LECTURES 11
 Bewley models
 Part III

Macroeconomics 4

A.Y. 2014-15

Binning

- The ergodic distribution can be computed using a "binning" approach, as in Young (2010).
- The distribution λ is approx. with a histogram over a uniformly dist. grid on $[0, \overline{\mathrm{k}}] \times \mathcal{S}$, say $\left\{\mathrm{k}_{j}\right\}_{j=1}^{M} \times \mathcal{S}$, where $\mathrm{k}_{1}=0, \mathrm{k}_{M}=\overline{\mathrm{k}}$, and $M \geq m$.
- The histogram is a $M \times n$ matrix $\boldsymbol{\lambda}$, whose element $\lambda_{j, i}$ represents the mass of agents with capital k_{j} and labor endowment s_{i}.
- Hence, K can be approx. as $K=K^{\prime} \approx \sum_{j=1}^{M} \sum_{i=1}^{n} \mathrm{k}_{j, i}^{\prime} \lambda_{j, i}$, where $\mathrm{k}_{j, i}^{\prime}$ denotes the optimal k^{\prime} at node $\left\{\mathrm{k}_{j}, \mathrm{~s}_{i}\right\}$, and is possibly obtained via interpolation (if the two grids do not coincide).

Binning

- Suppose that a strictly positive mass of agents, say v, saves an amount k^{\prime} such that $k_{z} \leq k^{\prime} \leq k_{z+1}$ for some $z \in\{1,2, \ldots, M\}$.
- The key step is to allocate the mass v to the nodes k_{z} and k_{z+1} in such a way that K remains unaffected.
- If ω_{z} denotes the share of mass v that ends up at node k_{z}, then the previous requirement boils down to:

$$
\omega_{z} k_{z}+\left(1-\omega_{z}\right) k_{z+1}=k^{\prime}
$$

- Hence, the mass v is distributed according to:

$$
\omega_{z}\left(k^{\prime}\right)=\left\{\begin{array}{cc}
\frac{k^{\prime}-k_{z}-1}{k_{z}-k_{z}-1} & \text { if } k^{\prime} \in\left[k_{z-1}, k_{z}\right] \\
\frac{k_{z+1}-k^{\prime}}{k_{z+1}-k_{z}} & \text { if } k^{\prime} \in\left(k_{z}, k_{z+1}\right], \\
0 & \text { otherwise }
\end{array}\right.
$$

Binning

- Note that the two special cases $z=1$ and $z=M$ have to be taken care separately:
- If $z=1$, then:

$$
\begin{cases}\omega_{1}\left(k^{\prime}\right)=\frac{k_{2}-k^{\prime}}{k_{2}-k_{1}} & \text { if } k^{\prime} \in\left[k_{1}, k_{2}\right] \\ \omega_{1}\left(k^{\prime}\right)=1 & \text { if } k^{\prime}<k_{1}\end{cases}
$$

- If $z=M$, then:

$$
\begin{cases}\omega_{M}\left(k^{\prime}\right)=\frac{k^{\prime}-k_{M-1}}{k_{M}-k_{M-1}} & \text { if } k^{\prime} \in\left[k_{M-1}, k_{M}\right], \\ \omega_{M}\left(k^{\prime}\right)=1 & \text { if } k^{\prime}>k_{M} .\end{cases}
$$

- Furthermore, note that $\omega_{z}\left(k^{\prime}\right) \geq 0 \forall z, \omega_{z}\left(k^{\prime}\right)>0$ for at most two values of z, and:

$$
\sum_{j=1}^{M} \omega_{z}\left(\mathrm{k}_{j, i}^{\prime}\right)=1, \quad \forall z, i
$$

Binning

- The LoM for $\boldsymbol{\lambda}$ boils down to

$$
\lambda_{z, q}=\sum_{j=1}^{M} \sum_{i=1}^{n} \Pi_{i, q} \omega_{z}\left(\mathrm{k}_{j, i}^{\prime}\right) \lambda_{j, i}=\sum_{i=1}^{n} \Pi_{i, q} \sum_{j=1}^{M} \omega_{z}\left(\mathrm{k}_{j, i}^{\prime}\right) \lambda_{j, i}
$$

