (14 70) bo

t=0

(5.75)

The representative individual solves the following stochastic optimal control problem,
taking the sequence of state contingent prices {p;, T1+1},, the initial condition {qo,bo},
and the stochastic process driving d;, ¢;, and 7; as given:

max UO = EO
{et,qt41,be 41320

> B (ct>] (5.76)

st peqryr F b= pe+di) e+ (L+7¢) by — e — 74
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The Euler equations are:

d
e G (5.77)
t
BE [u' (cer1)] (1 + Ter1) = u' (cr) (5.78)
In equilibrium, consumption is equal to disposable dividend income, ¢; = d; — ¢

(why?).!2 We can substitute this condition in (5.77) and (5.78), solve recursively (5.77)
for p;, and rule out asset price bubbles, obtaining:

e = Ey (Zém-y-jdt—&-j) (5.79)
(1+ft+1)_1 = Et (Bt7t+1) (580)

where Btﬁj = pu' (dij — gi45) /' (de — g2).

Remark 74 FEquations (5.79) and (5.80) tell us that the equilibrium state-contingent
prices, together with the equilibrium allocation consumption, do depend only on the dis-
posable income, and not on how the government finances its consumption.

In other words, the overall competitive equilibrium is independent from the govern-
ment financial decisions. This is a straightforward example of the so-called Ricardian
equivalence principle.

Exercise 75 Assume that the government issues both one and two-periods risk free bonds.
State the relevant NPG conditions. Provide an expression for the government intertem-
poral budget constraint. Show that the competitive equilibrium is also independent from
the term structure (this is a kind of Modigliani-Miller result).

Exercise 76 Lump-sum tazes are ruled out. The government finances its consumption
by a constant proportional tax on dividends and by issuing a one-period risk free bond. For
the sake of simplicity, assume that by = b > 0 Vt. Describe the competitive equilibrium.
Does Ricardian equivalence still hold? Comment on your results.

5.2.4 Unbacked money

We now introduce unbacked money in a simplified endowment economy, similar in spirit
to the Lucas model presented in the previous Section, and study its role as a pure store of
value. We focus on the deterministic case to obtain a clearer intuition. However, similar
results hold in a more general stochastic framework too.

Assume that at date 0 the government puts M = 1 units of unbacked and inconvertible
currency into circulation; at any later date, then, the money supply is simply equal to
unity. Denote 7; the price of money at date ¢, measured in consumption good units (7,
is simply equal to the reciprocal of the price level) and m; the amount of money held by
the representative individual at date ¢t. At date 0, the government pays the seigniorage
revenues back to the representative individual via a lump-sum transfer zg = 7. At any

12Substitute (5.74) into the representative individual’s intratemporal budget constraint, and impose
the usual equilibrium condition s; =1 V¢.
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later period, transfers are zero, i.e. z; = 0 Vi > 1. For the sake of simplicity, assume
exogenous income is constant across time, i.e. that y; =y >0 Vt.

The representative individual solves the following optimal control problem, taking the
sequence of prices {m;},-, and the sequence of transfers {z },-, as given:

max Up = i B (¢;) (5.81)
=0

{eemer1}2o

S.t. tht+1 = Ty —+ y + Zr — C
As usual, we easily obtain the Euler equation:

B’ (coy1) o1 = u' (¢p) (5.82)

and the transversality condition:

lim 4 (c;) mjmjyy =0 (5.83)

j—o0

In equilibrium, ¢, = y and m; = 1. We substitute these equilibrium conditions in

(5.82), and solve recursively the result for m; given my:'3

= B""'m (5.84)
By substituting (5.84) into (5.83) and imposing the equilibrium conditions, we obtain:

lim 37’ (y) m; = ' (y) m (5.85)
J—00
Given our assumptions, the TVC can be satisfied only if 71 = 0. In other words, we
conclude that the only sequence of prices {7}, satisfying the first order conditions, the
feasibility constraints, and the TVC is {m, = 0},2,. The representative individual wants
to purchase a positive amount of money only if the price she has to pay for it is zero.

Remark 77 We just proved a fundamental result: in a representative agent, perfectly
competitive economy, unbacked currency has no role as a pure store of value. The only
possible equilibrium value of money is zero.

Exercise 78 Money is an asset, i.e. a way to transfer purchasing power across periods.
We know that individuals love to smooth consumption over time. Explain intuitively why
in the previous model individuals do not exploit the possibility of smoothing consumption
(please, don’t arque that, since non-asset income is constant over time ...)

Exercise 79 As before, assume that at date 0 the government puts M = 1 units of
currency into circulation. At any later date, the government distributes as a gift 1 > 0
units of currency for each unit held by the representative individual. Restate the optimal
control problem and derive the Fuler equation. Under this assumption, can the value of
money be strictly positive in equilibrium?

13 Note that lim;_, m; = 00 if g > 0, since 8 € (0,1) by assumption.



Chapter 6

Equilibrium business cycles

In the previous Chapter, we discussed the basic RCK model in a completely deterministic
setting. The empirical evidence, however, suggest that the dynamics of all (real and
nominal) macroeconomic variables, such as consumption, output, investments, and so
on, presents at high frequencies (monthly, quarterly, and even yearly) a clear stochastic
component.

In Figure 7?7 we plot the quarterly US time series for GNP, private consumption
(nondurables), private investment (private fixed investment plus consumption durables),
changes in inventories, government expenditure (consumption plus investment), and net
trade (exports minus imports) over GDP. The variables are expressed in real (1996 prices)
per-capita annual terms, and the sample extends from 1947:1 to 2000:111.! As we can see,
output, consumption, investment, and government expenditure? are non-stationary, since
their first moment is clearly increasing over time. Furthermore, their dynamics seems
to be strictly linked, suggesting the existence of cointegration. However, they may also
share the same deterministic time trend. Changes in inventories are extremely volatile,
and their first moment seems quite constant over time. Finally, the net trade/GDP ratio
is extremely volatile too, but is characterized by a decreasing time trend.

Figure 6.2 plots the quarterly employment rate and the average worked hours (ex-
pressed as the ratio between the average weekly worked hours in non-agricultural estab-
lishments and the personal discretionary weekly time endowment, i.e. nine hours a day
for seven days in a week) for the US, over the 1948:1-2000:11I period for employment and
the 1964:1-2000:11T period for hours worked. The employment rate is characterized by a
more or less constant first moment until the end of the 60s, and by a positive time trend
thereafter, caused mainly by the increasing participation of women in the labor force.
Worked hours present instead a clear decreasing time trend until the beginning of the 90s.
The most striking properties of these data is that employment is far more volatile than
worked hours.

The overall impression we get from a simple visual inspection of Figure 77 is that the
stochastic nature of these variables can be hardly denied.? Once we agreed upon the view
that macroeconomic variables are expressions of a underlaying multivariate stochastic
process, we are interested in characterizing their main stochastic properties, known as
business cycle properties. To isolate the cyclical components from the (deterministic

!The quarterly National Income and Production Accounts (NIPA) data are freely available from the
Bureau of Economic Analysis.

2Note the positive shocks to government expenditure at the beginning of the 50s, at the end of the
60s, and from the middle of the 80s to the beginning of the 90s. Any idea of the causes?

3For an alternative view, see the book edit by Jess Benhabib (1992).

104
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Figure 6.1: Main US aggregate variables.
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Figure 6.3: HP trend and cycle in US GDP.

or stochastic) trend, and actually make the series stationary, we need some de-trending
methodology. We follow the standard procedure and apply the so-called Hodrick-Prescott
filter (HP). Figure 6.3 plots the log of quarterly GDP, its HP trend, and the corresponding
cycle component, expressed in percentage deviations from the trend.

Table 6.1 summarizes the relevant stochastic properties of HP filtered quarterly per-
capita output, consumption, investment, employment, Solow residual,’ and net trade
(exports minus imports), across eleven OECD countries.” We focus on a set of standard
statistics, as the relative volatility, defined as the ratio between the standard deviation of
each variables and the standard deviation of output, the autocorrelation coefficient, the
national comovement with output, defined as the contemporaneous correlation coefficient
with output, and the international correlation, defined as cross-country correlation of
each variable. We provide the statistics’ cross-country averages and the corresponding
standard deviations (the international correlations are averaged across country pairs).

The main stylized facts about business cycles at the quarterly frequency are the fol-
lowing:

1. consumption, employment, net trade, and the Solow residual are all less volatile
than output;

2. investment is three times more volatile than output;
3. all variables are highly autocorrelated; in particular, employment and output;

4. consumption, investment, employment, and the Solow residual are procyclical (pos-
itively correlated with output);

4The Solow residual is an empirical proxy for TFP, defined as é; = ; —Sn7; — s Kl;;t, where sy = wn/y
and sx = rk/y are respectively the labor and capital shares in income, and a hat identifies variables in
logarithms. Three strong assumptions are hidden in the previous definition: (i) the aggregate production
function is CRS; (i%) factor markets are competitive, so that factors are paid their marginal productivity;
(4i7) factor shares are constant over time. Unfortunately, no time series for the quarterly capital stock are
available. If the focus is on the stochastic properties of the Solow residual, we can bypass the problem
by assuming a low variability of capital at the quarterly frequency, and approximate the former (quite
crudely) by linearly detrending the quantity a: = g+ — Snit.

