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REAL OPTIONS AND AMERICAN DERIVATIVES: THE DOUBLE CONTINUATION REGION

Abstract

We study the non-standard optimal exercise policy associated with relevant capital investment options and with

the prepayment option of widespread collateralized-borrowing contracts like the gold loan. Option exercise is

optimally postponed not only when moneyness is insu¢ cient but also when it is excessive. We extend the

classical optimal exercise properties for American options. Early exercise of an American call with a negative

underlying payout rate can occur if the option is moderately in the money. We fully characterize the existence,

the monotonicity, the continuity, the limits and the asymptotic behavior at maturity of the double free boundary

that separates the exercise region from the double continuation region. We �nd that the �nite-maturity non-

standard policy conspicuously di¤ers from the in�nite-maturity one.

1 Introduction

A number of signi�cant decision-making problems in �nance can be reformulated as American option problems

with an endogenous negative interest rate. Two chief examples are the prepayment option in collateralized

borrowing like the recently popular gold loans and a notable class of capital investment options. An endogenous

negative interest rate for the American derivatives embedded into loans collateralized by tradable assets appears

whenever the loan rate is above the riskfree rate. An endogenous negative interest rate in waiting-to-invest real

options appears whenever the risk-adjusted expected growth rate of the project value is above the rate used

by the �rm to discount it.

We show that such decision-making problems can imply a non-standard double continuation region: exer-

cise is optimally postponed not only when the option is not enough in the money (the standard part of the

continuation region) but also when the option is too deep in the money (the non-standard part of the contin-

uation region). For �nite-maturity and perpetual American puts and calls with a negative interest rate in a

di¤usive setting, we provide a detailed analysis of the conditions that enable the double continuation region

and a comprehensive characterization of the double free boundary entailed by such a continuation region1.

Our results add to the classical optimal exercise properties for American options. Given a positive riskfree

rate r, it is well known that it is always suboptimal to exercise prior to maturity an American call on a tradable

asset with payout rate � equal to zero (Merton (1973)) and, more generally, an American contingent claim for

which the net bene�t of exercising immediately is non-positive at all times (Detemple (2006)). For example,

consider the optimal exercise date t� of the prepayment option embedded into a 5-year loan collateralized by

gold. To maximize intuition, assume the problem is deterministic. The loan amount is q and the current gold

price is G so that the optimal exercise date boils down to

t� = argmax
0 � t � 5

e�rt
�
Ge(r��)t � qe
t

�+
,

1Our single-underlying result of multiple continuation regions mirrors upside down the literature documenting multiple exercise

regions in models with a single underlying asset, e.g. Chiarella and Ziogas (2005) and Detemple and Emmerling (2009).

2



where 
 is the borrowing rate commanded by the loan contract. Focus on the in-the-money case (G > q). If


 had been zero, the standard Merton result of t� = 5 would have applied as holding gold is burdened with

the storage cost �G� (the payout rate � is negative). A positive 
 that dominates the risk-free rate (
 > r)
introduces a prepayment incentive for the borrower. Such an incentive is overpowered by �G� (t� > 0) when
gold is markedly dear, that is when the degree of in-the-moneyness is huge. However, the storage cost is not

overwhelming and immediate prepayment does occur (t� = 0) when the loan rate 
 is su¢ ciently high and the

degree of in-the-moneyness is moderate. Fix r = 1%, � = �1%, 
 = 7% and q = 1. If G = 7 the prepayment

option exercise is optimally delayed for three years (t� = 3: 083), whereas if G = 2 the borrower exercises

immediately (t� = 0). The deterministic decision-making example admits a neat restatement as an American

option problem with a constant strike price q and an endogenous interest rate � = r � 
,

t� = argmax
0 � t � 5

e��t
�
Ge�t � q

�+
,

where � = r � � � 
 is the gold price�s adjusted drift rate. The restatement streamlines the optimal exercise
analysis. If � = �6%, � = �5% and q = 1, the incentive to postpone exercise caused by the negative interest

rate � wins over the aversion to delay induced by the drift � towards the out-of-the-money region (t� = 3: 083)

for G = 7, whereas the incentive is insu¢ cient (t� = 0) for G = 2.

Our �ndings contribute to the vast literature on American options, see for instance Broadie and Detemple

(1996) and (2004), Detemple and Tian (2002), Detemple (2006), and more recently Levendorski¼¬(2008) and

Medvedev and Scaillet (2010). We study the existence, the monotonicity, the continuity, the limits and the

asymptotic behavior at maturity of both the upper and the lower free boundary for the American put problem

via the variational inequality approach. We then translate such results into double-free-boundary statements for

the American call problem via the American put-call symmetry (e.g. Carr and Chesney (1996) and Detemple

(2001)).

In a gold loan the precious metal is the collateral, which the borrower has the right to redeem at any

time before or at the loan maturity. We show that, since gold is a tradable investment asset with storage

(and insurance) costs and without earnings, a double continuation region can ensue: the exercise of a deep

in-the-money redemption option may be optimally postponed by the borrower. This is a distinct addition to

the existing literature on the optimal redeeming strategy of tradable securities used as loan collateral: Xia and

Zhou (2007) focus on perpetual stock loans; Ekström and Wanntorp (2008) deal with margin call stock loans;

Zhang and Zhou (2009) look into stock loans in the presence of regime switching; Liu and Xu (2010) consider

capped stock loans, whose subtle variational-inequality issues are studied by Liang and Zu (2012); Dai and Xu

(2011) examine the impact of the dividend-distribution criterion on the stock loan. The stock loan problem

comes with a standard unique free boundary as the risk-neutral percentage drift of the underlying stock price

equals the riskfree rate minus a non-negative dividend yield.

By investigating the general American option problem with a negative interest rate with possibly �nite

maturities, our work thoroughly extends the speci�c perpetual-real-option analysis developed in Battauz, De

Donno and Sbuelz (2012). We examine capital investment options akin to, for instance, the option of entering
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the lucrative but challenging business of nuclear energy. Projects may have values with conspicuous growth

rates even after risk adjustment (say rates above the discount rate used by the �rm), but the overall cost of

entering them is likely to increase even more conspicuously in the future (uranium is a scarce resource and

demand for safety is de�nitely increasing). Such a hierarchy in the risk-adjusted growth/discount rates for the

real option leads to the non-standard optimal continuation policy. Our work focuses on mapping in detail the

�nite-maturity non-standard optimal exercise policy (see Sections 2 and 3) and clearly shows that the perpetual

early-exercise region constitutes a rather poor proxy for the �nite-maturity one (see the examples in Sections

4 and 5).

The rest of the paper is organized as follows. Sections 2 and 3 deal with the double continuation region

for American puts and calls, respectively. Sections 4 and 5 discuss the double continuation region for the

redemption option embedded in a gold loan and for an interesting class of real options. Section 6 concludes

and an Appendix contains all the proofs.

2 The American put

We consider an American put option written on the log-normal asset X, whose drift under the valuation

measure is positive and denoted with �. We denote the volatility with �, the strike with K, and the interest

rate with �. The put value at time t is given by

ess sup
t���T

E
h
e��(��t) (K �X(�))+

���Fti = v(t;X(t))
where

v(t; x) = sup
0���T�t

E

"
e���

�
K � x � exp

��
�� �

2

2

�
�+ � B(�)

��+#
(2.1)

and B is a standard Brownian motion under the valuation measure. In Sections 2 and 3, expectations and

distributions of stochastic processes refer all to the valuation measure and, for the sake of simplicity, we will

omit their dependence on the probability measure. If the option is perpetual, its value is

v1(x) = sup
0��

E

"
e���

�
K � x � exp

��
�� �

2

2

�
�+ � B(�)

��+#
:

Regardless of the sign of �; the function v in (2:1) dominates the payo¤ function, is convex and decreasing with

respect to x, decreasing with respect to t; and dominated by the perpetual put v1, that is

(K � x)+ � v(t; x) � v(t; 0) � v1(x) for all t 2 [0;T ] and x � 0: (2.2)

(see for instance Karatzas and Shreve (1998), and Broadie and Detemple (1997)).

