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Real options with a double continuation region
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If the average risk-adjusted growth rate of the project’s present value V overcomes the
discount rate but is dominated by the average risk-adjusted growth rate of the cost I of
entering the project, a non-standard double continuation region can arise: The firm waits to
invest in the project if V is insufficiently above I as well as if V is comfortably above I. Under a
framework with diffusive uncertainty, we give exact characterization to the value of the option
to invest, to the structure of the double continuation region, and to the subset of the
primitives’ values that support such a region.
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1. Introduction

The problem of optimal irreversible investment in a long-
lived project has usually been studied under the assump-
tion that the average risk-adjusted growth rate of the
project’s present value is dominated by the discount rate
(for instance, see the classical textbook of Dixit and
Pindyck 1993, pp. 138–141 and p. 211). This assumption
is standard and serves the purpose of avoiding an
explosive value for the perpetual option to invest. The
assumption leads to the standard continuation region:
The firm waits to invest if the project’s present value V
inadequately exceeds the unrecoverable cost I of enter-
ing it. Our first contribution is to show that such an
assumption is conspicuously restrictive. In the presence of
a stochastic cost I, the assumption rules out cases in which
the value of the investment option does not explode. Our
second contribution is to show that such uncharted cases
are extremely interesting. They can give rise to a non-
standard double continuation region: The firm waits to
invest if V is insufficiently above I as well as if V is
comfortably above I. To the best of our knowledge, this
important result is novel in the literature on investment
under uncertainty. Our third contribution is to provide a
rigorous and explicit description of the firm’s optimal

decision in these unexplored cases. We use a setting with
diffusive uncertainty to accurately characterize the ana-
lytical value of the option to invest, the structure of the
double continuation region, and the subset of the prim-
itives’ values that support such a region. We offer
numerical evidence that natural levels of business
growth and risk, of prices of risk, and of discount rate
can lead to the double continuation region.

The intuition behind our results is strikingly uncom-
plicated, as the following example shows. Under the
valuation probability measure P̂, take the present value V
to be a geometric Brownian motion (the default assump-
tion in the real-options literature) with a percentage drift
of 6% per annum and take the discount rate to be 5%.
If the cost I is constant, the problem is unbounded. Given
any initial level for V, the firm finds it optimal to
postpone investment to the furthest future as an unlimited
expected discounted gain can be reaped by doing so.
However, if the cost I is a geometric Brownian motion
(possibly correlated with V ) with a percentage drift of 7%
per annum,y the problem becomes bounded. The cost will
eventually overwhelm the value if there is an indefinite
postponement of investment. Optimal postponement
becomes definite, as it applies only in a distinct region
of the initial levels for V and I. The standard part of the

*Corresponding author. Email: alessandro.sbuelz@unicatt.it
yAlthough they do not explicitly appear, the correlations between V and I and their local volatilities contribute towards defining the
P̂ drifts via the price(s) of risk and the associated risk adjustment.
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region is located where the initial V either does not exceed
the initial I or insufficiently exceeds it. Notably, the non-
standard part of the region is located where the initial V
comfortably exceeds the initial I. Discounted values and
costs have positive percentage drifts (1% and 2%,
respectively). If the initial V tops the initial I largely
enough, delaying the investment is optimal as, over the
short/medium run, the discounted value exhibits a total
average increase greater than the discounted cost’s total
average increase. This is best seen by fixing the initial
value V0 to 5 and the initial cost I0 to 1 and by considering
the suboptimal ‘European-style’ investment strategy of
accessing the project exactly one year from the initial
date. Jensen’s inequality implies that such a suboptimal
strategy outperforms the strategy of immediate
investment:

EP̂½e�0:05�1ðV1 � I1Þþ j F 0�
� e�0:05�1ðEP̂½V1 j F 0� � EP̂½I1 j F 0�Þþ
¼ 5 � e0:01�1 � 1 � e0:02�1
¼ 4:034V0 � I0,

where EP̂ denotes expectationy under the probability
measure P̂. The straightforward implication is that the
strategy of immediate investment is also suboptimal. The
numerical example offers brazen evidence that plausible
levels of the real-option primitives can lead to the non-
standard optimal decision of continuing to hold a real
option that is deep in-the-money.

Under the assumption that both V and I are diffusions,
we start as in Aase (2005)z by describing the primitives
(business growth, business risk, prices of risk, and
discount rate) under the historical probability
measure P. We then tackle the optimal investment
problem by transiting to a valuation probability measure
P̂. If V and I are spanned by traded assets, the prices of
risk are dictated by the market, the discount rate equals
the risk-free rate, and P̂ corresponds to a martingale
measure. Even under a martingale measure P̂, V and I can
easily grow at an average rate different from the risk-free
rate, since V and I are unlikely to match the values of
traded self-financing portfolios at any point in time. In
particular, V and I can grow on average more than the
risk-free rate and at different speeds. Hence, the spanning
condition is easily congruent with the uncharted cases we
are focusing on in the present work.

In general, we do not restrict our analysis to any
particular choice of the valuation measure. We allow for
subjective prices of risk, which are used by the firm to
risk-adjust future cashflows from the considered business.
We also allow for a subjective discount rate, which is used

by the firm to discount risk-adjusted future cashflows.

