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Markov chains

o A time-invariant, discrete-state Markov chain is characterized by:
» An n-dimensional state space S = {s1, 82, ..., S, }.

» A n X n non-negative transition matriz 11, such that Z;L:1 IL; =1
fori=1,2,...,n.

» A n x 1 non-negative vector mg, such that E?:l o, = 1,
representing the initial (unconditional) probability distribution on
S0

To,i = prob (sp =s;).

o The matrix Il is a right stochastic matriz, and records the
transition prob. from state ¢ into state j:

II;; = prob (si41 = sj|st =s;) .
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Markov chains

@ Note that:

prob (s12 = Sj|5t =5)
n

= Z prob (se2 = 8j[St41 = Sm) Prob (s¢1 = spfst = s;)
m=1

n

m=1
where HZ(;-) is the (4,7) element of T1(2).

o Hence, in general:

k
prob (Si4r = sjlst = si) = HZ(J-).
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Markov chains

)

> (0 for some

State i communicates with state j if Hg?) > 0 and H;lf
k > 1. A Markov chain is said to be irreducible if every pair (i, j)
communicate.

@ An irred. Markov chain has the property that it is possible to move
from any state to any other in a countable number of periods.

o Note that it is not required that this movement is possible in one
step, so II;; = 0 is permitted.
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Markov chains

The unconditional distribution of s; is given by:

where 7;; =Prob(s; = s;).

e Note that:
!
i1 = II'my
o Trivially:
n
E (si41 | st =si) = ZHz‘ij,
=1
2
n n
2
var (St+1 | St = Si) = ZHZ']'S]- — ZHiij
j=1 j=1
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Markov chains

An unconditional dist. is called stationary (ergodic) if it remains
constant over time, and satisfies:

m=1r.

@ The ergodic dist. can be interpreted in two ways:

» ; is the unconditional prob. that the chain is currently in state i,

» ; is the prob. that the chain will be in state ¢ in t steps as t — oo.

@ Again, the unconditional moments obtain as:

E(s) =) ms),
j=1

n

var (s) = Zﬂjsjz - ijsj

Jj=1 J=1
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Markov chains

o The stationarity cond. can be rewritten as:
(1-II')m=o0.

o In other words, 7 is just an eigenvector associated with a unit
eigenvalue of IT', pinned down by the normalization =1 =1

@ The matrix II is right stochastic, i.e. has non-negative elements
and rows that sum up to one; this implies that:

» II' has at least one (possibly more) unit eigenvalue.

» There is at least one (again, possibly more) eigenvector satisfying
the stat. condition.
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Markov chains

Definition

If there is one and only one vector 7 that satisfies the stat. condition,
and:

lim m = 7,
t—00

for all possible 7g, then the Markov chain is asy. stationary with a
unique invariant (ergodic) distribution.

Theorem
Let 11 be a right stochastic matriz such that I1;; > 0 for all (i,j): the

associated Markov chain is irreducible, asy. stationary and has a
unique stationary distribution.

| A\

A,
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Markov chains

e From a numerical point of view, there are several ways to calculate
7 given II.

1. Tterate until convergence on:

!
Tk+1 = Hﬂ'k.

2. Calculate the eigenvalues and eigenvectors of II' and take the
normalized eigenvector associated to A = 1:

vy
S v

m =
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Markov chains

3. Define:

where:

I,-1r
A =T
(n+1)xn [ 1{“ ] ’

and 1, is a n x 1 vector of ones; it turns out that = is equal to the
n + 1 column of A.

4. Note that 1,,x,m = 1, where 1,«, is a n X n matrix of ones, since
7 sums to one. Hence:

]_n =T — H/7T + 1n><n7r - (In - H, + 1n><n) .

This implies that:

1

=T, — I+ 1pxn)

1,.
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Discretizing AR processes

e Consider the following stationary AR(1) process:
2= (1=p)p.+pz+e
where |p| <1 and e ~ N (0, 02).

e Quite often, in Macro we are required to compute expectations of
the form:

—+00

E[V (d,7) | 2] = / V(d,?) f (] =) d.

—0o0

o It would be numerically very convenient if we could discretize the
continuous distribution of z.
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Discretizing AR processes

e In other words, we will approx. the continuous AR(1) with a
discrete Markov chain, say z with some abuse of notation, that:

» takes values in a finite set Z = {21, 22, ..., 2n },
» is characterized by a trans. matrix II.

o This approx. allows to easily compute the previous expectation as:

[(az\zz:i (d,z5)
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Discretizing AR processes

To develop an intuition, consider the approach of Tauchen (1986).

Note that, conditionally on z, 2’ ~ N (i, 02), where
p=(1-p)p:+pz.

Unconditionally, instead, E (2) = u, and
var (z) = 07 = 02/ (1 - p).