These properties interact with the sign of � to determine the shape of the free boundary, and the �geom-

etry structure� of the exercise region. More precisely, if � � 0; for any t < T we have that v(t; 0) =

sup0���T�t E
�
e��� (K � 0)+

�
= (K � 0)+ : Since v(t; x) coincides for x = 0 with the immediate exercise
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payo¤, convexity and (2:2) imply that either v(t; x) > (K � x)+ for all x > 0 (see the thick dashed line in the
left-hand panel of Figure 1) or v(t; x) = (K�x)+ for any x belonging to the interval whose extremes are 0 and

x�(t) = sup fx � 0 : v(t; x) = K � xg � K

(see the thick solid line in the left-hand panel of Figure 1). The value x�(t) is the unique put critical price at

t with nonnegative interest rates. Detemple and Tian (2002) and Detemple (2005) show that this is true for a

large class of di¤usion processes with nonnegative stochastic interest rates.

Figure 1: The value of the American put option v(t; �) (thick lines),
and the immediate exercise put payo¤ (thin line). The strike price is K = 1:
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On the contrary, if � < 0; then the value of the American option for x = 0 strictly dominates the immediate

exercise payo¤, because v(t; 0) = sup0���T�t E
�
e��� (K � 0)+

�
= e���(T�t) �K > K: Then either early exercise

is never optimal at date t, i.e. v(t; x) > (K � x)+ for all x > 0 (see the thick dashed line in the right-hand

panel of Figure 1), or early exercise is optimal at time t for some x0 2 (0;K), i.e. (K � x0)+ = v(t; x0) (see the
thick solid line in the right-hand panel of Figure 1). If x0 is unique, then the exercise region collapses into a

single point (the free boundary at time t). If x0 is not unique, then by convexity and (2:2) the exercise region

at time t is constituted by a connected segment de�ned by the extremes l(t) � u(t) 2 [0;K] where2

l(t) = inf
�
x � 0 : v(t; x) = (K � x)+

	
(2.3)

u(t) = sup
�
x � 0 : v(t; x) = (K � x)+

	
^K (2.4)

such that v(t; x) = (K � x)+ for l(t) � x � u(t) and v(t; x) > (K � x)+ for x < l(t) and x > u(t): This

implies that the continuation region at time t is splitted in two segments. Exercise is optimally postponed

not only when the option is insu¢ ciently in the money (x > u(t)) but also (surprisingly, at �rst sight) when

the option is excessively in the money (x < l(t)). In the excessively in the money region (x < l(t)), moreover,

2Whenever t < T; we have sup
�
x � 0 : v(t; x) = (K � x)+

	
� K; because (K � x)+ = 0 and v(t; x) > 0 for x � K: On the

contrary, for t = T the sup
�
x � 0 : v(T; x) = (K � x)+

	
= +1: Hence the cap at K in the de�nition of u is binding at T only.
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the value of the American put decreases with steeper slope than the immediate put payo¤, i.e. @v
@x(t; x) < �1

(see the right-hand panel of Figure 1). On the contrary, if � � 0; the derivative @v
@x(t; x) � �1 for all x: Thus,

if the exercise region at date t is non-empty, it is the negativity of the interest rate that modi�es its usual

�geometry structure� (see Detemple and Tian (2002) and Detemple (2005)). Assumptions (2:6) and (2:7) in

Proposition 2:2 are su¢ cient conditions for the non-emptiness of the exercise region in the perpetual case,

and, consequently, in the �nite-maturity case at any date t (see Theorem 2.3). In particular, Assumption

(2:6) implies that the �dividend yield� � = � � � is negative. Therefore, the negativity of both � and � is
crucial to determine the presence of the double continuation region. Clearly, the continuation region cannot be

constituted by more than two non-connected segments, because the convex function v(t; �) must lie above the
payo¤ function (K � �)+:
Let us denote with ER =

�
(t; x) 2 [0;T ]� [0;+1[ : v(t; x) = (K � x)+

	
; the early exercise region, and with

CR =
�
(t; x) 2 [0;T ]� [0;+1[ : v(t; x) > (K � x)+

	
; the continuation region. The function v in (2:1) can be

expressed as the solution of the system of variational inequalities (see for instance Bensoussan and Lions (1982),

Jaillet, Lamberton and Lapeyre (1990), Feng, Kovalov, Linetsky, Marcozzi (2007), and Kovalov, Linetsky, and

Marcozzi (2007) for the related numerical solution):8>><>>:
v (T; �) = � (�) , v (t; �) � � (�) for any t 2 [0;T ]

@
@tv + Lv � �v � 0 on (0;T )�<

+

@
@tv + Lv � �v = 0 on f(t; x) 2 (0;T )�<

+ : v (t; x) > �(x)g

(2.5)

where � (x) = (K � x)+ and (Lv)(t; x) = 1
2�

2x2 @2

@x2
v(t; x)+�x @

@xv(t; x):When interest rates are non-negative,

it is well known that (2:5) admits a smooth solution (see Jaillet, Lamberton and Lapeyre (1990)). The same

conclusion can be achieved even if the interest rate is negative, as shown in the next proposition.

Proposition 2.1 (Smoothness of the put value v, negative interest rate) The solution of (2:5) admits

partial derivatives @v
@t ;

@v
@x ;

@2v
@x2

that are locally bounded on [0;T ) � <+: Moreover, v enjoys the smooth-�t
property, i.e. @v

@x is continuous on [0;T )�<
+.

In the in�nite-maturity case, the constant double free boundary can be explicitly computed by solving the

di¤erential equation implied by (2:5) in the continuation region and by applying the important smooth-pasting

principle at the free boundary3. The result requires an ad-hoc direct veri�cation, because v1 violates the usual

boundedness requirements. Indeed, when � < 0 and x = 0 the optimal exercise time is �� = +1, and the
value of the American option is v1(0) = E

�
e���

�
(K � 0)+

�
= +1: Battauz et al. (2012) work out a closed-

form solution for the special case of a perpetual real-option problem. The following proposition adapts their

statement to our current framework.

3See Battauz, De Donno and Sbuelz (2012). For the standard case of non-negative interest rates in models based on Lévy

processes see e.g. Boyarchenko and Levendorski¼¬(2002a), Boyarchenko and Levendorski¼¬(2002b), Alili and Kyprianou (2005), and

Jiang and Pistorius (2008).
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Proposition 2.2 (Perpetual put, negative interest rate) If T = +1;

� < 0; �� �
2

2
> 0; (2.6)

and �
�� �

2

2

�2
+ 2��2 > 0; (2.7)

then the perpetual American put option value is

v1(x) =

8>><>>:
Al � x�l for x 2 (0; l1)
K � x for x 2 [l1;u1]
Au � x�u for x 2 (u1; +1)

(2.8)

where �u < �l are the negative solutions of the equation

1

2
�2�2 +

�
�� �

2

2

�
� � � = 0; (2.9)

The critical asset prices are

l1; u1 = K
�i

�i � 1
for i = l; u (2.10)

and the constant Al and Au are given by

Al = �
(l1)

1��l

�l
and Au = �

(u1)
1��u

�u
(2.11)

Given a negative interest rate � < 0, the positive-drift condition (2:6) and the positive-discriminant condition

(2:7) guarantee the existence of (negative) solutions of the equation (2:9) and rule out the potential explosive

e¤ect of a negative interest rate on the put value function. If the interest rate is negative, the holder of

the option may obtain an in�nite expected gain by deferring inde�nitely the exercise of the option. Such an

incentive to inde�nite deferment can be counteracted by a signi�cant chance that the option goes out of the

money as time goes by. This is the case if the growth rate of the underlying asset X is high enough compared

to the absolute value of the negative interest rate, as stated by the condition (2:7): j�j <
�
���2

2

�2
2�2

:

The function v1 de�ned in (2:8) enjoys the following properties in the continuation region: v is decreasing,

it dominates the immediate payo¤, and the process
�
v1(X(t))e��t

	
t
is a local martingale. The condition (2:7)

also empowers the supermartingality of the process
�
v1(X(t))e��t

	
t
in the early exercise region.

