

The geometry of the double continuation region

Anna Battauz

Joint with
Marzia De Donno and Alessandro Sbuelz
(1) The continuation region: single or double?

- The usual situation
- The American put
- The American call
(2) The problem is relevant
- A capital investment option
- The gold loan
(3) American options with a negative 'interest rate'
- The American perpetual put
- The American put with finite maturity
(4) Conclusions and extensions

The American put option

- Log-normal asset $X(t)=X(0) e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B(t)}$, with $\mu, \sigma>0, B$ standard Brownian motion
- strike K, interest rate ρ
- The American option value is

$$
\text { ess } \sup _{t \leq \tau \leq T} \mathbb{E}\left[e^{-\rho(\tau-t)}(K-X(\tau))^{+} \mid \mathcal{F}_{t}\right]=v(t, X(t))
$$

where v is

$$
v(t, x)=\sup _{0 \leq \Theta \leq T-t} \mathbb{E}\left[e^{-\rho \Theta}\left(K-x \cdot e^{\left(\mu-\frac{\sigma^{2}}{2}\right) \Theta+\sigma B(\Theta)}\right)^{+}\right]
$$

- When $T=+\infty$ then $v(t, x)=v_{\infty}(x)$

A point makes the difference

If $x=0$ then $X(t)=0$ for any $t \in[0 ; T]$. But then

- if $\rho \geq 0$,

$$
\begin{aligned}
v(t, 0) & =\sup _{0 \leq \Theta \leq T-t} \mathbb{E}\left[e^{-\rho \Theta}(K-0)^{+}\right]= \\
& =\sup _{0 \leq \Theta \leq T-t} e^{-\rho \Theta} \cdot K=e^{-\rho \cdot 0} \cdot K=K
\end{aligned}
$$

A point makes the difference

If $x=0$ then $X(t)=0$ for any $t \in[0 ; T]$. But then

- if $\rho \geq 0$,

$$
\begin{aligned}
v(t, 0) & =\sup _{0 \leq \Theta \leq T-t} \mathbb{E}\left[e^{-\rho \Theta}(K-0)^{+}\right]= \\
& =\sup _{0 \leq \Theta \leq T-t} e^{-\rho \Theta} \cdot K=e^{-\rho \cdot 0} \cdot K=K
\end{aligned}
$$

- if $\rho<0$,

$$
\begin{aligned}
v(t, 0) & =\sup _{0 \leq \Theta \leq T-t} \mathbb{E}\left[e^{-\rho \Theta}(K-0)^{+}\right]= \\
& =\sup _{0 \leq \Theta \leq T-t} e^{-\rho \Theta} \cdot K=e^{-\rho \cdot(T-t)} \cdot K>K .
\end{aligned}
$$

The put option: interplay with the interest rate's sign

The value of the American put $v(t, \cdot)$ (black) and put payoff (red)

The put option: interplay with the interest rate's sign

$$
\rho \geq 0
$$

$$
\rho<0
$$

The value of the American put $v(t, \cdot)$ (black) and put payoff (red)

The put option: interplay with the interest rate's sign

$$
\rho \geq 0
$$

$$
\rho<0
$$

The value of the American put $v(t, \cdot)$ (black) and put payoff (red)

The put option: negative interest rate

There exist two critical prices

- $u(t)=\sup \left\{x \geq 0: v(t, x)=(K-x)^{+}\right\} \wedge K$
and
- $I(t)=\inf \left\{x \geq 0: v(t, x)=(K-x)^{+}\right\}$(the new one!)
such that
- exercise at t if $X(t) \in[I(t) ; u(t)]$
- continue at t if $\underbrace{X(t)<I(t)}$ or $X(t)>u(t)$
\uparrow
(new) branch of the continuation region

A double continuation region appears: Preview

$$
\rho=-4 \%, K=1.2, \sigma=20 \%, \mu=8 \%, T=1 .
$$

The continuation region: single or double?

