Lectures 6

Markov chains

Macroeconomics 4

A.Y. 2014-15

Markov chains

- A time-invariant, discrete-state Markov chain is characterized by:
- An n-dimensional state space $S=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$.
- A $n \times n$ non-negative transition matrix Π, such that $\sum_{j=1}^{n} \Pi_{i j}=1$ for $i=1,2, \ldots, n$.
- A $n \times 1$ non-negative vector π_{0}, such that $\sum_{i=1}^{n} \pi_{0, i}=1$, representing the initial (unconditional) probability distribution on s_{0} :

$$
\pi_{0, i}=\operatorname{prob}\left(s_{0}=\mathrm{s}_{i}\right) .
$$

- The matrix Π is a right stochastic matrix, and records the transition prob. from state i into state j :

$$
\Pi_{i j}=\operatorname{prob}\left(s_{t+1}=\mathrm{s}_{j} \mid s_{t}=\mathrm{s}_{i}\right)
$$

Markov chains

- Note that:

$$
\begin{aligned}
& \operatorname{prob}\left(s_{t+2}=\mathrm{s}_{j} \mid s_{t}=\mathrm{s}_{i}\right) \\
& \qquad \begin{aligned}
&=\sum_{m=1}^{n} \operatorname{prob}\left(s_{t+2}=\mathrm{s}_{j} \mid s_{t+1}=\mathrm{s}_{m}\right) \operatorname{prob}\left(s_{t+1}=\mathrm{s}_{m} \mid s_{t}=\mathrm{s}_{i}\right) \\
&=\sum_{m=1}^{n} \Pi_{i m} \Pi_{m j}=\Pi_{i j}^{(2)}
\end{aligned}
\end{aligned}
$$

where $\Pi_{i j}^{(2)}$ is the (i, j) element of $\Pi^{(2)}$.

- Hence, in general:

$$
\operatorname{prob}\left(s_{t+k}=\mathrm{s}_{j} \mid s_{t}=\mathrm{s}_{i}\right)=\Pi_{i j}^{(k)} .
$$

Markov chains

Definition

State i communicates with state j if $\Pi_{i j}^{(k)}>0$ and $\Pi_{j i}^{(k)}>0$ for some $k \geq 1$. A Markov chain is said to be irreducible if every pair (i, j) communicate.

- An irred. Markov chain has the property that it is possible to move from any state to any other in a countable number of periods.
- Note that it is not required that this movement is possible in one step, so $\Pi_{i j}=0$ is permitted.

Markov chains

Definition

The unconditional distribution of s_{t} is given by:

$$
\pi_{t}=\left(\Pi^{\prime}\right)^{t} \pi_{0}
$$

where $\pi_{i t}=\operatorname{Prob}\left(s_{t}=\mathrm{s}_{i}\right)$.

- Note that:

$$
\pi_{t+1}=\Pi^{\prime} \pi_{t}
$$

- Trivially:

$$
\begin{aligned}
\mathbb{E}\left(s_{t+1} \mid s_{t}=\mathrm{s}_{i}\right) & =\sum_{j=1}^{n} \Pi_{i j} s_{j} \\
\operatorname{var}\left(s_{t+1} \mid s_{t}=\mathrm{s}_{i}\right) & =\sum_{j=1}^{n} \Pi_{i j} s_{j}^{2}-\left(\sum_{j=1}^{n} \Pi_{i j} s_{j}\right)^{2} .
\end{aligned}
$$

Markov chains

Definition

An unconditional dist. is called stationary (ergodic) if it remains constant over time, and satisfies:

$$
\pi=\Pi^{\prime} \pi
$$

- The ergodic dist. can be interpreted in two ways:
- π_{i} is the unconditional prob. that the chain is currently in state i,
- π_{i} is the prob. that the chain will be in state i in t steps as $t \rightarrow \infty$.
- Again, the unconditional moments obtain as:

$$
\begin{aligned}
\mathbb{E}(s) & =\sum_{j=1}^{n} \pi_{j} s_{j} \\
\operatorname{var}(s) & =\sum_{j=1}^{n} \pi_{j} s_{j}^{2}-\left(\sum_{j=1}^{n} \pi_{j} s_{j}\right)^{2} .
\end{aligned}
$$

