LECTURES 10 Bewley models Part II

Macroeconomics 4

A.Y. 2014-15

Calibration

- Following Huggett (1993), assume a *CES* form for the istant. utility function, $u(c) = c^{1-\mu}/(1-\mu)$, and set $\mu = 2$; furthermore, set $\beta = 0.97$, w = 1, and b = 1.
- Assume that labor income follows a stationary AR(1) process:

$$\ln s_{t+1} = \rho \ln s_t + \sigma \sqrt{(1-\rho^2)} \varepsilon_t$$

where $\varepsilon_t \sim N(0, 1)$, $\rho = 0.53$, and $\sigma = 0.296$.

• Finally, following Aiyagari (1994), se set $\alpha = 0.36$ and $\delta = 0.08$.

Figure: Pure credit with b = 1.

Figure: Pure credit with b = 3.

Equilibrium interest rate b=1 b=3 3 2 Per-capita asset demand -1 -2 -0.03 -0.01 0.01 0.02 0.03 -0.02 0 Interest rate

Figure: Pure credit: agg. demand for assets.

Marco Maffezzoli - Macro 4

Figure: Pure credit: sensitivity analysis.

Marco Maffezzoli - Macro 4

Figure: Physical capital: density.

Figure: Physical capital: higher persistence.

Marco Maffezzoli - Macro 4

Figure: Physical capital: higher elast. of int. subst.

Marco Maffezzoli - Macro 4

Figure: Physical capital: equilibrium.

Marco Maffezzoli - Macro 4

Figure: Physical capital: sensitivity analysis.

Marco Maffezzoli - Macro 4

Summary of substantive findings

- The equilibrium interest rate is lower (than the time pref. rate) with incomplete markets than it is with complete markets: this is true in both Huggett (1993) and Aiyagari (1994).
 - ► This may potentially explain the equity premium puzzle, but the difference is quantitatively small.
- The aggregate capital stock in Aiyagari (1994) is larger than it is under complete markets, although again the difference is not quantitatively large.
- The model generates the right ranking between different types of inequality: wealth is more dispersed than income, income is more dispersed than consumption.
- The model does **NOT** generate enough inequality, if idiosincratic shocks are just modeled as shocks to labor earnings.

- Let us revert to a general formulation of Aiyagari (1994).
- For given sequences $\{w_t\}_{t=0}^{\infty}$ and $\{r_t\}_{t=0}^{\infty}$, a generic agent solves:

$$\max_{\substack{\{c_t,k_{t+1}\}_{t=0}^{\infty}\\ \text{s.t.}}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u\left(c_t\right) \right]$$

s.t. $k_{t+1} \leq (1-\delta+r_t) k_t + w_t s_t - c_t,$
 $k_{t+1} \geq 0.$

• As usual, c_t denotes individual consumption, k_t the individual beginning-of-period capital stock, r_t the rental rate, w_t the hourly wage, and $\delta \in (0, 1)$ the depreciation rate.

• As before, s_t is an idiosincratic shock that follows a discrete Markov chain: $s_t \in \mathcal{S} = \{s_i\}_{i=1}^n$, where $s_i > 0 \ \forall i$, and $\Pi_{i,j} = \Pi(s_i, s_j) = \text{prob}(s_{t+1} = s_j \mid s_t = s_i) > 0.$

• A Lagrangian is easily obtained:

$$L_{0} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \times \left\{ u\left(c_{t}\right) + \xi_{t} \left[\left(1 - \delta + r_{t}\right) k_{t} + w_{t}s_{t} - c_{t} - k_{t+1} \right] + \varphi_{t}k_{t+1} \right\}.$$

• The *FOC*s and slackness conditions read as:

$$u_{c}(c_{t}) = \xi_{t},$$

$$\xi_{t} - \varphi_{t} = \mathbb{E}_{t} \left[\beta\xi_{t+1} \left(1 - \delta + r_{t+1}\right)\right],$$

$$k_{t+1} \leq (1 - \delta + r_{t}) k_{t} + w_{t}s_{t} - c_{t},$$

$$k_{t+1} \geq 0,$$

$$\varphi_{t}k_{t+1} = 0,$$

$$0 = \xi_{t} \left[(1 - \delta + r_{t}) k_{t} + w_{t}s_{t} - c_{t} - k_{t+1}\right],$$

$$\varphi_{t} \geq 0,$$

$$\xi_{t} \geq 0.$$

Marco Maffezzoli - Macro 4

- Since $\lim_{c\to 0} u_c(c) = \infty$ and $s_t > 0$ by assumption, in equilibrium $\xi_t > 0 \ \forall t$.
- Hence, the previous conditions boil down to:

$$u_{c}(c_{t}) - \varphi_{t} = \mathbb{E}_{t} \left[\beta u_{c}(c_{t+1}) \left(1 - \delta + r_{t+1}\right)\right],$$

$$k_{t+1} = (1 - \delta + r_{t}) k_{t} + w_{t} s_{t} - c_{t},$$

$$k_{t+1} \ge 0,$$

$$\varphi_{t} k_{t+1} = 0,$$

$$\varphi_{t} \ge 0.$$

• The "Euler inequality" can be represented as:

$$\begin{cases} u_{c}(c_{t}) = \mathbb{E}_{t} \left[\beta u_{c}(c_{t+1}) \left(1 - \delta + r_{t+1} \right) \right] & \text{if } k_{t+1} > 0, \\ u_{c}(c_{t}) \ge \mathbb{E}_{t} \left[\beta u_{c}(c_{t+1}) \left(1 - \delta + r_{t+1} \right) \right] & \text{if } k_{t+1} = 0. \end{cases}$$

- The competitive firms are characterized by a CRS technology; let K_t and L_t stand for the per-capita aggregate capital stock and labor supply, respectively.
- Per-capita aggregate output is given by:

$$Y_t = f\left(K_t, L_t\right).$$

• The first-order conditions for the representative firm read as:

$$w_t = f_L \left(K_t, L_t \right),$$

$$r_t = f_K \left(K_t, L_t \right).$$

- The vector of individual state variables $\mathbf{x}_t \equiv \{k_t, s_t\}$ lies in $\mathcal{X} = [0, \infty) \times \mathcal{S}.$
- The distribution of \mathbf{x}_t across agents is described by an aggregate state, the probability measure λ_t .
- More precisely, λ_t is the unconditional prob. dist. of $\{k_t, s_t\}$, defined over the Borel subset of \mathcal{X} :

$$\lambda_t (\mathbf{k}, \mathbf{s}_j) = \operatorname{prob} (k_t = \mathbf{k}, s_t = \mathbf{s}_j).$$

- For the *LoLN*, $\lambda_t(\mathbf{x})$ can be interpreted as the mass of agents whose individual state vector is equal to \mathbf{x} .
- Being λ_t a prob. measure, the total mass of agents is one.

- Being the model fully recursive, we can recast it as a dynamic programming problem.
- The policy function for a generic agent satisfies the Euler eq. in recursive form:

$$u_{c}\left[c\left(\mathbf{x};\lambda\right)\right] \geq \beta \mathbb{E}\left\{u_{c}\left[c\left(\mathbf{x}';\lambda'\right)\right]\left[1-\delta+r\left(\lambda'\right)\right] \mid \mathbf{x};\lambda\right\},\$$

where $\mathbf{x} = \{k, s\}$, and:

$$k'(\mathbf{x}; \lambda) = [1 - \delta + r(\lambda)] k + w(\lambda) s - c(\mathbf{x}; \lambda).$$

• Note that the policy fun. c depends upon the individual state **x** and the agg. distribution λ , while the agg. prices w and r depend upon λ only.

• The Markov chain driving s and the policy function $c(\mathbf{x}; \lambda)$ induce a Law of Motion (LoM) for λ :

$$\begin{split} \lambda'\left(\mathbf{k},\mathbf{s}_{j}\right) &= \sum_{i=1}^{n} \int \mathcal{I}\left(\mathbf{k},k,\mathbf{s}_{i}\right) \Pi_{i,j}\lambda\left(k,\mathbf{s}_{i}\right) dk \\ &= \int_{\mathcal{X}} \mathcal{I}\left(\mathbf{k},k,s\right) \Pi\left(s,\mathbf{s}_{j}\right) d\lambda, \end{split}$$

where:

$$\mathcal{I}\left(\mathbf{k},k,\mathbf{s}_{i}\right) = \begin{cases} 1 & \text{if } k'\left(k,\mathbf{s}_{i};\lambda\right) = \mathbf{k} \\ 0 & \text{if } k'\left(k,\mathbf{s}_{i};\lambda\right) \neq \mathbf{k} \end{cases}$$

.

