

# The geometry of the double continuation region

# Anna Battauz

Joint with

Marzia De Donno and Alessandro Sbuelz

The American put The American call

#### 1 The continuation region: single or double?

- The usual situation
- The American put
- The American call

#### 2 The problem is relevant

- A capital investment option
- The gold loan

#### 3 American options with a negative 'interest rate'

- The American perpetual put
- The American put with finite maturity



The American put The American call

#### The American put option

- Log-normal asset  $X(t) = X(0) e^{\left(\mu \frac{\sigma^2}{2}\right)t + \sigma B(t)}$ , with  $\mu, \sigma > 0, B$  standard Brownian motion
- strike K, interest rate  $\rho$
- The American option value is

$$\operatorname{ess\,sup}_{t \leq \tau \leq T} \mathbb{E}\left[\left. e^{-\rho(\tau-t)} \left( K - X(\tau) \right)^+ \right| \mathcal{F}_t \right] = v(t, X(t))$$

where v is

$$v(t,x) = \sup_{0 \le \Theta \le T-t} \mathbb{E}\left[e^{-\rho\Theta}\left(K - x \cdot e^{\left(\mu - \frac{\sigma^2}{2}\right)\Theta + \sigma B(\Theta)}\right)^+\right]$$

• When  $T = +\infty$  then  $v(t, x) = v_{\infty}(x)$ 

The American put The American call

#### A point makes the difference

If x = 0 then X(t) = 0 for any  $t \in [0; T]$ . But then

• if  $ho \geq$  0,

$$\nu(t,0) = \sup_{0 \le \Theta \le T-t} \mathbb{E} \left[ e^{-\rho \Theta} \left( K - 0 \right)^+ \right] =$$
  
= 
$$\sup_{0 \le \Theta \le T-t} e^{-\rho \Theta} \cdot K = e^{-\rho \cdot 0} \cdot K = K,$$

・ 同 ト ・ ヨ ト ・ ヨ

The American put The American call

#### A point makes the difference

If x = 0 then X(t) = 0 for any  $t \in [0; T]$ . But then • if  $\rho \ge 0$ ,

$$\begin{aligned} \mathbf{v}(t,0) &= \sup_{0 \leq \Theta \leq T-t} \mathbb{E} \left[ e^{-\rho \Theta} \left( K - 0 \right)^+ \right] = \\ &= \sup_{0 \leq \Theta \leq T-t} e^{-\rho \Theta} \cdot K = e^{-\rho \cdot 0} \cdot K = K, \end{aligned}$$

• if ho < 0,

$$\begin{aligned}
\nu(t,0) &= \sup_{0 \le \Theta \le T-t} \mathbb{E}\left[e^{-\rho\Theta} \left(K-0\right)^{+}\right] = \\
&= \sup_{0 \le \Theta \le T-t} e^{-\rho\Theta} \cdot K = e^{-\rho \cdot (T-t)} \cdot K > K
\end{aligned}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The American put The American call

### The put option: interplay with the interest rate's sign



The value of the American put  $v(t, \cdot)$  (black) and put payoff (red)  $\neg \neg$ 

The American put The American call

#### The put option: interplay with the interest rate's sign



The value of the American put  $v(t, \cdot)$  (black) and put payoff (red) so

Anna Battauz

The geometry of the double continuation region

The American put The American call

#### The put option: interplay with the interest rate's sign



The value of the American put  $v(t, \cdot)$  (black) and put payoff (red) and

Anna Battauz

The geometry of the double continuation region

The American put The American call

#### The put option: negative interest rate

There exist two critical prices

• 
$$u(t) = \sup\{x \ge 0 : v(t, x) = (K - x)^+\} \land K$$

and

• 
$$I(t) = inf\{x \ge 0 : v(t, x) = (K - x)^+\}$$
 (the new one!)

such that

• exercise at t if 
$$X(t) \in [I(t); u(t)]$$
  
• continue at t if  $X(t) < I(t)$  or  $X(t) > u(t)$   
(new) branch of the continuation region

4 3 b

The American put The American call

#### A double continuation region appears: Preview

$$ho = -4\%$$
,  $K = 1.2$ ,  $\sigma = 20\%$ ,  $\mu = 8\%$ ,  $T = 1$ .