Markov chains

- The stationarity cond. can be rewritten as:

$$
\left(\mathbf{1}-\Pi^{\prime}\right) \pi=\mathbf{0}
$$

- In other words, π is just an eigenvector associated with a unit eigenvalue of Π^{\prime}, pinned down by the normalization $\sum_{j=1}^{n} \pi_{j}=1$.
- The matrix Π is right stochastic, i.e. has non-negative elements and rows that sum up to one; this implies that:
- Π^{\prime} has at least one (possibly more) unit eigenvalue.
- There is at least one (again, possibly more) eigenvector satisfying the stat. condition.

Markov chains

Definition

If there is one and only one vector π that satisfies the stat. condition, and:

$$
\lim _{t \rightarrow \infty} \pi_{t}=\pi
$$

for all possible π_{0}, then the Markov chain is asy. stationary with a unique invariant (ergodic) distribution.

Theorem

Let Π be a right stochastic matrix such that $\Pi_{i j}>0$ for all (i, j) : the associated Markov chain is irreducible, asy. stationary and has a unique stationary distribution.

Markov chains

- From a numerical point of view, there are several ways to calculate π given Π.

1. Iterate until convergence on:

$$
\pi_{k+1}=\Pi^{\prime} \pi_{k}
$$

2. Calculate the eigenvalues and eigenvectors of Π^{\prime} and take the normalized eigenvector associated to $\lambda=1$:

$$
\pi=\frac{v_{1}}{\sum_{i=1}^{n} v_{1 i}}
$$

Markov chains

3. Define:

$$
\hat{\mathbf{A}} \equiv\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime}
$$

where:

$$
\underset{(n+1) \times n}{\mathbf{A}} \equiv\left[\begin{array}{c}
\mathbf{I}_{n}-\Pi^{\prime} \\
\mathbf{1}_{n}^{\prime}
\end{array}\right]
$$

and $\mathbf{1}_{n}$ is a $n \times 1$ vector of ones; it turns out that π is equal to the $n+1$ column of $\hat{\mathbf{A}}$.
4. Note that $\mathbf{1}_{n \times n} \pi=\mathbf{1}_{n}$, where $\mathbf{1}_{n \times n}$ is a $n \times n$ matrix of ones, since π sums to one. Hence:

$$
\mathbf{1}_{n}=\pi-\Pi^{\prime} \pi+\mathbf{1}_{n \times n} \pi=\left(\mathbf{I}_{n}-\Pi^{\prime}+\mathbf{1}_{n \times n}\right) \pi
$$

This implies that:

$$
\pi=\left(\mathbf{I}_{n}-\Pi^{\prime}+\mathbf{1}_{n \times n}\right)^{-1} \mathbf{1}_{n}
$$

Discretizing AR processes

- Consider the following stationary $A R(1)$ process:

$$
z^{\prime}=(1-\rho) \mu_{z}+\rho z+\epsilon
$$

where $|\rho|<1$ and $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

- Quite often, in Macro we are required to compute expectations of the form:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid z\right]=\int_{-\infty}^{+\infty} V\left(a^{\prime}, z^{\prime}\right) f\left(z^{\prime} \mid z\right) d z^{\prime}
$$

- It would be numerically very convenient if we could discretize the continuous distribution of z.