We arrive at closed formulae via a change of numeraire

that reduces our problem to the valuation of an American

perpetual put option on the cost-to-value ratio with an

endogenous ‘deflating rate’ that depends on the primi-

tives’ values and that can be either positive or negative.

Importantly, our ability to arrive at an analytical solution

of the investment problem does not depend on the

change-of-numeraire technique. The investment problem

can be fully solved even without slashing its two value-

and-cost dimensions to the single cost-to-value dimen-

sion. However, passing from a problem written in V and

in I to a reduced-form problem written in the ratio I/V

greatly improves the comparability of our results with the

existing literature. Change-of-numeraire techniques for

American options have been used by Battauz (2002) and

by Carr (1995) for the finite-maturity case. Carr (1995)

explicitly applies his results to capital investment theory,

formalizing early dimension-reducing practices reviewed

by Dixit and Pindyck (1993) in the context of that theory.
The double continuation region is a novel result that

contributes to the real-options literature. By starting from

a fairly unrestricted structural problem under P and then

moving to its reduced form, we heighten the economic

flexibility of our approach. In turn, such flexibility

empowers the uncovering of unsuspected but artless

combinations of the structural parameters under which,

even when the investment option is deep in-the-money,

V and I can have a relative growth that makes the

(bounded) present value of waiting to invest greater than

the immediate-investment value.
Discounting is the perfect terrain for spotting the

difference between the traditional assumptions on the

real options parameters and the combination of structural

parameters that enables the double continuation region.

A non-negative ‘deflating rate’ is applied to the value-to-

cost ratio by Dixit and Pindyck (1993, p. 211). In contrast,

the sign of the endogenous ‘deflating rate’ that we apply to

the cost-to-value ratio is determined by the relative size of

the primitives. If such a sign is negative (the subjective

discount rate is dominated by the value’s average risk-

adjusted growth rate) and if the cost’s average risk-

adjusted growth rate dominates the value’s one, our

novel result ensues: The firm waits to invest if V over I is

low enough as well as if V over I is high enough. Hence,

in the plane [I,V], the early exercise region must be

straddled by the double continuation region,x as shown

in figure 1.
The derivation of our results gives a technical contri-

bution to the real-options literature by adapting the

classical verification theorem (for the jump-diffusion case,

yConditioning the expectation upon F 0 is intended to stress the dependence of the resulting quantities on the initial values for
V and I.
zAase (2005) highlights the key role played by risk adjustment for an American perpetual option pricing problem, and works out
exact solutions when jump sizes cannot be negative. He investigates when his solution is an approximation also for negative jumps.
xBroadie and Detemple (1997) and Detemple (2006) have shown that a single continuation region surrounded by multiple
immediate-exercise regions arises with a variety of finite-maturity American derivatives written on two or more traded risky
underlying assets. Battauz et al. (2009) investigate the double continuation region in a number of finite-maturity American problems.

2 A. Battauz et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
b
u
e
l
z
,
 
A
l
e
s
s
a
n
d
r
o
]
 
A
t
:
 
1
2
:
5
0
 
2
0
 
D
e
c
e
m
b
e
r
 
2
0
1
0



see, for example, Mordecki 1999 and Øksendal and Sulem
2004) and by extending it to the situation of a non-
integrable ‘deflated’ value function. Such a situation is
originated by a negative ‘deflating rate’ and belongs to
the non-standard cases we treat in the present work.
Not surprisingly, it is associated with the possible
emergence of the double continuation region.

The article is organized as follows. Section 2 introduces
the investment problem and its primitives. Section 3
describes the endogenous ‘deflating rate’ in the reduced-
form problem. Section 4 uses convexity, monotonicity,
and value dominance to discuss the emergence of the
double continuation region. In theorem 4.1 we provide
the exact structure of the double continuation region.
Section 5 collects numerical and graphical examples of the
double continuation region. Section 6 concludes.

2. The investment problem and its primitives

Uncertainty is described by the historical probability
space (�,P, (F t)t), and by two independent Brownian
motions WP and eWP. The two Brownian motions
represent the diffusive risk that affects value and cost.
The present value V of the project has P dynamics:

dVt ¼ Vt

�
�V dtþ �V dWP

t þe�V deWP
t

�
,

where �V, �V, and ~�V are real positive constants. The
investment cost I has P dynamics:

dIt ¼ Itð�I dtþ �I dW
P
t Þ,

where �I and �I are real positive constants. The current
value of the perpetual option to invest is

sup
��0

EP̂½e���ðV� � I�Þþ j F 0�, ð1Þ

where � is the constant subjective discount rate, and the
expectation is taken under the valuation measure P̂.
Problem (1) consists of finding the optimal exercise policy
for a perpetual American call option on the asset value V
with a non-constant strike I. The supremum in

problem (1) runs among all stopping times �. The optimal
time to invest is the stopping time �� that attains the
supremum in problem (1). The attained supremum is the
value function and constitutes a Snell envelope, as it is the
smallest supermartingale majorant of the discounted
payoff from investing.