Definition

A recursive equilibrium is a policy fun. $c(\mathbf{x}; \lambda)$, a couple of sequences $\{w_t, r_t\}$, and a sequence of distributions $\{\lambda_t\}$ such that:

- The policy function $c(\mathbf{x}; \lambda)$ solves the individual problem.
- The factor prices $\{w_t, r_t\}$, together with $K_t = \int_{\mathcal{X}} k d\lambda_t$ and $L_t = \int_{\mathcal{X}} s d\lambda_t$, satisfy the firm's FOCs $\forall t \ge 0$.
- The market for the final good clears:

$$\int_{\mathcal{X}} \left[c\left(\mathbf{x}; \lambda_t\right) + k'\left(\mathbf{x}; \lambda_t\right) \right] d\lambda_t = (1 - \delta) K_t + f\left(K_t, L_t\right), \quad \forall t \ge 0.$$

• The sequence $\{\lambda_t\}$ satisfies the induced LoM:

$$\lambda_{t+1}(\mathbf{k}, \mathbf{s}_{\mathbf{j}}) = \int_{\mathcal{X}} \mathcal{I}(\mathbf{k}, k, s) \Pi(s, \mathbf{s}_{\mathbf{j}}) d\lambda_{t}, \quad \forall t \ge 0, \ \forall \mathbf{x} \in \mathcal{X}.$$

Definition

A stationary recursive equilibrium is a policy function $c(\mathbf{x})$, a couple of values $\{w, r\}$, and a distribution λ such that:

- The policy function $c(\mathbf{x})$ solves the individual problem.
- The factor prices $\{w, r\}$, together with $K = \int_{\mathcal{X}} k d\lambda$ and $L = \pi' \mathcal{S}$, satisfy the firm's *FOC*s.
- The market for the final good clears:

$$\int_{\mathcal{X}} \left[c\left(\mathbf{x} \right) + k'\left(\mathbf{x} \right) \right] d\lambda = \left(1 - \delta \right) K + f\left(K, L \right).$$

• The distribution satisfies the induced *LoM*:

$$\lambda\left(\mathbf{k},\mathbf{s_{j}}\right) = \int_{X} \mathcal{I}\left(\mathbf{k},k,s\right) \Pi\left(s,\mathbf{s_{j}}\right) d\lambda, \quad \forall \mathbf{x} \in \mathcal{X}.$$

Algorithm: how to solve for the equilibrium

- 1) Given $L = \pi' S$, choose an initial guess for K, say $K_0 > 0$.
 - a) Given K_j , compute w_j and r_j from the firm's FOCs.
 - b) Solve the agent's problem for the policy function $c_j(\mathbf{x})$.
 - c) Compute the implied stationary distribution $\lambda_{j}(\mathbf{x})$.
 - d) Compute the implied agg. capital stock, $\hat{K}_j = \int_{\mathcal{X}} k d\lambda_j$.
 - e) Given \hat{K} , compute a new guess for K:

$$K_{j+1} = v\hat{K}_j + (1-v)K_j$$

where $v \in (0, 1)$ is a damping parameter.

2) Iterate steps (a) - (e) until convergence.

Time iteration

Algorithm: how to solve for the policy function

- 1) Define (only once!) a finite grid for the individual capital stock on R_+ , say $\mathbf{k} = (\mathbf{k}_j)_{j=1}^m$, where $\mathbf{k}_1 = 0$ and $\mathbf{k}_m = \bar{\mathbf{k}} < \infty$.
- 2) Choose an initial guess for the optimal cons. levels at each node, i.e. n vectors $\mathbf{c}_{i,0} = (c_{i,0,j})_{j=1}^m$, one for each possible realization of s.
 - a) Given the current guess $\mathbf{c}_{i,z}$, where z denotes the iteration, compute the implied k':

$$\mathbf{k}_{i,z}' = \max\left(\mathbf{y}_i - \mathbf{c}_{i,z}, 0\right),\,$$

where:

$$\mathbf{y}_i = (1 - \delta + r)\,\mathbf{k} + w\mathbf{s}_i.$$

b) Given the vectors k'_{i,z}, compute the future optimal consumption levels c'_{q,i,z}, where q = 1, 2, ..., n, via interpolation on k and c_{i,z}.
c) ...

Aiyagari (1994) Time iteration

Algorithm: how to solve for the policy function

2) ...

c) Compute the r.h.s. of the Euler eq., and solve for:

$$\hat{\mathbf{c}}_{i,z} = \min\left\{u_c^{-1}\left[\beta\left(1-\delta+r\right)\sum_{q=1}^n \prod_{i,j} u_c\left(\mathbf{c}'_{q,i,z}\right)\right], \mathbf{y}_i\right\}.$$

d) Update the guess for $\mathbf{c}_{i,z}$ as follows:

$$\mathbf{c}_{i,z+1} = \upsilon \mathbf{\hat{c}}_{i,z} + (1-\upsilon) \, \mathbf{c}_{i,z},$$

where $v \in (0, 1)$ is a damping parameter.

3) Iterate steps (a) - (d) until convergence.

- Aiyagari, S. R. (1994, August). Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics 109(3), 659–84.
- Huggett, M. (1993, September). The risk-free rate in heterogeneous-agent incomplete-insurance economies. Journal of Economic Dynamics and Control 17(5-6), 953–69.