LECTURES 5 The income fluctuations problem Part II

Macroeconomics 4

A.Y. 2014-15

Marco Maffezzoli - Macro 4

L5: Income fluc. I

A.Y. 2014-15 1 / 29

Uncertainty

- Assume now that $\{y_t\}_{t=0}^{\infty}$ follows some generic stochastic process.
- For the moment, let's abstract from borrowing constraints and impose the *NPG* condition only:

$$\mathbb{E}_0\left[\lim_{t\to\infty}\frac{a_{t+1}}{(1+r)^t}\right]\ge 0.$$

• The Euler equation becomes the following:

$$\mathbb{E}_{t}\left[u_{c}\left(c_{t+1}\right)\right] = \frac{u_{c}\left(c_{t}\right)}{\beta\left(1+r\right)}.$$

- As Bob Hall pointed out, since u_c follows a univ. first-order Markov process, no other variable should Granger-cause it.
- If $\beta(1+r) = 1$, then u_c follows a **random walk**:

$$\mathbb{E}_t\left[u_c\left(c_{t+1}\right)\right] = u_c\left(c_t\right).$$

• Before going on, let's quickly discuss Modigliani's and Friedman's **Permanent Income Hypothesis** (*PIH*).

Definition

PIH states that the households saves (dissaves) in anticipation of possible future decreases (increases) in labor - or more precisely *non-financial* - income.

- In general, the household save also for precautionary reasons, possibly induced by **prudence** $(u_{ccc} > 0)$.
- Furthermore, the household possibly dissaves because of impatience, i.e. when $\beta (1 + r) < 1$.

- Assume quadratic utility: $u(c_t) = c_t \frac{\alpha}{2}c_t^2$, for some $\alpha > 0$. Furthermore, set $\beta(1+r) = 1$.
 - These assumptions kill the demand for precautionary savings and rule impatience out.
- The Euler equation implies that c_t follows a random walk:

$$\mathbb{E}_t\left(c_{t+1}\right) = c_t.$$

• In general, $\mathbb{E}_t(c_{t+s}) = c_t$ for all $s \ge 1$, so that consumption is actually a **martingale**.

• It is straightforward to show that:

$$c_t = ra_t + h_t,$$

where $h_t = \frac{r}{1+r} \sum_{s=t}^{\infty} \frac{\mathbb{E}_t(y_s)}{(1+r)^{s-t}}$.

- Note that the volatility of income does not play any role in the previous decision rule: moments higher than the first of the income process do not matter! This is known as **certainty equivalence**.
- Tedious calculations confirm that:

$$\Delta c_{t+1} = \frac{r}{1+r} \sum_{s=t+1}^{\infty} \frac{\mathbb{E}_{t+1}(y_s) - \mathbb{E}_t(y_s)}{(1+r)^{s-t-1}}.$$

• Under the *PIH*, Δc_{t+1} is proportional to the revision in expected income due to the new pieces of information accruing over time.

- Suppose now that income follows an AR(1) process, i.e. $y_t = \rho y_{t-1} + \varepsilon_t$, where is a zero-mean *iid* innovation.
- In this case, it turns out that:

$$\Delta c_{t+1} = \frac{r}{1+r-\rho}\varepsilon_{t+1}.$$

- If $\rho = 0$, then $\Delta c_{t+1} = \frac{r}{1+r} \varepsilon_{t+1}$: the household expects the income shock to be fully temporary so it only consumes its annuity value.
- If $\rho = 1$, then $\Delta c_{t+1} = \varepsilon_{t+1}$: the household consumes all of the income shock, as it expects it to be permanent.
- The *Marginal Propensity to Consume* (MPC) out of an income shock is evidently increasing in the persistence of the shocks themselves.

- Assume that the income process is the sum of two orthogonal components, a permanent one, $z_t = z_{t-1} + \varepsilon_t$, and a transitory one, ϵ_t , so that $y_t = z_t + \epsilon_t$.
- In this case, the household will respond weakly to transitory shocks and one for one to permanent ones:

$$\Delta c_{t+1} = \frac{r}{1+r} \epsilon_{t+1} + \varepsilon_{t+1}.$$

• Let var_i denote cross-sectional variance; then:

$$\operatorname{var}_{i}(\Delta c_{t}) = \left(\frac{r}{1+r}\right)^{2} \operatorname{var}_{i}(\epsilon_{t}) + \operatorname{var}_{i}(\varepsilon_{t}) \approx \operatorname{var}_{i}(\varepsilon_{t}),$$
$$\operatorname{var}_{i}(\Delta y_{t}) = 2\operatorname{var}_{i}(\epsilon_{t}) + \operatorname{var}_{i}(\varepsilon_{t}).$$

• With cross-sectional data on cons. and income one can separately identify the var. of underlying structural income shocks.