Given the subjective prices of W-type risk (�) and ofeW-type risk (e�), the P̂ dynamics of V and I can be
derived by employing classical Cameron–Martin–
Girsanov results for diffusion processes (see, for example,
Protter (2004)):

dVt ¼ Vt

�ð�V þ �V� þe�V
e�Þ dtþ �V dWP̂

t þe�V deWP̂
t

�
and

dIt ¼ It
�ð�I þ �I�Þ dtþ �I dW

P̂
t

�
,

where WP̂ and eWP̂ are independent Brownian motions
under P̂. If � ¼e� ¼ 0, all the subjective prices of risk are
null and the firm is risk-neutral (P̂ ¼ P). If �50 ande�5 0, the firm is averse to W-type risk and to eW-type
risk. If V and I are spanned by traded assets, the prices of
risk f�,e�g correspond to the market ones, the discount
rate � equals the risk-free rate r, and P̂ becomes a
martingale measure. However, it is well known that Vte

�rt

and Ite
�rt are P̂-martingales only if Vt and It coincide with

the values of traded self-financing portfolios at any date t,
which is seldom the case for real asset values. It follows
that, even under the spanning condition, the risk-adjusted
percentage drifts of V and I typically differ from the
discount rate:

�V þ �V� þe�V
e� 6¼ �,�I þ �I� 6¼ �:

The choice of the risk-attitude parameters � and e� fixes
the valuation probability measure P̂ for the assessment of
the real option value in problem (1).

3. The endogenous ‘deflating rate’

We reduce the option-value calculation in problem (1) to
a one-dimensional problem by taking the process Vte

�kVt

as numeraire, where

kV ¼ �V þ �V� þe�V
e� � �: ð2Þ

The endogenous coefficient kV is V’s average growth rate
under P̂, in excess of the subjective discount rate �.
Analogously, we have that kI,

kI ¼ �I þ �I���, ð3Þ
is I ’s average growth rate under P̂, in excess of �.

The change-of-numeraire techniquey enables a useful
dimension reduction of our investment problem.
We denote by PA the auxiliary probability measure
associated with the numeraire Vte

�kVt and re-express the
investment option value in the following proposition.
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Figure 1. The double continuation region in the plane [I,V].

ySee, for example, Geman et al. (1995) and Battauz (2002) for a comprehensive application of change-of-numeraire techniques to
American options.
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Proposition 3.1: Problem (1) admits the following
representation:

sup
��0

EP̂½e���ðV� � I�Þþ j F 0� ¼ V0 � vðX0Þ, ð4Þ

with

vðX0Þ ¼ sup
��0

EPA ½e�ð�kVÞ�ð1� X�Þþ j F 0� ð5Þ

and

Xt ¼ It
Vt

:

Equations (4) and (5) relate the investment option
value to the value,y calculated under the auxiliary
probability measure PA, of an American put option
characterized by a unit strike price and written on an
underlying item whose value is the cost-to-value ratio.
The payoff from put option exercise is deflated by the
endogenous ‘deflating rate’ �kV.

The structure of the cost-to-value ratio under the
probability measure P

A can be derived by again employ-
ing the Cameron–Martin–Girsanov results:

Xt ¼ X0 expðatþ �BBtÞ,
where Bt is a Brownian motion under PA, and

�2
B ¼ ð�I � �VÞ2 þe�2

V,

a ¼ kI � kV � �2
B

2
:

4. Option value properties and the structure of the

continuation region

Given X’s structure and

X0 ¼ x,

the American put value can be written as

vðxÞ ¼ sup
u�0

EPA ½e�ð�kVÞuð1� X0 expða � uþ �BBuÞÞþ j F 0�,

ð6Þ
where u runs among the stopping times. The function v(x)
inherits convexity and monotonicity from the exer-
cise payoff, so that v(x) is convex and monotonic
decreasing in x. By construction, v(x) dominates the
exercise payoff:

0 � ð1� xÞþ � vðxÞ � vð0Þ,
for any non-negative value of x, where the last inequality
stems from monotonicity. We now adapt the arguments
of Lamberton and Lapeyre (1996) to show how convexity,
monotonicity, and value dominance interact with the sign
of the endogenous ‘deflating rate’ �kV in yielding the
double continuation region.

When the ‘deflating rate’ is non-negative, that is

�kV� 0, problem (1) is reduced to the valuation of a

standard perpetual American put option with non-

negative interest rates. A standard continuation region

emerges: The firm waits to invest in the project if V is

insufficiently above I.
When the ‘deflating rate’ is negative, i.e. �kV50,

a non-standard double continuation region can emerge:

The firm waits to invest in the project if V is insufficiently

above I as well as V is comfortably above I. Indeed, the

put value’s supremum when the underlying is zero is

infinite:

vð0Þ ¼ sup
u�0

EPA ½e�ð�kVÞuð1� 0Þþ j F 0� ¼ e�ð�kVÞ1 ¼ þ1

4 ð1� 0Þþ:

If the value v(x) strictly dominates the exercise payoff

(1�x)þ for all x40 (in figure 2, see the light-colored

dashed line that starts from þ1), early exercise is never

optimal. However, the put value can also land on the

exercise payoff for some x0 belonging to the interval (0, 1).