- We can rewrite the $L o M$ more compactly as:

$$
\lambda_{z, q}=\left[\begin{array}{lll}
\Pi_{1, q} \mathbf{g}_{z, 1} & |\cdots| & \Pi_{n, q} \mathbf{g}_{z, n}
\end{array}\right] \operatorname{vec}(\boldsymbol{\lambda}),
$$

where:

$$
\mathbf{g}_{z, i} \equiv\left[\begin{array}{llll}
\omega_{z}\left(\mathrm{k}_{1, i}^{\prime}\right) & \omega_{z}\left(\mathrm{k}_{2, i}^{\prime}\right) & \cdots & \omega_{z}\left(\mathrm{k}_{M, i}^{\prime}\right)
\end{array}\right] .
$$

Binning

- By simply stacking $\lambda_{z, q}$ for $z=1,2, \ldots, M$, we get that:

$$
\left[\begin{array}{c}
\lambda_{1, q} \\
\vdots \\
\lambda_{M, q}
\end{array}\right]=\left[\begin{array}{llll}
\Pi_{1, q} \mathbf{G}_{1} & \mid & \cdots & \mid \Pi_{n, q} \mathbf{G}_{n}
\end{array}\right] \operatorname{vec}(\boldsymbol{\lambda}),
$$

where:

$$
\mathbf{G}_{i}=\left[\begin{array}{c}
\mathbf{g}_{1, i} \\
\vdots \\
\mathbf{g}_{M, i}
\end{array}\right]
$$

Binning

- Hence, the LoM can be written in matrix form as:

$$
\operatorname{vec}(\boldsymbol{\lambda})=\mathbf{G}^{T} \operatorname{vec}(\boldsymbol{\lambda})
$$

where:

$$
\left.\begin{array}{rl}
\mathbf{G} \equiv\left[\begin{array}{cccc}
\Pi_{1,1} \mathbf{G}_{1}^{T} & \Pi_{1,2} \mathbf{G}_{1}^{T} & \cdots & \Pi_{1, n} \mathbf{G}_{1}^{T} \\
\Pi_{2,1} \mathbf{G}_{2}^{T} & \Pi_{2,2} \mathbf{G}_{2}^{T} & \cdots & \Pi_{2, n} \mathbf{G}_{2}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
\Pi_{n, 1} \mathbf{G}_{n}^{T} & \Pi_{n, 2} \mathbf{G}_{n}^{T} & \cdots & \Pi_{n, n} \mathbf{G}_{n}^{T}
\end{array}\right]= \\
& \\
& \\
& \\
&
\end{array} \mathbf{I}_{M}\right)\left[\begin{array}{cccc}
\mathbf{G}_{1}^{T} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{G}_{2}^{T} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{G}_{n}^{T}
\end{array}\right] .
$$

Binning

- The $M n \times M n$ matrix \mathbf{G} is right stochastic, being $\boldsymbol{\Pi}$ so by assumption, and sparse.
- Hence, $\operatorname{vec}(\boldsymbol{\lambda})$ can be interpreted as the ergodic distribution of a discrete Markov chain characterized by the transition matrix \mathbf{G}.
- To compute it, iterate until convergence on the following recursive scheme:

$$
\operatorname{vec}\left(\boldsymbol{\lambda}_{k+1}\right)=\mathbf{G}^{T} \operatorname{vec}\left(\boldsymbol{\lambda}_{k}\right) .
$$

Numerical results

Discretized endo. state + Value Func. Iter.

Nodes for k and $k^{\prime}: 1000$
Realizations of shock: 5
Running time: 27.1 seconds

Continuous endo. state + Fixed Point Iter. on Euler eq.