Anna Battauz The geometry of the double continuation region

The American put The American call

# American put-call symmetry

• (Carr and Chesney, 1996):

$$\mathbf{v}_{\textit{call}}\left(t,\mathbf{x};\mathbf{K},\boldsymbol{\rho},\boldsymbol{\mu},\boldsymbol{\sigma}\right)=\mathbf{v}_{\textit{put}}$$



/⊒ ► < ∃ ►

The American put The American call

#### American put-call symmetry

• (Carr and Chesney, 1996):  

$$v_{call}(t, x; K, \rho, \mu, \sigma) = v_{put} \left( t, \underbrace{K}_{x_{put}}; \underbrace{x}_{K_{put}}, \underbrace{\rho - \mu}_{\rho_{put}}, \underbrace{-\mu}_{\mu_{put}}, \underbrace{\sigma}_{\sigma_{put}} \right)$$

 I<sub>put</sub> (t) (resp. u<sub>put</sub> (t)) lower (upper) critical price at t for put v<sub>put</sub> with K<sub>put</sub> = 1

$$I_{call}(t) = \frac{K}{u_{put}(t)} \text{ and } \underbrace{u_{call}(t)}^{new!} = \frac{K}{I_{put}(t)}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The American put The American call

#### Translating the results for the call option

$$ho = -12\%$$
,  $K = 0.5$ ,  $\sigma = 20\%$ ,  $\mu = -8\%$ ,  $T = 1$ .



Anna Battauz The geometry of the double continuation region

A capital investment option The gold loan

# A capital investment option I

A firm decides when to enter a project, whose present value V is

$$\mathrm{d}V_t = V_t \left(\widehat{\mu}_V \,\mathrm{d}t + \sigma_V \,\mathrm{d}W_t^{\mathbf{\hat{P}}}, + \widetilde{\sigma}_V \,\mathrm{d}\widetilde{W}_t^{\mathbf{\hat{P}}}\right)$$
,

at the cost I with

$$\mathrm{d}I_t = I_t \left( \widehat{\mu}_I \,\mathrm{d}t + \sigma_I \,\mathrm{d}W_t^{\mathbf{p}} \right)$$

 $\widehat{\mu}_V, \sigma_V, \widetilde{\sigma}_V, \widehat{\mu}_I$  and  $\sigma_I$ , are real positive constants  $\widetilde{W}_t^{\mathbf{\hat{P}}}, W_t^{\mathbf{\hat{P}}}$  are independent Brownian motions on  $(\Omega, \mathbf{\hat{P}}, (\mathcal{F}_t)_t)$ .

The firm selects the valuation measure  $\hat{\mathbf{P}}$  and the discount rate  $\hat{r}$ .

A capital investment option The gold loan

### A capital investment option II

The value of the option to invest at date t is

$$\operatorname{ess\,sup}_{t \leq \tau \leq T} \mathbb{E}^{\hat{\mathbf{P}}} \left[ \left. e^{-\widehat{r}(\tau-t)} (V_{\tau} - I_{\tau})^{+} \right| \mathcal{F}_{t} \right]$$
(1)

A capital investment option The gold loan

# Solving the capital investment option

Let  $\mathbf{P}^{V}$  the probability associated to the *numeraire*  $V_{T}e^{\rho T}$  with

$$\rho = -\left(\widehat{\mu}_V - \widehat{r}\right)$$

The investment option value is

$$\operatorname{ess}\sup_{t\leq\tau\leq \mathcal{T}}\mathbb{E}^{\hat{\mathbf{P}}}\left[\left.e^{-\widehat{r}(\tau-t)}(V_{\tau}-I_{\tau})^{+}\right|\mathcal{F}_{t}\right]=V_{t}\cdot v(t,X_{t}),$$

where

$$v(t, X_t) = \operatorname{ess}\sup_{t \leq \tau \leq T} \mathbb{E}^{\mathbf{P}^{V}} \left[ \left. e^{-\rho(\tau-t)} \left( 1 - X_{\tau} \right)^{+} \right| \mathcal{F}_t \right]$$

is the value under  $\mathbf{P}^V$  of an American put option on the cost-to-value ratio

$$X_t = \frac{I_t}{V_t}$$

with 'interest rate'  $\rho = -(\hat{\mu}_V - \hat{r})$ .