Given a �nite maturity and a negative interest rate, Theorem 2.3 provides an accurate description of the

double continuation region, which is separated from the (single) early exercise region by a double free boundary.

The upper free boundary enjoys all the properties it has in the standard case of non-negative interest rates:

it is increasing, continuous and tends to the strike price at maturity. The lower free boundary is decreasing,

continuous everywhere but at maturity, where it exhibits a discontinuity. Our �ndings contribute to the extant

literature on multiple free boundaries that separate the (single) continuation region from the multiple exercise

region for certain American options with multiple underlying assets, e.g. Broadie and Detemple (1997).
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Theorem 2.3 (Continuation region and free boundary characterization, �nite-maturity put, neg-

ative interest rate)

If conditions (2:6) and (2:7) are veri�ed, then for any t 2 [0;T ) there exist

�K

�� � � l(t) < u(t) � K (2.12)

such that (K � x)+ = v(t; x) for any x 2 [l(t);u(t)] and (K � x)+ < v(t; x) for any x =2 [l(t);u(t)].
The lower free boundary l : [0;T ]! [0; l1) is decreasing, continuous for any t 2 [0;T ), l(T�) = �K

��� > l(T ) = 0.

The upper free boundary u : [0;T ]! (u1;K] is increasing, continuous for any t 2 [0;T ], and u(T ) = u(T�) =
K:

The early exercise region is ER = f(t; x) 2 [0;T ]� [0;+1[ : l(t) � x � u(t)g ; and the double continuation
region is CR = f(t; x) 2 [0;T ]� [0;+1[ : 0 � x < l(t) or x > u(t)g ; where f(t; l(t)) ; (t; u(t)) : t 2 [0;T ]g is the
double free boundary.

Describing the free boundary close to maturity is of key importance for the American option holder. The

asymptotic behavior of the free boundary of an American put option in the standard case of a positive interest

rate and of a di¤usive underlying has been studied by several authors, as Barles at al. (1995), and, more recently,

by Evans et al. (2002), and by Lamberton and Villeneuve (2003). In a di¤usive framework with stochastic

volatility and stochastic interest rates, Medvedev and Scaillet (2010) derive an accurate approximation formula

for the American put price, by �rst introducing an explicit proxy for the exercise rule based on the normalized

moneyness, and then by using proper asymptotic expansions for short-maturities.

In Theorem 2.4 we study the asymptotic behavior of the double free boundary at maturity in the case of

a negative interest rate. When the interest rate dominates the non-negative dividend yield of the underlying4,

Evans et al. (2002) show that the free boundary of an American put option tends at maturity to the strike

price in a parabolic-logarithmic form. In the case of a negative interest rate the same asymptotic behavior at

maturity is shown by the upper free boundary. As for the non standard lower free boundary we prove that it

converges at maturity monotonically decreasingly to its left-limit5 l(T�) = �K
��� in a parabolic form.

Theorem 2.4 (asymptotic behavior of the free boundaries at maturity, put, negative interest rate)

4The introduction of jumps can produce e¤ects akin to an additional dividend rate. See e.g. Boyarchenko and Levendorski¼¬

(2002a), Levendorski¼¬(2004), and Levendorski¼¬(2008).
5The discontinuity of our non-standard lower free boundary at T parallels the discontinuity of the (unique) free boundary at

T in the standard case of a non-negative interest rate that is dominated by the underlying payout rate (see e.g. Evans, Kuske,

and Keller (2002) and Ingersoll (1998)). We here adapt the covered-put argument of Ingersoll (1998). Assume tradability and

consider the strategy of holding the underlying asset and the put at time � = T � dt for a small positive dt. Recall that, in our
non-standard case, the interest rate � and the underlying payout rate � � � are negative. The critical (lower) price x� = l (�)

is the indi¤erence point such that the value of unwinding the strategy at � equals the present value of waiting to do so at T :

K = Ke��dt + x� (�� �) dt. It follows that lim
dt!0

x� = K �
��� . Notice that the covered-put argument does not apply to the upper

free boundary (u(T�) = u(T ) = K).
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If conditions (2:6) and (2:7) are veri�ed, then for t! T the upper free boundary satis�es

u(t)�K � �K�

s
(T � t) ln �2

8� (T � t)�2 :

For t! T , the lower free boundary satis�es

l(t)� �K

�� � �
�K

�� �

�
�y��

p
(T � t)

�
;

where y� 2 (�1; 0), y� � �0:638, is the number such that � (y) = sup
0���1

E

24 �Z
0

(y +B (s)) ds

35 = 0 for all

y � y� and � (y) > 0 for all y > y�:

In Figure 2 we plot the double free boundary for an American put option with a negative interest rate. The

dashed part of the upper free boundary is obtained via binomial approximation. The solid lines correspond to

the asymptotic approximation (The binomial approximation of the lower free boundary coincides numerically

with the parabolic asymptotic approximation for the entire life of the option). Red (green) circles indicate the

exercise (no exercise) region at T .

Figure 2: The double free boundary for a put � = �4%; K = 1:2; � = 20%; � = 8%; T = 1
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Conditions (2:6) and (2:7) are su¢ cient but not necessary for the existence of the double free boundary. In

the next proposition we provide a necessary time-dependent condition for the optimality of early exercise of

the put option during the life of the option when interest rates are negative. As a consequence, this condition

is also necessary for the existence of a double free boundary with negative interest rates.

Proposition 2.5 (necessary condition for early exercise, negative interest rate). If � < 0 and � > 0

a necessary condition for the optimal exercise of the �nite-maturity American put option at t 2 [0;T ) is

N�1
�
e�(T�t)

�
�N�1

�
e(���)(T�t)

�
� �

p
T � t; (2.13)

where N�1 (�) denotes the inverse of the standard normal cumulative distribution function.
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Condition (2:13) requires �; the growth rate of the underlying asset X; to be relatively high compared to

the (negative) interest rate �; in such a way that the distance between the two quantiles N�1 �e�(T�t)� and
N�1 �e(���)(T�t)� is at least as big as �pT � t: While working towards the common objective of limiting the
relative strength of � versus �; condition (2:13) is a requirement milder than the su¢ cient conditions (2:6) and

(2:7).

Figure 3: The European �nite-maturity put value ve (t; x) for T � t = 9 and K = 1
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Gray: � = 1%; � = 3%; � = 20%; Green: � = �1%; � = 3%; � = 20%; Blue: � = �4%; � = 3%; � = 40%.

The intuition behind Proposition 2.5 is visualized in Figure 3: If the time t value of the European put option,

ve (t; x) ; strictly dominates the immediate payo¤ function for all x � 0; then there is no optimal early exercise
at t; since the time t value of the American put option dominates ve (t; x) ; that is v (t; x) � ve (t; x) > (K � x)+ :
If interest rates are non-negative, i.e. � � 0; this can never happen, because at x = 0 we have that ve (t; 0) =
Ke��(T�t) � (K � 0)+ = K; and by continuity ve (t; x) lies below (K � x)+ on an entire segment of non-

negative underlying values (see the gray graph in Figure 3). On the contrary, when interest rates are negative,

i.e. � < 0; the time t value of the European put option when the underlying is 0 dominates the immediate

payo¤, because ve (t; 0) = Ke��(T�t) > (K � 0)+ = K: Hence two alternatives are possible: Either ve (t; x)

dominates the immediate payo¤ function for all x � 0 (the blue graph in Figure 3), and consequently early

exercise is never optimal at date t: Or ve (t; x) < (K � x)+ for some x > 0 (the green graph in Figure 3),

and early exercise might be optimal at date t. When � < 0; Equation (2:13) is equivalent to the existence of

some x > 0 such that ve (t; x) � (K � x)+ : Equation (2:13) is therefore a minimal necessary condition for the
possibility of optimal early exercise at date t in case of negative interest rates, that in turn implies the possible

existence of a double continuation region.

