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Markov chains

A time-invariant, discrete-state Markov chain is characterized by:
I An n-dimensional state space S = {s1, s2, ..., sn}.

I A n× n non-negative transition matrix Π, such that
∑n

j=1 Πij = 1
for i = 1, 2, ..., n.

I A n× 1 non-negative vector π0, such that
∑n

i=1 π0,i = 1,
representing the initial (unconditional) probability distribution on
s0:

π0,i = prob (s0 = si) .

The matrix Π is a right stochastic matrix, and records the
transition prob. from state i into state j:

Πij = prob (st+1 = sj |st = si) .
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Markov chains

Note that:

prob (st+2 = sj |st = si)

=
n∑

m=1
prob (st+2 = sj |st+1 = sm) prob (st+1 = sm|st = si)

=
n∑

m=1
ΠimΠmj = Π(2)

ij ,

where Π(2)
ij is the (i, j) element of Π(2).

Hence, in general:

prob (st+k = sj |st = si) = Π(k)
ij .
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Markov chains

Definition
State i communicates with state j if Π(k)

ij > 0 and Π(k)
ji > 0 for some

k ≥ 1. A Markov chain is said to be irreducible if every pair (i, j)
communicate.

An irred. Markov chain has the property that it is possible to move
from any state to any other in a countable number of periods.

Note that it is not required that this movement is possible in one
step, so Πij = 0 is permitted.
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Markov chains
Definition
The unconditional distribution of st is given by:

πt =
(
Π′
)t
π0,

where πit =Prob(st = si).

Note that:
πt+1 = Π′πt.

Trivially:

E (st+1 | st = si) =
n∑
j=1

Πijsj ,

var (st+1 | st = si) =
n∑
j=1

Πijs
2
j −

 n∑
j=1

Πijsj

2

.
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Markov chains
Definition
An unconditional dist. is called stationary (ergodic) if it remains
constant over time, and satisfies:

π = Π′π.

The ergodic dist. can be interpreted in two ways:
I πi is the unconditional prob. that the chain is currently in state i,
I πi is the prob. that the chain will be in state i in t steps as t→∞.

Again, the unconditional moments obtain as:

E (s) =
n∑
j=1

πjsj ,

var (s) =
n∑
j=1

πjs
2
j −

 n∑
j=1

πjsj

2

.
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Markov chains

The stationarity cond. can be rewritten as:(
1−Π′

)
π = 0.

In other words, π is just an eigenvector associated with a unit
eigenvalue of Π′, pinned down by the normalization

∑n
j=1 πj = 1.

The matrix Π is right stochastic, i.e. has non-negative elements
and rows that sum up to one; this implies that:

I Π′ has at least one (possibly more) unit eigenvalue.

I There is at least one (again, possibly more) eigenvector satisfying
the stat. condition.
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Markov chains

Definition
If there is one and only one vector π that satisfies the stat. condition,
and:

lim
t→∞

πt = π,

for all possible π0, then the Markov chain is asy. stationary with a
unique invariant (ergodic) distribution.

Theorem
Let Π be a right stochastic matrix such that Πij > 0 for all (i, j): the
associated Markov chain is irreducible, asy. stationary and has a
unique stationary distribution.
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Markov chains

From a numerical point of view, there are several ways to calculate
π given Π.

1. Iterate until convergence on:

πk+1 = Π′πk.

2. Calculate the eigenvalues and eigenvectors of Π′ and take the
normalized eigenvector associated to λ = 1:

π = v1∑n
i=1 v1i

.
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Markov chains
3. Define:

Â ≡
(
A′A

)−1 A′,

where:
A

(n+1)×n
≡
[

In −Π′
1′n

]
,

and 1n is a n× 1 vector of ones; it turns out that π is equal to the
n+ 1 column of Â.

4. Note that 1n×nπ = 1n, where 1n×n is a n× n matrix of ones, since
π sums to one. Hence:

1n = π −Π′π + 1n×nπ =
(
In −Π′ + 1n×n

)
π.

This implies that:

π =
(
In −Π′ + 1n×n

)−1 1n.
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Discretizing AR processes

Consider the following stationary AR(1) process:

z′ = (1− ρ)µz + ρz + ε,

where |ρ| < 1 and ε ∼ N
(
0, σ2

ε

)
.

Quite often, in Macro we are required to compute expectations of
the form:

E
[
V
(
a′, z′

)
| z
]

=
+∞ˆ

−∞

V
(
a′, z′

)
f
(
z′ | z

)
dz′.

It would be numerically very convenient if we could discretize the
continuous distribution of z.
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Discretizing AR processes

In other words, we will approx. the continuous AR(1) with a
discrete Markov chain, say z with some abuse of notation, that:

I takes values in a finite set Z = {z1, z2, ..., zn},
I is characterized by a trans. matrix Π.

This approx. allows to easily compute the previous expectation as:

E
[
V
(
a′, z′

)
| zi
]

=
n∑
j=1

ΠijV
(
a′, zj

)
.
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Discretizing AR processes

To develop an intuition, consider the approach of Tauchen (1986).

Note that, conditionally on z, z′ ∼ N
(
µ′, σ2

ε

)
, where

µ′ ≡ (1− ρ)µz + ρz.

Unconditionally, instead, E (z) = µz and
var (z) = σ2

z = σ2
ε / (1− ρ).

The first step requires to select the finite set Z; assume that
z1 < z2 < ... < zn.

z1 and zn are set, respectively, to m uncond. std. dev. on either
side of µz, and the other zj are spread uniformly over the interval:

z1 = µz −mσz, zn = µz +mσz, zj = z1 + zn − z1
n− 1 (j − 1) .
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Discretizing AR processes

The trans. matrix Π is chosen to match the prob. of moving from
zi into the interval:

(zj − wz, zj + wz] ,

where wz ≡ 1
2

zn−z1
n−1 .