American put-call symmetry

- (Carr and Chesney, 1996):

$$
v_{c a l l}(t, x ; K, \rho, \mu, \sigma)=v_{p u t}(t, \underbrace{K}_{x_{p u t}} ; \underbrace{x}_{K_{\text {put }}}, \underbrace{\rho-\mu}_{\rho_{\text {put }}}, \underbrace{-\mu}_{\mu_{\text {put }}}, \underbrace{\sigma}_{\sigma_{\text {put }}})
$$

American put-call symmetry

- (Carr and Chesney, 1996):

$$
v_{\text {call }}(t, x ; K, \rho, \mu, \sigma)=v_{\text {put }}(t, \underbrace{K}_{x_{\text {put }}} ; \underbrace{x}_{K_{\text {put }}}, \underbrace{\rho-\mu}_{\rho_{\text {put }}}, \underbrace{-\mu}_{\mu_{\text {put }}}, \underbrace{\sigma}_{\sigma_{\text {put }}})
$$

- $I_{\text {put }}(t)$ (resp. $\left.u_{\text {put }}(t)\right)$ lower (upper) critical price at t for put $v_{\text {put }}$ with $K_{\text {put }}=1$

$$
I_{\text {call }}(t)=\frac{K}{u_{\text {put }}(t)} \text { and } \overbrace{u_{\text {call }}(t)}^{\text {new! }}=\frac{K}{l_{\text {put }}(t)}
$$

The continuation region: single or double?

Translating the results for the call option

$$
\rho=-12 \%, K=0.5, \sigma=20 \%, \mu=-8 \%, T=1 .
$$

A capital investment option I

A firm decides when to enter a project, whose present value V is

$$
\mathrm{d} V_{t}=V_{t}\left(\widehat{\mu}_{V} \mathrm{~d} t+\sigma_{V} \mathrm{~d} W_{t}^{\mathrm{p}},+\widetilde{\sigma}_{V} \mathrm{~d} \widetilde{W}_{t}^{\mathrm{p}}\right),
$$

at the cost I with

$$
\mathrm{d} l_{t}=I_{t}\left(\widehat{\mu}_{l} \mathrm{~d} t+\sigma_{l} \mathrm{~d} W_{t}^{\mathrm{p}}\right)
$$

$\widehat{\mu}_{V}, \sigma_{V}, \tilde{\sigma}_{V}, \widehat{\mu}_{l}$ and σ_{l}, are real positive constants $\widetilde{W}_{t}^{\mathbf{P}}, W_{t}^{\mathbf{P}}$ are independent Brownian motions on $\left(\Omega, \widehat{\mathbf{P}},\left(\mathcal{F}_{t}\right)_{t}\right)$.

The firm selects the valuation measure \mathbf{P} and the discount rate \widehat{r}.

A capital investment option II

The value of the option to invest at date t is

$$
\begin{equation*}
\text { ess } \sup _{t \leq \tau \leq T} \mathbb{E}^{\mathbb{P}}\left[e^{-\widehat{r}(\tau-t)}\left(V_{\tau}-I_{\tau}\right)^{+} \mid \mathcal{F}_{t}\right] \tag{1}
\end{equation*}
$$

Solving the capital investment option

Let \mathbf{P}^{V} the probability associated to the numeraire $V_{T} e^{\rho T}$ with

$$
\rho=-\left(\widehat{\mu}_{V}-\widehat{r}\right) .
$$

The investment option value is

$$
\text { ess } \sup _{t \leq \tau \leq T} \mathbb{E}^{\mathcal{P}}\left[e^{-\widehat{r}(\tau-t)}\left(V_{\tau}-I_{\tau}\right)^{+} \mid \mathcal{F}_{t}\right]=V_{t} \cdot v\left(t, X_{t}\right)
$$

where

$$
v\left(t, X_{t}\right)=\mathrm{ess} \sup _{t \leq \tau \leq T} \mathbb{E}^{\mathbf{P}^{\vee}}\left[e^{-\rho(\tau-t)}\left(1-X_{\tau}\right)^{+} \mid \mathcal{F}_{t}\right]
$$

is the value under \mathbf{P}^{V} of an American put option on the cost-to-value ratio

$$
X_{t}=\frac{I_{t}}{V_{t}}
$$

with 'interest rate' $\rho=-\left(\widehat{\mu}_{V}-\widehat{r}\right)$.

Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$
\begin{aligned}
\mathbf{P}^{V}-\text { volatility } & \sigma^{2} & =\left(\sigma_{I}-\sigma_{V}\right)^{2}+\widetilde{\sigma}_{V}^{2} \\
\mathbf{P}^{V}-\text { drift } & \mu & =\widehat{\mu}_{I}-\widehat{\mu}_{V}
\end{aligned}
$$

- Focus on very profitable investments $\widehat{\mu}_{V}>\hat{r}$ $\longrightarrow \rho=-\left(\widehat{\mu}_{V}-\widehat{r}\right)<0$ negative interest rate

Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$
\begin{aligned}
\mathbf{P}^{V}-\text { volatility } & \sigma^{2} & =\left(\sigma_{I}-\sigma_{V}\right)^{2}+\widetilde{\sigma}_{V}^{2} \\
\mathbf{P}^{V}-\text { drift } & \mu & =\widehat{\mu}_{I}-\widehat{\mu}_{V} .
\end{aligned}
$$

- Focus on very profitable investments $\widehat{\mu}_{V}>\widehat{r}$ $\longrightarrow \rho=-\left(\widehat{\mu}_{V}-\widehat{r}\right)<0$ negative interest rate
- If $\mu=\widehat{\mu}_{I}-\widehat{\mu}_{V} \leq 0 \xrightarrow{\text { Jensen's inequality }}$ invest at T only

Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$
\begin{aligned}
\mathbf{P}^{V}-\text { volatility } & \sigma^{2} & =\left(\sigma_{I}-\sigma_{V}\right)^{2}+\widetilde{\sigma}_{V}^{2} \\
\mathbf{P}^{V}-\mathrm{drift} & \mu & =\widehat{\mu}_{I}-\widehat{\mu}_{V} .
\end{aligned}
$$

- Focus on very profitable investments $\widehat{\mu}_{V}>\widehat{r}$ $\longrightarrow \rho=-\left(\widehat{\mu}_{V}-\widehat{r}\right)<0$ negative interest rate
- If $\mu=\widehat{\mu}_{l}-\widehat{\mu}_{V} \leq 0 \xrightarrow{\text { Jensen's inequality }}$ invest at T only
- If $\mu=\widehat{\mu}_{l}-\widehat{\mu}_{V}>0 \xrightarrow{\text { our result }}$ double continuation region

Preview of the results near maturity

$$
\widehat{r}=3 \%, \widehat{\mu}_{V}=5 \%, \sigma_{V}=7 \%, \widetilde{\sigma}_{V}=3 \%, \widehat{\mu}_{l}=6 \%, \sigma_{I}=10 \%
$$

The gold loan

- The borrower receives at time 0 the loan amount $q>0$ using one unit of gold as collateral.
- The loan amount q grows at the rate γ, where $\gamma>r$ is the borrowing rate
- Prepayment option: The borrower has the right to redeem the gold at any $t \leq T$
- Gold is a tradable investment asset with storage and insurance costs $G u>0$ per unit of time:

$$
\frac{d G(t)}{G(t)}=(r+u) d t+\sigma d W(t)
$$

where r is the riskless interest rate, σ is the gold returns' volatility, and W is a B.M. under the risk-neutral \mathbf{Q}.
\rightsquigarrow Differences with stock loans (Ekström and Wanntorp (2008)) $)_{\bar{\equiv}}$

The redemption option of the gold loan I

- Given a finite maturity T, the value of the redemption option at $t=0$ is

$$
C\left(G_{0}, 0\right)=\sup _{0 \leq \tau \leq T} \mathbb{E}^{\mathbf{Q}}\left[e^{-r \tau}\left(G(\tau)-q e^{\gamma \tau}\right)^{+}\right]
$$

The redemption option of the gold loan I

- Given a finite maturity T, the value of the redemption option at $t=0$ is

$$
C\left(G_{0}, 0\right)=\sup _{0 \leq \tau \leq T} \mathbb{E}^{\mathbf{Q}}\left[e^{-r \tau}\left(G(\tau)-q e^{\gamma \tau}\right)^{+}\right]
$$