3 The American call

We consider an American call option written on the log-normal asset X, whose drift under the valuation

measure is positive and denoted with �. We denote the volatility with �, the strike with K, and the interest

rate with �. The call value at time t is given by

ess sup
t���T

E
h
e��(��t) (X(�)�K)+

���Fti = v(t;X(t))
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where

v(t; x) = sup
0���T�t

E

"
e���

�
x � exp

��
�� �

2

2

�
�+ � B(�)

�
�K

�+#
(3.1)

and B is a standard Brownian motion under the valuation measure. We focus on the case � < 0.

If � > 0, the value of the perpetual call option

v(t; x) = v1(x) = sup
0��

E

"
e���

�
x � exp

��
�� �

2

2

�
�+ � B(�)

�
�K

�+#

is unbounded by Jensen�s inequality6. By contrast, for �; � < 0, the function v in (3:1) can be bounded also in

the perpetual case, as we show in Proposition 3.2. In the �nite-maturity case, v in (3:1) can be characterized

as the solution of the variational inequality (2:5) with � (x) = (x � K)+. Regardless of the sign of �, the
function v in (3:1) dominates the call payo¤ (0 � (x�K)+ � v(t; x) for any t 2 [0;T ] and x � 0) and is convex
and increasing with respect to x for any t 2 [0;T ]. These properties are inherited from the convexity and the

monotonicity of the call payo¤. From the de�nition of v in (3:1) as a supremum on the set of stopping times

from 0 up to time-to-maturity we can also deduce that, for any x � 0; the function v(t; x) is decreasing with
respect to t: Obviously, the �nite-maturity option is dominated by the perpetual one: v(t; x) � v1(x) for any
t 2 [0;T ] and x � 0: We also observe that the negative sign of � and � (with the additional conditions (3:2)
and (3:3)) prevents the function v1 to be dominated by the identity function, i.e. the standard inequality

v1(x) � x does not hold true, as opposite to the case depicted in Xia and Zhou (2007).
The mentioned properties of v in (3:1) imply that the early exercise region at time t is constituted by a

connected segment de�ned by the extremes l(t) � u(t) 2 [0;K] where

l(t) = inf
�
x � 0 : v(t; x) = (x�K)+

	
_K

u(t) = sup
�
x � 0 : v(t; x) = (x�K)+

	
such that v(t; x) = (x�K)+ for l(t) � x � u(t) and v(t; x) > (x�K)+ for x < l(t) and x > u(t): This entails
that the continuation region at time t is splitted in two segments. We characterize the double continuation

region, the early exercise region and the double free boundary in Theorem 3.3. In Proposition 3.2 we give

parameter value restrictions under which the American perpetual call option is �nite even when interest rates

are negative. We also provide explicit expressions for the constant double free boundary.

In the �nite-maturity case the lower free boundary enjoys all the property it has in the standard case, where

interest rates are positive: it is decreasing, continuous and tends to the strike price at maturity. The upper

free boundary is increasing, continuous everywhere but at maturity, where it is in�nite.

Proposition 3.2 and Theorem 3.3 are proved by building upon (respectively) Proposition 2.2 and Theorem

2.3 and by applying the American put-call symmetry (see Carr and Chesney (1996) and Schroder (1999)). The

American put-call symmetry relates the price of an American call option to the price of an American put option

by swapping the initial underlying price with the strike price and the dividend yield with the interest rate. As

6 If � > 0; we have v1(x) � sup0�T e
��T �

�
E
h
x � exp

��
�� �2

2

�
T + � B(T )

�i
�K

�+
= sup0�T e

��T �x � e�T �K�+ = +1:
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explained by Detemple (2001), such symmetry relies on the symmetry of the distribution of the log-price of X;

and on the symmetry of call and put payo¤s. The change of numeraire allows to derive such property also in

our case, where both the interest rate � and the �dividend yield� � = � � � are negative. For the ease of the
reader, the following proposition remaps the American put-call symmetry to our framework.

Proposition 3.1 (American put-call symmetry)

Consider the American call option with strike K; interest rate �; underlying drift �; underlying volatility �;

and initial underlying value x; whose value at time t 2 [0;T ] is denoted with v (t; x) = vcall (t; x;K; �; �; �) in
(3:1).

Consider the symmetric American put option with strike Kput = x; interest rate �put = � � �, underlying
drift �put = ��; underlying volatility �put = � and initial underlying value xput = K; whose value at time

t 2 [0;T ] is denoted with vput (t; xput;Kput; �put; �put; �put) = vput (t;K;x; �� �; ��; �) :

1. The following conditions

� < � < ��
2

2
< 0; (3.2)�

�� �
2

2

�2
+ 2��2 > 0; (3.3)

for �; �; � in the American call problem are equivalent to conditions (2:6) and (2:7) for parameters

�put; �put; �put in the symmetric American put problem.

2. (Carr and Chesney ((1996)); Detemple (2001); Detemple (2006)) The value of the American call coincides

with the value of the symmetric American put

v (t; x) = vcall (t; x;K; �; �; �) = vput (t;K;x; �� �; ��; �) (3.4)

for any t 2 [0;T ] :

3. For any t 2 [0;T ] let l (t) (resp. u (t)) denote the lower (resp. upper) free boundary at time t for

the American call option with strike K; and parameters �; �; �. Let lput (t) (resp. uput (t)) denote the

lower (resp. upper) free boundary at time t for the symmetric American put with strike Kput = 1; and

parameters �put; �put; �put: If (3:2) and (3:3) are satis�ed, then for any t 2 [0;T ] we have

l (t) =
K

uput (t)
and u (t) =

K

lput (t)
: (3.5)

We employ Proposition 3.1 to study the double free boundary for the American call option. Proposition

3.2 focuses on the perpetual case. Theorem 3.3 deals with the �nite-maturity case and Theorem 3.4 provides

the asymptotic behavior of the upper and lower free boundaries at maturity.

12



Proposition 3.2 (Perpetual call, negative interest rate) If T = +1; and conditions (3:2) and (3:3) hold,
then the perpetual American call option value is

v1(x) =

8>><>>:
Al � x�l for x 2 (0; l1)
x�K for x 2 [l1;u1]
Au � x�u for x 2 (u1; +1)

where �l > �u > 1 are the positive solutions of the equation (2:9) : The double free boundary is given by the

constant l1; u1 de�ned in (2:10), with Al =
(l1)

1��l
�l

and Au =
(u1)

1��u

�u
:

Theorem 3.3 (Continuation region and free boundary characterization, �nite-maturity call, neg-

ative interest rate)

Under conditions (3:2) and (3:3) ; for any t 2 [0;T ) there exist

l(t) � l1 < u1 � u(t)

such that (x�K)+ = v(t; x) for any x 2 [l(t);u(t)] and (x�K)+ < v(t; x) for any x =2 [l(t);u(t)].
The lower free boundary l : [0;T ]! [K; l1) is decreasing, continuous for any t 2 [0;T ], and l(T ) = l(T�) =

K.

The upper free boundary u : [0;T )!
�
u1;

�K
���

i
is increasing, continuous for any t 2 [0;T ), with u(T�) =

�K
��� > K and u(T ) = +1:
The early exercise region ER = f(t; x) 2 [0;T ]� [0;+1[ : l(t) � x � u(t)g and the double continuation

region is CR = f(t; x) 2 [0;T ]� [0;+1[ : 0 � x < l(t) or x > u(t)g ; where f(t; l(t)) ; (t; u(t)) : t 2 [0;T ]g is the
double free boundary.