L5: Income fluc. I

PIH and CARA utility

- Wang (2003) shows that the *PIH* describes the optimal cons. rule also in a model characterized by:
 - ► CARA utility:

$$u\left(c\right) = -\frac{\exp\left(-\theta c\right)}{\theta},$$

where $\theta > 0$.

• Stationary AR(1) exo. income:

$$y_t = \phi_0 + \phi_1 y_{t-1} + \sigma \varepsilon_t,$$

where $|\phi_1| < 1$, $\sigma > 0$ and ε_t is *iid*, normally dist. with zero mean and unit var.

PIH and CARA utility

• In particular, he proves that:

$$c_t = ra_t + h_t - \Gamma\left(r\right),$$

where $\Gamma(r)$ depends on the parameters θ , β , ϕ_0 , ϕ_1 , and σ .

- As in the quadratic utility case, the *MPC* out of financial wealth and out of human wealth are equal.
- Wang (2003) shows that, in *general equilibrium*, both the demand for precautionary savings and dissavings due to impatience are constant, and exactly equal, so that they effectively cancel out, and the household behaves in accordance with *PIH*.

• Assume again quadratic utility; we can show that:

$$\Delta a_{t+1} = -\sum_{s=t}^{\infty} \frac{\mathbb{E}_t \left(\Delta y_{s+1} \right)}{\left(1+r \right)^{s-t}}.$$

- If y_t follows a random walk, then $\mathbb{E}_t (\Delta y_{s+1}) = 0$ for all $s \ge t$, and $\Delta a_{t+1} = 0$. In this case, if the household starts above the borrowing constraint, the latter will never be binding.
- If y_t follows an *iid* process, $y_t = \varepsilon_t$, then $\mathbb{E}_t (\Delta y_{t+s}) = -\varepsilon_t$ for s = 1 and $\mathbb{E}_t (\Delta y_{t+s}) = 0$ for s > 1, so that $\Delta a_{t+1} = \varepsilon_t$. In this case, wealth follows a random walk, and any constraint on asset holdings will be binding with probability one.
- In general, borrowing constraints cannot be ignored!

• Consider now the "Euler inequality" under quadratic utility and a potentially binding credit constraint:

$$-\alpha c_t + 1 = \max\left\{-\alpha \left[(1+r) a_t + y_t \right] + 1, -\alpha \mathbb{E}_t \left(c_{t+1} \right) + 1 \right\}.$$

• This can be rewritten as:

$$c_{t} = \min \left[(1+r) a_{t} + y_{t}, \mathbb{E}_{t} (c_{t+1}) \right]$$

= min ((1+r) a_{t} + y_{t}, \mathbb{E}_{t} \{ \min \left[(1+r) a_{t+1} + y_{t+1}, \mathbb{E}_{t+1} (c_{t+2}) \right] \}),

and so forth, so that $c_t \leq \mathbb{E}_t (c_{t+1})$.

• Thus, if the solution to the *PIH* problem is such that $a_t > 0$ for all t with probability one, then the presence of borrowing constraints does not affect the solution.

- In the absence of borrowing constraints, $c_t = \mathbb{E}_t (c_{t+s}) \ \forall s \ge 1$.
- Suppose that, for some realization of y_{t+1} with positive probability, the household will be borrowing constrained in period t+1, so that:

$$c_{t+1} = (1+r) a_{t+1} + y_{t+1} < \mathbb{E}_{t+1} (c_{t+2}).$$

• For the *Law of Iterated Expectations*, the previous "Euler inequality" implies:

$$c_{t} = \mathbb{E}_{t} \left\{ \min \left[(1+r) a_{t+1} + y_{t+1}, \mathbb{E}_{t} (c_{t+2}) \right] \right\},\$$

- Hence, $c_t < \mathbb{E}_t (c_{t+2})!$
- Even if the liquidity constraint is not binding in period t, future potentially binding borrowing constraints affect current consumption choices.