Discretizing AR processes

- In other words, we will approx. the continuous $A R(1)$ with a discrete Markov chain, say z with some abuse of notation, that:
- takes values in a finite set $\mathcal{Z}=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$,
- is characterized by a trans. matrix Π.
- This approx. allows to easily compute the previous expectation as:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid \mathrm{z}_{i}\right]=\sum_{j=1}^{n} \Pi_{i j} V\left(a^{\prime}, \mathrm{z}_{j}\right)
$$

Discretizing AR processes

- To develop an intuition, consider the approach of Tauchen (1986).
- Note that, conditionally on $z, z^{\prime} \sim N\left(\mu^{\prime}, \sigma_{\epsilon}^{2}\right)$, where $\mu^{\prime} \equiv(1-\rho) \mu_{z}+\rho z$.
- Unconditionally, instead, $\mathbb{E}(z)=\mu_{z}$ and $\operatorname{var}(z)=\sigma_{z}^{2}=\sigma_{\epsilon}^{2} /(1-\rho)$.
- The first step requires to select the finite set \mathcal{Z}; assume that $\mathrm{z}_{1}<\mathrm{z}_{2}<\ldots<\mathrm{z}_{n}$.
- z_{1} and z_{n} are set, respectively, to m uncond. std. dev. on either side of μ_{z}, and the other z_{j} are spread uniformly over the interval:

$$
\mathrm{z}_{1}=\mu_{z}-m \sigma_{z}, \quad \mathrm{z}_{n}=\mu_{z}+m \sigma_{z}, \quad \mathrm{z}_{j}=\mathrm{z}_{1}+\frac{\mathrm{z}_{n}-\mathrm{z}_{1}}{n-1}(j-1) .
$$

Discretizing AR processes

- The trans. matrix Π is chosen to match the prob. of moving from z_{i} into the interval:

$$
\left(\mathrm{z}_{j}-\mathrm{w}_{\mathrm{z}}, \mathrm{z}_{j}+\mathrm{w}_{\mathrm{z}}\right]
$$

where $\mathrm{w}_{\mathrm{z}} \equiv \frac{1}{2} \frac{\mathrm{z}_{n}-\mathrm{z}_{1}}{n-1}$.

- More precisely, we set:

$$
\left\{\begin{array}{l}
\Pi_{i 1}=\operatorname{prob}\left(\mu_{i}^{\prime}+\epsilon \leq \mathrm{z}_{1}+\mathrm{w}_{\mathrm{z}}\right) \\
\Pi_{i n}=1-\operatorname{prob}\left(\mathrm{z}_{n}-\mathrm{w}_{\mathrm{z}}<\mu_{i}^{\prime}+\epsilon\right) \\
\Pi_{i j}=\operatorname{prob}\left(z_{j}-\mathrm{w}_{\mathrm{z}}<\mu_{i}^{\prime}+\epsilon \leq z_{j}+\mathrm{w}_{\mathrm{z}}\right)
\end{array}\right.
$$

where $\mu_{i}^{\prime} \equiv(1-\rho) \mu_{z}+\rho z_{i}$.

Discretizing AR processes

- Operationally, the previous rule boils down to:

$$
\Pi_{i j}= \begin{cases}\Phi\left(\frac{\mathrm{z}_{1}+\mathrm{w}_{\mathrm{z}}-\mu_{i}^{\prime}}{\sigma}\right) & \text { for } j=1 \\ \Phi\left(\frac{\mathrm{z}_{j}+\mathrm{w}_{\mathrm{z}}-\mu_{i}^{\prime}}{\sigma}\right)-\Phi\left(\frac{\mathrm{z}_{j}-\mathrm{w}_{\mathrm{z}}-\mu_{i}^{\prime}}{\sigma}\right) & \text { for } 1<j<n \\ 1-\Phi\left(\frac{\mathrm{z}_{n}-\mathrm{w}_{\mathrm{z}}-\mu_{i}^{\prime}}{\sigma}\right) & \text { for } j=n\end{cases}
$$

where Φ is the $C D F$ of the standard normal.

- Note that $m=1$ would cover about 67% of the support of the uncond. dist., $m=2$ about 96%, and $m=3$ about 99%; the larger m, the larger n has to be to approx. well the conditional moments.
- Tauchen (1986) suggests that rarely $n>9$ is needed, but notes that the quality of the approx. decreases sharply when $|\rho| \rightarrow 1$.

