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Calibration

Following Huggett (1993), assume a CES form for the istant.
utility function, u (c) = c1−µ/ (1− µ), and set µ = 2; furthermore,
set β = 0.97, w = 1, and b = 1.

Assume that labor income follows a stationary AR(1) process:

ln st+1 = ρ ln st + σ
√

(1− ρ2)εt

where εt ∼ N (0, 1), ρ = 0.53, and σ = 0.296.

Finally, following Aiyagari (1994), se set α = 0.36 and δ = 0.08.
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Numerical examples
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Figure: Pure credit with b = 1.
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Numerical examples
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Figure: Pure credit with b = 3.
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Numerical examples
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Figure: Pure credit: agg. demand for assets.
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Numerical examples
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Higher relative risk aversion (b=3)
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Figure: Pure credit: sensitivity analysis.
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Numerical examples
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Figure: Physical capital: density.
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Numerical examples
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Figure: Physical capital: higher persistence.
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Numerical examples
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Figure: Physical capital: higher elast. of int. subst.
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Numerical examples
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Figure: Physical capital: equilibrium.

Marco Maffezzoli - Macro 4 L10: Bewley models II A.Y. 2014-15 10 / 25



Numerical examples
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Figure: Physical capital: sensitivity analysis.
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Summary of substantive findings

The equilibrium interest rate is lower (than the time pref. rate)
with incomplete markets than it is with complete markets: this is
true in both Huggett (1993) and Aiyagari (1994).

I This may potentially explain the equity premium puzzle, but the
difference is quantitatively small.

The aggregate capital stock in Aiyagari (1994) is larger than it is
under complete markets, although again the difference is not
quantitatively large.

The model generates the right ranking between different types of
inequality: wealth is more dispersed than income, income is more
dispersed than consumption.

The model does NOT generate enough inequality, if idiosincratic
shocks are just modeled as shocks to labor earnings.
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A fully-fledged version of Aiyagari (1994)
Let us revert to a general formulation of Aiyagari (1994).

For given sequences {wt}∞t=0 and {rt}∞t=0, a generic agent solves:

max
{ct,kt+1}∞

t=0
E0

[ ∞∑
t=0

βtu (ct)
]

s.t. kt+1 ≤ (1− δ + rt) kt + wtst − ct,
kt+1 ≥ 0.

As usual, ct denotes individual consumption , kt the individual
beginning-of-period capital stock, rt the rental rate, wt the hourly
wage, and δ ∈ (0, 1) the depreciation rate.

As before, st is an idiosincratic shock that follows a discrete
Markov chain: st ∈ S = {si}ni=1, where si > 0 ∀i, and
Πi,j = Π (si, sj) = prob (st+1 = sj | st = si) > 0.
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A fully-fledged version of Aiyagari (1994)
A Lagrangian is easily obtained:

L0 = E0

∞∑
t=0

βt×

{u (ct) + ξt [(1− δ + rt) kt + wtst − ct − kt+1] + ϕtkt+1} .

The FOCs and slackness conditions read as:

uc (ct) = ξt,

ξt − ϕt = Et [βξt+1 (1− δ + rt+1)] ,
kt+1 ≤ (1− δ + rt) kt + wtst − ct,
kt+1 ≥ 0,

ϕtkt+1 = 0,
0 = ξt [(1− δ + rt) kt + wtst − ct − kt+1] ,
ϕt ≥ 0,
ξt ≥ 0.
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A fully-fledged version of Aiyagari (1994)
Since limc→0 uc (c) =∞ and st > 0 by assumption, in equilibrium
ξt > 0 ∀t.

Hence, the previous conditions boil down to:

uc (ct)− ϕt = Et [βuc (ct+1) (1− δ + rt+1)] ,
kt+1 = (1− δ + rt) kt + wtst − ct,
kt+1 ≥ 0,

ϕtkt+1 = 0,
ϕt ≥ 0.

The “Euler inequality” can be represented as:{
uc (ct) = Et [βuc (ct+1) (1− δ + rt+1)] if kt+1 > 0,
uc (ct) ≥ Et [βuc (ct+1) (1− δ + rt+1)] if kt+1 = 0.
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A fully-fledged version of Aiyagari (1994)

The competitive firms are characterized by a CRS technology; let
Kt and Lt stand for the per-capita aggregate capital stock and
labor supply, respectively.

Per-capita aggregate output is given by:

Yt = f (Kt, Lt) .

The first-order conditions for the representative firm read as:

wt = fL (Kt, Lt) ,
rt = fK (Kt, Lt) .

Marco Maffezzoli - Macro 4 L10: Bewley models II A.Y. 2014-15 16 / 25



A fully-fledged version of Aiyagari (1994)

The vector of individual state variables xt ≡ {kt, st} lies in
X = [0,∞)× S.