’The data set regards eleven OECD countries (Australia, Austria, Canada, France, Germany, Italy,
Japan, The Netherlands, Switzerland, UK and USA). The sample period is 1970:1-1997TV (for Australia,
Germany, the Netherlands, and Switzerland the sample period is shorter for some variables). Variables
are GDP at constant prices, private consumption, private fixed investment, civilian employment, standard
Solow residuals, and net exports over output. The table has been quoted from Maffezzoli (2000).
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Rel. Vol. Auto. Nat. Cor. Int. Cor.
Avg. Std. | Avg. Std. | Avg. Std. | Avg. Std.
— — | 0.79 0.04 — — | 042 0.20

093 019|070 0.18| 0.74 0.12] 0.23 0.22
3.01 055|076 0.17] 0.v8 0.10] 0.31 0.21
0.70 0.14| 0.88 0.06| 0.64 0.15| 0.35 0.21
0.78 0.09|0.69 0.13] 090 0.05| 0.36 0.16
NX | 056 040| 0.68 0.17|-0.35 0.12| — —

=2~ QX

Table 6.1: Observed stochastic properties

5. net trade is countercyclical;®

6. all variables are positively correlated across countries.

The modern equilibrium business cycle theory interprets this stochastic behavior as
the reaction of the economy to a limited number of unpredictable shocks that hit specific
parts of the system. These shocks are transmitted to the macroeconomic aggregates via
an internal propagation mechanism, specific to the particular model at hand. Shocks
may generally be: (i) real shocks, as shocks to TFP or government consumption; (i)
nominal shocks, as shocks to international prices or money supply; (iii) preference shocks,
as sudden variations in the rate of time preference.

The standard literature on equilibrium business cycles focused on the effects of real
shocks in competitive economies, and is consequently known as Real Business Cycle
(RBC) theory. Recently, the increasing interest in other sources of randomness and
in alternative transmission mechanism has driven researchers to incorporate many non-
Walrasian features in the basic framework, like sticky prices or monopolistic competition.

However, the easiest way, both from an analytical and computational point of view, to
introduce randomness in a general equilibrium framework is to generalize the RCK model
by assuming that the aggregate production function is subject to a sequence of persistent
productivity shocks. This explains why a stochastic version of the RCK model, developed
initially by Brock and Mirman (1972), lies at the hart of the Real Business Cycle theory
that originated from the seminal work of Kydland and Prescott (1982).

6.1 The Brock-Mirman model

Consider the RCK model with exogenous growth discussed in Section 3.2, p. 53. Assume
that TFP, denoted a;, € R, ., follows a stationary Markov process. In particular, assume
that the natural logarithm of a; follows an AR(1) process of the form In(aiy1) = pln(as) +
gt, where 0 < p < 1 is the persistence parameter and &; ~ N(0,0?) the 7d innovation.
Assume furthermore that the Bernoulli utility function and the aggregate production
function belong respectively to the isoelastic and “Cobb-Douglas” families.

Under these assumptions, the planner solves the following stochastic optimal control

6Imports are more correlated with output that exports; as a result, net trade is negatively correlated
with output.
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problem:
N ctl_“
max Uy=E I6; 6.1
o =B (YA (6.1
S.t. "th—‘rl = atkta —+ (1 — 5) kt — G
In(ai1) = pln(a;) + &, & ~ N(0,07) (6.2)

{ko, a0}  given

where = gyl + € (0,1), « € (0,1), and v > 1.
As usual, we build a Lagrangian and derive it with respect to ¢, k11, and \;, to obtain
the following first order conditions:

Ct_u = )\t (64)
SO)\t = Et |:)\t+1 (at+104kf‘_~__11 + 1-— 6)] (65)
"th—‘rl = atkta + (1 — 5) kt — G

where ¢ = /3. Conditions (6.4)-(6.6), together with the stochastic TVC, are necessary
and sufficient for problem (6.1).

6.1.1 Solution methods

Equations (6.4)-(6.6) form a system of deterministic/stochastic difference equations, whose
solution is an infinite sequence of probability measures converging in the long-run to a
so-called invariant distribution. This invariant distribution can be interpreted as the vari-
ables’ joint unconditional distribution. Given the recursive structure of our problem, the
solution may equivalently be seen as a collection of time-invariant policy functions.

From both points of view, a purely qualitative analysis is impossible or overwhelmingly
difficult. We may however study the numerical properties if a closed form solution in terms
of policy functions were actually available. Unfortunately, being the system so highly non-
linear, no exact close form solution does generally exist. To explicitly solve it, we need
some kind of approximation.

We solve our model using two alternative approaches. First, we apply the well-known
standard King, Plosser, and Rebelo (1988, KPR) procedure, which log-linearly approxi-
mates the Euler equations around the steady-state under a certainty equivalence assump-
tion. Second, we apply the projection method described in Sections and .

There are two main reasons for doing this. First of all, the old-fashioned log-linear
approach (a standard instrument in the quantitative macroeconomist toolbox) remains
useful when the number of state variables in the system is high. However, the KPR
procedure, being based on a certainty equivalence assumption, rules precautionary saving
out; by comparing the KPR results with the alternative ones, obtained using a procedure
that takes the system’s non-linearity fully into account, we can evaluate the importance
of precautionary saving at the business cycle frequency.

The King, Plosser, and Rebelo procedure

The KPR procedure works in three steps. We start by assuming certainty equivalence. In
other words, we assume that the planner acts under uncertainty as if future random vari-
ables will turn out equal to their conditional mean. Any behavior induced by uncertainty
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alone, as precautionary savings, is ruled out. A direct consequence is that the uncondi-
tional mean of the invariant distribution equals the deterministic steady-state, obtained
by dropping the conditional expectation operator. The steady-state becomes the ideal
locus where to approximate our system. Then, we transform the system in logarithms
and linearly approximate it around the steady-state, using a first-order Taylor expansion.
Finally, we solve the resulting linear system of expectational difference equations with the
standard Blanchard and Khan (1980) algorithm. The whole procedure is outlined in the
Appendix.

The projection method

As in Section 1.5, p. 26, we exploit the model’s recursive structure to approximately solve
the following functional equation for the policy function ¢ (k,a):

E [C (k’, eln(“/))_u [&eh‘(a/) () 11— (5} | k, eln(“)] = pc (k,eh‘(“))_“ (6.7)

where:

oln(a) p.a + (1 _ 5) k—c (k,eln(a))

K =
v
In(a') =pln(a) +¢
e~ N(0,0?%)

As in our previous numerical exercises, we solve (6.7) using the collocation method
(see the Appendix for details)

6.1.2 Calibration

To actually solve the system and perform any numerical exercise, we need to specify a
sensible parameterization. This task is quite demanding, for some parameters are difficult,
or practically impossible, to estimate. The approach we follow here, known as calibra-
tion, is extensively discussed in Cooley (1997). He states that “calibration is a strategy
for finding numerical values for the parameters of artificial economic worlds...[it] uses
economic theory extensively as the basis for restricting a general framework and mapping
that framework into the measured data.” The parameters are chosen “so that the behav-
ior of the model economy matches features of the measured data in as many dimensions
as there are unknown parameters.” In our case, we will match long-run features of the
model with the corresponding long-run features of US data, since our main interest are
the model’s short-run cyclical properties.”

Now, the parameters to pin down are the following: u, the intertemporal elasticity of
substitution, 3, the intertemporal discount factor, «, the “Cobb-Douglas” coefficient, ¢,
the depreciation rate, v, the long-run growth rate, p, the TFP persistence parameter, and
o, the standard deviation of productivity shocks.

A large sub-set of them can be easily estimated. In particular, we can fit a linear
trend to the logarithm of quarterly US GDP, and estimate a long-run quarterly growth
factor equal to v = 1.0046. The TFP persistence parameter and the standard deviation of

"The interested readers may refer also to Favero (2000, ch. 8, joint with M. Maffezzoli).
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Figure 6.4: The Solow residual for the US.

productivity shocks may be estimated by fitting an AR(1) model on the standard Solow
residual in logs; we obtain p = 0.965 and o = 0.007. Figure 6.4 plots the logarithm of the
Solow residual (Actual), the fitted time series (Fitted), and the implied innovations to
TFP (Residual).Finally, most authors agree on an elasticity of intertemporal substitution
between 0 and 2; we chose a standard value of 0.5, i.e. p = 2.

The remaining parameters, namely 3, «, and J, are left for our calibration exercise.
As already anticipated, we choose these parameters to reproduce some long-run features
of actual US data.

The Cobb-Douglas technology implies that the factor shares in income are always
constant; in particular, the capital share equals sy = «, while that labor share, given
constant returns to scale, equals sy = 1 — a. In order to replicate the observed long-run
factors share in total income reported by Cooley and Prescott (1995) we set o = 0.4.

As already noted, if certainty equivalence holds, the unconditional mean of the in-
variant distribution matches the deterministic steady-state. Evaluate equations (6.33)
and (6.34) at the steady-state, and solve them for the steady state capital-output ratio,
Ty = Sk/(p —1+0), and the consumption share in income, s, = 1 — (7 — 1 + §)rgy,.
Empirical estimates of the long-run capital-output ratio and the consumption share are
readily available. Cooley and Prescott (1995) obtain a long-run quarterly capital-output
ratio equal to 13.28; we calculate a consumption share equal to 0.81. Manipulating the
previous equations, we can express B and ¢ as functions of these observable long-run
properties, d = 1 —y + (1 — s.) /T4y and 3 = v/ (o/rg, + 1 — 8). The implied values are
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Figure 6.5: Impulse response (benchmark).

£ =0.985 and § = 0.01. To summarize, then, our benchmark parameterization will be:

n=2, v=1.0046, p=0.965 o= 0.007
a =040, B=0.985 §=0.01

6.1.3 Numerical experiments
Impulse response functions

We may be interested in studying the effects of an unexpected shock to one of the (endoge-
nous or exogenous) state variables, for instance a 1% sudden increase in TFP. In other
words, we may consider the impulse response functions of our system, i.e. the adjustment
paths for all variables of interest that describe the system’s transitional dynamics.