Realizations of shock: 5
Running time: 23.9 seconds

Computing the value funcion

- Once the policy function is available, we can solve, if needed, for the value function by iterating until convergence on:

$$
V_{i, z+1}(k)=u\left[c\left(k, \mathrm{~s}_{i}\right)\right]+\beta \sum_{j=1}^{n} \Pi_{i j} V_{j, z}\left[k^{\prime}\left(k, \mathrm{~s}_{i}\right)\right],
$$

where:

$$
k^{\prime}\left(k, \mathrm{~s}_{i}\right)=(1-\delta+r) k+w \mathrm{~s}_{i}-c\left(k, \mathrm{~s}_{i}\right) .
$$

- Note that, again, $V_{j, z}\left[k^{\prime}\left(k, \mathrm{~s}_{i}\right)\right]$ has to be computed via interpolation.

Transitions

- We will now learn how to compute transition dynamics.
- At $t=0$, the economy reached a steady state characterized by a pol. function c_{0}, a couple of values $\left\{w_{0}, r_{0}\right\}$, and a distribution λ_{0}.
- Unexpectedly, some exogenous elements of the economy change in $t=1$: this event was completely unexpected by all agents (a zero prob. event)
- This shock (permanent or transitory) drives the economy to a (possibly) new steady state, for $t \rightarrow \infty$.
- Assume that it takes a large but finite number of periods, say $T=1000$, to reach the new steady state.
- The new steady state is characterized by $c_{T},\left\{w_{T}, r_{T}\right\}$, and λ_{T}.

Transitions

- The goal is to find sequences $\left\{c_{t}\right\}_{t=1}^{T-1},\left\{w_{t}, r_{t}\right\}_{t=1}^{T-1}$, and $\left\{\lambda_{t}\right\}_{t=1}^{T-1}$ that satisfy the definition of a recursive equilibrium.
- The intuition goes as follows:
- Given $\left\{w_{t}, r_{t}\right\}_{t=1}^{T-1}$ and c_{T}, we can compute the policy functions $\left\{c_{t}\right\}_{t=1}^{T-1}$ by simply solving backwards the Euler equation.
- Given λ_{0} and $\left\{c_{t}\right\}_{t=1}^{T-1}$, we can solve forward for $\left\{\lambda_{t}\right\}_{t=1}^{T-1}$.
- Given $\left\{\lambda_{t}\right\}_{t=1}^{T-1}$, we can solve for $\left\{K_{t}\right\}_{t=1}^{T-1}$ and $\left\{L_{t}\right\}_{t=1}^{T-1}$.
- Given $\left\{K_{t}\right\}_{t=1}^{T-1}$ and $\left\{L_{t}\right\}_{t=1}^{T-1}$, we can solve for the implied sequence of factor prices $\left\{\hat{w}_{t}, \hat{r}_{t}\right\}_{t=1}^{T-1}$.
- Given $\left\{\hat{w}_{t}, \hat{r}_{t}\right\}_{t=1}^{T-1}$, we can updated the guess $\left\{w_{t}, r_{t}\right\}_{t=1}^{T-1}$.
- Iterate the previous steps until convergence.

Transitions

Algorithm: how to compute transitions

1) Compute the initial and final steady states: $c_{0},\left\{w_{0}, r_{0}\right\}, \lambda_{0}, c_{T}$, $\left\{w_{T}, r_{T}\right\}$, and λ_{T}.
2) Guess sequences of factor prices $\left\{w_{t, z}, r_{t, z}\right\}_{t=1}^{T-1}$, (i.e. guess sequences of K and N), where z denotes the iteration, and:
a) For $t=T, T-1, \ldots, 2$, solve the Euler equation backwards for $c_{t-1}(\mathbf{x})$ given $c_{t}(\mathbf{x})$:

$$
\left\{\begin{array}{lll}
u_{c}\left[c_{t-1}\left(\mathbf{x}_{t-1}\right)\right]=\beta \mathbb{E}\left\{u_{c}\left[c_{t}\left(\mathbf{x}_{t}\right)\right]\left(1-\delta+r_{t, z}\right) \mid \mathbf{x}_{t-1}\right\} & \text { if } & k_{t}>0 \\
u_{c}\left[c_{t-1}\left(\mathbf{x}_{t-1}\right)\right] \geq \beta \mathbb{E}\left\{u_{c}\left[c_{t}\left(\mathbf{x}_{t}\right)\right]\left(1-\delta+r_{t, z}\right) \mid \mathbf{x}_{t-1}\right\} & \text { if } & k_{t}=0
\end{array}\right.
$$

where:

$$
k_{t}=\left(1-\delta+r_{t-1, z}\right) k_{t-1}+w_{t-1, z} s_{t-1}-c_{t-1}\left(\mathbf{x}_{t-1}\right) .
$$

b) ...

