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Abstract We develop envelope theorems for optimization problems in which the value
function takes values in a general Banach lattice. We consider both the special case of a
convex choice set and a concave objective function and the more general case case of an
arbitrary choice set and a general objective function. We apply our results to discuss the
existence of a well-defined notion of marginal utility of wealth in optimal discrete-time,
finite-horizon consumption-portfolio problems with an unrestricted information structure
and preferences allowed to display habit formation and state dependency.

Keywords Envelope theorem · Banach lattice · State-dependent utility · Value function ·
Gateaux differential · Fréchet differential
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1 Introduction

Envelope theorems constitute one of the genuine workhorses of economics, and their appli-
cations are ubiquitous. Several extensions of the traditional Envelope theorems have emerged
over the years, as a response to the necessity of analyzing the behavior of the value function of
optimization problems lacking the assumptions for the applicability of the standard Envelope
results from graduate textbooks. In concave dynamic programming, a seminal paper is due
to Benveniste and Scheinkman [3] who assume the choice set to be convex and the objective
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function to be concave (see also [14], footnote 5, for more references). More recently, Rincó
n-Zapatero and Santos [18] considered a dynamic framework where the information struc-
ture is generated by an exogenous stochastic process, and proved an Envelope theorem that
allows the choice set to depend on the parameters of the problem and the optimal solution
to lie on the boundary of the feasible set. Cruz-Suárez and Montes-de Oca [8] established
Envelope theorems for optimization problems on Euclidean spaces for both the concave and
the unrestricted case. The paper which is closer to the spirit of our contribution is the one by
Milgrom and Segal [14]. Their Envelope results do not make any assumption on the choice
set of the optimization problem nor they require the concavity of the objective functions. In
particular, Milgrom and Segal first show that the traditional Envelope formula holds at any
differentiability point of the value function, and then they establish conditions for the (left,
right or full) differentiability of the value function. Other interesting recent developments
can be found in Morand et al. [15].

The first contribution of this paper is to supply Envelope results for the general case of
optimization problems in which the objective function takes its values in a Banach lattice.
To start our analysis we extend to this Banach lattice setting the results for concave pro-
gramming supplied by Benveniste and Scheinkman [3]. Next we maintain the assumption
that the objective function takes values in a Banach lattice, and we allow the choice set to
be arbitrary and the parameters of the problem to belong to a general Banach space. In this
more general case we supply Envelope results that extend to the Banach lattice setting those
supplied by Milgrom and Segal [14] for the real-valued case. To develop our general Enve-
lope formulae we replace the standard notion of differentiability for real-valued functions
with the more general notion of differentiability in Banach lattices, namely Gateaux and
Fréchet differentiability.

The second contribution of this paper comes fromapplyingour generalEnvelope results for
Banach lattices to asset pricing. We consider a security market with a general information fil-
tration. In this framework,we analyze the discrete-time, finite-horizon consumption-portfolio
problem for an agent with utility function that can display habit formation and is allowed to
be state-dependent. At any time t , the maximum remaining utility (continuation utility) for
an agent with wealth W is represented by a value function of the form:

H(t, W ) = ess sup
(c,θ)∈Bt (W )

Ut (c, θ)

where Ut (c, θ) is the expected utility from the consumption plan c and the dynamic portfolio
strategy θ conditional on information available at time t , and Bt (W ) is the set of consumption
plans and portfolio strategies that are budget feasible from time t onwards. It is well-known
that the essential supremumof an arbitrary family of randomvariables is well-defined and it is
a randomvariable itself ([11], TheoremA.18), so the problem iswell-posed. If the information
structure was restricted to be the one generated by a finite number of random variables, as,
for instance, when the model posits the existence of some Markov process of state variables,
then the value function would be a real-valued function of these state variables and of wealth.
In that case, classical Envelope results would guarantee that, under standard assumptions,
the marginal utility of wealth would be well defined and, at the optimum, it would coincide
with the marginal utility from consumption. In our general case of a completely unrestricted
information structure, however, the value function can no longer be assumed to be real-valued,
rather it is a map from the Banach space of current level of wealth to the Banach lattice of
integrable random variables. This is where our Envelope theorem for Banach lattices comes
into play: we can employ it to show that, under a certain set of assumptions, the marginal
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utility of wealth is still well defined and, most importantly, at the optimum it still equates the
marginal utility of consumption.

The remainder of this paper is as follows. In the next section, we set up the Banach lattice-
valued optimization problem and prove our extension of the Envelope theorem to Banach
lattices first for a concave objective function and then in the general case. In Sect. 3 we
introduce the optimal consumption-portfolio problem with a general information structure
and apply our results from Sect. 2 to discuss the conditions under which the marginal utility
of wealth is well defined and coincides with the marginal utility from consumption. Section 4
concludes, while the Appendix (Sect. 5) reviews the notions of differentiability in Banach
spaces and collects some fundamental results on the relationship between concavity and
differentiability in this framework.