If it does so, it must remain grounded at the exercise

payoff for a while and then take off from it for

x sufficiently large (see the black solid line in figure 2).

Hence, there exist two critical levels x1 and x2,

x1 ¼ inffx � 0 : vðxÞ ¼ 1� xg,
x2 ¼ supfx � 0 : vðxÞ ¼ 1� xg,
x1 � x2,

such that there is optimal early exercise only for

x1� x� x2. The non-standard double continuation

region emerges. It is formed by all x5x1 and x4x2,

straddling the early exercise region.
We remark that the arguments employed (convexity,

monotonicity, and value dominance) do not depend on

the dynamics of the underlying process X. This is

suggestive that the robustness of the central result of

our work (the surfacing of the double continuation

region) under rather general types of uncertainty is quite

plausible. The numerical and graphical output of section 5

exemplifies the emergence of the double continuation

region.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Cost-to-value ratio

Figure 2. Put value with �kV50.

yFor an extensive review of valuation methods for American-style claims, see, for example, Broadie and Detemple (2004).
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In theorem 4.1 we work out an exact characterization

for the values of the option to invest, for the structure of

the double continuation region, and for the subset of the

primitives’ values that support such a region. This is done

via the explicit solutions to problem (1). With this aim, we

adapt and extend the verification theorem as recounted in

lemma 1 of Mordecki (1999). Lemma 1 of Mordecki

(1999) states five standard optimality properties that,

once satisfied by a function, render the function the value

of a perpetual American option on the exponential of a

jump-diffusion process. In our case, the assumed absence

of jumps streamlines the structure of lemma 1. Mordecki

(1999) starts from a reduced-form problem with zero

‘deflating rate’. In theorem 4.1, we contribute by extend-

ing the streamlined lemma 1 to account for a negative

‘deflating rate’. An extension of lemma 1 is required and

not just an adaptation, as one of the five standard

optimality properties (property (IV) in Mordecki’s nota-

tion) is structurally violated. Such a property involves the

integrability of the ‘deflated’ value function for any

exercise policy and is clearly broken by the presence of a

negative ‘deflating rate’, for which we have just seen that

v(0)¼þ1.
As mentioned above, there are good reasons to believe

that theorem 4.1’s key economic finding (the materializa-

tion of the double continuation region) is resilient to a

variety of stochastic settings, including environments with

discontinuities. However, eschewing the presence of

jumps enables a thrifty and agile structure for our

theorems and proofs, which significantly enhances the

visibility of our economic contribution to investment and

decision making.

Theorem 4.1 : Assume that

�kV 5 0: ð7Þ

(1) If

kI � kV ¼ aþ �2
B

2
� 0, ð8Þ

then

V0 � sup
��0

EPA

e�ð�kVÞ� 1� I�
V�

�þ� �����F 0

" #
¼ þ1,

and the corresponding optimal stopping time is

�� ¼ þ1:

(2) Ify

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

BkV

q
4 0, ð9Þ

then equation (in the unknown p)

1

2
�2
Bp

2 þ apþ kV ¼ 0 ð10Þ

has two negative solutions �25�1:

�2 ¼
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

,

�1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

:

We have

V0 � sup
��0

EPA

e�ð�kVÞ� 1� I�
V�

�þ� �����F 0

" #

¼

I
�1
0

V
�1�1

0

ð1��1Þ�1�1

ð��1Þ�1
, if I0

V0
5 �1

�1�1 ,

V0 � I0, if �1
�1�1 � I0

V0
� �2

�2�1 ,

I
�2
0

V
�2�1

0

ð1��2Þ�2�1

ð��2Þ�2
, if I0

V0
4 �2

�2�1 :

8>>>>><>>>>>:
ð11Þ

and the corresponding optimal stopping time is

�� ¼ inf t � 0 :
�1

�1 � 1
� It

Vt
� �2

�2 � 1

� 	
:

(3) If

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

BkV

q
¼ 0, ð12Þ

then equation (10) has one negative solution �0:

�0 ¼ �
ffiffiffiffiffiffiffiffi
2kV

p
�B

:

We have

V0 � sup
��0

EPA

e�ð�kVÞ� 1� I�
V�

�þ� �����F 0

" #

¼
I
�0
0

V
�0�1

0

ð1��0Þ�0�1

ð��0Þ�0
, if I0

V0
6¼ �0

�0�1 ,

V0 � I0, if I0
V0

¼ �0
�0�1 ,

8><>: ð13Þ

and the corresponding optimal stopping time is

�� ¼ inf t � 0 :
It
Vt

¼ �0
�0 � 1

� 	
:

The proof of theorem 4.1 is given in the appendix.
The condition of a negative ‘deflating rate’ in (7)

violates the standard assumption in the literature on

investment under uncertainty. It implies that, under the

valuation measure P̂, V’s percentage drift dominates the

discount rate �. However, as points 2 and 3 of theorem 4.1

make clear, such a violation does not always lead to an

infinite value of the investment opportunity, but instead

opens the way to uncharted non-explosive cases of

remarkable interest.
In point 1, condition (8) is conducive to the explosive

solution. The percentage PA-drift of the cost-to-value

ratio processfIt/Vt)}t�0 is given by aþ ð�2
B=2Þ. Its non-

positivity implies that, by Jensen’s inequality,

yNotice that a40 implies kI� kV40.
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delaying perpetually access to the payoff

e�ð�kVÞt½1� ðIt=VtÞ�þ becomes optimal.
In points 2 and 3, conditions (9) and (12) grant that X

has a sufficiently high rate of growth to counteract the

effect of the negative ‘deflating rate’, resulting in a finite

value for the put option.
In point 2, condition (9) keeps the problem bounded by

ensuring that equation (10) admits two negative solu-

tionsy �14�2. In turn, this ensures that the process

fe�ð�kVÞtvðIt=VtÞgt�0 is a PA-martingale in the continuation

region and a PA-supermartingale in the early exercise

region.
In point 3, the immediate investment region collapses

into a singleton, which represents the tangency point

between the early exercise payoff and the put option

value.

5. Examples of the double continuation region

In this section, we offer numerical evidence that credible

levels of business growth and risk, of prices of risk, and of

discount rate can lead to the double continuation region

described in points 2 and 3 of theorem 4.1. Consider the

values for the primitive parameters shown in table 1.

These parameter values imply that the conditions in

point 2 of theorem 4.1 are satisfied with

�1 ¼ �1:08774 �2 ¼ �1:9123:

The American put value v(I/V ) (see equation (6)) is

plotted versus the cost-to-value ratio I/V in the left-hand

plot of figure 3. Optimal immediate investment occurs in

the cost-to-value zone

�1
�1 � 1

¼ 0:5210 � I

V
� 0:6566 ¼ �2

�2 � 1
:

Fixing the cost I to 1 without loss of generality, the

double continuation region is the union of the project-

value zones

V5
�2 � 1

�2
¼ 1:5229, 1:9194 ¼ �1 � 1

�1
5V:

The value V � v(1/V ) of the corresponding option to invest

(see formula (11)) is plotted versus the project’s present

value V in the right-hand plot of figure 3.
Coeteris paribus, we now take the discount rate to be

�¼ 4.46875%. The conditions in point 3 of theorem 4.1

are satisfied with

�0 ¼ �1:5:

The American put value v(I/V ) is plotted versus the cost-

to-value ratio I/V in the left-hand plot of figure 4.

Optimal immediate investment occurs only for a single

cost-to-value ratio level:

I

V
¼ �0

�0 � 1
:

Fixing I to 1, the double continuation region swamps the
whole real line but for a singleton:

V 6¼ �0 � 1

�0
¼ 1:6667:

The value V � v(1/V ) of the corresponding option to invest
is plotted versus the project’s present value V in the right-
hand plot of figure 4.

6. Conclusions

We have performed a thorough analysis of optimal
irreversible investment in a long-lived projectz when its
present value V and its cost I are two possibly correlated
diffusions. By removing the standard assumption that the
average growth rate of the project’s present value is
always dominated by the discount rate under the valua-
tion measure, we uncover the emergence of a non-
standard double continuation region: The firm waits to
invest if V is insufficiently above I as well as if V is
comfortably above I.

Such a non-standard region emerges when the dis-
counted value has an average growth rate that is positive
but smaller than the discounted cost’s one. The intuition
behind our novel results is transparent. If the initial V
tops the initial I largely enough, delaying the investment is
optimal since, over the short/medium run, the discounted
value exhibits a total average increase greater than the
discounted cost’s total average increase.

We start by describing the primitives (business growth,
business risk, prices of risk, and discount rate) under the
historical probability measure and then we tackle the
optimal investment problem by transiting to a valuation
probability measure. We argue that a double continuation
region can occur even if V and I are spanned by traded
assets, that is, even if the valuation measure is a
martingale measure. We obtain closed formulae for the
investment-option value by means of a change of

Table 1. Values for the primitive parameters.

Risk

W-type risk eW-type risk

Growth
�V¼ 25% �V¼ 20% e�V ¼ 25%
�I¼ 30% �I¼ 20%

Discount rate Price of risk
�¼ 5% �¼� 30% e� ¼ �30%

yThe negative exponents �1 and �2 guarantee that the investment option value expressed in equation (11) remains increasing in V and
decreasing in I also in the continuation region.
zThe project’s predictable demise is considered in the real-options analysis of Magis and Sbuelz (2006).
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numeraire that reduces our problem to the assessment
of an American perpetual option on the cost-to-value
ratio.

The change of numeraire leads to a one-dimensional
reduced-form problem whose comparability with the
existing literature is strongly enhanced. However, our
results can be directly accomplished under the valuation
probability measure, without the use of dimension-cutting
techniques.

By starting from the structural problem under the
historical measure and then moving to its reduced form,
we contribute to the traditional literature on real options,
which usually starts its analysis directly in the reduced
form and curbs economic flexibility via restrictions on the
discounting procedure. Our novel result of the double
continuation region shows that starting with flexible
primitives under the historical measure greatly empowers
the real-options analysis.