The distribution of xt across agents is described by an aggregate
state, the probability measure λt.

More precisely, λt is the unconditional prob. dist. of {kt, st},
defined over the Borel subset of X :

λt (k, sj) = prob (kt = k, st = sj) .

For the LoLN, λt (x) can be interpreted as the mass of agents
whose individual state vector is equal to x.

Being λt a prob. measure, the total mass of agents is one.
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A fully-fledged version of Aiyagari (1994)

Being the model fully recursive, we can recast it as a dynamic
programming problem.

The policy function for a generic agent satisfies the Euler eq. in
recursive form:

uc [c (x;λ)] ≥ βE
{
uc
[
c
(
x′;λ′

)] [
1− δ + r

(
λ′
)]
| x;λ

}
,

where x = {k, s}, and:

k′ (x;λ) = [1− δ + r (λ)] k + w (λ) s− c (x;λ) .

Note that the policy fun. c depends upon the individual state x
and the agg. distribution λ, while the agg. prices w and r depend
upon λ only.
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A fully-fledged version of Aiyagari (1994)

The Markov chain driving s and the policy function c (x;λ) induce
a Law of Motion (LoM) for λ:

λ′ (k, sj) =
n∑
i=1

∫
I (k, k, si) Πi,jλ (k, si) dk

=
∫
X
I (k, k, s) Π (s, sj) dλ,

where:
I (k, k, si) =

{
1 if k′ (k, si;λ) = k
0 if k′ (k, si;λ) 6= k .
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A fully-fledged version of Aiyagari (1994)
Definition
A recursive equilibrium is a policy fun. c (x;λ), a couple of sequences
{wt, rt}, and a sequence of distributions {λt} such that:

The policy function c (x;λ) solves the individual problem.

The factor prices {wt, rt}, together with Kt =
∫
X kdλt and

Lt =
∫
X sdλt, satisfy the firm’s FOCs ∀t ≥ 0.

The market for the final good clears:∫
X

[
c (x;λt) + k′ (x;λt)

]
dλt = (1− δ)Kt + f (Kt, Lt) , ∀t ≥ 0.

The sequence {λt} satisfies the induced LoM:

λt+1 (k, sj) =
∫
X
I (k, k, s) Π (s, sj) dλt, ∀t ≥ 0, ∀x ∈ X .
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A fully-fledged version of Aiyagari (1994)
Definition
A stationary recursive equilibrium is a policy function c (x), a couple of
values {w, r}, and a distribution λ such that:

The policy function c (x) solves the individual problem.

The factor prices {w, r}, together with K =
∫
X kdλ and L = π′S,

satisfy the firm’s FOCs.

The market for the final good clears:∫
X

[
c (x) + k′ (x)

]
dλ = (1− δ)K + f (K,L) .

The distribution satisfies the induced LoM:

λ (k, sj) =
∫
X
I (k, k, s) Π (s, sj) dλ, ∀x ∈ X .
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A fully-fledged version of Aiyagari (1994)

Algorithm: how to solve for the equilibrium
1) Given L = π′S, choose an initial guess for K, say K0 > 0.

a) Given Kj , compute wj and rj from the firm’s FOCs.

b) Solve the agent’s problem for the policy function cj (x).

c) Compute the implied stationary distribution λj (x).

d) Compute the implied agg. capital stock, K̂j =
∫
X kdλj .

e) Given K̂, compute a new guess for K:

Kj+1 = υK̂j + (1− υ)Kj

where υ ∈ (0, 1) is a damping parameter.

2) Iterate steps (a)− (e) until convergence.
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Time iteration

Algorithm: how to solve for the policy function
1) Define (only once!) a finite grid for the individual capital stock on

R+, say k = (kj)mj=1, where k1 = 0 and km = k̄ <∞.
2) Choose an initial guess for the optimal cons. levels at each node,

i.e. n vectors ci,0 = (ci,0,j)mj=1, one for each possible realization of
s.
a) Given the current guess ci,z, where z denotes the iteration, compute

the implied k′:
k′i,z = max (yi − ci,z, 0) ,

where:
yi = (1− δ + r) k + wsi.

b) Given the vectors k′i,z, compute the future optimal consumption
levels c′q,i,z, where q = 1, 2, ..., n, via interpolation on k and ci,z.

c) ...
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Aiyagari (1994) Time iteration

Algorithm: how to solve for the policy function
2) ...

c) Compute the r.h.s. of the Euler eq., and solve for:

ĉi,z = min
{
u−1

c

[
β (1− δ + r)

n∑
q=1

Πi,juc

(
c′q,i,z

)]
,yi

}
.

d) Update the guess for ci,z as follows:

ci,z+1 = υĉi,z + (1− υ) ci,z,

where υ ∈ (0, 1) is a damping parameter.

3) Iterate steps (a)− (d) until convergence.
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