2 The general results

Let X be a Banach space and Y a order complete Banach lattice. We refer essentially to
Aliprantis and Border [1] and Birkhoff [4] for the main definition and results on Banach
lattices. As usual, we adjoin to Y the abstract maximal and minimal elements {±∞} and
denote by Ȳ the enlarged space.

We take an open set U in X as the set of parameters and an arbitrary choice set Θ . Let
F : Θ × U → Y be the objective function. For each parameter u ∈ U , we define the value
function as:

V (u) = sup
θ∈Θ

F(θ, u). (2.1)

We set V (u) = −∞ if Θ = ∅. When Θ is not empty, V (u) belongs to Y if and only if
the set (F(θ, u))θ∈Θ is bounded from above. Otherwise, V (u) may be well-defined (and not
necessarily +∞), even though (F(θ, u))θ∈Θ is not bounded from above 1 but in this case
V (u) does not belong to Y .

We denote with F ′(θ, u∗; x) (resp. V ′(u∗; x)) the directional derivative of F(θ, · ) (resp.
V ) at u∗ in the direction x ∈ X . Since Fréchet differentiability implies Gateaux differen-
tiability, and since the two differentials coincide when they both exist, we use the notation
DF(θ, u∗) (resp. DV(u∗)) for the differential of F(θ, · ) (resp. V ) at u∗, and we specify the
type of differential only when it is not apparent from the context.

2.1 A preliminary result

Our first result, which in fact extends Theorem 2 in [14], shows that the Envelope formula
holds at any differentiability point of the value function, provided that both the objective and
the value functions are differentiable.2 For any parameter u ∈ U we denote with, Θ∗(u) =
{θ ∈ Θ : F(θ, u) = V (u)} the set of optimal choices.

Theorem 1 Let u∗ ∈ U and assume that there exists some r > 0 such that V (x) ∈ Y for
every x ∈ B(u∗, r).3 Let Θ∗(u∗) �= ∅. Then for all θ ∈ Θ∗(u∗):

1 One can for instance take Y = L p for some p ≥ 1. If the set (F(θ, u))θ∈Θ is bounded from above in Lq

with q < p but not in L p , then V (u) ∈ Lq but it does not belong to L p .
2 Weaker definitions of differentiability can also be given (see, for instance, Papageorgiou [17]) and bounds
derived for the differential of the value function as is done byMorand, Reffet, Tarafdar [15] for the real-valued
case, when the value function is not sufficiently smooth.
3 B(u∗, r) denotes as usual the open ball with center u∗ and radius r .
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1. if both F(θ, · ) and V ( · ) admits directional derivative at u∗ in some direction x ∈ X,
then F ′(θ, u∗; x) ≤ V ′(u∗; x);

2. if both F(θ, · ) and V ( · ) are Gateaux-differentiable at u∗, then their Gateaux-
differentials coincide, i.e. DF(θ, u∗) = DV(u∗);

3. if both F(θ, · ) and V ( · ) are Fréchet-differentiable at u∗, then their Fréchet-differentials
coincide, i.e. DF(θ, u∗) = DV(u∗).

Proof 1. Let h ∈ � and x ∈ X such that ‖hx‖X < r . Then:

F(θ, u∗ + hx) − F(θ, u∗) ≤ V (u∗ + hx) − V (u∗).

In particular, taking hn in�+, which decreases to 0 as n → +∞, and dividing both sides
of the inequalities by hn , we obtain

F(θ, u∗ + hn x) − F(θ, u∗)
hn

≤ V (u∗ + hn x) − V (u∗)
hn

. (2.2)

If F(θ, · ) admits directional derivative at u∗ along x , then according to the definition
of directional derivative, we have that (F(θ, u∗ + hn x) − F(θ, u∗))/hn converges in
Y -norm to F ′(θ, u∗; x). Then there exists a subsequence which converges in order to the
same limit.4

Analogously, if V has a derivative at u∗ along x , then (V (u∗ + hn x) − V (u∗))/hn will
converge in Y -norm, and, up to a subsequence, in order, to V ′(u∗; x). Hence

F ′(θ, u∗; x) ≤ V ′(u∗; x). (2.3)

2. If the two functions are Gateaux-differentiable, they admit directional derivatives along
all directions. In particular, given x ∈ X , they admit directional derivatives along x and
−x . The previous result implies that

DF(θ, u∗)(x) = F ′(θ, u∗; x) ≤ V ′(u∗; x) = DV(u∗)(x)

and

DF(θ, u∗)(−x) = F ′(θ, u∗;−x) ≤ V ′(u∗;−x) = DV(u∗)(−x).