In Figure 6.5 we plot the impulse response functions, expressed in percentage devia-
tions from the steady-state®, for the log-linearly approximated system. Admire consump-
tion smoothing at work! On impact, the system’s reacts in the following way:

1. the rise in TFP produces a parallel increase in current output, being the current
capital stock fixed;

2. the persistent but transitory increase in output translates into a less than propor-
tional increase in permanent income;

8In other words, for a generic variable z; we plot #; = (x; —z) /o, where z is the corresponding
steady-state value.
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3. consumption increase, but only to a limited extent, since the representative individ-
ual reacts to the increase in her permanent income by smoothing consumption over
time;

4. the limited reaction of consumption drives investment up, whose increase is more
than proportional to the rise in output;

5. the interest rate (the marginal productivity of capital minus depreciation) increases;

6. the slope of the consumption path increases, driven by the rise in the interest rate.
During the transition back to the steady-state, we observe that:

1. being the productivity shock highly persistent, output converges slowly to its steady-
state level;

2. the accumulation of capital and the decrease in TFP drive jointly down the interest
rate, back to its steady-state level and even further down;

3. at some point (quarter nineteen, more or less), the interest rate becomes lower than
in steady-state, and the slope of the consumption path turns negative;

4. net investment becomes negative, and the capital stock starts to be eaten up;

5. the interest rate increases again and converges back to its steady state level from
below;

6. consumption, output, investment, and capital converge slowly to their steady-state
levels.

This mechanism depends heavily on the high persistence of the productivity shocks. If
the persistence is low, the increase in permanent income is only marginal, and the interest
rate remains high for a limited number of quarters only. Figure 6.6 shows the reaction
of our model to a positive shock to TFP when the persistence parameter is p = 0.10.
As we can see, the reaction of consumption is extremely limited, while both output and
investment increase sharply on impact, but then converge quickly to the steady-state.
The interest rate returns to its steady-state value in only three quarters.

The previous results are illuminating: the internal transmission mechanism of the
Brock-Mirman model is extremely weak. A highly transitory shock to productivity gener-
ates only highly transitory deviations from the steady-state for all variables except physical
capital. The deviation from steady-state experienced by capital is still persistent, but its
scale is definitely smaller.

Consider now the opposite extreme, and assume that the technology shocks are per-
manent, i.e. that the stochastic process driving TFP is a random walk, with p = 1. The
impulse response functions are plotted in Figure 6.7. A permanent and positive shock
to TFP increases the productivity of a given resource endowment, and translates in a
one-to-one increase in the representative individual’s permanent income. In a partial
equilibrium framework, this would imply a one-to-one increase in consumption. However,
in general equilibrium, the interest rate is not constant across time, but it is endogenously
determined. Actually, a permanent increase in TFP translates directly in a permanent
increase of the interest rate. The consumption path, then, becomes steeper, and con-
sumption increases less than output on impact. Investment increases with consumption;
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Figure 6.6: Impulse response (p = 0.1)

while the consequent increase in the capital stock drives slowly the interest rate down to
its new steady-state value. The slope of the consumption path decreases (without be-
coming negative), and all variables, namely output, consumption, investment, and capital
slowly converge to a new steady-state, since the unit root in the stochastic process driving
TFP makes the system non-stationary. In other words, a persistent shock to productivity
simply “reallocates” the whole system to a new steady-state.

Stochastic properties

We are mainly interested in the small sample stochastic properties of our model at busi-
ness cycles frequencies. To estimate these properties, we perform a so-called Montecarlo
experiment. We draw from a random number generator a finite sequence of #id Gaussian
innovations (the simulation horizon is typically 7" = 100) and iterate the policy functions
to obtain the simulated deviations from the steady-state for all endogenous and exogenous
variables. To isolate the dynamics at business cycles frequencies, we filter the simulated
series applying the HP filter, with a smoothing parameter equal to 1600. Then, we cal-
culate the statistics of interests, namely the relative volatility, the autocorrelation, and
the correlation with output. We repeat this procedure for N times (in our experiments,
N = 100) and summarize the empirical distribution of our statistics of interest by calcu-
lating their mean, standard deviation, and so on, across the N replications. The results
for our benchmark parameterization are summarized in Table 6.2.

The stochastic Brock-Mirman model is able to crudely reproduce some of the stylized
facts characterizing US data. In particular, the simulated series for consumption and
investment present a volatility that is on average respectively lower and higher than
output. Furthermore, all simulated series present a positive autocorrelation coefficient.
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Figure 6.7: Impulse response (p = 1).

US Model (KPR)
Std.% Volat. Auto. Cor. Y | Std.% Volat. Auto Cor. Y
Y| 1.59 — 0.84 — 0.89 — 0.68 —
C — 0.63 0.81 0.86 — 0.39 0.70 0.98
I — 3.27 0.80 0.92 — 3.63 0.67 1.00

Table 6.2: Stochastic properties (benchmark)
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US Model (KPR)
Std. Volat. Auto. Cor. Y | Std. Volat. Auto Cor. Y
Y| 1.59 — 0.84 — 0.67 — 0.01 —
C — 0.63 0.81 0.86 — 0.06 0.69 0.46
I — 3.27 0.80 0.92 — 5.16 0.01 1.00

Table 6.3: Stochastic properties (p = 0.1)

Finally, all variables present a highly positive correlation coefficient with output.

The actual values of all these coefficients are fairly different from the observed coun-
terparts, but without any formal metric we can not decide whether this differences are
significative or not. According to a pure aesthetic criteria, we may conclude that, given
the differences between the simulated and observed statistics, our model is a far to simple
representation of reality. In particular, we note that:

1. the standard deviation of output is 70 basis points lower than the observed one;

2. the relative volatility of consumption is 24 points lower, while that of investment is
36 points higher;

3. all variables are not autocorrelated enough.

However, the capacity of such a simple model (actually, the simplest one we could
think of) to catch many qualitative features of the data is striking.

As usual, there is an important caveat: the properties of the simulated series descent
directly from the properties of the exogenous stochastic process governing the Solow resid-
ual. Table 6.3 summarizes the stochastic properties of the model when the productivity
shocks are less persistent, i.e. when the persistence parameter p is equal to 0.10. As we
can see, under this parameterization, the model is completely unable to reproduce many
relevant observed properties. In particular, consumption becomes almost constant over
time, since the contribution of the productivity shocks to the permanent income is now
negligible. For the same reason, investment becomes even more volatile than before. The
autocorrelation coefficients of output and investment are almost zero.

We conclude that the Brock-Mirman model behaves well only if a highly persistent
Solow residual is assumed. This critique is slightly unfair, since the persistence parameter
p was actually estimated from observed data. However, it is undeniable that the internal
propagation mechanism of the simple Brock-Mirman model is weak, since it simply trans-
mits the stochastic properties of the Solow residual to all other variables. Furthermore,
it is also undeniable that the Solow residual is, citing Abramovitz (1956), “nothing more
than a measure of our ignorance”; it is certainly be related to technology, but surely also
to capacity utilization, labor hoarding, and so on.

The Brock-Mirman model reproduces the observed business cycles properties of the
data by assuming the existence of an exogenous process that presents itself these business
cycle properties. It may be, to some extend, successful in reproducing the empirical
stylized facts, but still leaves the origin of business cycles in a competitive economy
unexplained.
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Figure 6.8: Precautionary saving.

6.1.4 The role of precautionary savings

All results presented in the previous Section were obtained under a certainty equivalence
assumption, using the KPR solution procedure. We are now interested in the possible role
of precautionary saving at the business cycles frequency; as already known, the variability
of productivity shocks should translate into a higher level of saving/investment, just for
a precautionary motif. To study the quantitative dimensions of this phenomenon, we
solve our model using the collocation method, and simulate it over a long time horizon
(300 quarters). The initial conditions correspond to the deterministic steady-state, i.e.
to the unconditional mean of the model under certainty equivalence; the steady-state

value of a, is simply one, while k = [sx/(p — 1+ (5)]ﬁ Note furthermore that § =
k(p—1+496)/sk and ¢ = s..

In Figure 6.8 we plot the percentage deviation of consumption, investment, and capital
from their deterministic steady-state values. As expected, consumption is initially lower
than its deterministic steady-state level, while investment is higher; in other words, saving
is higher than under certainty equivalence, just for a precautionary motif. During the
transition, the system converges to a steady-state characterized by higher values for all
variables, since an increase in savings generates obviously an increase in the steady-state
capital level. We should note, however, that under our benchmark parameterization the
precautionary motif seems quantitatively irrelevant: the steady-state capital level is only
0.05 percentage points higher than under certainty equivalence.

We may wonder now if the precautionary motif, while having irrelevant effects in the
long-run, influences the short-run dynamics of the system, and in particular its stochastic
properties. Furthermore, we may be interested in evaluating the overall accuracy of the
log-linear approximation implied by the KPR solution procedure. Table 6.4 summaries
the statistics produced by our two solution methods, KPR and collocation, under the
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Collocation KPR
Std.% Volat. Auto. Cor. Y | Std.% Volat. Auto Cor. Y
Y| 0.89 - 0.68 - 0.589 - 0.68 -
C - 0.39 0.69 0.98 - 0.39 0.70 0.98
I - 3.57 0.67 1.00 - 3.63 0.67 1.00

Table 6.4: Stochastic properties (benchmark)

benchmark parameterization. As we can see, differences are marginal. We can conclude
that: (i) the precautionary motif seems to be irrelevant at the business cycle frequency
too, at least for our benchmark parameterizations; (i7) the KPR method is quite accurate,
at least if the system’s dynamics remains near the steady-state.