- C can be rewritten as

$$
C\left(G_{0}, 0\right)=\sup _{0 \leq \tau \leq T} \mathbb{E}^{\mathbf{Q}}\left[e^{-(r-\gamma) \tau}(X(\tau)-q)^{+}\right]
$$

that is a call option on $X(t)=G(t) e^{-\gamma t}$ (the gold price deflated at the rate γ) and 'interest rate'

$$
\rho=r-\gamma<0
$$

The redemption option of the gold loan II

The deflated gold price $X(t)=G(t) e^{-\gamma t}$ is lognormal with Q-drift

$$
\mu=r+u-\gamma
$$

- if $\mu=r+u-\gamma>0 \xrightarrow{\text { Jensen's inequality }}$ redemption at T only

The redemption option of the gold loan II

The deflated gold price $X(t)=G(t) e^{-\gamma t}$ is lognormal with Q-drift

$$
\mu=r+u-\gamma
$$

- if $\mu=r+u-\gamma>0 \xrightarrow{\text { Jensen's inequality }}$ redemption at T only
- if $\mu=r+u-\gamma<0 \xrightarrow{\text { our result }}$ double no-redemption region

Preview of the results near maturity

$$
T=1, r=3 \%, u=1 \%, \gamma=6 \%, \sigma=10 \%, \text { and } q=1 .
$$

The perpetual put with negative interest rates

Theorem Battauz, De Donno, Sbuelz [BDS] (2012, Quantitative Finance): If $\rho<0$, under condition

$$
\begin{equation*}
\mu-\frac{\sigma^{2}}{2}>0 \text { and }\left(\mu-\frac{\sigma^{2}}{2}\right)^{2}+2 \rho \sigma^{2}>0 \tag{A1}
\end{equation*}
$$

the perpetual lower and upper free boundary are (resp.)

$$
I_{\infty}=K \frac{\xi_{1}}{\xi_{1}-1} \quad \text { and } u_{\infty}=K \frac{\xi_{u}}{\xi_{u}-1}
$$

where $\xi_{u}<\xi_{l}<0$ solve

$$
\frac{1}{2} \sigma^{2} \xi^{2}+\left(\mu-\frac{\sigma^{2}}{2}\right) \xi-\rho=0
$$

The perpetual put with negative interest rates (continued)

The value of the perpetual American put option is

$$
v_{\infty}(x)=\left\{\begin{array}{cc}
A_{l} \cdot x^{\xi_{l}} & \text { for } x \in\left(0 ; l_{\infty}\right) \\
K-x & \text { for } x \in\left[l_{\infty} ; u_{\infty}\right] \\
A_{u} \cdot x^{\xi_{u}} & \text { for } x \in\left(u_{\infty} ;+\infty\right)
\end{array}\right.
$$

Proof:

Boundedness requirement violated: when $\rho<0$ and $x=0$ the optimal time to exercise is $\Theta^{*}=+\infty$, and the value of the American option is

$$
v_{\infty}(0)=\mathbb{E}\left[e^{-\rho \Theta^{*}}(K-0)^{+}\right]=+\infty .
$$

Hence direct verification, i.e.

$$
\begin{aligned}
& \text { (a) } \quad v_{\infty}(x)=\mathbb{E}\left[e^{-\rho \tau^{*}}\left(K-X_{\tau^{*}}\right)^{+}\right], \\
& \text {(b) } \quad v_{\infty}(x) \geq \mathbb{E}\left[e^{-\rho \tau}\left(K-X_{\tau}\right)^{+}\right],
\end{aligned}
$$

for any stopping time τ and for τ^{*} s.t.

$$
\tau^{*}=\inf \left\{t \geq 0: I_{\infty} \leq X_{t} \leq u_{\infty}\right\}
$$

The double continuation region appears when...

