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1 Introduction

1.1 Literature review:

• Huggett (1993), Aiyagari (1994), Huggett (1997). To be completed ... evidently!

2 The model

2.1 Households

There exists a continuum of ex-ante identical and infinitely lived households, with total
mass equal to one. Each agent’s preferences over consumption streams are given by:

vt ≡ Et

[ ∞∑
s=t

βs−tu (cs)
]
, (1)

where β ∈ (0, 1). The felicity function satisfies the following regularity conditions:

1. u : R+ → R is bounded and continuous;

2. u′ > 0, u′′ < 0, and limc→0 uc (c) =∞;

3. u′ is convex.

Households own both factors of production, capital and labor, and rent them to the
firms on competitive factor markets. A single homogenous good can be purchased on a
competitive market and used for both consumption and investment.

As in Huggett (1993) and Aiyagari (1994), there is no aggregate uncertainty. However,
in each period agents face an idiosyncratic shock to their labor endowment, denoted εt. For
the sake of simplicity, assume that εt ∈ E = {εj}m

j=1, where εj > 0 ∀j; furthermore, assume
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that εt evolves according to a stationary first-order discrete Markov chain, independently
across agents: let π be the corresponding transition matrix, and let πi,j = π (εi, εj) > 0
stand for the probability that εt+1 = εj if εt = εi. Let wt denote the hourly wage rate:
our agents supply inelastically their labor endowment and therefore earn in each period
an amount equal to wtεt. Hence, earnings are volatile at the individual level, but not at
the aggregate one.

Asset markets are incomplete and the only form of investment available is physical
capital accumulation: hence, households cannot fully insure themselves against the risk
of unemployment.

For given sequences of factor prices, the dynamic optimization problem of a generic
household is as follows:

max
{cs,ks+1}∞s=t

Et

[ ∞∑
s=t

βs−tu (cs)
]

(2)

s.t. kt+1 ≤ (1− δ + rt) kt + wtεt − ct,

kt+1 ≥ 0,

where ct is the individual consumption level, kt the individual beginning-of-period capital
stock, rt the rental rate and δ ∈ (0, 1) the depreciation rate. The following Lagrangian is
easily obtained:

Lt = Et

∞∑
s=t

βs−t {u (cs) + ξs [(1− δ + rs) ks + wsεs − cs − ks+1] + ϕsks+1} . (3)

The stationarity, feasibility, and complementary slackness conditions read as:1

uc (ct) = ξt, (4)

ξt − ϕt = Et [βξt+1 (1− δ + rt+1)] , (5)

kt+1 ≤ (1− δ + rt) kt + wtεt − ct, (6)

kt+1 ≥ 0, (7)

ϕtkt+1 = 0, (8)

ξt [(1− δ + rt) kt + wtεt − ct − kt+1] = 0, (9)

ϕt ≥ 0, (10)

ξt ≥ 0. (11)
1We also impose the usual transversality condition limt→∞ βtEt (ξtkt+1) = 0.
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Since limc→0 uc (c) = ∞ and εt > 0 by assumption, we anticipate that in equilibrium
ξt > 0 ∀t; hence, the previous conditions boil down to:

uc (ct)− ϕt = Et [βuc (ct+1) (1− δ + rt+1)] , (12)

kt+1 = (1− δ + rt) kt + wtεt − ct, (13)

kt+1 ≥ 0, (14)

ϕtkt+1 = 0, (15)

ϕt ≥ 0. (16)

Remark 1. The Euler equation can be represented as: uc (ct) = Et [βuc (ct+1) (1− δ + rt+1)] if kt+1 > 0
uc (ct) ≥ Et [βuc (ct+1) (1− δ + rt+1)] if kt+1 = 0

. (17)

2.2 Firms

The competitive firms are characterized by a constant-returns-to-scale technology; let Kt

and Lt stand for the per-capita aggregate capital stock and labor supply, respectively.
Per-capita aggregate output is given by:

Yt = f (Kt, Lt) . (18)

The first-order conditions for the representative firm read as:

wt = fL (Kt, Lt) , (19)

rt = fK (Kt, Lt) . (20)

2.3 Equilibrium

The vector of individual state variables st ≡ {kt, εt} lies in X = [0,∞)×E . The distribu-
tion of individual states across agents is described by an aggregate state, the probability
measure λt. More precisely, λt is the unconditional probability distribution of the state
vector {kt, εt}, defined over the Borel subset of X :

λt (k, εj) = Pr (kt = k, εt = εj) . (21)

For the Law of Large Numbers, λt (s) can be interpreted as the mass of agents whose
individual state vector is equal to s. Being λt a probability measure, the total mass of
agents is equal to one.