Theorem 3.4 (Asymptotic behavior of the free boundaries at maturity, call, negative interest

rate)

Under conditions (3:2) and (3:3) ; for t! T the upper free boundary satis�es

u(t)� �K

�� � � y
��
p
(T � t):

For t! T , the lower free boundary satis�es

l(t)�K � K�

s
(T � t) ln �2

8� (T � t)�2 ;

where y� � �0:638 is de�ned in Theorem 2.4.

In Figure 4 we plot the double free boundary for an American call option with a negative interest rate. The

dashed part of the lower free boundary is obtained via binomial approximation. The solid lines correspond to

13



the asymptotic approximation. Red (green) circles indicate the exercise (no exercise) region at T .

Figure 4: Double free boundary for a call with � = �12%; K = 0:5; � = 20%; � = �8%; T = 1
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Conditions (3:2) and (3:3) are su¢ cient but not necessary for the existence of a double free boundary for the

call option. A necessary condition for optimal exercise at t is N�1 �e�(���)(T�t)��N�1 �e�(T�t)� � �pT � t;
that can be derived by applying the put-call symmetry (Proposition 3.1) to the necessary condition for the

early exercise of put options established in Proposition 2:5.

4 The gold loan

Collateralized borrowing has been seeing a huge increase after the �nancial crisis. Treasury bonds and stocks

are the collateral usually accepted by �nancial institutions, but gold is increasingly being used around the

world7. Major Indian non-banking �nancial companies like Muthoot Finance and Manappuram Finance have

been quite active in lending against gold collateral. As Churiwal and Shreni (2012) report in their survey of

the Indian gold loan market, gold loans tend to have short maturities and rather high spreads (borrowing rate

minus riskfree rate), even if signi�cantly lower than without collateral. The prepayment option is common,

permitting the redemption of the gold at any time before maturity. We emphasize that gold loans noticeably

di¤er from stock loans, because gold is a tradable investment asset with storage/insurance costs and without

earnings. This can lead to peculiar redemption policies that constitute an interesting application of our results

in Proposition 3.2 and Theorems 3.3 and 3.4.

In a gold loan, the borrower receives at time 0 (the date of contract inception) the loan amount q > 0 using

one mass unit (one troy ounce, say) of gold as collateral, which must be physically delivered to the lender8. This

amount grows at the rate 
, where 
 is a constant borrowing rate (higher than the riskfree rate r) stipulated

7For example see "J.P. Morgan Will Accept Gold as Type of Collateral" (Wall Street Journal, Commodities, February 8, 2011),

reported by C. Cui and R. Hoyle.
8 It is not implausible that the lender�s cost of storing the gold collateral is passed to the borrower by charging a higher borrowing

rate, although we have no direct evidence for it (see for example Churiwal and Shreni (2012)).
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in the contract, and the cost of reimbursing the loan at time t is thus given by qe
t. When paying back the

loan, the borrower regains the gold and the contract is terminated. We assume that the costs of storing and

insuring gold holdings are Gc > 0 per unit of time, where G is the gold spot price. Consistently, the dynamics

of G under the risk-neutral measure Q is assumed to be

dG(t)

G(t)
= (r + c) dt+ �dW (t);

where r is the constant riskless rate, � is the gold returns�volatility, and W is a Brownian motion under the

risk-neutral measure Q (see for instance Hull (2011)). Given a �nite maturity T , the value of the redemption

option at date 0 is

C(0; G (0)) = sup
0���T

EQ
�
e�r� (G(�)� qe
� )+

�
= sup
0���T

EQ
h
e�(r�
)� (X(�)� q)+

i
where X(t) = G (t) e�
t is the gold price de�ated at the rate 
: Therefore, the initial value of the redemption

option of a gold loan is the initial value of an American call option in (3:1) on the lognormal underlying X

with parameters � = r � 
 < 0; � = r + c� 
; K = q:

Similarly, the value of the redemption option at any date t 2 [0;T ] can be computed as C(t; G (t)) =

v(t;X (t)); with v de�ned in (3:1) : The percentage storage and insurance costs c are positive and usually below

the spread 
 � r > 0. Hence, we posit � < � < 0: If conditions (3:2) and (3:3) are also veri�ed, i.e.

r � 
 < r � 
 + c < ��
2

2
and

�
r � 
 + c� �

2

2

�2
+ 2�2 (r � 
) > 0

a double no-redemption region appears in the perpetual case, as by Proposition 3.2. Using the same proposition,

we can compute the perpetual constant free boundaries l1 and u1 in terms of the de�ated gold price process

X(t) = G (t) e�
t. For �nite-maturity contracts, Theorem 3.4 provides the asymptotic approximation of the

double free boundaries near maturity. Churiwal and Shreni (2012) show that maturities for gold loans are

generally within 36 months. Borrowing rates typically range from 12% to 16% for banks and from 12% to

24% for specialized institutions, whereas the yield on Indian short-term government bonds9 has been hovering

around 8%. Data from the Gold World Council10 show that the daily log change in the gold spot price

expressed in Indian rupees has registered an annualized historical volatility of 21:4% over the period from the

3rd of January 1979 to the 5th of May 2013. Average storage/insurance costs are about11 2%. By �xing

r = 8%, c = 2%, 
 = 17%, and � = 21:4% the mentioned parametric restrictions are met. Given quantities

normalized by the loan amount (q = 1), Figure 5 visualizes the perpetual double free boundary (l1 = 1:70 and

u1 = 2:64) and the proxied �nite-maturity double free boundary (l (t) and u (t) for t close to the expiry date

9The source is the Government Securities Market Section of the Reserve Bank of India DataBase on The Indian Economy (RBI�s

DBIE, http://dbie.rbi.org.in).
10http://www.gold.org/investment/statistics/.
11The cost of leasing a bank safety locker and of insuring the jewellery kept in it adds up to about 2% of the sum assured

(�Protect your riches�, by Chandralekha Mukerji, Money Today, August 2012).
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T = 1 expressed in years), as by Theorem 3.4. Figure 5 highlights that the two perpetual free boundaries are a

poor proxy for the two �nite-maturity free boundaries near expiration. For instance, if at t = 0:95 the de�ated

gold price X is equal to 3 (the point denoted with a red diamond in Figure 5), the perpetual boundaries suggest

to delay the gold loan redemption (the red diamond lies outside the perpetual immediate-redemption region),

though the asymptotic approximation of the double free boundary implies optimal immediate redemption (the

red diamond lies inside the immediate redemption region). Binomial-tree calculations show that the relative

welfare loss associated to suboptimal delay is 3 basis points of the immediate-redemption value. A similar but

lesser deep-in-the-money situation is represented in Figure 5 by the point denoted with a black circle (X = 1:5

at t = 0:95). The relative welfare loss from suboptimal delay in this case is of 23 basis points. Conversely, if

the de�ated gold price X is 4:7 at t = 0:95 (the point denoted with a green cross in Figure 5), it is optimal

to postpone the gold redemption even though the redemption option is quite deep in the money and very

short-lived. Red (green) circles indicate the redemption (no redemption) region at T .

Figure 5: Double no-redemption region of a gold loan near maturity
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The parameter values are: T = 1; r = 8%; c = 2%; 
 = 17%; � = 21:4%; and q = 1:

5 Capital investment options

This example closely follows the setup in Battauz et al. (2012), who consider exclusively the perpetual case.