For $\rho<0$, Condition (A.1)

$$
\mu-\frac{\sigma^{2}}{2}>0, \text { and }\left(\mu-\frac{\sigma^{2}}{2}\right)^{2}+2 \rho \sigma^{2}>0
$$

is a sufficient condition for early exercise.
A necessary condition for the optimal exercise of the finite-maturity American put option at $t \in[0 ; T)$ is

$$
\begin{equation*}
\mathcal{N}^{-1}\left(e^{\rho(T-t)}\right)-\mathcal{N}^{-1}\left(e^{(\rho-\mu)(T-t)}\right) \geq \sigma \sqrt{T-t} \tag{2}
\end{equation*}
$$

where $\mathcal{N}^{-1}(\cdot)$ denotes the inverse of the standard normal cumulative distribution function.

The double continuation region appears when...

(A.1) and (2) require μ high compared to $|\rho|$.
(2) $\Leftrightarrow \exists x>0$ s.t. European put $v_{e}(t, x) \leq(K-x)^{+}$

$v_{e}(t, x)$ (solid) : $\rho=-1 \%, \mu=3 \%, \sigma=20 \%$ (dashed) : $\rho=-4 \%, \mu=3 \%, \sigma=40 \%$
$v_{e}(t, x)$ (dashed) : $\rho=1 \%, \mu=3 \%, \sigma=20 \%$

The (double) free-boundary geometry for finite maturity

Theorem [BDS, forthcoming in Management Science]: Under A1, for any $t \in[0 ; T)$ there exist

$$
\begin{equation*}
0<\frac{\rho K}{\rho-\mu} \leq I(t)<u(t) \leq K \tag{3}
\end{equation*}
$$

such that $(K-x)^{+}=v(t, x)$ for any $x \in[I(t) ; u(t)]$ and $(K-x)^{+}<v(t, x)$ for any $x \notin[I(t) ; u(t)]$.
The lower free boundary $I:[0 ; T] \rightarrow\left[0 ; I_{\infty}\right)$ is decreasing, continuous for any $t \in[0 ; T), I\left(T^{-}\right)=\frac{\rho K}{\rho-\mu}>I(T)=0$. The upper free boundary $u:[0 ; T] \rightarrow\left(u_{\infty} ; K\right]$ is increasing, continuous for any $t \in[0 ; T]$, and $u(T)=u\left(T^{-}\right)=K$.

Proof: main steps I

1) Monotonicity: $v(t, x) \leq v\left(t^{\prime}, x\right)$ for any $t^{\prime}>t \Rightarrow$
$\Rightarrow u(t)$ is increasing, $I(t)$ is decreasing

Proof: main steps II

2) Right continuity of I on $[0 ; T)$ follows from monotonicity of I, and continuity of v and $(K-\cdot)^{+}$.
3) Left continuity of I on $[0 ; T)$ follows from the V.I.:

$$
\left\{\begin{array}{c}
v(T, \cdot)=(K-\cdot)^{+} \\
v(t, \cdot) \geq(K-\cdot)^{+} \text {for any } t \in[0 ; T] \\
\frac{\partial}{\partial t} v+\mathcal{L} v-\rho v \leq 0 \text { on }(0 ; T) \times \Re^{+} \\
\frac{\partial}{\partial t} v+\mathcal{L} v-\rho v=0 \text { on } \mathcal{C} \mathcal{R}
\end{array}\right.
$$

where $(\mathcal{L} v)(t, x)=\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2}}{\partial x^{2}} v(t, x)+\mu x \frac{\partial}{\partial x} v(t, x)$
and $\mathcal{C R}=\left\{(t, x) \in(0 ; T) \times \Re^{+}: v(t, x)>(K-x)^{+}\right\}$.
4) $I\left(T^{-}\right)=\frac{\rho K}{\rho-\mu}$ follows from V.I.

Asymptotic behavior of the free boundaries at maturity

Theorem [BDS, forthcoming in Management Science]: Under A1, for $t \rightarrow T$ the upper free boundary

$$
u(t)-K \sim-K \sigma \sqrt{(T-t) \ln \frac{\sigma^{2}}{8 \pi(T-t) \mu^{2}}}
$$

For $t \rightarrow T$, the lower free boundary satisfies

$$
I(t)-\frac{\rho K}{\rho-\mu} \sim \frac{\rho K}{\rho-\mu}\left(-y^{*} \sigma \sqrt{(T-t)}\right)
$$

where $y^{*} \approx-0.638$ s.t. $\phi(y)=\sup _{0 \leq \Theta \leq 1} E\left[\int_{0}^{\Theta}(y+B(s)) d s\right]=0$
$\forall y \leq y^{*}$ and $\phi(y)>0 \forall y>y^{*}$.