6.2 The standard RBC model

We introduce now a fully-fledged labor market in the previously described Brock-Mirman
framework. The labor supply curve can be made endogenous by confronting the individ-
uals with a labor/leisure choice problem. This choice has two dimensions: each individual
can choose between working or not working at all, i.e. being employed or not, and, once
employed, between different work loads, i.e. total amounts of hours of work. The first
dimension is called extensive margin, the second intensive margin. We already discussed
Figure 6.2, where both the intensive and the extensive margins were separately plotted.
Figure 6.9 shows instead the quarterly series for the aggregate time share devoted to la-
bor, i.e. the product of employment and hours worked divided by the time endowment.
This approximated aggregate measure of labor employed in production takes both mar-
gins jointly into account. Note that the decreasing trend in hours worked seems to be
counterbalanced by the increasing trend in employment: the time share devoted to labor
does not present a clear positive or negative trend over the whole sample period.

Focusing on the intensive margin alone is the easiest way to introduce endogenous
labor in our framework. We assume that all individuals are actually employed, and own a
fixed time endowment, normalized to unity. The representative individual has to choose
the time share devoted to labor, denoted n;; the remaining time is devoted instead to
leisure, I; = 1 — ny; leisure, being a good, is valued in the utility function.

The competitive real wage, equal to the marginal productivity of labor, grows at the
same exogenous long-run rate as the other variables in the system. An increase in the
real wage is expected to cause an increase in the supply of labor, but this cannot be the
case in steady-state, because labor is a time share, and cannot grow indefinitely. Further
assumptions on the preferences are necessary to guarantee that leisure is constant in
steady-state, even if the real wage grows at a constant rate. In other words, we have to
impose that the wealth, income, and substitution effects of any permanent increase in the
real wage rate cancel themselves perfectly out.

As shown in King, Plosser and Rebelo (1987), only Bernoulli utility functions of the

form:
[ =), i p
ule,) = { In(c)+ov(l), if p=1 (6:8)

are compatible with a constant steady-state labor share. To guarantee also strict concav-
ity, we assume that:
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Figure 6.9: Time share devoted to labor in the US.

1. v is increasing and strictly concave if pu < 1;

2. v is decreasing and convex if u > 1;

3. —p("/v") > (1 — u)(v'/v) holds.

A utility function satisfying these conditions is u(c, 1) = [¢*™#/(1 — p)] "=, where
7>0when g >1and 0 <7 <1/(1 —p) when o < 1.

Assuming this particular functional form, the planner solves the usual stochastic op-
timal control problem, taking the initial condition {ko, ao} and the stochastic process for
a; as given (note that n, is a further control variable):

B (1 _ nt)T(l—u)

I—p
S.t. "th—‘rl = atktantl_a + (1 - 5)kt — G

e e] 1—
max UO = EO ZBt G (69)
t=0

{eeme kir1}52,

The first order conditions with regard to ny, ¢;, ki1, and \; are:
e (1 —ny) T = N\ (1 —a) agkyn;
Ct_u(l — nt)T(l_M) = )\t
90)\,5 = Et [&At+1at+1kf‘_;11n%_a -+ )\t+1(1 - 5)}
"th—‘rl = (1—5)kt+atktantl_a — G

where ¢ = ~/5.
Substitute (6.11) into (6.10) :

7'62_“(1 - nt)T(l_M)_l = Ct_“(l - nt)T(l_M) (1 —a) aking® (6.14)
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Equation (6.14) has a clear economic interpretation. Along an optimal path, the
marginal utility of leisure (left hand side) has to equal the marginal productivity of labor
times the marginal utility of consumption (right hand side), since a marginal decrease
in leisure translates into a marginal increase in labor, which in turn translates into a
marginal rise in output (and possibly consumption), equal to the marginal productivity
of labor.

We can rewrite (6.14) as:

T = lLawy (6.15)

where w; is the competitive wage rate. Note that any permanent increase in the wage rate
implies ceteris paribus a permanent increase in the representative individual’s permanent
income, and would cause a one-to-one increase in consumption, leaving leisure unaltered:
as expected, the wealth, income, and substitution effects cancel out.

The Euler equation (6.12) can be rewritten as:

c 1% l 1 T(1—p)
(—t) (i) (rep1+1=0)| =9 (6.16)
Ct+1 ly

As we can see, the interest rate influences jointly the slope of both the consumption
and leisure paths, because the marginal utility of consumption influences and is itself
influenced by the marginal utility of leisure.

The calibration procedure describe in the previous Section remains valid. There is
however a further preference parameter to calibrate, 7. Simplifying (6.14) and evaluating
it at the steady-state, we obtain 7 = [(1 — «)l] / (ns.). We already know that the steady-
state US investment share is equal to 0.19. The steady-state consumption share is then
s. = 0.81. The empirical evidence reported by Ghez and Becker (1975) suggests that on
average one third of the available discretionary time (net of sleep and personal care) is
devoted to market activities in the US. Our results confirm their conclusions: we obtain
a long-run time share devoted to labor equal to n = 0.34. We calibrate the parameter 7
to reproduce these long-run properties, obtaining 7 = 1.44.

The model is solved with the KPR procedure, and the analytical details are summa-
rized in the Appendix.

Ey

6.2.1 Numerical experiments

The system’s impulse response to a 1% positive productivity shock under the benchmark
parameterization is summarized in Figure 6.10. We observe that, on impact:

1. the persistent but transitory shock to TFP translates into a non-negligible increases
in the representative individual’s permanent income;

2. consumption increases again less than output because the representative individual
is able to smooth consumption over time;

3. investment increases proportionally more than output, again to implement consump-
tion smoothing;

4. the interest rate increases, and so the slope of both the consumption and leisure
paths (the slope of the labor path decreases by construction);
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Figure 6.10: Impulse response (benchmark).

5. the shock to TFP translates into a persistent but transitory increase in the wage
rate too;

6. the positive shock to permanent income tends to rise leisure, while the increase
in the leisure path’s slope tends to decrease it; furthermore, the labor supply is
expected to positively deviate from its steady-state value as long as the wage rate
does so;

7. these opposite forces make the labor share increase, but less than TFP;

8. the joint increase in TFP and labor makes the output level react more than propor-
tionally to the productivity shock.

In other words, the increase in the wage rate pushes the representative individual to
substitute current leisure for future leisure, since time devoted to labor is more productive
now than in the future. The amplitude of this effect depends directly on the elasticity of
intertemporal substitution between leisure at different points in time.

During the transition back to the steady-state, we observe that:

1. capital accumulation drives the interest rate back to its steady-state value and even
below;

2. the slope of the consumption path turns quickly negative, and consumption con-
verges slowly back to its steady-state value (note that the strict link between the
consumption path’s slope and the interest rate disappears);

3. the time share devoted to labor decreases over time, oversteps its steady-state value
in about forty quarters, and then converges back to it from below;
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Figure 6.11: Impulse response (p = 0.1).

4. the slope of the labor path increases slowly, and turns positive after about ninety
quarters.

Exercise 80 Compare Figures 6.5 and 6.10; why does consumption increase more in the
RBC model than in the Brock-Mirman one? Provide just the intuition.

The introduction of variable labor supply enhances to some extent the model’s internal
propagation mechanism, since the reactions on impact of output, consumption, and in-
vestment to a productivity shock are amplified, with respect to the Brock-Mirman model.
However, the subsequent adjustment is again mainly driven by the shock’s persistence.
If the persistence is low, as in Figure 6.11, all the variables increase sharply on impact,
but then converge quickly to the steady-state; note that all variables except consumption
reach their steady-state values in only three quarters.

Consider now the effects of a permanent increase in total factor productivity, sum-
marize in Figure 6.12. Note that the impulse response of investment is not a straight
line, even if ti seems so compared to the impulse responses of consumption and output;
investment increases sharply on impact and then slightly over time. The permanent pro-
ductivity shock translates into a permanently higher wage rate. We know that, given our
assumptions on the Bernoulli function, the substitution, income, and wealth effects of a
permanent increase in the wage rate cancel themselves completely out. If so, why does
labor increase on impact?

Well, the productivity shock drives up the interest rate, increasing the slope of the
leisure path. As soon as the capital stock increases, the interest rate converges to its new
steady-state level, and the slope of the leisure path goes back to zero. The representative
individual offers more labor than usual as long as the interest rate is higher than its new
steady-state value. Note that the steady-state labor share does not change.
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Figure 6.12: Impulse response (p = 1).
US Model (KPR)
Std. Volat. Auto. Cor. Y | Std. Volat. Auto Cor. Y
Y | 1.59 - 0.84 - 1.11 - 0.67 -
C - 0.63 0.81 0.86 - 0.45 0.68 0.99
I - 3.27 0.80 0.92 - 3.35  0.67 1.00
n - 0.77 0.87 0.89 - 0.36 0.67 0.99
P - 0.48 0.64 0.65 - 0.64 0.67 1.00

Table 6.5: Stochastic properties (benchmark)
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Table 6.5 reports the usual statistics, summarizing the model’s stochastic properties.
We report the statistics not only for the time share devoted to labor, but also for the
average productivity of labor, i.e. the ratio between output and labor.” We note that:

1. output is more volatile than in the Brock-Mirman model, since endogenous labor
supply enhances the model’s internal transmission mechanism;

2. consumption is again more volatile, since leisure influences directly the marginal
utility of consumption;

3. investment is slightly less volatile (in models where income is spent only in con-
sumption and investment, their dynamics are inversely related);

4. the volatility of labor is less than half of the observed one;

5. the average productivity of labor is perfectly correlated with output in the model,
but not in the data.

6.2.2 Conclusions

As the Brock-Mirman model before, the simple standard RBC model is, quite surprisingly,
able to qualitatively reproduce the stylized facts described in the introduction. However,
there are still many problems left. In particular, it clearly fails in reproducing the stochas-
tic properties of the labor input; furthermore, volatility of output is too low compared to
the observed one; finally, the transmission mechanism amplifies the shocks to technology,
but cannot explain the high autocorrelations in the data, since the model’s transitional
dynamics is generated mainly by the persistence of productivity shocks, and only to a
very limited extent by capital accumulation.