We give concrete examples of the double continuation
region for plausible levels of business growth and risk, of
prices of risk, and of discount rate. We offer reasons to
believe that the emergence of the double continuation
region is robust to varied types of uncertainty beyond the
diffusive one.

Finally, the technical derivation of our results contrib-
utes to the optimal-stopping literature applied to real
options by adapting the classical verification theorem
for Snell envelopes and by extending it to the situation
where integrability is violated. Such a situation
arises exactly in the non-standard cases associated with
the possible appearance of the double continuation
region.
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Appendix A: Proof of theorem 4.1

Proof: In proving point 1, we observe that the value
function of equation (4) in proposition 3.1 is the value of
an American put option with unit strike, with negative
‘deflating rate’ �kV, and written on the underlying value
X whose expectation is

EPA ½Xt j F 0� ¼ X0e
ðkI�kVÞt:

Since the put payoff is convex with respect to the
underlying value and conditions (7) and (8),

�kV 5 0, kI � kV 5 0,

hold, Jensen’s inequality implies that, for any non-

stochastic �0, we have

vðxÞ ¼ sup
��0

EPA ½e�ð�kVÞ�ð1� X�Þþ j F 0�

� lim
�0!þ1

EPA ½e�ð�kVÞ�0 ð1� X�0 Þþ j F 0�
� lim

�0!þ1
e�ð�kVÞ�0 ð1� X0e

ðkI�kVÞ�0 Þþ

¼ eþ1ð1� 0Þ ¼ þ1:

It follows that the optimal stopping time for equation (4)

is ��¼þ1 and that the value function is v(x)¼þ1. This

completes the proof of point 1.
We turn to prove point 2. By proposition 3.1, the

value function of problem (1) is given by the product of

V0 times the value function v(x) in equation (6). Notice

that this theorem can be proved without the use of

change-of-numeraire techniques, by means of a direct

application of the verification theorem for Snell envelopes

to the value function on the two variables V0 and I0. The

variable x represents the initial cost-to-value ratio:

x ¼ X0, X0 ¼ I0
V0

:

The value function v(x) can also be written as

vðxÞ ¼ sup
��0

EPA ½e�ð�kVÞ�ð1� X�Þþ j F 0�: ðA1Þ

We show that

vðxÞ ¼
A1

x
x1


 ��1
, if 05 x5 x1,

1� x, if x1 � x � x2,

A2
x
x2


 ��2
, if x4 x2,

8>>><>>>: ðA2Þ

where xi¼ �i/(�i� 1) and Ai¼ 1/(1� �i)¼ (1� xi) for

i¼ 1, 2. �1 and �2 indicate the two negative solutions of

equation (10):

�1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

,

�2 ¼
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

:

To prove that the function defined in (A2) is the value

function of (A1) we have to show that

(a) vðxÞ ¼ EPA ½e�ð�kVÞ�� ð1� X�� Þþ j F 0�,
(b) vðxÞ � EPA ½e�ð�kVÞ�ð1� X�Þþ j F 0�,

for any stopping time � and for �� being the first instant at
which X exits the continuation region (El Karoui 1979):

�� ¼ infft � 0 : x1 � Xt � x2g:
Denoting by L the infinitesimal generator of the diffusion

X and recalling X’s PA dynamics,

dXt ¼ XtððkI � kVÞ dtþ �B dBÞ,

8 A. Battauz et al.
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we have that

ðLvÞðxÞ ¼ 1

2
�2
Bx

2 v00ðxÞ þ ðkI � kVÞx v0ðxÞ:

The function v defined in equation (A2) satisfies the
following optimality properties:y

(I) kVv(x)þ (Lv)(x)¼ 0 for all 05x5x1 and for all
x4x2.

(II) kVv(x)þ (Lv)(x)� 0 for all x1� x� x2.
(III) 0� (1�x)þ� v(x) for all x.
(IV) vðX�� Þ ¼ ð1� X�� Þþ almost surely.

We first verify property (I). For 05x5x1 or for
x4x2, the function v defined in equation (A2) has the
form v(x)¼Ai(x/xi)

p with p¼ �i for i¼ 1, 2. Hence, the
condition (kVvþLv)(x)¼ 0 becomes

kVAi
x

xi

� �p

þ �2
B

2
x2Aipð p� 1Þ 1

x2i

x

xi

� �p�2

þ ðkI � kVÞxAip
1

xi

x

xi

� �p�1

¼ 0,

which is equivalent to equation (10):

1

2
�2
Bp

2 þ apþ kV ¼ 0:

Under the assumptions in point 2, the equation has two
negative solutions �25�1:

�2 ¼
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

,

�1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

:

Hence, v defined in equation (A2) satisfies property (I).
Since we want the function v to be C1 everywhere, we
impose value matching and smooth pasting that imply
xi¼ �i/(�i� 1)51 and Ai¼ 1/(1� �i)¼ 1� xi for i¼ 1, 2.
With these values, the function v is C1 everywhere,
since limx!xi vðxÞ ¼ 1� xi and limx!xþ

i
v0ðxÞ ¼ �1 ¼

limx!x�
i
v0ðxÞ for i¼ 1, 2.