Being the structure of our model fully recursive, we can recast the household’s problem
as a dynamic programming problem. The policy function for a generic agent depends
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on her time endowment, ε, on her beginning-of-period capital holdings, k, and on the
aggregate distribution λ, and satisfies the Euler equation in recursive form: uc [c (s;λ)] = βE {uc [c (s′;λ′)] [1− δ + r (λ′)] | s;λ} if k′ > 0

uc [c (s;λ)] ≥ βE {uc [c (s′;λ′)] [1− δ + r (λ′)] | s;λ} if k′ = 0
, (22)

where s = {k, ε}, and:

k′ (s;λ) = [1− δ + r (λ)] k + w (λ) ε− c (s;λ) . (23)

The exogenous Markov process driving ε and the optimal policy function c (s;λ) induce
a law of motion for the distribution λ:

λ′ (k, εj) =
m∑

z=1

ˆ
I (k, k, εz) π (εz, εj)λ (k, εz) dk =

ˆ
X
I (k, k, ε)π (ε, εj) dλ, (24)

where:

I (k, k, εj) =

 1 if k′ (k, εj;λ) = k
0 if k′ (k, εj;λ) 6= k

. (25)

Definition 1. A recursive equilibrium is a policy function c (s;λ), a couple of sequences
{wt, rt}, and a sequence of probability distributions {λt} such that:

1. The policy function c (s;λ) solves the individual optimization problem (2).

2. The factor prices {wt, rt}, together with the implied aggregate capital stock Kt =´
X kdλt and labor endowment Lt =

´
X εdλt, satisfy the first order conditions for the

firm, i.e. equations (19) and (20), ∀t ≥ 0.

3. The market for the final good clears:
ˆ
X

[c (s;λt) + k′ (s;λt)] dλt = (1− δ)Kt + f (Kt, Lt) , ∀t ≥ 0.

4. The sequence of distributions satisfies the induced law of motion:

λt+1 (k, εj) =
ˆ
X
I (k, k, ε)π (ε, εj) dλt, ∀t ≥ 0, ∀s ∈ X .

Given the absence of aggregate uncertainty, in the long run the economy will reach
a steady state characterized by a constant aggregate capital stock. Hence, a stationary
equilibrium, i.e. a steady state, is an equilibrium where factor prices remain constant over
time and the probability distribution becomes time invariant.

Remark 2. Note that, in the steady state, the aggregate labor endowment is given by
L =
´
X εdλ = π′∞E , where π∞ is the ergodic distribution of the Markov process driving ε.
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Definition 2. A stationary recursive equilibrium is a policy function c (s), a couple of
values {w, r}, and a probability distribution λ such that:

1. The policy function c (s) solves the individual optimization problem (2).

2. The factor prices {w, r}, together with K =
´
X kdλ and L = π′∞E , satisfy the first

order conditions for the firm.

3. The market for the final good clears:
ˆ
X

[c (s) + k′ (s)] dλ = (1− δ)K + f (K,L) .

4. The distribution satisfies the induced law of motion:

λ (k, εj) =
ˆ

X

I (k, k, ε) π (ε, εj) dλ, ∀s ∈ X.

3 Solution algorithm

3.1 Stationary equilibrium

The definition of a stationary recursive equilibrium suggests the following numerical ap-
proach:

Algorithm 1. Given the aggregate labor endowment L = π′∞E, and an initial guess for
K, say K0 > 0:

1. Compute wj and rj, where j denotes the current iteration, from (19) and (20) for
the current guess Kj.

2. Solve the household problem for the individual policy function cj (s).

3. Compute the implied stationary distribution λj (s).

4. Compute the implied aggregate capital stock:

K̂j =
ˆ
X
kdλj. (26)

5. Given K̂, compute a new guess for K:

Kj+1 = υK̂j + (1− υ)Kj (27)

where υ ∈ (0, 1) is a damping parameter, and iterate until convergence over points
(1)− (6).
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From a numerical point of view, a more efficient way to solve the fixed point problem
described in the previous Algorithm is to define a function that computes Kj+1 given Kj

and use bisection - or any other robust univariate solution method like Ridder’s or Brent’s
ones - to solve for the fixed point up to the desired precision.

3.1.1 Solving for the individual policy function

The individual problem can be easily solved using value function iteration, or fixed point
iteration on the Euler equation, as discussed in Rendhal (2013); here we follow the latter
approach:

Algorithm 2. Define a grid for the individual capital stock on R+, say k = {ki}n
i=1, where

k1 = 0 and kn = k̄ > 0. Furthermore, choose an initial guess for the optimal consumption
levels at each grid point, i.e. m vectors cz,0 = {cz,0,i}n

i=1, one for each possible realization
of the labor endowment shock.