Two more subtle problems hide themselves behind the theoretical structure of the
model. First of all, the dynamics of labor is exclusively driven by the intertemporal
substitution of leisure, and this implies that the elasticity of the individual labor supply
to transitory changes in the wage rate has to be very high. The available empirical
evidence suggests however that the elasticity of labor supply is actually very low, almost
equal to zero for middle-aged males. In other words, the main amplification mechanism
in the standard RBC model is based on a single assumption clearly rejected by the data.

A second problem concerns the characteristic of TFP implied by the standard Solow
residual. We already know that the measured Solow residual, derived under the assump-
tions outlined in note 4, p. 106, is very persistent and volatile. Figure 6.13 plots its
growth rate, which, as expected, seems very volatile too. We note immediately that the
quarterly variations are substantial, ranging form -1.8% to 2% with a standard deviation
equal to 0.7 points. Furthermore, we observe that the growth rate is often negative, i.e.
technological regress seems a common phenomenon. This is not what we observe in real-
ity: technological regress is extremely rare. Our overall impression is that the standard
Solow residual is a clearly inadequate measure of TFP.

9The Cobb-Douglas technology implies that the average productivity of labor has the same dynamics
of the wage rate.
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Figure 6.13: Growth rate of the Solow residual.

6.3 Extensions

6.3.1 The Hansen-Rogerson-Wright model

Our previous results suggest that modelling the choice along the intensive margin is not
enough to reproduce the actual dynamics of labor in the US. We describe now a well-known
theoretical framework, developed originally by Rogerson (1988), extended by Rogerson
and Wright (1988), and then introduced in the RBC literature by Hansen (1985), which
uses the so-called employment lotteries to model the choice along the extensive margin in
general equilibrium.!’

We assume that the intensive margin is not operating at all: each household member
has to choose between working a fixed number of hours (normalized to one) and not work-
ing at all. The choice set is not convex, i.e. intermediate possibilities are not admitted,
even if the individuals would prefer them. However, it may be convexified by introducing
employment lotteries, that can be considered as efficient contracts on which individuals
agree in equilibrium. By entering a lottery, an individual can choose to work a fraction n
of her days and to remain unemployed the other 1 — n days; the allocation of individuals
to work or leisure is completely random, and the lottery’s outcome are independent over
time. Note that, from the individual point of view, the variable of choice is the ez-ante
probability of being employed, and not the ex-post actual number of hours worked.

Being all individuals identical, they will choose the same the same ex-ante proba-
bility of employment, ¢.e. they will agree on the same efficient contract. Under these
assumptions, the current aggregate employment rate equals the chosen ez-ante probabil-
ity of being employed at the individual level. Prior to the lottery draw, the expected

19The Rogerson-Wright setup is extensively described in King and Rebelo (2000, pp. 46-49).
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intratemporal utility assumes then the following form (we abstract from time indexes):
n v (0))' 7" + (1 —n) [ev (1)) (6.17)

where ¢, represent the consumption level of employed individuals (a tilde identifies indi-
vidual variables), ¢, the consumption level of idle ones, and v the utility of leisure.

If asset markets are complete, individuals can perfectly insure themselves against the
idiosyncratic risk of being unemployed.!* As already known, under perfect risk sharing the
marginal utilities of consumption are equal across employed and unemployed individuals;
this implies that:

1_;&
~ ~ (U1
w = Ce | — 6.18
w2 (6.18)
where vg = v (0) and v; = v (1) are two constants.
By substituting (6.18) into (6.17), we obtain:

1—p
U1

néH 4 (1 — ) & (—) ’ (6.19)

Vo

The average consumption level, defined as ¢ = né. + (1 — n) é,, can be interpreted as
the consumption level chosen by a representative individual. Using the previous definition,
we can rewrite the Bernoulli utility function (6.19) as:

n+(1—n) (ﬂ)%&r (6.20)

Vo

o

Under these results, the stand-in representative individual’s intertemporal utility func-

tion becomes: X
2\ s—tlesp (ng)]
Ut—Et{Zﬁ %} (6.21)
s=t

where:
B

o) = |+ (1—ny) (E)J] (6.22)

Vo

We still assume that the labor market is perfectly competitive, i.e. that both the
individuals and the firms are small enough to take the market prices as given. In par-
ticular, we assume that, at the individual level, the choice of the ex-ante probability of
being employed cannot influence the wage rate. Under perfect risk sharing, all individ-
ual factor incomes are pooled, so that our stand-in representative individual receives an
aggregate income equal to wyn; + rik;, where w; is the wage rate, r; the interest rate,
and k; the aggregate capital stock (note that unemployed individuals receive no labor in-
come). Given constant returns to scale and competitive markets, aggregate factor income
exhausts aggregate output, i.e. y, = wyn; + riky.

All the previous results imply that the Hansen-Rogerson-Wright (HRW) model is,
from a computational point of view, a simple extension of the standard RBC model. The

1 Alternatively, we can assume the existence of a competitive insurance market characterized by a
zero-profit condition for the firms offering insurance; in this case, the relative price of consumption under
employment and unemployment will be n/ (1 —n).
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representative individual solves the following optimal control problem, taking as usual the
initial conditions {kq, ap} and the stochastic process for a; as given:

max
{ct,ne,ke11} o0,

1—p
Z 3 W ()] ] (6.23)
s.t. ")/]ft_t,_l atk n e -+ (1 — 5)kt — Ct
The first order conditions with regard to ¢; and ny, after some manipulations, become:

o)™ = N (6.24)
i’ (ng) = —p(ng) wy (6.25)

where w; is the competitive wage again.
Note that, in steady-state, condition (6.25) collapses to:

dl)n _ sy (6.26)
¢ (n) Se
We can use (6.26) to calibrate the preference parameter vy /vg:
w N\ Tor
_l’_ 2N K
U1 1—p Se
E .
Furthermore note that: .,
¢’ (n) poSe

Using (6.26) and (6.28), we can log-linearize the first order conditions around the
steady-state, obtaining:

SN . N

1_
G+ — LN =y, (6.30)
1o s

As noted in King and Rebelo (2000, p. 49), combining (6.30) and (6.29) obtains:

12

Equation (6.31) implies the first, important property of the HRW setup: the stand-in
representative individual has an infinite A-constant elasticity of labor supply, i.e. the
elasticity of her labor supply is infinite for any given shadow value of installed physical
capital. In other words, she supplies any amount of work for the wage rate implicitly
defined in (6.31). The total number of hours worked, from a partial equilibrium point of
view, will be determined by the labor demand schedule only. Of course, since the Lagrange
multiplier \; is endogenous, the determinants of labor dynamics in general equilibrium
are slightly more complex, for the role played by capital accumulation. Note that the high
elasticity of labor supply displayed by the representative individual is not related to the
elasticity of labor supply at the individual level: the individual elasticity of substitution
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Figure 6.14: Impulse response (benchmark).

may be very small, or even zero, but the aggregate labor supply curve is, ceteris paribus
again, completely flat.!?

In the HRW model, as in the standard RBC one, the individuals face a trade-off
between leisure and consumption; in the former, however, leisure can be consumed only
when the individuals are unemployed. Choosing to bear some uncertainty by entering
the employment lottery is a way to substitute consumption for leisure. In this sense,
the possibly positive unemployment rate arising in equilibrium is Pareto-efficient. The
optimally of unemployment is the second important property of the HRW setup.

We can solve the model with the usual KPR procedure, and simulate it under our
benchmark parameterization. Figure 6.14 plots the impulse response functions to a posi-
tive 1% shock to productivity.

As we can see, the transmission mechanism built in the HRW model is able to consid-
erably amplify the shock to productivity: the output level and the interest rate increase
on impact by almost 2 percentage points, while labor rises by nearly 1.5 percentage points.
Note furthermore the humped shape of the wage rate: equation (6.31) implies that the
wage rate follows strictly the dynamics of the shadow value of installed capital.

Table 6.6 summarizes the usual statistics. Surprisingly, the HRW model is able to
perfectly reproduce the volatility of labor. As already noted, it achieves this result without
assuming a high elasticity of labor supply at the individual level. Furthermore, the HRW
model reproduces the standard deviation of output quite well, and generates a higher
volatility of consumption, as a by-product of the higher volatility of leisure. The overall
fit of the model seems remarkably good, at least better than the fit of the standard RBC
model.

12 As shown in Rogerson (1988, pp. 14-15), this property does not depend on the strict homogeneity of
individuals over time, but holds also under a limited degree of heterogeneity.
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USA Model (KPR)
Std. Volat. Auto. Cor. Y | Std. Volat. Auto Cor. Y
Y | 1.59 - 0.84 - 1.68 - 0.68 -
C - 0.63 0.81 0.86 - 0.52 0.68 1.00
I - 3.27 0.80 0.92 - 3.05 0.68 1.00
n - 0.77 0.87 0.89 - 0.77 0.67 1.00
P - 0.48 0.64 0.65 - 0.25 0.71 0.96

Table 6.6: Stochastic properties (benchmark)

6.3.2 Capacity utilization
To be added ...

6.4 Appendix

6.4.1 The Brock-Mirman model
The KPR procedure

Start by considering a deterministic version of conditions (6.4)-(6.6):

e =\, (6.32)
SK)\tHatHk;f{V + )\t+1 (1 — 5) = 90)\,5 (633)
")/]ft_t,_l = (1 — 5) kt + atka — Ct (634)

where ., = —p, Sk =, sy =1 — a.