Discretizing AR processes

- Tauchen and Hussey (1991) improve on Tauchen (1986) by taking advantage of Gauss-Hermite ($G-H$) quadrature.
- Suppose that $z \sim N\left(\mu_{z}, \sigma_{z}^{2}\right)$, i.e. no AR structure.
- Using G - H quadrature, we can approx. the expectation as:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid z\right] \approx \frac{1}{\sqrt{\pi}} \sum_{j=1}^{n} \omega_{j} V\left(a^{\prime}, \bar{z}_{j}\right)
$$

where $\overline{\mathrm{z}}_{j} \equiv \sqrt{2} \sigma_{z} h_{j}+\mu_{z},\left\{h_{j}\right\}_{j=1}^{n}$ and $\left\{\omega_{j}\right\}_{j=1}^{n}$ are, respectively, the G-H nodes (i.e. the roots of the nth order Hermite polynomial) and weights.

- If z follows an $A R(1)$ process, this would be extremely cumbersome because μ_{z}, the cond. mean of z^{\prime}, depends on z.

Discretizing AR processes

- Note that:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid z\right]=\int_{-\infty}^{+\infty} V\left(a^{\prime}, z^{\prime}\right) \frac{f\left(z^{\prime} \mid z\right)}{f\left(z^{\prime} \mid \mu_{z}\right)} f\left(z^{\prime} \mid \mu_{z}\right) d z^{\prime}
$$

where $f\left(z^{\prime} \mid \mu_{z}\right)$ is the density of z^{\prime} cond. on $z=\mu_{z}$.

- The approx. becomes the following:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid z\right] \approx \frac{1}{\sqrt{\pi}} \sum_{j=1}^{n} \omega_{j} V\left(a^{\prime}, \overline{\mathrm{z}}_{j}\right) \frac{f\left(\overline{\mathrm{z}}_{j} \mid z\right)}{f\left(\overline{\mathrm{z}}_{j} \mid \mu_{z}\right)}
$$

- For $z=\bar{z}_{i}$, we have:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid \overline{\mathrm{z}}_{i}\right] \approx \sum_{j=1}^{n} \bar{\omega}_{i, j} V\left(a^{\prime}, \overline{\mathrm{z}}_{j}\right)
$$

where $\bar{\omega}_{i, j} \equiv \frac{1}{\sqrt{\pi}} \omega_{j} \frac{f\left(\bar{z}_{j} \mid \bar{z}_{i}\right)}{f\left(\bar{z}_{j} \mid \mu_{z}\right)}$.

Discretizing AR processes

- The previous discussion suggests that the possible realizations of the discrete Markov chain should be $\mathcal{Z}=\left\{\overline{\mathrm{z}}_{j}\right\}_{j=1}^{n}$.
- We cannot use the $\bar{\omega}_{i, j}$ directly in the trans. matrix, because $\sum_{j=1}^{n} \bar{\omega}_{i, j} \neq 1$. Instead, set:

$$
\Pi_{i j}=\frac{\bar{\omega}_{i, j}}{\sum_{j=1}^{n} \bar{\omega}_{i, j}}
$$

- Hence:

$$
\mathbb{E}\left[V\left(a^{\prime}, z^{\prime}\right) \mid \overline{\mathrm{z}}_{i}\right] \approx \sum_{j=1}^{n} \Pi_{i j} V\left(a^{\prime}, \overline{\mathrm{z}}_{j}\right)
$$

- Tauchen and Hussey (1991) show that $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \bar{\omega}_{i, j}=1$ for all i, so the prev. approx. converges to G - H approx. when $n \rightarrow \infty$.