A capital investment option The gold loan

# Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$\begin{split} \mathbf{P}^{V} - \text{volatility} & \sigma^{2} = (\sigma_{I} - \sigma_{V})^{2} + \widetilde{\sigma}_{V}^{2}, \\ \mathbf{P}^{V} - \text{drift} & \mu = \widehat{\mu}_{I} - \widehat{\mu}_{V}. \end{split}$$

• Focus on very profitable investments  $\hat{\mu}_V > \hat{r}$  $\longrightarrow \rho = -(\hat{\mu}_V - \hat{r}) < 0$  negative interest rate

・ 同 ト ・ ヨ ト ・ ヨ ト

A capital investment option The gold loan

# Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$\begin{split} \mathbf{P}^{V} - \text{volatility} & \sigma^{2} = (\sigma_{I} - \sigma_{V})^{2} + \widetilde{\sigma}_{V}^{2}, \\ \mathbf{P}^{V} - \text{drift} & \mu = \widehat{\mu}_{I} - \widehat{\mu}_{V}. \end{split}$$

• Focus on very profitable investments  $\hat{\mu}_V > \hat{r}$   $\longrightarrow \rho = -(\hat{\mu}_V - \hat{r}) < 0$  negative interest rate • If  $\mu = \hat{\mu}_I - \hat{\mu}_V \le 0$   $\xrightarrow{\text{Jensen's inequality}}$  invest at T only

| 4 同 1 4 三 1 4 三 1

A capital investment option The gold loan

#### Solving the capital investment option

The cost-to-value ratio X is lognormal with

$$\begin{split} \mathbf{P}^V - \text{volatility} & \sigma^2 = (\sigma_I - \sigma_V)^2 + \widetilde{\sigma}_V^2, \\ \mathbf{P}^V - \text{drift} & \mu = \widehat{\mu}_I - \widehat{\mu}_V. \end{split}$$

• Focus on very profitable investments  $\hat{\mu}_V > \hat{r}$   $\longrightarrow \rho = -(\hat{\mu}_V - \hat{r}) < 0$  negative interest rate • If  $\mu = \hat{\mu}_I - \hat{\mu}_V \le 0 \xrightarrow{\text{Jensen's inequality}} \text{ invest at } T$  only • If  $\mu = \hat{\mu}_I - \hat{\mu}_V > 0 \xrightarrow{\text{our result}} \text{ double continuation region}$ 

- 4 同 6 4 日 6 4 日 6

A capital investment option The gold loan

#### Preview of the results near maturity

$$\widehat{r}=$$
 3%,  $\widehat{\mu}_V=$  5% ,  $\sigma_V=$  7%,  $\widetilde{\sigma}_V=$  3%,  $\widehat{\mu}_I=$  6%,  $\sigma_I=$  10%



A capital investment option The gold loan

# The gold loan

- The borrower receives at time 0 the *loan amount* q > 0 using one unit of gold as collateral.
- The loan amount q grows at the rate γ, where γ > r is the borrowing rate
- Prepayment option: The borrower has the right to redeem the gold at any  $t \leq T$
- Gold is a tradable investment asset with storage and insurance costs *Gu* > 0 per unit of time:

$$\frac{dG(t)}{G(t)} = (r+u) dt + \sigma dW(t),$$

where r is the riskless interest rate,  $\sigma$  is the gold returns' volatility, and W is a B.M. under the risk-neutral **Q**.

→ Differences with *stock loans* (Ekström and Wanntorp (2008))

A capital investment option The gold loan

# The redemption option of the gold loan I

 Given a finite maturity T, the value of the redemption option at t = 0 is

$$C(G_0, 0) = \sup_{0 \le \tau \le T} \mathbb{E}^{\mathbf{Q}} \left[ e^{-r\tau} \left( G(\tau) - q e^{\gamma \tau} \right)^+ \right]$$

A capital investment option The gold loan

# The redemption option of the gold loan I

 Given a finite maturity T, the value of the redemption option at t = 0 is

$$C(G_0, 0) = \sup_{0 \le \tau \le T} \mathbb{E}^{\mathbf{Q}} \left[ e^{-r\tau} \left( G(\tau) - q e^{\gamma \tau} \right)^+ \right]$$