Moreover, since the Gateaux differential is homogeneous, DF(θ, u∗)(−x) =
−DF(θ, u∗)(x) and DV(u∗)(−x) = −DV(u∗)(x). Therefore, DF(θ, u∗)(x) =
DV(u∗)(x).

3. If F(θ, · ) and V are Fréchet differentiable at u∗, then they are a fortiori Gateuax differ-
entiable and the differentials coincide.


�
2.2 The concave case

In the framework of dynamic optimizationmodels of economics, Benveniste and Scheinkman
[3] determined a set of sufficient conditions for the value function to be differentiable under
the assumption that the set of parameters and the set of possible choices are convex, and the
objective function is concave with respect to both variables. In this subsection we extend
their results to the case where the objective function takes values in a Banach lattice. We
make the following assumption:

4 In an order completeBanach lattice, the normconvergence is equivalent to relative uniform star convergence,
which in turn implies order convergence. As a consequence, if a sequence xn converges in norm to x , then
there exist a subsequence which is order convergent to x (see Birkhoff [4], Chap. 15, Theorems 19 and 20).

123



Math Finan Econ (2015) 9:303–323 307

Assumption 1 The sets Θ and U are convex and the objective function F is concave with
respect to both θ and u.

The next result is an immediate implication of this assumption:

Lemma 1 The value function V is concave.

Proof For any λ ∈ [0, 1], u1, u2 ∈ X , θ1, θ2 ∈ Θ , we have the following inequalities:

V (λu1 + (1 − λ)u2) ≥ F (θ1 + (1 − λ)θ2, λu1 + (1 − λ)u2)

≥ λF(θ1, u1) + (1 − λ)F(θ2, u2).

As a consequence,

V (λu1 + (1 − λ)u2) ≥ λ sup
θ1∈Θ

F(θ1, u1) + (1 − λ) sup
θ2∈Θ

F(θ2, u2)

= λV (u1) + (1 − λ)V (u2).


�
We show that, as in the real-valued case, concavity is still a sufficient condition for the

differentiability of the value function and, as a consequence, an Envelope formula holds at
any differentiability point of the objective function given an optimal choice.

Theorem 2 Let u∗ ∈ U and Θ∗(u∗) �= ∅. Then for all θ ∈ Θ∗(u∗):

1. if F(θ, · ) is continuous and Gateaux differentiable at u∗, then V is continuous and
Gateaux differentiable at u∗ as well, and DV(u∗) = DF(θ, u∗);

2. if F(θ, · ) is Fréchet differentiable at u∗, then V is Fréchet differentiable at u∗ as well,
and DV(u∗) = DF(θ, u∗).

Proof 1. By Lemma 1, we know that V is concave. Moreover, V (u) ≥ F(θ, u) for all
u ∈ U . Therefore V is continuous at u∗ thanks to Proposition 8. Proposition 10 implies
that ∂V (u∗) is non-empty, where ∂V (u∗) denotes the superdifferential set of V at u∗.
Take L ∈ ∂V (u∗): then, Lx ≥ V (u∗ + x) − V (u∗) ≥ F(θ, u∗ + x) − F(θ, u∗),
namely L ∈ ∂ F(θ, u∗). This means that ∂V (u∗) ⊂ ∂ F(θ, u∗) = {DF(θ, u∗)}, where
the last equality is a consequence of Proposition 11. Since ∂V (u∗) is non-empty, itmust be
necessarily ∂V (u∗) = {DF(θ, u∗)},hence byProposition 11,V isGateaux-differentiable
at u∗ and DV(u∗) = DF(θ, u∗).

2. If F(θ) is Fréchet differentiable at u∗, then it is continuous and Gateaux differentiable
at u∗. In virtue of the previous theorem, V is continuous and Gateaux-differentiable
at u∗ and DV(u∗) = DF(θ, u∗). Moreover, since V is concave, the differential is a
superdifferential, hence the following inequalities hold for all x ∈ X :

DV(u∗)(x) ≥ V (u∗ + x) − V (u∗) ≥ F(θ, u∗ + x) − F(θ, u∗)

or, equivalently,

0 ≥ V (u∗ + x) − V (u∗) − DV(u∗)(x) ≥ F(θ, u∗ + x) − F(θ, u∗) − DF(θ, u∗)(x).