By contrast, we focus here on the �nite-maturity case and on the behavior of the double free boundary near

maturity. Uncertainty is described by the historical probability space (
;P; (Ft)t). The present value V of the
project and the investment cost I have lognormal dynamics under the historical probability measure P (see

Dixit and Pindyck (1993) for a classical review of risky investment and Aase (2010) for a recent survey). The

�rm�s management decides when to disburse the irreversible investment cost I to undertake the project. Risk

adjustment corresponds to choosing the valuation measure P̂ (equivalent to P) by the �rm�s management. The
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discount rate br is also selected by the �rm�s management. The P̂�dynamics of V is

dVt = Vt

�b�V dt+ �V dW P̂
t + e�V dfW P̂

t

�
;

where b�V , �V , and ~�V are real positive constants. The investment cost I has P̂�dynamics
dIt = It

�b�I dt+ �I dW P̂
t

�
;

where b�I and �I ; are real positive constants, and W P̂, fW P̂ are P̂�independent Brownian motions.
Access to the project is possible only up to the date T . Thus, at any date t 2 [0; T ] the management

evaluates the t-dated value of the option to invest

ess sup
t���T

EP̂
h
e�br(��t)(V� � I� )+���Fti : (5.1)

The real option problem (5.1) can be reduced to a one-dimensional American put option by taking the process

Vte
�t as numeraire (see Battauz (2002), Carr (1995), and Geman et al. (1995)), where � = � (b�V�br) is the

opposite of V �s expected growth rate (under P̂) in excess of the discount rate br. Indeed, denoting with PV
the probability measure associated to the numeraire Vte�t; whose Radon-Nikodym derivative with respect to

the probability measure P̂ is dP
V

dP̂
= VT e

�T

V0ebrT ; the problem (5.1) can be written as

ess sup
t���T

EP̂
h
e�br(��t)(V� � I� )+���Fti = Vt � v(t;Xt); (5.2)

with

v(t;Xt) = ess sup
t���T

EP
V
h
e��(��t) (1�X� )+

���Fti (5.3)

and Xt = It
Vt
: The underlying of the put option in (5.3) is the lognormal cost-to-value ratio X, that under the

probability measure PV can be written as

Xt = X0 exp

��
�� �

2

2

�
t+ � Bt

�
;

where Bt is a PV -Brownian motion, and where �2 = (�I��V )2+e�2V ; � = b�I�b�V : The parameter � = � (b�V�br)
plays in (5.3) the role of the interest rate. Consider now the case of a highly pro�table project for which b�V
> br. This case is usually neglected by the literature on real options, because it can lead to an explosive option
value in the perpetual case (see Battauz at al. (2012) for a detailed discussion). In the �nite maturity case, if

� = b�I � b�V < 0; the option is optimally exercised only at maturity T: On the contrary, if � = b�I � b�V > 0;
Theorem 2.3 shows that early exercise can be optimal, and that the early exercise region is surrounded by a

double continuation region. Investments in nuclear plants are an interesting area of possible application. The

business is extremely lucrative, but the overall cost of entering it is likely to increase markedly in the future

(demand for nuclear plant safety is de�nitely rising). This may cause the cost of entering a nuclear energy

project to grow at a higher expected rate than the value of the project itself, leading to � = b�I � b�V > 0. Red
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(green) circles indicate the investment (no investment) region at T .

Figure 6: Double free boundary for a capital investment option near maturity
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The parameter values are: T = 10; br= 3%; b�V = 5% ; �V = 7%; e�V = 3%; b�I = 6%; �I = 10%:
For instance, with br= 3%; b�V = 5%; �V = 7%; e�V = 3%; b�I = 6%; and �I = 10% (see12 Figure 6), we get

� = � (b�V�br) = �2%; � = 4:242%; and � = 1%. Conditions (2:6) and (2:7) are met, and Proposition 2.2

delivers the two perpetual free boundaries l1 = 0:763 and u1 = 0:873: Suppose that the option has ten years

to maturity, i.e. T = 10. Theorem 2.4 enables the investigation of the double free boundary near maturity. In

Figure 6 the double free boundary is plotted for t 2 [9:6; 10], i.e. when only 4:8 months are left to expiration.
At t = 9:9, if the cost-to-value ratio I=V is 0:72 (the red diamond in Figure 6), immediate investment is

optimal. The perpetual double free boundary is a poor proxy for the double free boundary near expiration

and implies a delayed investment (the red diamond lies outside the perpetual immediate investment region).

Binomial-tree calculations show that the relative welfare loss associated to suboptimal delay is 1 basis points

of the immediate-exercise value. A similar but lesser deep-in-the-money situation is depicted in Figure 6 by

the black circle (I=V = 0:9 at t = 9:9). The relative welfare loss from suboptimal deferment in this case is of

15 basis points. Conversely, if the cost-to-value ratio I=V is 0:4 at t = 9:9 (the point green cross in Figure 6),

the �rm must postpone the investment, even if the investment option is quite deep in the money and de�nitely

short-lived.

6 Conclusions

American option problems with an endogenous negative interest rate are signi�cant as they are reformulations

of the option-like features of popular secured loans and of relevant capital budgeting problems. For �nite-
12The seminal work of McDonald and Siegel (1986) also deals with risk for both the value V and the cost I. With the key

di¤erence of a distinct hierarchy for the discount and growth rates, the parameter values for the risk-adjusted processes of V and I

employed in Figure 6 are in the same range as those used by McDonald and Siegel (1986), see e.g. their Tables I and II at p. 720.
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maturity and perpetual American puts and calls with a negative interest rate, we study the conditions that

bring about a non-standard double continuation region (option exercise is optimally delayed if moneyness is

insu¢ cient and, in a non-standard fashion, if it is overly su¢ cient) and investigate the properties (existence,

monotonicity, continuity, limits and behavior close to maturity) enjoyed by the double free boundary that

separates the early-exercise region from the double continuation region.

Our study extends the standard optimal exercise properties for American options and covers the exact

necessary/su¢ cient conditions that empower optimal early exercise of an American call with a negative under-

lying payout rate. We also contribute to the extant literature on the optimal redeeming strategy of tradable

securities used as loan collateral as we characterize the double continuation region implicit in the gold loan, a

blooming form of collateralized borrowing. Real options that combine strong expected growth for the project

values with a marked escalation of the investment costs provide another distinct area of application for our

results.

Several promising avenues of further research emerge, with an interesting mix of economic and technical

challenges. They include studying the impact on non-standard optimal exercise policies of di¤usive stochastic

volatility, jump risk, and drift-parameter uncertainty. We plan to pursue them in future work.

7 Appendix

Proof of Proposition 2.1. See the proofs of Theorem 3.6 and of Corollary 3.7 in Jaillet et al. (1990) and

note that, for � < 0, the discount factor is positive and bounded by e��T .�

Proof of Proposition 2.2. See pages 20-21 of Battauz, De Donno and Sbuelz (2013). �

Proof of Theorem 2.3. The two branches l and u of the double free boundary are de�ned in (2:3) and (2:4) :

We start by proving inequality (2:12) : Under our assumptions, the function v1 and the constants l1 and u1

are well de�ned and the strict inequality l1 < u1 holds because of (2:7). The strict inequality l(t) < u(t) for

any t 2 [0;T ] in (2:12) follows from the chain l(t) � l1 < u1 � u(t).To show that l(t) � l1 and that u(t) � u1
for any t 2 [0;T ] it is su¢ cient to observe that fx : v1(x) > (K � x)+g � fx : v(t; x) > (K � x)+g ; for any
�xed t: Hence, taking the complement sets, we get fx : v1(x) = (K � x)+g � fx : v(t; x) = (K � x)+g : By
passing to the in�mum, this inclusion leads to l1 � l(t), and by passing at the supremum we get u1 � u(t):
Next, we prove that l(t) � �K

��� for any t 2 [0;T ) :We observe that any (t; x) in the exercise region ER satis�es

the inequality @
@tv+Lv� �v � 0 in (2:5) : Since v(t; x) = K�x; the inequality simpli�es to ��x� � (K � x) =

(�� �)x� �K � 0, that is x � �K
��� > 0 for any (t; x) 2 ER: By passing to the in�mum over x for any �xed t

in the previous inequality we get that l(t) � �K
��� :