Once the time index has been dropped, equations (6.32)-(6.34) can be easily solved
for the deterministic steady-state. We will now linearly approximate them, expressing the
result in percentage deviations from the steady-state.

Consider condition (6.32), and simply substitute exp(In(z;)) to z;, where the latter is
a generic variable, and consider In(x;) as a variable on its own. In other words, write it
as (¢, and )\, are always strictly positive) exp(€,.¢) = exp()\¢), where # = In(z;). The
first-order Taylor expansion around the steady-state is:!?

Euet (6 =) = & (A = X) (6.35)
Since in steady-state exp(£,.¢) = exp()), and since Z; — & = In(z /), equation (6.35)
can be simplified as £,,¢, = \;, where &, = In(z,/2). The last expression is a log-linearized
version of condition (6.32), expressed in percentage deviation from the steady-state, since
Ty~ (v, —x) /2.
Consider now condition (6.33), and applying the procedure outlined in the previous
paragraph rewrite it as:

et onbir 4 e;\”l(l — ) = pe™ (6.36)

13The first-order Taylor expansion of a non-linear function f (z) around a point zg is given by f (z) ~

VI (zo) (x — xo).
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The first-order Taylor approximation of (6.36) around the steady-state is:

sKe;\e_sN’;(S\tH — 5\) + SKeAe_SN];dt+1+ (6.37)

—stKe;\e_sN’;(l%tH — k)4 (1 - 5)65\(5\t+1 —)) = goe;\(j\t -

Equation (6.37) can be rewritten as:

s . s SNSK |7 N

(—K +1-— 5) Mt + N1 — —E Nk = AN (6.38)
Tky Tky Tky

since exp(Z) = = and sgexp (5\) exp (—le%) = (sxA)/Tky, where r, = k/y. Taking into

account that (sx/ri, +1—0)\ = @A, divide everything by (sxA)/ry, and rewrite (11) as:
_SN]%tJ,_l -+ @195\,5+1 — @195\,5 = —&t+1 (639)

where ¥ = 14, /sk. For the sake of future notational convenience, in equation (6.39)
all endogenous state and costate variables were grouped on the left-hand side, while the
unique exogenous state variable was isolated on the right-hand side.

Condition (6.34) can be log-linearly approximated as (check!):

—")/T'kyl%t_;'_l -+ [(1 — 5) Tky + SK] ]%t = Scét — dt (640)

where s, = ¢/y. Finally, note that the stochastic process driving TFP can be rewritten
as g1 = pa; + €. Now, define a vector of control variables u; = [¢], a vector of state
and costate variables §;, = A[]%tv‘tll , a vector of exogenous state variables é; = [a;], and a
vector of costate variables [; = [\;]. We can write the linearized version of (6.32) as:

Muu/at = Musgt + Mueét (641)

where M, =¢&,., M,s = [0|1], and M,. = 0.
Conditions (6.39) and (6.40) can instead be jointly written as:
(M, + M L)sip1 = (Mg, + Mg, L)y + (Mg, + M, L)éy (6.42)
where:
My, = [ o o } ;M= [ ) Sky . B (6.43)

Solving (6.41) for 4,, substituting the result into (6.42), and solving the result for §;,,
gets:
§t+1 - W§t + Rét+1 + Qét (644)

where W, R and @) are adequately defined matrices.
Under our certainty equivalence assumption, randomness can be reintroduced by sim-
ply taking expectations of (6.45). Being F; (é;11) = pé;, we obtain:

Ei(5i41) =Ws+ (Rp+ Q) é, = W5+ Aé, (6.45)

Equation (6.46) is a linear system of expectational difference equations. We can solved
it using the standard Blanchard-Khan algorithm (details are omitted). The algorithm
provides three matrices, denoted M,, U,, and L,, that characterize the following linear



CHAPTER 6. EQUILIBRIUM BUSINESS CYCLES 130

policy functions: A
@t+1 = M,U/[)t + Et, /LALt = U’U/[)ta lt = LU/IA)t (646)

where 9, = [k|a,) and e, = [0]e,]’.

The system implied by (6.47) completely characterizes the approximated solution to
our stochastic optimal control problem.

Finally, note that there are two other variables of interest we would like to recover,
i.e. output and investment. We can log-linearize them as (again, check!):

. A 1 S Se .
Yy = Qg -+ SKkta 1 = _at + _Kkt — — G (647)

% S’L S’L

and write them more compactly as ft = FV, i, + FV,b, + FVil;, where ft = [9:]i;] and:

1
Fvu—l_ok],Fm—lf_fi],Fw—[g} (6.48)
Substituting (6.47), we get ft = [0, where F,, = FV,U, + FV, + FV|L,. For the
sake of notational simplicity, define a vector h; = [u|f;] such that h, = H,0;, where
H, = [U,|F,].

To simulate the model’s transitional dynamics, we start by assuming that the system
at date 0 is in steady-state, i.e. that 0y = 0. Iterating on ¢, and assuming ¢; = 0 for
J > 1, we obtain 9, = M!ey. The matrix do,/dey = M} summarizes the effect on ¢, of an
unexpected shock at date 0 when £; = 0 for j > 1. The derivative 00;/0¢;0 = [M{];;,
considered as a function of £, is called the impulse response function for the state variable
i when a shock hits the state variable j at date 0. Given the policy functions (6.46), it
is easy to recover the impulse response functions of all control variables and all variables
of interest, once the impulse response functions for the state variables are available.

Operationally, we start by choosing the state variable to shock. Then, we define an
initial vector of innovations, for instance gy = [0|1]', if we are assuming a 1% increase
in TFP. Given ¢, and 9y = 0, we obtain 7, 4; and fl from (6.46). Assuming now
g, =0 Vt > 1, we iterate the procedure for finite number 7" of periods. Finally, we plot
the simulate series, obtaining the impulse response functions.

The projection method

The policy function is approximated over a rectangle D = [k, k| x [a,a] € R? with a linear
combination of multidimensional basis functions taken from a 2-fold tensor product of
Chebyshev polynomials. In other words, we approximate ¢ (k,a) with:

d d
C(k,a;0) =Y 040, (k,a) (6.49)

=0 7=0

i (k,a)zﬂ( %-1)@(22_Q_1) (6.50)

a—a

where:

Given that In(a’) = pln(a) + 0y/2z, where z ~ N (0,1), the Euler equation (6.7)
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becomes:
OO e k/’epln(a)ﬁm; o) " [&epln(a)+az k' a—1 - 5} e 2 ds — 6.51
R ) ) e (651
pC (k,eln(“); 0) -
where: e 5 in(a). g
n(a) .o 1— k— &(k. enla :
g=1 al Jh— (ke ) (6.52)

v

The integral in (6.51) can be numerically approximated using the Gauss-Hermite
quadrature formula:

- é (k/ epln(a )+oz. 0) H [&epln(a)+az (k/)oz—l +1-— 5} €_§d2 _ (653)
V2 /
X epln(a)+az, 0) H [Oéepln(a)-‘raz (k/)Oé—l +1— 5} €_Z2d2 ~
- / ,

Zaj % epln(a +ozj. 0) [&epln(a)+JZj (k/)oz—l +1— 5}

where the z;’s and the a;’s are respectively the Gauss-Hermite quadrature nodes and
weights.

6.4.2 The standard RBC model

The first order conditions can be easily log-linearized:
(Suw — sk )e — §1cCe = —siche — M — (6.54

—Eqwhy + €l = N (6.55
—SL]%t_A,_l -+ @795\,54,_1 — 90795\,5 = —SNﬁt_A,_l — dt+1 (656
_P)/rky]%t—&-l -+ [(1 — 5)Tky -+ SK]]%t = —SNﬁt -+ Scét — dt (657

where fcc =M €cl = T(l _:u)v €lc =1 _/{7 €lAl = gcl - 17 U= Tky/SKv and w = n/ (1 - n)
As before, defining 4, = [y, ¢, ¢ = [k, M)’y and é; = [a4], we can rewrite (6.54) and
(6.55) as

Mty = MysSe + Myoé: (6.58)
where:
| Suw — sk =&, | sk 1 | -1
Muu — _gdw fcc Y Mus — 0 1 Y Mue — 0 (659)

Conditions (6.56)-(6.57) can instead be rewritten as:

(M, + M} L)841 = (M, + M, L)ty + (M, + M}, L)é, 4 (6.60)
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where:
N B O V) S 4 I (10
MO, = :_SN 8} Mju—[_gN f] (6.62)
wg =[] 0] (663)

There are two other variables of interest that we would like to recover, namely output
and investment. From the following expressions:

_ SK SN, __ SK o SN _ SK ,,SN—1
yr = agk SN, iy = a7 niN — ¢, pr = aki®ng (6.64)

we can compute the corresponding log-linear approximations:

Yo = g + sichy + sy (6.65)
. 1. SK » SN . Sc .
U = —Qy + _Kkt —+ _Nnt — _CCt (666)
Sr St Sr ST
pe =Gy + sichi + (sy — 1) 7y (6.67)

We can write the previous system in a more compact form as:
fi = FV,i, + FV,0, + FVl, (6.68)

where f, =[]0, 0 = [k]a,), and I, = [\, and:

SN 0 SK 1 0
FV, = e s | RV, = | K i-, . FVi=10 (6.69)
SN—l 0 SK 1 0

6.4.3 The Hansen-Rogerson-Wright model
To be added ...



Chapter 7

Incomplete markets models

7.1 Markov chains
A time-invariant, discrete-state Markov chain is characterized by:

e An n-dimensional state space S = {s1,s2, ..., S, }.

e A n X n non-negative transition matrixz 11, such that Z?Zl II;; =1fori=1,2,..,n.
The matrix II is being a right stochastic matriz, and records the transition proba-
bilities from state ¢ into state j:

Hij = Prob (xt—&-l = Sj|3§'t = Si) . (71)

e A n x 1 non-negative vector mp, such that » "  m; = 1, representing the initial,
unconditional probability distribution on z:

0 — Prob (33'0 = Si) . (72)
Note that:

Prob (142 = sj|z: = s;)

n
= Z Prob (2419 = S;|Te41 = Sim) Prob (2441 = S|z = s3)

m=1

= Z HimHmj = ng)a
m=1

where Hg) is the (4, j) element of IT?. Hence, in general:

Prob (zisx = sjlae = si) = . (7.3)

ij
Remark 81 This implies that the unconditional distribution of x; is given by:
T = (IT') o, (7.4)

where m; =Prob(zy = s;).