• C can be rewritten as

$$\mathcal{C}(\mathcal{G}_0,0) = \sup_{0 \leq au \leq au} \mathbb{E}^{\mathbf{Q}} \left[ e^{-(r-\gamma) au} \left( X( au) - q 
ight)^+ 
ight]$$
 ,

that is a call option on  $X(t) = G(t) e^{-\gamma t}$  (the gold price deflated at the rate  $\gamma$ ) and 'interest rate'

$$\rho = r - \gamma < 0.$$

- 4 周 ト 4 戸 ト 4 戸 ト

A capital investment option The gold loan

#### The redemption option of the gold loan II

The deflated gold price  $X(t) = G(t) e^{-\gamma t}$  is lognormal with Q-drift

$$\mu = r + u - \gamma$$

• if  $\mu = r + u - \gamma > 0 \xrightarrow{\text{Jensen's inequality}}$  redemption at T only

- 4 同 6 4 日 6 4 日 6

A capital investment option The gold loan

#### The redemption option of the gold loan II

The deflated gold price  $X(t) = G(t) e^{-\gamma t}$  is lognormal with Q-drift

$$\mu = r + u - \gamma$$

if μ = r + u − γ > 0 <sup>Jensen's inequality</sup> redemption at T only
 if μ = r + u − γ < 0 <sup>our result</sup> double no-redemption region

・ロト ・同ト ・ヨト ・ヨト

A capital investment option The gold loan

#### Preview of the results near maturity

 $T=1,~r=3\%,~u=1\%,~\gamma=6\%,~\sigma=10\%$ , and q=1.



The American perpetual put The American put with finite maturity

#### The perpetual put with negative interest rates

**Theorem** Battauz, De Donno, Sbuelz [BDS] (2012, Quantitative Finance): If  $\rho < 0$ , under condition

$$\mu - \frac{\sigma^2}{2} > 0 \text{ and } \left(\mu - \frac{\sigma^2}{2}\right)^2 + 2\rho\sigma^2 > 0$$
 (A1)

the perpetual lower and upper free boundary are (resp.)

$$I_\infty = K rac{\xi_I}{\xi_I - 1}$$
 and  $u_\infty = K rac{\xi_u}{\xi_u - 1}$ 

where  $\xi_u < \xi_l < 0$  solve

$$\frac{1}{2}\sigma^2\xi^2 + \left(\mu - \frac{\sigma^2}{2}\right)\xi - \rho = 0.$$

(4月) (1日) (日)

The American perpetual put The American put with finite maturity

# The perpetual put with negative interest rates (continued)

#### The value of the perpetual American put option is

$$v_{\infty}(x) = \begin{cases} A_{l} \cdot x^{\xi_{l}} & \text{for } x \in (0; I_{\infty}) \\ K - x & \text{for } x \in [I_{\infty}; u_{\infty}] \\ A_{u} \cdot x^{\xi_{u}} & \text{for } x \in (u_{\infty}; +\infty) \end{cases}$$

The American perpetual put The American put with finite maturity

#### Proof:

Boundedness requirement violated: when  $\rho < 0$  and x = 0 the optimal time to exercise is  $\Theta^* = +\infty$ , and the value of the American option is

$$v_{\infty}(0) = \mathbb{E}\left[e^{-
ho\Theta^*}\left(K-0
ight)^+
ight] = +\infty.$$

Hence direct verification, i.e.

(a) 
$$v_{\infty}(x) = \mathbb{E}\left[e^{-\rho\tau^*}\left(K - X_{\tau^*}\right)^+\right],$$
  
(b)  $v_{\infty}(x) \ge \mathbb{E}\left[e^{-\rho\tau}\left(K - X_{\tau}\right)^+\right],$ 

for any stopping time  $\tau$  and for  $\tau^*$  s.t.

$$\tau^* = \inf \left\{ t \ge 0 : I_{\infty} \le X_t \le u_{\infty} \right\}$$

The American perpetual put The American put with finite maturity

#### The double continuation region appears when...

For  $\rho < 0$ , Condition (A.1)

$$\mu-rac{\sigma^2}{2}>0$$
, and  $\left(\mu-rac{\sigma^2}{2}
ight)^2+2
ho\sigma^2>0$ 

is a **sufficient** condition for early exercise. A **necessary** condition for the optimal exercise of the finite-maturity American put option at  $t \in [0; T)$  is

$$\mathcal{N}^{-1}\left(\mathbf{e}^{\rho(T-t)}\right) - \mathcal{N}^{-1}\left(\mathbf{e}^{(\rho-\mu)(T-t)}\right) \ge \sigma\sqrt{T-t},\qquad(2)$$

where  $\mathcal{N}^{-1}\left(\cdot\right)$  denotes the inverse of the standard normal cumulative distribution function.