We now prove the monotonicity properties of l and u: We �rst show that l is decreasing. Let t0 < t00: We

have (K � l (t0))+ � v (t00; l (t0)) � v(t0; l (t0)) = (K � l (t0))+ ; where the �rst inequality follows from v(t00; �) �
(K � �)+ ; the second one from the fact that v(�; l (t0)) is decreasing, and the last equality from the de�nition

of l (t0) : As a consequence v (t00; l (t0)) = (K � l (t0))+ ; and therefore l (t00) � l (t0) :
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To show that u is increasing, let t0 < t00:We exploit the monotonicity properties of v and we get (K � u (t0))+ =
v (t0; u (t0)) � v(t00; u (t0)) � (K � u (t0))+ : Therefore v(t00; u (t0)) = (K � u (t0))+ ; and, consequently, u (t00) �
u (t0) :

To prove that at maturity l (T ) = 0 and u (T ) = K, we observe that l(T ) = inf
�
x � 0 : v(T; x) = (K � x)+

	
=

inf fx � 0g = 0 and u(T ) = sup
�
x � 0 : v(T; x) = (K � x)+

	
^K = sup fx � 0g ^K = K:

We now show that u (T�) = K = u (T ) and l (T�) = �K
��� > 0 = l (T ). By construction u (t) � K for all

t 2 [0;T ] ; and hence u (T�) � K: Suppose by contradiction that u (T�) < K: The set (0;T )�(u (T�) ;K) � CR
and therefore (L � �) v = � @

@tv � 0. As t " T we have (L � �) v ! (L � �) (K � x) = (�� �)x� �K for x 2
(u (T�) ;K) : But then we have (�� �)x� �K � 0 for x 2 (u (T�) ;K) and therefore (�� �)u (T�)� �K � 0
=) u (T�) � �K

��� , delivering the contradiction. Suppose now (by contradiction) that l (T
�) > �K

��� : The set

(0;T ) � (0; l (T�)) � CR and hence (L � �) v = � @
@tv � 0 for x 2

�
�K
��� ; l (T

�)
�
� (0; l (T�)) : As t " T we

have (L � �) v ! (L � �) (K � x) = (�� �)x � �K for x 2
�
�K
��� ; l (T

�)
�
; where the limit is in the sense

of distributions. We hence have (�� �)x � �K � 0 for x 2
�
�K
��� ; l (T

�)
�
, that is (��+ �)x + �K � 0 for

x 2
�
�K
��� ; l (T

�)
�
; which delivers the contradiction because x � �K

��� implies (��+ �)x+�K � (��+ �) �K���+
�K = 0:

We �nally deal with the continuity of the l and u. The argument for u is the same as the one used by

Lamberton and Mikou (2008), so that we omit it. We show instead how to prove the continuity of l. Indeed, since

l is decreasing, we have, for any sequence tn # t 2 [0;T ] ; that limtn#t l(tn) � l(t): Because of the de�nition of l;
for any tn we have the equality v (tn; l(tn)) = (K� l(tn))+: By the continuity of v and of the put payo¤we pass
to the limit and we get v (t; limtn#t l(tn)) = (K � limtn#t l(tn))+: This equality implies that limtn#t l(tn) � l(t);
and right continuity is proved. To prove he left continuity we observe that if for some t 2 [0;T ) we have
l(t) = �K

��� ; then l(t) =
�K
��� for all t 2

�
t;T

�
; because l is decreasing and bounded from below by the constant

�K
��� : With a small abuse of notation we denote with

�
t;T

�
the (possibly empty) set in which l(t) = �K

��� . On�
t;T

�
the function l is constant and therefore continuous. Let t 2

�
0; t
�
and take a generic sequence tn " t: Since

l is monotonically decreasing, the limit l(t�) = limtn"t l(tn) exists and l(t
�) � l(t): Suppose by contradiction

that the inequality is strict, i.e. l(t�) > l(t). Then the open set (0; t) � (l(t); l(t�)) � CR and therefore (2:5)

implies @
@tv+Lv��v = 0; that is Lv��v = �

@
@tv � 0 on (0; t)� (l(t); l(t

�)) where the inequality holds because

v is decreasing with respect to t:

Conversely the open set (t;T )�(l(t); l(t�)) � ER and therefore (2:5) implies 0 � @
@tv+Lv��v = Lv��v =

(�� �)x� �K on (t;T )� (l(t); l(t�)) ; where the equalities follow from v(t; x) = K � x on ER.
Hence by continuity we get Lv� �v = (�� �)x� �K = 0 for any x 2 (l(t); l(t�)) ; that is satis�ed only for

l(t) = l(t�) = x = �K
��� ; delivering the contradiction.�

Proof of Theorem 2.4. To prove the asymptotic behavior of the upper free boundary, we exploit formula

(1.5) at page 221 in Evans et al. (2002) with interest rate r = � and dividend yield D = � � � < � = r < 0:
Hence we get u(t)�K � �K�

q
(T � t) ln �2

8�(T�t)�2 ; as t! T . To prove the asymptotic behavior of the lower

free boundary we exploit Remark 2 in Lamberton and Villeneuve (2003), that in our framework, applied at
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�y; and with # = T � t, and � := l (T�) e��y
p
#; implies v (T � #;�) = (K � �)+ + # 32 j�jK�� (y)+ o

�
#
3
2

�
for y > y�, since @

@x

�
��Ke��t + (�� �) e�

�
���+�2

2

�
t+�x

������
0; 1
�
ln �K

���

� = �K� < 0. Since � (y) > 0; it follows
that v (T � #;�) > (K � �)+ : Hence (T � #;�) =

�
T � #; l (T�) e��y

p
#
�
2 CR and for # small enough this

is equivalent to say that � = l (T�) e��y
p
# < l (T � #) : Passing to the log and rearranging the terms, we

get ln l (T�) � ln l (T � #) < �y
p
# and therefore lim sup

t!T

l(T�)�l(t)
l(T�)�

p
(T�t)

� y: Since the inequality holds for all

y > y�, we get lim sup
t!T

l(T�)�l(t)
l(T�)�

p
(T�t)

� y�: We now prove the opposite inequality for y � y�. If l (T � #) �

l (T�) e��y
p
# � l (T�)

�
1� y�

p
#
�
, for all y � y� and # = T � t! 0; the proof is complete. Hence, suppose

now that l (T � #) > � = l (T�) e��y
p
#: This means that (T � #;�) 2 CR: We exploit again Remark 2 in

Lamberton and Villeneuve (2003) applied to �y (instead of y) that implies

' (#) = v (T � #;�) = (K � �)+ + g (#) with g (#) = o
�
#
3
2

�
> 0;

where the positivity of g (#) follows from the fact that � 2 CR. Proposition 2.1 allows to �nd � 2 (�; l (T � #))
such that

v (T � #;�)� (K � �) = (l (T � #)� �)2

2

@2v

@x2
(T � #; �) : (7.1)

Indeed, since v admits continuous �rst order derivative w.r.t. x and there exists @2v
@x2

(T � #;x) for all x 2
(�; l (T � #)) ; we can apply a Taylor expansion with the Lagrange remainder for x = � and bx0 = l (T � #)
to conclude that v (T � #;x) = v (T � #; bx0)+ @

@xv (T � #; bx0) (x� bx0)+ 1
2
@2v
@x2

(T � #; �) (x� bx0)2 for some
� 2 (x; bx0) = (�; l (T � #)) : Since v (T � #; bx0) = v (T � #; l (T � #)) = K � l (T � #) ; and @

@xv (T � #; bx0) =
@
@xv (T � #; l (T � #)) = �1; the Taylor expansion delivers (7:1) :
As � 2 (�; l (T � #)) ; we have that (T � #; �) 2 CR and therefore � @

@#v+Lv��v = 0 for (t; x) = (T � #; �) :
From this PDE at (t; x) = (T � #; �) we derive that

1

2
�2�2

@2v

@x2
(T � #; �) = @

@#
v (T � #; �)� �� @

@x
v (T � #; �) + �v (T � #; �)

> �� + �v (T � #;�)

because v is increasing w.r.t. #; @
@xv (T � #; �) � �1, � > �; and v (T � #; �) < v (T � #;�) : The quantity