Discretizing AR processes

- For highly persistent processes (say $|\rho|>0.9$), Kopecky and Suen (2010) advocate Rouwenhorst's method.
- The set \mathcal{Z} consists of n points which are symmetrically and evenly spaced over the interval $\left[\mu_{z}-v, \mu_{z}+v\right]$, for some $v>0$.
- Choose some p and q in the $(0,1)$ interval, with possibly $p=q$.
- For $n=2$, the trans. matrix becomes:

$$
\Pi_{2}=\left[\begin{array}{cc}
p & 1-p \\
1-q & q
\end{array}\right]
$$

Discretizing AR processes

- Π_{n} for $n \geq 3$ obtains recursively as follows:
- 1) Compute:

$$
\begin{aligned}
\hat{\Pi}_{n}=p\left[\begin{array}{cc}
\Pi_{n-1} & \mathbf{0} \\
\mathbf{0}^{T} & 0
\end{array}\right]+ & (1-p)\left[\begin{array}{cc}
\mathbf{0} & \Pi_{n-1} \\
0 & \mathbf{0}^{T}
\end{array}\right]+ \\
& (1-q)\left[\begin{array}{cc}
\mathbf{0}^{T} & 0 \\
\Pi_{n-1} & \mathbf{0}
\end{array}\right]+q\left[\begin{array}{cc}
0 & \mathbf{0}^{T} \\
\mathbf{0} & \Pi_{n-1}
\end{array}\right],
\end{aligned}
$$

where $\mathbf{0}$ is a $n-1$ col. vector of zeros.

- 2) Divide all but the top and bottom rows of $\hat{\Pi}_{n}$ by 2 to obtain Π_{n}.

Discretizing AR processes

- Note that setting p different from q would introduce conditional heteroscedasticity in the shocks.
- Regardless of n and \mathcal{Z}, the autocor. of this Markov chain is equal to $p+q-1$; hence, assuming conditional homosced., so that $p=q$, we set:

$$
p=\frac{1+\rho}{2}
$$

in order to replicate the persistence of the continuous process.

- The var. of the Markov chain is simply $v^{2} /(n-1)$; hence, for a given n, in order to replicate the var. of the continuous process we set:

$$
v=\sqrt{\frac{n-1}{1-\rho^{2}}} \sigma_{\epsilon}
$$

Merging Markov chains

- Suppose that households are subject to two independent idiosyncratic shocks, say shocks to labor productivity and preferences.
- The processes are approx. by two discrete Markov chains, $s_{t} \in\left\{\mathrm{~s}_{1}, \mathrm{~s}_{2}\right\}$ and $z_{t} \in\left\{\mathrm{z}_{1}, \mathrm{z}_{2}\right\}$, characterized respectively by transition matrices $\boldsymbol{\Pi}$ and $\boldsymbol{\Xi}$.
- The joint process can be represented a single Markov chain: construct $q_{t}=\left(s_{t}, z_{t}\right) \in\left\{\left(\mathrm{s}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{s}_{1}, \mathrm{z}_{2}\right),\left(\mathrm{s}_{2}, \mathrm{z}_{1}\right),\left(\mathrm{s}_{2}, \mathrm{z}_{2}\right)\right\}$.
- The transition matrix for the joint process becomes:

$$
\boldsymbol{\Lambda}=\left[\begin{array}{llll}
\Pi_{11} \Xi_{11} & \Pi_{11} \Xi_{12} & \Pi_{12} \Xi_{11} & \Pi_{12} \Xi_{12} \\
\Pi_{11} \Xi_{21} & \Pi_{11} \Xi_{22} & \Pi_{12} \Xi_{21} & \Pi_{12} \Xi_{22} \\
\Pi_{21} \Xi_{11} & \Pi_{21} \Xi_{12} & \Pi_{22} \Xi_{11} & \Pi_{22} \Xi_{12} \\
\Pi_{21} \Xi_{21} & \Pi_{21} \Xi_{22} & \Pi_{22} \Xi_{21} & \Pi_{22} \Xi_{22}
\end{array}\right]
$$

References I

Kopecky, K. and R. Suen (2010, July). Finite State Markov-chain Approximations to Highly Persistent Processes. Review of Economic Dynamics 13(3), 701-14.
Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector autoregressions. Economics Letters 20(2), 177-181.

Tauchen, G. and R. Hussey (1991, March). Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models. Econometrica 59(2), 371-96.