(4月) (1日) (1日)

The American perpetual put The American put with finite maturity

#### The double continuation region appears when...

(A.1) and (2) require  $\mu$  high compared to  $|\rho|$ . (2)  $\Leftrightarrow \exists x > 0$  s.t. European put  $v_e(t, x) \leq (K - x)^+$ 



 $v_e(t, x)$  (solid) :  $\rho = -1\%$ ,  $\mu = 3\%$ ,  $\sigma = 20\%$  (dashed) :  $\rho = -4\%$ ,  $\mu = 3\%$ ,  $\sigma = 40\%$  $v_e(t, x)$  (dashed) :  $\rho = 1\%$ ,  $\mu = 3\%$ ,  $\sigma = 20\%$ 

#### The (double) free-boundary geometry for finite maturity

**Theorem** [BDS, forthcoming in Management Science]: Under A1, for any  $t \in [0; T)$  there exist

$$0 < \frac{\rho K}{\rho - \mu} \le I(t) < u(t) \le K$$
(3)

such that  $(K - x)^+ = v(t, x)$  for any  $x \in [I(t); u(t)]$  and  $(K - x)^+ < v(t, x)$  for any  $x \notin [I(t); u(t)]$ . The lower free boundary  $I : [0; T] \rightarrow [0; I_{\infty})$  is decreasing, continuous for any  $t \in [0; T)$ ,  $I(T^-) = \frac{\rho K}{\rho - \mu} > I(T) = 0$ . The upper free boundary  $u : [0; T] \rightarrow (u_{\infty}; K]$  is increasing, continuous for any  $t \in [0; T]$ , and  $u(T) = u(T^-) = K$ .

The American perpetual put The American put with finite maturity

#### Proof: main steps I

1) Monotonicity:  $v(t, x) \le v(t', x)$  for any  $t' > t \Rightarrow \Rightarrow u(t)$  is increasing, l(t) is decreasing



The American perpetual put The American put with finite maturity

# Proof: main steps II

2) Right continuity of I on [0; T) follows from monotonicity of I, and continuity of v and  $(K - \cdot)^+$ .

3) Left continuity of I on [0; T) follows from the V.I.:

$$\begin{cases} v(T, \cdot) = (K - \cdot)^+ \\ v(t, \cdot) \ge (K - \cdot)^+ \text{ for any } t \in [0; T] \\ \frac{\partial}{\partial t}v + \mathcal{L}v - \rho v \le 0 \text{ on } (0; T) \times \Re^+ \\ \frac{\partial}{\partial t}v + \mathcal{L}v - \rho v = 0 \text{ on } C\mathcal{R} \end{cases}$$

where  $(\mathcal{L}\mathbf{v})(t,x) = \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2} \mathbf{v}(t,x) + \mu x \frac{\partial}{\partial x} \mathbf{v}(t,x)$ and  $\mathcal{CR} = \{(t,x) \in (0;T) \times \Re^+ : \mathbf{v}(t,x) > (K-x)^+\}.$ 4)  $I(T^-) = \frac{\rho K}{\rho - \mu}$  follows from V.I.

The continuation region: single or double? American options with a negative 'interest rate'

The American put with finite maturity

#### Asymptotic behavior of the free boundaries at maturity

**Theorem** [BDS, forthcoming in Management Science]: Under A1, for  $t \rightarrow T$  the upper free boundary

$$u(t) - K \sim -K\sigma \sqrt{(T-t) \ln \frac{\sigma^2}{8\pi (T-t) \mu^2}}.$$

For  $t \rightarrow T$ , the lower free boundary satisfies

A

$$\begin{split} & l(t) - \frac{\rho K}{\rho - \mu} \sim \frac{\rho K}{\rho - \mu} \left( -y^* \sigma \sqrt{(T - t)} \right), \\ & \text{where } y^* \approx -0.638 \text{ s.t. } \phi(y) = \sup_{0 \le \Theta \le 1} E \left[ \int_0^\Theta (y + B(s)) \, ds \right] = 0 \\ & \forall y \le y^* \text{ and } \phi(y) > 0 \ \forall y > y^*. \end{split}$$