Marco Maffezzoli - Macro 4

L5: Income fluc. II

- Suppose now that the variance of future income increases, say for t+1, making more low realizations of y_{t+1} possible or likely.
- If the set of y_{t+1} realizations for which the borrowing constraint binds expands, then, for given $\mathbb{E}_t(c_{t+2})$, the term:

 $\mathbb{E}_{t} \{ \min \left[(1+r) a_{t+1} + y_{t+1}, \mathbb{E}_{t} (c_{t+2}) \right] \}$

declines, and so does c_t , if the household is unconstrained in period t.

• Savings increase as a consequence of risk aversion: precautionary savings emerge even without prudence, i.e. without a precautionary savings motive, because of the existence of borrowing constraints.

- Let us now finally consider the case with stochastic income and potentially binding borrowing constraints.
- The "Euler inequality" becomes the following:

$$\begin{cases} u_c(c_t) > \beta (1+r) \mathbb{E}_t [u_c(c_{t+1})] & \text{if } a_{t+1} = 0, \\ u_c(c_t) = \beta (1+r) \mathbb{E}_t [u_c(c_{t+1})] & \text{if } a_{t+1} > 0. \end{cases}$$

• Again, define $M_t \equiv u_c (c_t) [\beta (1+r)]^t > 0$; the "Euler inequality" implies:

$$M_t \geq \mathbb{E}_t \left[M_{t+1} \right].$$

• In other words, it implies that M_t follows a supermartingale.

Theorem

Doob's supermartingale convergence theorem. Let M_t follow a supermartingale. Then:

$$P\left(\lim_{t \to \infty} M_t = \bar{M}\right) = 1$$

where \overline{M} is a non-negative random variable such that $E(\overline{M}) < +\infty$.

• Loosely speaking, the above limit is (almost surely) finite.

- Consider the case $\beta(1+r) > 1$.
- $M_t = u_c(c_t) \left[\beta \left(1+r\right)\right]^t$ converges to a finite limit, but evidently $\lim_{t\to\infty} \left[\beta \left(1+r\right)\right]^t = \infty$. Thus, necessarily $P\left[u_c(c_t) \to 0\right] = 1$.
- Being $u_c > 0$, this obviously implies that $P(c_t \to \infty) = 1$.
- Since income and debt are bounded, this can only be achieved with $P(a_t \to \infty) = 1$.
- The **asset space is therefore unbounded**, as in the case under certainty.

• Consider now the case $\beta(1+r) = 1$, so that $M_t = u_c(c_t)$.

Theorem

If the exogenous income process is "sufficiently stochastic," i.e. if there is a $\varphi > 0$ such that:

$$\operatorname{var}_t\left(\sum_{s=t}^{\infty} \frac{y_s}{\left(1+i\right)^{s-t}}\right) \ge \varphi,$$

for all $t \ge 0$, and the istant. utility function u is **bounded**, then:

$$P\left(\lim_{t\to\infty}c_t=\infty\right)=1.$$

Proof.

Chamberlain and Wilson (2000), Corollary 2, p. 381.

Marco Maffezzoli - Macro 4

Corollary

Being income and debt bounded, $P(\lim_{t\to\infty} c_t = \infty) = 1$ implies:

$$P\left(\lim_{t\to\infty}a_t=\infty\right)=1.$$

- Chamberlain and Wilson (2000) allow the interest r to follow a stochastic process, too.
- Sotomayor (1984) proves the previous results assuming an *iid* exo. income process and **unbounded** istant. utility.

- We will now develop some intuition by assuming that y_t follows an *iid* process, so that the "cash in hand" trick applies.
- Using the envelope condition and the "Euler inequality" we show that V_x is a supermartingale too:

$$V_x(x_t) \ge \mathbb{E}_t\left[V_x(x_{t+1})\right].$$

- Hence, V_x converges to a non-negative random variable. If this limit is strictly positive, then $P(x_t \to \bar{x} < \infty) = 1$.
- Consumption is strictly increasing in x_t : thus, if $P(x_t \to \bar{x} < \infty) = 1$ then $P(c_t \to \bar{c} < \infty) = 1$.

• However, consider the budget constraint:

$$x_{t+1} - (1+r)(x_t - c_t) = y_{t+1}.$$

- The left hand side would converge a.s. to $\bar{x} (1+r)(\bar{x}-\bar{c})$, the right hand side would not: a contradiction!
- Hence, it has to be that $V_x(x_t) \to 0$ and $x_t \to \infty$ a.s.
- If $u_{ccc} > 0$, i.e. if the household shows prudence, the intuition is simple; from the "Euler ineq.":

$$u_{c}(c_{t}) \geq \mathbb{E}_{t}\left[u_{c}(c_{t+1})\right] > u_{c}\left[\mathbb{E}_{t}(c_{t+1})\right],$$

where the last step is due to Jensen's inequality.