��+�v (T � #;�) is positive, since ��+�v (T � #;�) = ��+� ((K � �) + g (#)) = �K
�
1� e��y

p
#
�
+�g (#) �

�K�y
p
#+ o

�
�y
p
#
�
> 0: Therefore we can write

(l (T � #)� �)2 = (v (T � #;�)� (K � �))
1
2
@2v
@x2

(T � #; �)

<
g (#)

��+�v(T�#;�)
�2�2

=
�2�2g (#)

��+ � ((K � �) + g (#)) < C
g (#)

��+ � ((K � �) + g (#))
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where C > 0. Hence

(l (T � #)� �)2 < C g (#)

�K
�
1� e��y

p
#
�
+ �g (#)

� C
o
�
#
3
2

�
�K�y

p
#+ o

�
�y
p
#
� = C 0 o

�
#
3
2

�
��y

p
#+ o

�
�y
p
#
� = C 0o ��2y2#�

where C 0 > 0: This implies that l (T � #)� � = l (T � #)� l (T�) e��y
p
# < o

�
��y

p
#
�
as #! 0 i.e.

l (T � #) � l
�
T�
� �
1� �y

p
#
�
+ o

�
��y

p
#
�
as #! 0

for y � y�. In other words

l
�
T�
�
� l (t) � l

�
T�
�
�
�
l
�
T�
� �
1� y�

p
(T � t)

��
= l

�
T�
�
y�
p
(T � t);

for all y � y�, and hence l (T�)� l (t) � l (T�) y��
p
(T � t): Therefore we get

lim inf
t!T

l (T�)� l (t)
l (T�)�

p
(T � t)

� y�

and thus our proof is complete.�

Proof of Proposition 2.5. If the European put option ve dominates the immediate payo¤ at t for all values

of the underlying x; then there is no optimal exercise for the American option at t: The distance between the

European put option and the immediate payo¤ at (t; x) is f (t; x) = ve (t; x)� (K � x)+ ; where

ve (t; x) = Ke
��(T�t)N (z)� xe(���)(T�t)N

�
z � �

p
(T � t)

�
; (7.2)

with N (y) denoting the distribution function of a standard normal random variable, and

z =
�
ln Kx �

�
�� �2

2

�
(T � t)

�
1

�
p
T�t : For any t 2 [0;T ] ; the function f (t; �) is convex, reaching its min-

imum at 0 < xm < K such that @
@xf (t; xm) = 0: Hence f (t; xm) > 0 is equivalent to the fact that the

European option ve (t; x) dominates at t the immediate payo¤ for any x > 0. Therefore xm is the solu-

tion of the equation @
@xf (t; x) = 0 or @

@xve (t; x) = �1: We compute @
@xve (t; x) = Ke��(T�t)fN (z)

@z
@x �

e(���)(T�t)N
�
z � �

p
(T � t)

�
�xe(���)(T�t)fN

�
z � �

p
(T � t)

�
@z
@x ; where fN denotes the density of a stan-

dard normal random variable and @z
@x = �

1
x�
p
T�t : Hence

@

@x
ve (t; x) =

e��(T�t)

�
p
T � t

0BBB@�Kx fN (z) + e�(T�t)fN �z � �p(T � t)�| {z }
K
x
fN (z)

1CCCA� e(���)(T�t)N �
z � �

p
(T � t)

�
;

delivering @
@xve (t; x) = �e(���)(T�t)N

�
z � �

p
(T � t)

�
: Therefore xm is de�ned via the following equation

N
�
zm � �

p
T � t

�
= e�(���)(T�t), where zm =

�
ln K

xm
�
�
�� �2

2

�
(T � t)

�
1

�
p
T�t : Finally

ve (t; xm) = Ke
��(T�t)N (zm)� xme(���)(T�t)e�(���)(T�t) = Ke��(T�t)N (zm)� xm
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and hence f (t; xm) = ve (t; xm) � (K � xm) = e��(T�t)KN (zm) � K > 0 if and only if e��(T�t)N (zm) �
1 > 0: Therefore the necessary condition for possible optimal exercise at t is e��(T�t)N (zm) � 1 � 0; i.e.

zm � N�1 �e�(T�t)� : Since zm is de�ned via N
�
zm � �

p
T � t

�
= e�(���)(T�t), we get zm = �

p
T � t +

N�1 �e�(���)(T�t)� ; that delivers (2:13):�
Proof of Proposition 3.1. For the proofs of Points 1 and 2 we refer to Theorem 6, page 76 in Detemple

(2001), extending it to the case of a negative interest rate � as well as a negative �dividend yield�� = ��� < 0
for the call�s underlying asset. Denote with �put = ��� and �put = ��. Conditions (3:2) and (3:3) for �; � are
equivalent to conditions (2:6) and (2:7) in Proposition 2:2 and in Theorem 2:3 for �put = �� � and �put = ��:

To prove formulae (3:5) in Point 3 we use formula (5) in Section III of Carr and Chesney (1996), that

implies

vcall (t; x;K; �; �; �) =
p
xK

vput

�
t; bxput; bKput; �� �; ��; ��qbxput bKput : (7.3)

for x
K =

bKputbxput :We �rst show that Formula (3:4) implies Formula (7:3). In fact, take a � > 0 such that bKput = x
� ;

is an unconstrained strike for the put option, and let bxput = xput
� = K

� : The put option with parameters bxput; bKput
(and �put; �put; �put as before) has the same moneyness of the call option, because

bKputbxput = x
K : By formula

(3:4) vcall (t; x;K; �; �; �) = vput (t;K;x; �� �; ��; �) = � � vput
�
t; bxput; bKput; �put; �put; �put� ; where the

last equality follows from the homogeneity property of the put option. Writing � =
p
� � � =

q
xbKput
� Kbxput ; we

arrive at (7:3). We then apply (7:3) to derive the expression of u (t) as in formula (3:5) : Since (2:6) and (2:7)

in Proposition 2:2 and in Theorem 2:3 are satis�ed, there exist two critical prices at time t 2 (0;T ) for the
American put option vput

�
t; bxput; bKput; �put; �put; �put� : Let bKput = 1 and denote with 0 < lput(t) < uput(t)

the lower and upper free boundary of the American put option vput (t; bxput; 1; �put; �put; �put) : The parame-
ters x;K ; and bxput are constrained by the equality x

K = 1bxput : Formula (7:3) implies that vcall (t; x;K; �; �; �) =p
xK

vput(t;bxput;1; ���; ��; �)p
1�bxput : Then u(t) for the call can be written as u(t) = sup

�
x � 0 : vcall(t; x) = (x�K)+

	
=

sup

�
Kbxput � 0 : pxK vput(t;bxput;1; ���; ��; �)pbxput =

�
Kbxput �K

�+�
=K�

�
inf
nbxput � 0 : Kbxput vput (t; bxput; 1; �� �; ��; �)

= Kbxput (1� bxput)+o��1 =K� (inf fbxput � 0 : vput (t; bxput; 1; �� �; ��; �) = (1� bxput)+	��1 =K� (lput (t))�1 ;
which gives u (t) in formula (3:5) : The expression for l (t) follows by similar arguments.�

Proof of Proposition 3.2, Theorem 3.3 and Theorem 3.4. By Point 1 of Proposition 3.1, �put = �� �
and �put = �� satisfy conditions (2:6) and (2:7) in Proposition 2:2. Therefore, for the symmetric perpetual put
option with Kput = 1, there exist two constant free boundaries 0 < l

put
1 < uput1 ; that lead to u1 > l1 for the

call option via equations (3:5) : This proves Proposition 3.2. Theorem 3.3 derives from Theorem 2.3 by applying

Proposition 3.1. The asymptotic expressions of u and l at maturity in Theorem 3.4 derive from formulae (3:5)

applied to the asymptotic expression found in Theorem 2:4 for the symmetric put with parameters as de�ned

in Proposition 3.1. A Taylor approximation of the �rst order delivers the �nal expression.�
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