The American perpetual put The American put with finite maturity

#### Proof: main steps

- Evans, Kuske and Keller (2002): if ρ ≥ 0, ρ ≥ δ the critical price of the put tends to its left limit in a parabolic-logarithmic form as t → T ⇒ if ρ < 0 asymptotics of our upper free boundary u</li>
- Lamberton and Villenevue (2003): if ρ ≥ 0, ρ < δ the critical price of the put tends to its left limit in a *parabolic* form as t → T. The results relies on ρ ≥ 0. We use an expansion result (Theorem 1 in LV2003) ⇒ if ρ < 0 asymptotics of our *lower free boundary l*

(日) (同) (三) (三)

The American perpetual put The American put with finite maturity

#### A picture of the double free boundary for the put

$$ho = -4\%$$
,  $K = 1.2$ ,  $\sigma = 20\%$ ,  $\mu = 8\%$ ,  $T = 1.2$ 



Anna Battauz The geometry of the double continuation region

#### Conclusions: what is done

• Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates

/□ ▶ < 글 ▶ < 글

### Conclusions: what is done

- Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates
- Worked out closed formulae in the perpetual case with lognormal underlying

• • • • • • •

### Conclusions: what is done

- Examples of practical relevance that can be reduced to the valuation of American options with negative interest rates
- Worked out closed formulae in the perpetual case with lognormal underlying
- Described main features of the geometry of the free boundary in the finite maturity case (limits, continuity, asymptotics).

• • • • • • •

# Extensions/open problems I:

 Convexity of upper free boundary u and concavity of lower free boundary / ?

# Extensions/open problems I:

- Convexity of upper free boundary *u* and concavity of lower free boundary *l* ?
- Theorem 2.1 in Ekström (JMAA, 2004): For  $\rho, \sigma > 0, \ \mu = \rho \Rightarrow$  $u(t) \ddot{u}(t) \ge (\dot{u}(t))^2 > 0$  for all t < T

A 3 b

#### Extensions/open problems I:

- Convexity of upper free boundary u and concavity of lower free boundary l ?
- Theorem 2.1 in Ekström (JMAA, 2004): For  $\rho, \sigma > 0, \ \mu = \rho \Rightarrow$  $u(t) \ddot{u}(t) \ge (\dot{u}(t))^2 > 0$  for all t < T
- Still under investigation for  $\rho < 0$ , under condition (A.1)

$$\mu - rac{\sigma^2}{2} > 0$$
, and  $\left(\mu - rac{\sigma^2}{2}
ight)^2 + 2
ho\sigma^2 > 0$ 

/□ ▶ < 글 ▶ < 글

# Extensions/open problems II: jump diffusion case

Extending formulae for  $I_\infty$  and  $u_\infty$  :

- The way we proved  $v_{\infty}(x) \ge \mathbb{E}\left[e^{-\rho\tau} \left(K X_{\tau}\right)^{+}\right]$  for any stopping time  $\tau$  is feasible
- Direct computation to prove  $v_{\infty}(x) = \mathbb{E}\left[e^{-\rho\tau^*}\left(K - X_{\tau^*}\right)^+\right] = \mathbb{E}\left[e^{-\rho\tau^*}v_{\infty}(X_{\tau^*})\right]$  is unfeasible.
- If  $x < l_{\infty}$ , then  $\tau^* = \inf \{t \ge 0 : X_t = l_{\infty}\}$  and  $v_{\infty}(x) = \mathbb{E}\left[e^{-\rho\tau^*}\right] (K l_{\infty})^+$  but usual techniques to compute  $\mathbb{E}\left[e^{-\rho\tau^*}\right]$  require  $-\rho \le 0$ .
- Alternative: prove  $\mathbb{E}[M_{\tau^*}] = 0$ , where M is the martingale part of the decomposition of  $e^{-\rho t}v_{\infty}(X_t)$ . But the Optional Sampling Theorem is an unfeasible tool (M and  $\tau^*$  not unif. bdd).

# Thanks for your attention!

#### Slides downloadable at my personal page at Bocconi http://didattica.unibocconi.eu/docenti/

cv.php?rif=49395&cognome=BATTAUZ&nome=ANNA

・ 同 ト ・ ヨ ト ・ ヨ