Proof: main steps

- Evans, Kuske and Keller (2002): if $\rho \geq 0, \rho \geq \delta$ the critical price of the put tends to its left limit in a parabolic-logarithmic form as $t \rightarrow T \Rightarrow$ if $\rho<0$ asymptotics of our upper free boundary u
- Lamberton and Villenevue (2003): if $\rho \geq 0, \rho<\delta$ the critical price of the put tends to its left limit in a parabolic form as $t \rightarrow T$. The results relies on $\rho \geq 0$. We use an expansion result (Theorem 1 in LV2003) \Rightarrow if $\rho<0$ asymptotics of our lower free boundary I

A picture of the double free boundary for the put

$$
\rho=-4 \%, K=1.2, \sigma=20 \%, \mu=8 \%, T=1 .
$$

Conclusions: what is done

- Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates

Conclusions: what is done

- Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates
- Worked out closed formulae in the perpetual case with lognormal underlying

Conclusions: what is done

- Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates
- Worked out closed formulae in the perpetual case with lognormal underlying
- Described main features of the geometry of the free boundary in the finite maturity case (limits, continuity, asymptotics).

Extensions/open problems I:

- Convexity of upper free boundary u and concavity of lower free boundary I ?

Extensions/open problems I:

- Convexity of upper free boundary u and concavity of lower free boundary I ?
- Theorem 2.1 in Ekström (JMAA, 2004):

For $\rho, \sigma>0, \mu=\rho \Rightarrow$
$u(t) \ddot{u}(t) \geq(\dot{u}(t))^{2}>0$ for all $t<T$

Extensions/open problems I:

- Convexity of upper free boundary u and concavity of lower free boundary I ?
- Theorem 2.1 in Ekström (JMAA, 2004):

For $\rho, \sigma>0, \mu=\rho \Rightarrow$
$u(t) \ddot{u}(t) \geq(\dot{u}(t))^{2}>0$ for all $t<T$

- Still under investigation for $\rho<0$, under condition (A.1)

$$
\mu-\frac{\sigma^{2}}{2}>0, \text { and }\left(\mu-\frac{\sigma^{2}}{2}\right)^{2}+2 \rho \sigma^{2}>0
$$

Extensions/open problems II: jump diffusion case

Extending formulae for I_{∞} and u_{∞} :

- The way we proved $v_{\infty}(x) \geq \mathbb{E}\left[e^{-\rho \tau}\left(K-X_{\tau}\right)^{+}\right]$for any stopping time τ is feasible
- Direct computation to prove
$v_{\infty}(x)=\mathbb{E}\left[e^{-\rho \tau^{*}}\left(K-X_{\tau^{*}}\right)^{+}\right]=\mathbb{E}\left[e^{-\rho \tau^{*}} v_{\infty}\left(X_{\tau^{*}}\right)\right]$ is unfeasible.
- If $x<I_{\infty}$, then $\tau^{*}=\inf \left\{t \geq 0: X_{t}=I_{\infty}\right\}$ and $v_{\infty}(x)=\mathbb{E}\left[e^{-\rho \tau^{*}}\right]\left(K-l_{\infty}\right)^{+}$but usual techniques to compute $\mathbb{E}\left[e^{-\rho \tau^{*}}\right]$ require $-\rho \leq 0$.
- Alternative: prove $\mathbb{E}\left[M_{\tau^{*}}\right]=0$, where M is the martingale part of the decomposition of $e^{-\rho t} v_{\infty}\left(X_{t}\right)$.
But the Optional Sampling Theorem is an unfeasible tool (M and τ^{*} not unif. bdd).

Thanks for your attention!

Slides downloadable at my personal page at Bocconi
http://didattica.unibocconi.eu/docenti/
cv.php?rif $=49395 \& \operatorname{cognome}=$ BATTAUZ\&nome=ANNA