1. Given the current guess cz,j, where j denotes the current iteration, compute the
implied future individual capital stock:

k′z,j = max (yz − cz,j, 0) , (28)

where:
yz ≡ (1− δ + r) k + wεz. (29)

2. Given the previously obtained vector k′z,j, compute the future optimal consumption
levels c′q,j, where q = 1, 2, ...,m, via interpolation (or extrapolation, if needed) on k
and cq,j.

3. Compute the right hand side of (22) as:

ĉz,j = min

u−1
c

β (1− δ + r)
m∑

q=1
π (εz, εq)uc

(
c′q,j

) ,yz

 . (30)

4. Update the guess for cz,j as follows:

cz,j+1 = υĉz,j + (1− υ) cz,j, (31)

where υ ∈ (0, 1) is a damping parameter, and iterate on points (1) − (4) until
convergence.

3.1.2 Computing the stationary distribution

As described in Young (2010), the stationary distribution can be computed using a simple
“binning” approach. In other words, the continous distribution λ is approximated with a
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discrete histogram over a fixed and uniformly distributed grid on
[
0, k̄

]
×E , say {ki}N

i=1×E ,
where k1 = 0, kN = k̄, and possibly N ≥ n. The histogram can be described as a (N ×m)
matrix λ, whose element λ (i, j) represents the share of households with capital holdings
i and labor endowment j at the beginning of each period. Hence, the aggregate capital
stock can be approximated by:

K ≈
N∑

i=1

m∑
j=1

k′i,jλ (i, j) , (32)

where k′i,j denotes the optimal future capital stock at the node {ki, εj}, which lies on the
previously defined grid, and can be obtained by interpolating the policy function.

Suppose that a strictly positive mass of households, say υ, saves an amount k′ such
that kz ≤ k′ ≤ kz+1 for some z ∈ {1, 2, ..., N}. The key step in our discrete approximation
is to allocate the mass υ to the nodes kz and kz+1 in such a way that the aggregate capital
stock remains unaffected. If ωz denotes the share of households that end up at node kz,
then the previous requirement boils down to the following constraint:

ωzkz + (1− ωz) kz+1 = k′.

Hence, the mass υ is distributed according to the following rule:2

ωz (k′) =


k′−kz−1
kz−kz−1

if kz−1 ≤ k′ ≤ kz

kz+1−k′

kz+1−kz
if kz < k′ ≤ kz+1

0 otherwise
. (33)

Remark 3. Note that ωz (k′) ≥ 0 ∀z, ωz (k′) > 0 for at most two values of z, and∑N
l=1 ωz

(
k′l,j
)

= 1 ∀z, j.

The law of motion for the wealth distribution described in (24) boils down to the
following relationship:

λ (z, l) =
m∑

s=1
πs,l

N∑
i=1

ωz

(
k′i,s

)
λ (i, s) . (34)

For the sake of computational convenience, a version of (34) expressed in matrix form
is needed. We can rewrite (34) more compactly as:

λ (z, l) =
[
π1,lgz,1 | · · · | πm,lgz,m

]
vec (λ) , (35)

where:
gz,s ≡

[
ωz

(
k′1,s

)
· · · ωz

(
k′N,s

) ]
.

2Note that the two special cases z = 1 and z = N have to be taken care separately: if z = 1, then
ω1 (k′) = (k2 − k′) / (k2 − k1) if k1 ≤ k′ ≤ k2 or ω1 (k′) = 1 if k′ < k1; if z = N , then ωN (k′) =
(k′ − kN−1) / (kN − kN−1) if kN−1 ≤ k′ ≤ kN , or ωN (k′) = 1 if k′ > kN .
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By simply stacking (35) for z = 1, 2, ..., N , we get that:

λ (1, l)

...
λ (N, l)

 =
[
π1,lG1 | · · · | πm,lGm

]
vec (λ)

where:

Gs =


g1,s

...
gN,s

 .
Hence, we finally conclude that the law of motion (34) can be written in matrix form

as:
vec (λ) = G′ vec (λ) , (36)

where:

G ≡


π1,1G′1 π1,2G′1 · · · π1,mG′1
π2,1G′2 π2,2G′2 · · · π2,mG′2

... ... . . . ...
πm,1G′m πm,2G′m · · · πm,mG′m

 =

(π ⊗ IN)


G′1 0 · · · 0
0 G′2 · · · 0
... ... . . . ...
0 0 · · · G′m

 . (37)