133
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Note furthermore that:
Tl = H/7Tt. (75)

Definition 82 An unconditional distribution is called stationary (ergodic) if it
remains constant over time, and satisfies:

7 =1IIr. (7.6)
Note that equation (7.6) can be rewritten as:
(1-II"Y7 = 0. (7.7)

In other words, 7 is just an eigenvector associated with a unit eigenvalue of II', pinned
down by the previously discussed normalization, Z?Zl m; = 1.

Remark 83 The matrixz II is right stochastic, i.e. has nonnegative elements and rows
that sum up to one. This implies that II' has at least one (possibly more) unit eigenvalue,
and that there is at least one (again, possibly more) eigenvector satisfying equation (7.7).

Definition 84 If there is one and only one vector Ty, that satisfies equation (7.7), and:

lim m; = oo (7.8)

t—o0

for all possible initial distributions my, then the Markov chain is asymptotically sta-
tionary with a unique invariant (ergodic) distribution.

Theorem 85 Let IT be a right stochastic matriz such that I1;; > 0 for all (i, j): the asso-
ctated Markov chain is asymptotically stationary and has a unique stationary distribution.

From an operational point of view, there are three ways to calculate the invariant
distribution 7., given the stochastic matrix:

1. Iterate until convergence on:
Tk4+1 = H/ﬂ'k. (79)

2. Calculate the eigenvalues and eigenvectors of IT" and take the normalized eigenvector
associated to A = 1:

7Too - val /Ul (710)
i=1 V1i
3. Define:
A=(A'A)'A (7.11)
where: I -

and 1, is a n X 1 vector of ones. It turns out that 7, is equal to the n + 1 column
of A.

4. Note that 1,«,7 = 1,,, where 1,., is a n X n matrix of ones, since 7 sums to one.
Hence: 1, =7 —II'r + 1,,,7 = (I, — II' + 1,,,,) 7. This implies that:

Too= (I, =TI + 1,0) " 1, (7.13)
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7.2 Bewley models

Bewley models are characterized by a large number of ex-ante identical and ex-post het-
erogeneous households that trade a set of non-state-contingent securities. For the sake of
simplicity, the basic framework will be characterized by the absence of aggregate uncer-
tainty and aggregate dynamics. In other words, the aggregate variables are assumed to
be deterministic and constant over time, as in the steady state of a deterministic repre-
sentative agent economy. Uncertainty, however, plays an essential role at the individual
level: idiosyncratic shocks to labour income introduce an incentive for self insurance. The
availability of a single, non-contingent asset, will help households to buffer consumption
against adverse shocks. This inability of fully insure against bad shocks will generate
precautionary savings.

7.2.1 The basic framework

At the individual level, the employment status evolves according to a m-state discrete
Markov chain characterized by the state space S = {sg,s1,...,S,} and the transition
matrix II. In the simples case, S = {0, 1} so that the individual is employed when s = 1
and unemployed when s = (. Hence, in each period the labour income simply corresponds
to w;sy, where wy is the equilibrium wage rate and s; the individual employment status.

Households are allowed to invest in a single asset, and a; denotes individual asset
holdings at the beginning of period t. For computational reasons, let us discretize the
state space and constrain asset holdings on this finite-dimensional grid:

A={-¢p<a; <ay<..<ap}. (7.14)

The parameter ¢ > 0 represents a borrowing constraint, that may possibly be more
stringent than the natural borrowing limit (recall that in general a borrowing constraint
is necessary in order to prevent the household form running Ponzi schemes).

Being aggregate dynamics shut down by assumption, factor prices will remain constant
over time, i.e. w; = w and r; = r for all ¢ > 0. Hence, given the aggregate factor prices
{w, r} and the initial conditions {ag, so} the household solves the following problem:

max U=E,

{a+1}820

> B (Ct)] , (7.15)

s.t. a1 = (1 +7)a; +ws; — ¢,
aiy1 € -’47

where 3 € (0, 1) is the intertemporal discount factor, u (-) is a C?, strictly increasing and
strictly concave Bernoulli function such that lim. .o du (c) /de = +oo. We also impose
that 5 (1+7) < 1.

The Bellman equation for the previous recursive problem is (note that the constraint
has been substituted into the objective function):

a’'eA

v (a;,s;) = max {u (14+7r)a; +ws; —d |+ 3 ZszU (a, sz)} . (7.16)

z=1

A solution to this problem can be represented as a walue function v (a,s) and the
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associated policy function a’ = g(a,s). Being the objective function concave and the
constraint set convex, there is one and only one optimal future asset stock for each current
state vector, i.e. the policy function is a deterministic single-value function of the current
state vector. This implies that we can define a single-valued indicator function such that:

1 if g(ap,s;) = a;

I(aiaahasj) = { 0 ifg(ah,sj) 7& a; (717)

Numerical strategy

Consider the Bellman equation described in (7.16). To identify the unique value function
that solves this equation we can take advantage of the constructive proof of Banach’s
theorem and the fact that the operator implied by the right hand side of (7.16) turns out
to be a contraction, and iterate until convergence on the following recursive scheme, given
an initial guess for wvy:

a'eA

Vg1 (a4,8;) = max {u (14+7)a; +ws; —d]+ i ;v (a, sz)} : (7.18)

z=1

The previous recursive scheme can be represented in matrix notation. Define a set of
n X 1 vectors v; and n X n matrices R;, with j = 1,2, ..., m, such that:

vi (i) = v(ais;), (7.19)
R;(i,h) = ul[(14+7r)a; +ws; —ap), (7.20)

forallt=1,2,..n and h = 1,2, ...,n. Furthermore, define:

Vi Rl
v = : , R = : ) (7.21)

The recursive scheme (7.18) can be represented in matrix notation as:!
Vi =max R+ (II®1,)vi]. (7.22)

Note that the policy function, and the indicator function Z (a;, ap, s;), can be repre-
sented by a set of n x n matrices G;, with j =1,2,...,m, such that:

ooy ) 1 ifg(aisg) = ap
Gj(i,h) = { 0 if g ass;) #an (7.23)

Wealth distribution

Denote as A; the unconditional probability distribution of the state vector {a,s;}, and
represent it as a n X m matrix, with non-negative elements that sum to one, such that:

At (a;,8;) = Prob (a; = a;, 8¢ = s;) . (7.24)

!The max operator applied to a n x m matrix M returns a n X 1 vector whose ith element is the
maximum of the ith row of M.
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The exogenous Markov chain for s and the optimal policy function g (a,s) induce a
law of motion for the distribution \;:
Frob (@11 = a4, 8441 = Sj), (7.25)
Uncondggnal t+1

m n
= E E Prob (a4, = az|at ap, S = S,) X
z=1 =

Pohgy function

Prob (st+1 =sjls; =s,) X

VvV
Transition probability
Prob (a; = ap, s; = s.).

v
Unconditional ¢

Note that:

1 if g(ap,s.) = a;
Prob (sir1 = sjlse =s,) = Il,;. (7.27)

The law of motion (7.25) can be compactly rewritten as:
Ae+1 (84,85) Z ZG (h,i) IL; A (a,85) Z Z I\ (a,s.) . (7.28)
z=1 h=1 z=1 {a a;= g(asz)}

Definition 86 A stationary distribution is a time-invariant distribution X\ that solves:

A(ag,s5) ZZG h, i) 1L\ (ap, s;) (7.29)

z=1 h=1

fori=1,2,...nandj=1,2,...,n

Note that the relationship (7.29) can be written in matrix notation as:

vec (A) = Q' vec (N, (7.30)
where:
I1Gy Gy -+ 1L Gy,
oGy Gy -+ IL,2Gy,
Q= : : .. : -
HlmGl HZmGZ Hmme
G, 0 --- 0
0 Gy, - 0
(MMI®l,) . — : . (7.31)
0o 0 - G,

2The vec operator transforms the n x m matrix X into a mn x 1 vector by simply stacking its columns
below one another.
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The mn x mn matrix Q is right stochastic, being IT so by assumption: by comparing
(7.6) and (7.30), we immediately realize that vec (A) can be interpreted as the ergodic
distribution of a discrete Markov chain characterized by the transition matrix Q, and
constructed combining the dynamics of both the exogenous stochastic shock and the en-
dogenous state variable. Note that Q is quite a sparse matrix: the best way to numerically
compute the ergodic distribution vec () in this case is to iterate until convergence on the
following recursive scheme, taking the sparsity into account:

vec (Agpp1) = Q' vec (Ar) (7.32)

For the Law of Large Numbers, the stationary distribution A will reproduce, in the
limit, the fraction of time that individual households spend in each state {a;, s;}.

Remark 87 From the aggregate point of view, if the economy is populated by a continuum
of ex-ante identical households, the stationary distribution will reproduce the fraction of
the total population in state {a;,s;} along the stationary equilibrium. In other words, A
can be interpreted as the steady-state distribution of financial wealth.

7.2.2 Applications
Pure credit (Huggett, 1993)

Huggett (1993) studies the simplest version of the framework described in the previous
Sections. Assume that households have access to a centralized loan market in which they
can borrow or lend at a constant risk-free interest rate . No other assets are available in
the economy.