The first step requires to select the finite set Z; assume that
71 <22 < ... < Zp.

z1 and z, are set, respectively, to m uncond. std. dev. on either
side of p, and the other z; are spread uniformly over the interval:

Zn — 71

n—1

71 = [z — MOz, Zp = [ly + MO, Zj =171+ (j—1).
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Discretizing AR processes

o The trans. matrix II is chosen to match the prob. of moving from

z; into the interval:
(2 — Wy, 25 + Wy,

= l Zn—71

where w, = 57251
e More precisely, we set:

II;; = prob(u,+e<z +w,),
I, =1—prob(z, —w, <p;+e),
II;; =prob(z; —w, < pf+e<zj+w,),

where u; = (1 — p) us + pzi.
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Discretizing AR processes

o Operationally, the previous rule boils down to:

P (2w
g

for j =1,

g

I, = @(ﬂ*w—‘“)—@(%) for 1 < j < n,
1—(I>(M) for j =n.

[

where ® is the CDF of the standard normal.

e Note that m = 1 would cover about 67% of the support of the
uncond. dist., m = 2 about 96%, and m = 3 about 99%; the larger
m, the larger n has to be to approx. well the conditional moments.

@ Tauchen (1986) suggests that rarely n > 9 is needed, but notes
that the quality of the approx. decreases sharply when |p| — 1 .
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Discretizing AR processes

e Tauchen and Hussey (1991) improve on Tauchen (1986) by taking
advantage of Gauss-Hermite (G-H) quadrature.

o Suppose that z ~ N (i, 02), i.e. no AR structure.

o Using G-H quadrature, we can approx. the expectation as:
E[V (d,7)] 2] ~ Zw] da',7;)

where Z; = /20.h; + ., {h;}j_, and {w;}}_, are, respectively,
the G-H nodes (i.e. the roots of the nth order Hermite polynomial)
and weights.

o If z follows an AR(1) process, this would be extremely
cumbersome because ., the cond. mean of 2/, depends on z.
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Discretizing AR processes
o Note that:
+00 ,
E[V (d,7) | 2] = / V(d,z2") %]‘(z' | ) d2’,

—0o0
where f (2’| p.) is the density of 2’ cond. on z = p,.

o The approx. becomes the following:

f(z|2)

' 2 Ninw- a,z;
E[V(a,z)|z]~ﬁ; JV( ,])f(zj’,uz).

e For z = 7;, we have:

1 f(E7)

where w; i = —=w; 4= .
vl = I f(z5lue)
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Discretizing AR processes

o The previous discussion suggests that the possible realizations of
the discrete Markov chain should be Z = {z;}"_,.

e We cannot use the @; ; directly in the trans. matrix, because
> j=1 wij # 1. Instead, set:

@ Hence:

e Tauchen and Hussey (1991) show that lim,, Z}l:l w;; =1 for
all 4, so the prev. approx. converges to G-H approx. when n — co.
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Discretizing AR processes

e For highly persistent processes (say |p| > 0.9), Kopecky and Suen
(2010) advocate Rouwenhorst’s method.

o The set Z consists of n points which are symmetrically and evenly
spaced over the interval [u, — v, p, + v], for some v > 0.

@ Choose some p and ¢ in the (0,1) interval, with possibly p = q.

o For n = 2, the trans. matrix becomes:

p 1l-—p
I, = )
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Discretizing AR processes

o II, for n > 3 obtains recursively as follows:

» 1) Compute:

) M, , o 0 1,
Hn:p|: 0T1 O:|+(1_p)|:0 OT1:|+

o 0 0 of

where 0 is a n — 1 col. vector of zeros.

» 2) Divide all but the top and bottom rows of ﬁn by 2 to obtain II,,.
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Discretizing AR processes

o Note that setting p different from ¢ would introduce conditional
heteroscedasticity in the shocks.

o Regardless of n and Z, the autocor. of this Markov chain is equal
to p + ¢ — 1; hence, assuming conditional homosced., so that p = ¢,

we set:
_I+p

2 9
in order to replicate the persistence of the continuous process.

o The var. of the Markov chain is simply v?/ (n — 1); hence, for a
given n, in order to replicate the var. of the continuous process we
set:

n—1
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Merging Markov chains

@ Suppose that households are subject to two independent
idiosyncratic shocks, say shocks to labor productivity and
preferences.

@ The processes are approx. by two discrete Markov chains,
st € {s1,s2} and z; € {z1, 22}, characterized respectively by
transition matrices IT and =E.

@ The joint process can be represented a single Markov chain:
construct ¢ = (8¢, 2¢) € {(s1,21), (s1,22) , (S2,21) , (s2,22) }.

@ The transition matrix for the joint process becomes:

M1 =21 MMin=re MieZpr Ihi2=i0
M350 IM11Z9e Ilio=or ITi2=929
[Mo1=11 Ilo1=1e TloeZyr Il22=12
[Mo1Z01 Ilp1Zg9e  TloEpr Il2o=29
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