We now verify property (II). Thanks to our assump-
tions, we have that, for any x1� x� x2,

ðkVvþ LvÞðxÞ ¼ kVð1� xÞ þ 1

2
�2
Bx

2 � 0þ ðkI � kVÞx
� ð�1Þ ¼ kV � kIx:

It is therefore sufficient to show that

kV � kIx1 � 0,

to meet property (II). The above inequality can equiva-
lently be written as

�ðkI � kVÞ�1 � kV:

By replacing �1 with its explicit value, we obtain

ðkI � kVÞ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV
p

�2
B

 !
� kV,

which is equivalent toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2�2

BkV

q
� a� �2

BkV
kI � kV

: ðA3Þ

Assumption (9) guarantees that the right-hand side of

(A3) is strictly positive. Indeed, by recalling that

kI � kV ¼ aþ 1
2 �

2
B, we have

a� �2
BkV

kI � kV
¼ a� �2

BkV

aþ 1
2 �

2
B

¼ a2 þ 1
2 a�

2
B � �2

BkV

aþ 1
2 �

2
B

4
2�2

BkV þ 1
2 a�

2
B � �2

BkV

aþ 1
2 �

2
B

¼ �2
BkV þ 1

2 a�
2
B

aþ 1
2 �

2
B

4 0:

Simple algebra shows that (A3) holds if and only if

�4
Bk

2
V

ðkI � kVÞ2
þ 2�2

BkV � 2a�2
BkV

kI � kV
� 0: ðA4Þ

Since the left-hand term in (A4) can be rewritten as

�4
Bk

2
V

ðkI � kVÞ2
þ 2�2

BkV
kI � kV � a

kI � kV

� �
¼ �4

Bk
2
V

ðkI � kVÞ2
þ 2�2

BkV

1
2 �

2
B

kI � kV

� �
,

we see that (A4) is equivalent to

�4
Bk

2
V

ðkI � kVÞ2
þ �4

BkV
kI � kV

� 0:

This last inequality is clearly satisfied. Indeed, the right-

hand side is the sum of strictly positive terms, as

assumption (9) implies (see also footnote 1) that

kI � kV 4 0:

We now verify property (III). To this aim, we focus on

x5x1 or x2� x� 1, since for x1� x� x2 the function v

coincides with (1� x)þ, and for x� 1 we have that

(1� x)þ¼ 05v(x). On x5x1 and on x2� x� 1 the

function v is strictly convex, whereas (1� x)þ is linear.

Recalling that v and (1�x)þ have the same derivative at

xi for i¼ 1, 2, we conclude that v(x)� (1� x)þ on x5x1
and on x2� x� 1.

Property (IV) will be verified at the end of the proof.

yThese properties are four of the five optimality properties Mordecki (1999) quotes in his lemma 1. It is worth remarking that
Mordecki (1999) considers solely a zero ‘deflating rate’. We state the four properties in terms of the cost-to-value ratio X instead of
lnX in order to save the convexity property of the put-payoff function. This allows us to apply the Meyer–Ito formula and minor
modifications of its corollaries (Protter 2004). The missing property is a boundedness requirement, which is not satisfied in our case.
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Thanks to properties (III) and (IV), conditions (a) and

(b) are satisfied as soon as

(a0) vðxÞ ¼ EPA ½e�ð�kVÞ��vðX�� Þ j F 0�,
(b0) vðxÞ � EPA ½e�ð�kVÞ�vðX�Þ j F 0�,

for any stopping time �:

By applying the Meyer–Ito formula (see, for instance,

Protter (2004, theorem IV.51)) to fe�ð�kVÞtvðXtÞgt�0,
we have

e�ð�kVÞtvðXtÞ � vðxÞ ¼
Z t

0

e�ð�kVÞsðkVvþ LvÞðXsÞdsþMt,

ðA5Þ
where

Mt ¼
Z t

0

e�ð�kVÞsv0ðXsÞ�BXs dBs:

Notice that we have to slightly modify the Meyer–Ito

formula as done in the proof of lemma 1 of Mordecki

(1999), since v is not C2. However, v is convex and its

second derivative v00 exists continuous for any x 6¼ x1, x2.

Also, v00 has finite left and right limits at x1 and x2. If � is a
stopping time, considering equation (A5) between 0 and �
yields

e�ð�kVÞ�vðXð�ÞÞ � vðxÞ

¼
Z �

0

e�ð�kVÞsðkVvþ LvÞðXsÞ dsþM� � 0þM�,

thanks to properties (I) and (II). Hence, (b0) is implied by

(b00) EPA ½M� j F 0� � 0, for any stopping time �:

We now prove (b00). From (A5), we obtain

Mt ¼ �
Z t

0

e�ð�kVÞsðkVvþ LvÞðXsÞds

þ e�ð�kVÞtvðXtÞ � vðxÞ � 0� vðxÞ,
thanks to properties (I) and (II) and to the positivity of v.

Hence, the local martingale M is bounded from below.