Transitions

Algorithm: how to compute transitions

2) \ldots
b) Given this sequence of policy functions, $\left\{c_{t, z}(\mathbf{x})\right\}_{t=1}^{T-1}$, and the initial dist. λ_{0}, compute the sequence of distributions $\left\{\lambda_{t, z}\right\}_{t=1}^{T-1}$:

$$
\lambda_{t+1, z}(\mathbf{x})=\int_{\mathcal{X}} \mathcal{I}_{t, z}(\mathrm{k}, k, s) \Pi(s, \mathrm{~s}) d \lambda_{t, z}, \quad \forall t \in[0, T-1], \quad \forall \mathbf{x} \in \mathcal{X}
$$

where:

$$
\mathcal{I}_{t, z}(\mathrm{k}, k, s)=\left\{\begin{array}{ll}
1 & \text { if } k_{t, z}^{\prime}=\mathrm{k} \\
0 & \text { if } k_{t, z}^{\prime} \neq \mathrm{k}
\end{array} .\right.
$$

c) ...

Transitions

Algorithm: how to compute transitions

2) ...
c) Given the sequence of distributions $\left\{\lambda_{t, z}\right\}_{t=1}^{T-1}$, compute:

$$
\begin{aligned}
K_{t, z} & =\int_{\mathcal{X}} k d \lambda_{t, z}, \\
L_{t, z} & =\int_{\mathcal{X}} s d \lambda_{t, z},
\end{aligned}
$$

for $t=1,2, \ldots, T-1$, and the implied sequences $\left\{\hat{w}_{t, z}, \hat{r}_{t, z}\right\}_{t=1}^{T-1}$.
d) Compare $\left\{w_{t, z}, r_{t, z}\right\}_{t=1}^{T-1}$ to $\left\{\hat{w}_{t, z}, \hat{r}_{t, z}\right\}_{t=1}^{T-1}$, and update your guess as needed.
3) Iterate steps $(a)-(d)$ until convergence.

Transitions

- Note that step (a) in the previous algorithm can be performed quite easily:
- Given $c_{t}(\mathbf{x})$, one can solve for $c_{t-1}(\mathbf{x})$ using time iteration on the Euler equation, but updating only $c_{t-1}(\mathbf{x})$, and NOT $c_{t}(\mathbf{x})$, at each iteration.
- This allows also to use the same code (with just small and straightforward modifications) to compute the policy functions in steady state and along transitions.
- Furthermore, note that the "binning" approach lend itself to easily compute the sequence of distributions in step (b); the code used to compute the ergodic distribution can also be used to iterate on:

$$
\operatorname{vec}\left(\boldsymbol{\lambda}_{t+1, z}\right)=\mathbf{G}_{t, z}^{\prime} \operatorname{vec}\left(\boldsymbol{\lambda}_{t, z}\right)
$$

Numerical results

- Transition after a 1% permanent increase in productivity:

Transitions and welfare

- Once the transition has been solved for, we can also solve for the value functions, $\left\{V_{t}(k, s)\right\}_{t=0}^{T}$.
- Note that:
- $V_{0}(k, s)$ is the expected lifetime utility of an agent with states $\{k, s\}$ at time 0 , in the initial stationary equilibrium.
- $V_{1}(k, s)$ is the expected lifetime utility of an agent with the same states $\{k, s\}$ that has just been informed that there is a permanent structural change in the economy; V_{1} takes into account all the transition dynamics through which the agent is going to live.
- $V_{T}(k, s)$ is the lifetime utility of an agent with states $\{k, s\}$ born in the new stationary equilibrium (i.e. of an agent that does not live through the transition).

References I

Young, E. R. (2010, January). Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith algorithm and non-stochastic simulations. Journal of Economic Dynamics and Control 34 (1), 36-41.