The Nm×Nm matrix G is right stochastic, being π so by assumption; hence, vec (λ)
can be interpreted as the ergodic distribution of a discrete Markov chain characterized
by the transition matrix G, and constructed combining the dynamics of both the exoge-
nous stochastic shock and the endogenous state variable. Note that G is quite a sparse
matrix: the best way to numerically compute the ergodic distribution vec (λ) in this case
is to iterate until convergence on the following recursive scheme, taking the sparsity into
account:

vec (λk+1) = G′ vec (λk) . (38)

3.2 Transition

Let us now discuss how to compute the transition between two steady states. Assume
that at time 0 the economy starts in a steady state characterized by a policy function c0,
a couple of values {w0, r0}, and a distribution λ0. Suddenly, and unexpectedly, a change
in one of the parameters governing the economy occurs at date 1 and drives the economy
to a new steady state. Even if convergence takes place only in the limit, let us assume
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that it takes a finite number of periods, say T = 1000, to reach the new steady state,
characterized by a policy function cT , a couple of values {wT , rT}, and a distribution λT .
Quite obviously, the two steady states can be easily computed using the method described
in the previous Section.

The goal of the exercise is to find sequences of policy functions {ct}T
t=0, prices {wt, rt}T

t=0,
and distributions {λt}T

t=0 that satisfy the recursive equilibrium described in Definition 1
on page 4.

Algorithm 3. The procedure works as follows:

1. Compute the initial steady state: c0, {w0, r0}, and λ0.

2. Compute the final steady state: cT , {wT , rT}, and λT .

3. Once the initial and final steady states are known, guess sequences of factor prices
{wt, rt}T−1

t=1 , (i.e. guess sequences of Kt and Nt), and:

(a) For t = T, T − 1, ..., 2, and for given ct, solve the Euler equation for ct−1: uc [ct−1 (st−1)] = βE {uc [ct (st)] (1− δ + rt) | st−1} if kt > 0
uc [ct−1 (st−1)] ≥ βE {uc [ct (st)] (1− δ + rt) | st−1} if kt = 0

, (39)

where:
kt = (1− δ + rt−1) kt−1 + wt−1εt−1 − ct−1 (st−1) . (40)

(b) Given the previously computed sequence of policy functions, {ct}T
t=0, and the

initial λ0, compute iteratively the dynamics of the wealth distribution during
the convergence process:

λt+1 (s) =
ˆ

X

It (k, k, ε) π (z, ε) dλt, ∀t ∈ [0, T − 1] , ∀s ∈ X. (41)

where:

It (k, k, ε) =

 1 if k′t = k
0 if k′t 6= k

. (42)

(c) Given the sequence of distributions, compute Kt =
´

X
kdλt and Lt =

´
X
εdλt,

and the implied sequences {wt, rt}T−1
t=1 .

(d) If the initial guess and the newly computed sequences do not coincide, update
your guess.

4. Iterate steps (a)-(d) until convergence.

In order to implement numerically point (a):
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Algorithm 4. Given the grid k = {ki}n
i=1 and the m vectors c̄′z:

1. Given the current guess cz,j, where j denotes the current iteration, compute the
implied future individual capital stock:

k′z,j = max (yz − cz,j, 0) , (43)

where:
yz ≡ (1− δ + r) k + wεz. (44)

2. Given the previously obtained vector k′z,j, compute the future optimal consumption
levels c′q,j, where q = 1, 2, ...,m, via interpolation (or extrapolation, if needed) on k
and c̄′q.

3. Compute the right hand side of (22) as:

ĉz,j = min

u−1
c

β (1− δ + r)
m∑

q=1
π (εz, εq)uc

(
c′q,j

) ,yz

 . (45)

4. Update the guess for cz,j as follows:

cz,j+1 = υĉz,j + (1− υ) cz,j, (46)

where υ ∈ (0, 1) is a damping parameter, and iterate on points (1) − (4) until
convergence.

4 References

References

Aiyagari, S. R. (1994, August). Uninsured Idiosyncratic Risk and Aggregate Saving. The
Quarterly Journal of Economics 109 (3), 659–84.

Huggett, M. (1993, September). The risk-free rate in heterogeneous-agent incomplete-
insurance economies. Journal of Economic Dynamics and Control 17 (5-6), 953–69.

Huggett, M. (1997, August). The one-sector growth model with idiosyncratic shocks:
Steady states and dynamics. Journal of Monetary Economics 39 (3), 385–403.

Rendhal, P. (2013). Inequality Constraints and Euler Equation based Solution Methods.
The Economic Journal, forthcoming.

10



Young, E. R. (2010, January). Solving the incomplete markets model with aggregate
uncertainty using the Krusell-Smith algorithm and non-stochastic simulations. Journal
of Economic Dynamics and Control 34 (1), 36–41.

11