It follows that M is a supermartingale bounded from

below and, by theorem (1.39) of Jacod and Shiryaev

(2002), we have EPA ½M� j F 0� � M0 ¼ 0 for any stopping

time �, which completes the proof of condition (b00).
It remains to prove condition (a0). To this aim, we

compute explicitly

EPA ½e�ð�kVÞ��vðX�� Þ j F 0�:
If X0¼x4x2, then X�� ¼ x2 and vðX�� Þ ¼ ð1� x2Þþ.
Hence,

EPA ½e�ð�kVÞ��vðX�� Þ j F 0� ¼ EPA ½ekV�� ð1� x2Þ j F 0�,
and the problem is reduced to the computation of the

Laplace transform of the hitting time �� for the positive

value kV40. In this case the stopping time �� can be

rewritten as

�� ¼ infft � 0 : Xt ¼ x2g
¼ inf t � 0 : atþ �BBt ¼ ln

x2
x

n o
¼ inf t � 0 : � 1

�B
at� Bt ¼ 1

�B
ln

x

x2

� 	
:

We see that �� is the first instant at which the drifted

Brownian motion �(1/�B)at�Bt hits the barrier (1/�B)
ln(x/x2)40. As highlighted, for example, by Shreve

(2004), exploitation of the reflection principle for the

standard Brownian motion �B leads to the closed form of

��’s Laplace transform:

EPA ½ekV�� j F 0�

¼ exp
1

�B
ln

x

x2
� 1

�B
a

� �
� 1

�B
ln

x

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kVþ � 1

�B
a

� �2
s0@ 1A:

We observe that such a formula is usually employed for

negative values of the parameter kV, but it can be

extended to the case of positive kV provided that

�2kVþ [�(1/�B)a]
240, which is exactly the assumption

(9). Simple computations show that

EPA ½ekV�� j F 0� ¼ x

x2

� �ð1=�2
BÞð�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kV�2Bþa2

p
Þ
¼ x

x2

� ��2

,

so that the equality

EPA ½e�ð�kVÞ��vðX�� Þ j F 0� ¼ x

x2

� ��2

ð1� x2Þ ¼ vðxÞ

is verified for any x4x2.
If X0¼ x5x1, then X�� ¼ x1 and vðX�� Þ ¼ ð1� x1Þþ

EPA ½e�ð�kVÞ��vðX�� Þ j F 0� ¼ EPA ½ekV�� ð1� x1Þ j F 0�:
In this case the stopping time �� can be rewritten as

�� ¼ infft � 0 : Xt ¼ x1g

¼ inf t � 0 :
1

�B
atþ Bt ¼ 1

�B
ln
x1
x

� 	
:

We see that �� is the first instant at which the drifted

Brownian motion (1/�B)atþBt hits the barrier (1/�B)
ln(x1/x)40. By exploiting the reflection principle for the

standard Brownian motion B, the Laplace transform of ��

is now

EPA ½ekV�� j F 0�

¼ exp
1

�B
ln
x1
x

1

�B
a

� �
� 1

�B
ln
x1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kV þ 1

�B
a

� �2
s0@ 1A,

for any kV such that �2kVþ [(1/�B)a ]240. Simple

computations show that

EPA ½ekV�� j F 0� ¼ x1
x


 �ð1=�2
BÞða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kV�2

B
þa2

p
Þ

¼ x1
x


 ��ð1=�2
BÞð�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kV�2Bþa2

p
Þ
¼ x1

x


 ���1
,
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so that the equality

EPA ½e�ð�kVÞ��vðX�� Þ j F 0� ¼ x

x1

� ��1

ð1� x1Þ ¼ vðxÞ

is verified for any x5x1.
Finally, we verify property (IV). If f��5þ1}, then

vðX�� Þ ¼ ð1� X�� Þþ from the definitions of the stopping
time �� and of the function v.

We now focus on the event f��¼þ1} and study the
asymptotic behavior of Xt as t goes to infinity. Recall that
PA-almost surely, lim supt!þ1 Bt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t log2 t

p ¼ 1 and
lim inft!þ1 Bt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t log2 t

p ¼ �1 (see, for instance, corol-
lary 1.12, chapter II.1 of Revuz and Yor (2001)).
Recalling the PA dynamics of the log cost-to-value
ratio, we have

lnXt ¼ lnxþ atþ �BBt:

Since a40, it follows that

lim
t!þ1

lnXt ¼ þ1, PA-almost surely.

Hence, the process X reaches any upper barrier almost

surely as time goes by. In particular, if X05x1, then X

reaches x1 in a finite time. Therefore, the event f��¼þ1}

has a strictly positive PA probability of occurring only if

X04x2, and can be rewritten as f��¼þ1}¼fXt4x2 for

all t� 0}. But then

vðX�� Þ ¼ lim
t!þ1A2

Xt

x2

� ��2

¼ 0

¼ lim
t!þ1

ð1� XtÞþ

¼ ð1� X�� Þþ:
The proof of point 3 follows by similar arguments. Note

that, in this case, the function v defined in (A2) collapses to

vðxÞ ¼ 1

1� �0

x

x0

� ��0

,

where x0¼ �0/(�0� 1) and �0 is the unique negative

solution of equation (10). h
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