More precisely, we set:
Πi1 = prob (µ′i + ε ≤ z1 + wz) ,
Πin = 1− prob (zn − wz < µ′i + ε) ,
Πij = prob (zj − wz < µ′i + ε ≤ zj + wz) ,

where µ′i ≡ (1− ρ)µz + ρzi.
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Discretizing AR processes

Operationally, the previous rule boils down to:

Πij =


Φ
( z1+wz−µ′

i
σ

)
for j = 1,

Φ
( zj+wz−µ′

i
σ

)
− Φ

( zj−wz−µ′
i

σ

)
for 1 < j < n,

1− Φ
( zn−wz−µ′

i
σ

)
for j = n.

where Φ is the CDF of the standard normal.

Note that m = 1 would cover about 67% of the support of the
uncond. dist., m = 2 about 96%, and m = 3 about 99%; the larger
m, the larger n has to be to approx. well the conditional moments.

Tauchen (1986) suggests that rarely n > 9 is needed, but notes
that the quality of the approx. decreases sharply when |ρ| → 1 .
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Discretizing AR processes

Tauchen and Hussey (1991) improve on Tauchen (1986) by taking
advantage of Gauss-Hermite (G-H) quadrature.

Suppose that z ∼ N
(
µz, σ

2
z

)
, i.e. no AR structure.

Using G-H quadrature, we can approx. the expectation as:

E
[
V
(
a′, z′

)
| z
]
≈ 1√

π

n∑
j=1

ωjV
(
a′, zj

)
,

where zj ≡
√

2σzhj + µz, {hj}nj=1 and {ωj}nj=1 are, respectively,
the G-H nodes (i.e. the roots of the nth order Hermite polynomial)
and weights.

If z follows an AR(1) process, this would be extremely
cumbersome because µz, the cond. mean of z′, depends on z.
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Discretizing AR processes
Note that:

E
[
V
(
a′, z′

)
| z
]

=
+∞ˆ

−∞

V
(
a′, z′

) f (z′ | z)
f (z′ | µz)

f
(
z′ | µz

)
dz′,

where f (z′ | µz) is the density of z′ cond. on z = µz.

The approx. becomes the following:

E
[
V
(
a′, z′

)
| z
]
≈ 1√

π

n∑
j=1

ωjV
(
a′, zj

) f (zj | z)
f (zj | µz)

.

For z = zi, we have:

E
[
V
(
a′, z′

)
| zi
]
≈

n∑
j=1

ω̄i,jV
(
a′, zj

)
,

where ω̄i,j ≡ 1√
π
ωj

f(zj |zi)
f(zj |µz) .
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Discretizing AR processes

The previous discussion suggests that the possible realizations of
the discrete Markov chain should be Z = {zj}nj=1.

We cannot use the ω̄i,j directly in the trans. matrix, because∑n
j=1 ω̄i,j 6= 1. Instead, set:

Πij = ω̄i,j∑n
j=1 ω̄i,j

.

Hence:
E
[
V
(
a′, z′

)
| zi
]
≈

n∑
j=1

ΠijV
(
a′, zj

)
.

Tauchen and Hussey (1991) show that limn→∞
∑n
j=1 ω̄i,j = 1 for

all i, so the prev. approx. converges to G-H approx. when n→∞.
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Discretizing AR processes

For highly persistent processes (say |ρ| > 0.9), Kopecky and Suen
(2010) advocate Rouwenhorst’s method.

The set Z consists of n points which are symmetrically and evenly
spaced over the interval [µz − υ, µz + υ], for some υ > 0.

Choose some p and q in the (0, 1) interval, with possibly p = q.

For n = 2, the trans. matrix becomes:

Π2 =
[

p 1− p
1− q q

]
.
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Discretizing AR processes

Πn for n ≥ 3 obtains recursively as follows:
I 1) Compute:

Π̂n = p

[
Πn−1 0
0T 0

]
+ (1− p)

[
0 Πn−1
0 0T

]
+

(1− q)
[

0T 0
Πn−1 0

]
+ q

[
0 0T

0 Πn−1

]
,

where 0 is a n− 1 col. vector of zeros.

I 2) Divide all but the top and bottom rows of Π̂n by 2 to obtain Πn.
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Discretizing AR processes

Note that setting p different from q would introduce conditional
heteroscedasticity in the shocks.

Regardless of n and Z, the autocor. of this Markov chain is equal
to p+ q − 1; hence, assuming conditional homosced., so that p = q,
we set:

p = 1 + ρ

2 ,

in order to replicate the persistence of the continuous process.

The var. of the Markov chain is simply υ2/ (n− 1); hence, for a
given n, in order to replicate the var. of the continuous process we
set:

υ =
√
n− 1
1− ρ2σε.
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Merging Markov chains
Suppose that households are subject to two independent
idiosyncratic shocks, say shocks to labor productivity and
preferences.

The processes are approx. by two discrete Markov chains,
st ∈ {s1, s2} and zt ∈ {z1, z2}, characterized respectively by
transition matrices Π and Ξ.

The joint process can be represented a single Markov chain:
construct qt = (st, zt) ∈ {(s1, z1) , (s1, z2) , (s2, z1) , (s2, z2)}.

The transition matrix for the joint process becomes:

Λ =


Π11Ξ11 Π11Ξ12 Π12Ξ11 Π12Ξ12
Π11Ξ21 Π11Ξ22 Π12Ξ21 Π12Ξ22
Π21Ξ11 Π21Ξ12 Π22Ξ11 Π22Ξ12
Π21Ξ21 Π21Ξ22 Π22Ξ21 Π22Ξ22

 .
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