Definition 88 Given ¢, a stationary equilibrium is an interest rate r, a policy func-
tion a’ = g(a,s), and a distribution X (a,s), such that:

1. g(a,s) solves the household’s problem;

2. X(a,s) is the stationary distribution induced by I and g (a, s), i.e. A(a,s) satisfies
(7.29) given 11 and g (a, s).
3. The loan market clears:

n m

A(an,s.) g (ap,s,) =0 (7.33)
h=1 z=1 i

To compute the equilibrium, we can use the following numerical algorithm:
Algorithm 89

1. Choose an initial guess for r, say r; > 0 where j = 0.

2. Given rj, solve the household problem for g; (a,s) and \; (a,s).

3. Check whether the loan market clears by computing the excess demand (or supply)

of loans:
n m

Aj (an,s:) gj (an,s:) = Ej (7.34)

h=1 z=1
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4. If E: >0, then set r;yq <r:. If, instead, E; <0, then set r;yq > r;.3
J J+ J J Jj+ J

5. Iterate until convergence over points (2) — (5).

Productive capital (Aiyagari, 1994)

Following Aiyagari (1994), we will now study a more developed version of the previous
model. Assume that households are allowed to invest in a single, homogenous, capital
good, and denote k; the household’s capital holdings. No other assets exist, in particular
households are not allowed to borrow or lend on a loan market. Note that in this case
the borrowing constraint is redundant since £ > 0 by assumption.

The individual capital stock evolves according to the following accumulation equation:

kt+1 = (1 -0 + f) kt + WSt — ¢ (735)

where 7 = r 4 0 is the rental rate and w the competitive wage rate.

Denote A (k, s) the stationary distribution of capital across households; the aggregate
per-capita steady-state capital stock and the aggregate employment rate are respectively
equal to:

K = K = A (kp,s.) g (kp, s, 7.36
;2 (kn,s2) g (kn, s:) ( )
=1 z= &
N = A(kp,s.)s, =7 S (7.37)
h=1 z=1
where 7, is the invariant distribution associated with IT and S = [sg,s1, ..., 8,n] the

corresponding state space.

A representative competitive firm combines capital and labor to produce the single
consumption/investment good via the following aggregate “Cobb-Douglas” production
function:

Y = F(K,N) = K°N'-@ (7.38)
where « € (0,1). The first order conditions for the problem of the firm imply that:

w = (1—a) (%)a (7.39)
N (%)a_l (7.40)

Definition 90 A stationary equilibrium is a policy function k' = g (k, s), a distribu-
tion A (k,s), and a triple of positive real numbers {K,7,w}, such that:

=
I

1. g(k,s) solves the household’s problem;
2. Xk, s) is the stationary distribution induced by 11 and g (k,s);

3. The factor prices satisfy conditions (7.39) and (7.40);

3From a practical point of view, the most robust approach (but not the quinckest) is to use
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4. The aggregate capital stock K 1is implied by the households individual decisions:

- ZZ)\(khasz)g(khasz) (7.41)

To compute the equilibrium, we can use the following numerical algorithm:
Algorithm 91

1. Choose an initial guess for K, say K; > 0 where j = 0.
Compute w; and 7 from (7.89)-(7.40).

Given w; and 7;, solve the household problem for g; (k,s) and \; (k,s).

BN CHE

Compute the aggregate capital stock:
K, = ZZ (kn,s2) g; (Kn, s.) (7.42)

5. Given a fized “relaxation” parameter k € (0,1), compute a new estimate of K from:

Kj1 = kK, + (1 - k) K (7.43)

6. Iterate until convergence over points (2) — (5).

7.2.3 Calibration and simulations

Following Huggett (1993), assume a CES form for the Bernoulli function, u (¢) = ¢'7#/ (1 — p),
and set p = 2. Furthermore, set § = 0.97, w =1, and ¢ = 1.
Following Heaton and Lucas (1996), assume that labor income follows a stationary
autoregressive process:
Ins1=plns,+ o/ (1 — p?)ey (7.44)

where ¢; ~ N (0,1), p = 0.53, and 0 = 0.296. Using Tauchen’s method, we can approx-
imate the previously described continous-state autoregressive process with a finite-state
Markov chain.

Finally, following Aiyagari (1994), se set o« = 0.36 and 6 = 0.08.

Pure credit

Figures 7.1-7.4.

Productive capital

Figures 7.5-7.9
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Figure 7.1:

7.3 Aggregate uncertainty

The essential feature that makes Bewley models so tractable is the time-invariance of
aggregate state variables. Of course, this assumption is questionable form an empirical
and theoretical point of view. Following Krusell and Smith (1998), let us generalize
Aiyagari’s framework by assuming the existence of an aggregate productivity shock that
follows an exogenous Markov process.

Note that under complete markets households would fully insure against the risk of
idiosyncratic shocks to labour income, and therefore they could be aggregated into a rep-
resentative household in charge of solving the following dynamic programming problem:

vk K 2) = maxu(c)+BE (K K, ) [{K, 2}] (7.45)
s.t. KF=01-0+7(K,2)]k+w(K,z)—c
K =K (K,2)

In this case, the knowledge of the current aggregate capital stock K and the current
productivity level z where enough to predict the future aggregate state of the economy, via
the law of motion K (K, z) and the properties of the exogenous Markov process governing
z. Note that, being all agents identical ex-ante by assumption and ex-post thanks to full



CHAPTER 7. INCOMPLETE MARKETS MODELS 142

Stationary density
T T

Share of population

-3 -2 -1 0 1 2 3 4 5 6 7 8

Stationary cumulative distribution
T

1N o o
» [« [o2)
T T T

Share of population

o
N
T

Figure 7.2:

insurance, problem (7.45) can be rewritten as:

v(k; K, 2) = max (¢)+BEw(K; K 2)|{K,z}] (7.46)
s.t. EF=[1-0+7(K2)]k+w(K,z)—c

K =(1-080K+zf (K)—C

where K = k and C' = c¢. In other words, each single individual is able to perfectly
forecast the future aggregate per-capita capital stock, and therefore the future factor
prices, because she knows that all other individuals are identical and will behave in the
same way. Hence, even if she still has no control over the aggregate capital stock, she
knows that it will be equal to her own future individual capital stock.

Rule now full insurance out, as in Aiyagari’s model. In this case, individuals may
be heterogenous ex-post, since their individual capital stock will depend not only on
the history of the aggregate productivity shock, but also on the full history of their
idiosyncratic labour income shocks. Hence, our individual household, in order to exactly
predict the future aggregate capital stock, and therefore future factor prices, needs to
know the actual distribution of the individual capital stocks and employment status. The
state space of the model has to be consistently enriched: the entire distribution A (k, s)
becomes an element of the state space.
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Figure 7.3:

More formally, the household would face the following dynamic programming problem:

v(k,s;N2) = inggiu (c)+ BE[v (K, s s N, 2") [ {s, A, 2}] (7.47)
s.t. F=0-0+7k+ws—c
7 = 2Fy (K, N)

w=zFk (K,N)
K = /k)\ (k,s)dkds

N—/s)\(/f,s) dkds
N=H(\z2z"

where ‘H represents the perceived law of motion that maps the current aggregate state
space into the future distribution.

Definition 92 A recursive competitive equilibrium is a policy function g (k,s; A, z),
a pair of pricing functions 7 (X, z) and w (X, z), and a law of motion H (X, z,2'), such that:

1. g(k,s; A\, z) solves the household’s problem (7.47);
2. 7 (N z) and w (X, z) correspond to the competitive equilibrium factor prices;
3.

H (N z,2") is induced by g (k,s; A, 2).
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From a numerical point of view, introducing the distribution A into the state space
makes the model literally intractable. One way to go, following Krusell and Smith (1998),
is to assume that it is not the distribution itself than is part of the state space, but its
first h moments m = {my, ma, ..., m}. Hence, we approximate problem (7.47) with:

v(k,s;m,z) = max u (c)+ BE[v (K, s sm! 2") [{s,m,2}] (7.48)
s.t. K=01-0+7)k+ws—c
7= 2Fy (K, N)

w = zFy (K,N)
K= /k)\ (k,s)dkds
N—/s)\ (k,s)dkds
m' =H(m,z,2")
Numerical strategy:
Algorithm 93
1. Guess a functional form for H and the corresponding initial parameterization.

2. Solve the household’s problem for the current H,;.

3. Use the policy function g; to simulate the model for a large number of agents and a
large number of periods.
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4. Use the stationary part of the simulate data to estimate the parameters of 'H and
evaluate the goodness of fit.

5. Iterate on (2) — (4) until convergence of the parameters of H.
6. If the fit is not satisfactory, increase h or change the functional form for H.

7. Iterate on (2) — (6) until the fit is satisfactory.

Let us introduce endogenous labour in the framework:

v(k,s;\,z) = [Mnax (e,n) + BE v (K, s s N, 2") [ {s, A, 2}] (7.49)
s.t. F=0-0+7)k+wns—c
7= 2Fy (K, N)

w=zFk (K,N)
K = /k)\ (k,s)dkds

N=N(\z2)
N=H(\z2)

Definition 94 A recursive competitive equilibrium is a pair of policy functions g (k, s; A, 2)
andl (k,s; A, z), a pair of pricing functions 7 (X, z) and w (X, z), and pair of laws of motion
H (N z,2") and N (N, z), such that:

1. g(k,s; N, 2) and L (k, s; A\, z) solve the household’s problem (7.49);
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3. H(\ z,2") and N (A, 2) are induced by g (k,s; A\, z) and L (k, s;\, z).
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Equilibrium interest rate ( 6=10)
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