• Concavity implies $c_t < \mathbb{E}_t (c_{t+1})$: c_t will increase over time.

- Finally, consider the case $\beta (1+r) < 1$.
- Theoretical results in this case are unfortunately very limited: some general propositions are available for the *iid* case only.
- Assume that y_t follows an *iid* process with minimum income level $y_1 \ge 0$ and maximum income level y_N .

Theorem

If y_t is iid, then the following holds: (i) $0 < c_x(x) \le 1$, i.e. c is strictly increasing in x, (ii) a'(x) = 0 or $0 < a'_x(x) < 1$, a' is zero or strictly increasing in x.

• Hence, $a'(x) \ge 0$ and $x' = a' + y' \ge y_1$ so that y_1 is a lower bound on the state space for x.

Theorem

There exists $\bar{x} \ge y_1$ s.t. for all $x \le \bar{x}$ we have c(x) = x and a'(x) = 0.

Proof.

Suppose, to the contrary, that a'(x) > 0 for all $x \leq \overline{x}$; then:

$$V_{x}(x) = \beta (1+r) \mathbb{E} \left[V_{x}(x') \right] \leq \beta (1+r) V_{x}(y_{1}) < V_{x}(y_{1}).$$

If $x = y_1$ this yields a contradiction.

• Hence, there is a cutoff level of x below which the household becomes borrowing constrained.

Theorem

Suppose that u_c has the property that there exists a finite ρ s.t.:

$$\lim_{c \to \infty} \log_c u_c \left(c \right) = \varrho.$$

Then there exists a \tilde{x} s.t. $x' = a'(x) + y_N \le x$ for all $x \ge \tilde{x}$.

Proof.

See Schechtman and Escudero (1977), Theorems 3.8 and 3.9.

- Note that, for CRRA utility functions, $\log_c c^{-\sigma} = -\sigma \log_c c = -\sigma$, so the prev. proposition applies.
- However, it does not apply to CARA functions: $\log_c e^{-c} = \dots = -\infty$.

- If the previous Theorem holds, x stays in the bounded set X = [y₁, x̃]: this is extremely important from a numerical point of view!
- Furthermore, c(x) = x for $x \le \overline{x}$ and c(x) < x for $x > \overline{x}$, so that a'(x) > 0.
- The following slides provides a graphical representation of this results.

Marco Maffezzoli - Macro 4

L5: Income fluc. I

A.Y. 2014-15 25 / 29

- When y_t is correlated over time, the "cash in hand" trick does not work anymore, and not much can be said in general about the properties of c(a, y) and a'(a, y).
- Huggett (1993) proves that:
 - c(a, y) is strictly increasing in a,
 - ▶ a'(a, y) is constant at the borrowing limit or strictly increasing,
 - a cutoff value $\bar{a}(y)$ that depends on income exists.
- It turns out to be very difficult to prove the existence of an upper bound of the state space.
 - Huggett (1993) proves it for the following special case: income takes only two states, $y \in \{y_L, y_H\}$ with $0 < y_L < y_H$, $\pi(H \mid H) \ge \pi(H \mid L)$, and *CRRA* utility.

Fig. 1. Optimal decision rule.

L5: Income fluc. II

- Summary of the results so far:
 - ▶ When $\beta(1+r) > 1$, consumption and assets diverge over time, almost surely.
 - When $\beta(1+r) = 1$, consumption and assets are expected to diverge over time, almost surely; we can formally prove it if utility is bounded or incomes shocks are *iid*.
 - When β (1 + r) < 1, consumption and assets may remain bounded, but we can prove it only in special cases.

References I

- Chamberlain, G. and C. A. Wilson (2000, July). Optimal Intertemporal Consumption Under Uncertainty. *Review of Economic Dynamics* 3(3), 365–95.
- Huggett, M. (1993, September). The risk-free rate in heterogeneous-agent incomplete-insurance economies. Journal of Economic Dynamics and Control 17(5-6), 953–69.
- Schechtman, J. and V. L. S. Escudero (1977, December). Some results on än income fluctuation problem: *Journal of Economic Theory* 16(2), 151–166.
- Sotomayor, M. A. d. O. (1984, February). On income fluctuations and capital gains. *Journal of Economic Theory* 32(1), 14–35.
- Wang, N. (2003, June). Caballero Meets Bewley: The Permanent-Income Hypothesis in General Equilibrium. American Economic Review 93(3), 927–936.