The inequalities are clearly reversed when taking the absolute values, that is:

0 ≤ |V (u∗ + x) − V (u∗) − DV(u∗)(x)| ≤ |F(θ, u∗ + x) − F(θ, u∗) − DF(θ, u∗)(x)|

123



308 Math Finan Econ (2015) 9:303–323

Passing to the norms and dividing by ‖x‖X one obtains:

0 ≤ ‖V (u∗ + x) − V (u∗) − DV(u∗)(x)‖Y

‖x‖X

≤ ‖F(θ, u∗ + x) − F(θ, u∗) − DF(θ, u∗)‖Y

‖x‖X
.

One can then take the limit as ‖x‖X goes to 0: the right-hand term goes to 0 because of
the Fréchet differentiability of F(θ). As a consequence, the middle term goes to 0, which
implies that V is Fréchet differentiable.


�
2.3 The general case

We deal now with the case in which the objective function is not required to be concave,
and the choice set is arbitrary. We first present two alternative sets of conditions on the
objective function that guarantee that the value function in (2.1) is continuous. We then
discuss conditions under which the value function is either Gateaux or Fréchet differentiable
and we state our Envelope results.

2.3.1 Continuity

Given a parameter u∗ ∈ U,we present two alternative sets of conditions for the continuity of
the value function at u∗. The first set is based on a suitable extension of the standard notion
of Lipschitz-continuity to the case in which the function takes values in a Banach lattice.
We recall that in Banach lattices |y| = y ∨ (−y) , where ∨ denotes the lattice operation of
supremum.

Assumption 2 The objective function F(θ, · ) is o-Lipschitz-continuous5 at u∗ uniformly
in θ , namely, there exists r > 0 such that for all w, v ∈ B(u∗, r), for some lu∗ ∈ Y ,

sup
θ∈Θ

|F(θ, w) − F(θ, v)| ≤ lu∗‖w − v‖X

Proposition 1 Assume that there exists r > 0 such that V (w) ∈ Y for all w ∈ B(u∗, r). If
F satisfies Assumption 2, then the value function V is continuous in a neighborhood of u∗.

Proof Let v,w ∈ B(u∗, r). Then,

|V (w) − V (v)| =
∣
∣
∣
∣
∣
sup
θ1

F(θ1, w) − sup
θ2

F(θ2, v)

∣
∣
∣
∣
∣
≤ sup

θ

|F(θ, w) − F(θ, v)| .

If Assumption 2 holds, it follows immediately that

‖V (w) − V (v)‖Y ≤ ‖lu∗‖Y ‖w − v‖X

hence V is continuous on B(u∗, r). 
�
An alternative set of sufficient conditions for the continuity of the value function is

based on differentiability properties of the objective function. It is an established fact that
Lipschitz-continuity implies Gateaux-differentiability outside of a null set (see for instance

5 For the notion of o-Lipschitz function see also Papageorgiou [16,17].
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Lindenstrauss and Preiss [12]). On the other hand, it iswell known thatGateaux differentiabil-
ity in general does not imply continuity. TheGateaux differentiability of the objective function
at a given point, therefore, does not even guarantee the continuity of the objective function
itself, let alone the continuity of the value function. For this reason, our differentiability-based
conditions for the continuity of the value function start from requiring the objective function
to be Fréchet differentiable at u∗ uniformly in θ.

Assumption 3 Theobjective function F(θ, · ) is Fréchet differentiable atu∗ for every θ ∈ Θ .
Moreover, we require that

F(θ, u∗ + x) − F(θ, u∗) = DF(θ, u∗)(x) + σ(θ, u∗, x) · ‖x‖X

where |σ(θ, u∗, x)| ≤ ξ ‖x‖X , for ξ ∈ Y , for all θ ∈ Θ , for x ∈ X such that u∗ + x ∈ U .

Intuitively, Assumption 3 requires that each member of the family of functions (F(θ, · ))θ∈Θ

admits a first-order expansion at u∗, with the error term uniformly bounded in the choice
variable θ. In particular, Assumption 3 implies that the ratio

‖F(θ, u∗ + x) − F(θ, u∗) − DF(θ, u∗)(x)‖Y

‖x‖X

goes to 0 uniformly in θ as ‖x‖X tends to 0, that is the objective function F is Fréchet
equi-differentiable at u∗. To control the variation of the value function, the next assumption
requires the differential of F to be bounded uniformly in the choice variable θ as well.

Assumption 4 For every x ∈ X there exists a vector yx ∈ Y such that for all θ ∈ Θ .
∣
∣DF(θ, u∗)(x)

∣
∣ ≤ yx ‖x‖X

Exploiting these two assumptions6 we can establish the following result on the continuity of
the value function.

Proposition 2 Assume that there exists r > 0 such that V (w) ∈ Y for all w ∈ B(u∗, r). If
F satisfies Assumptions 3 and 4, then the value function V is continuous at u∗.

Proof Let w ∈ B(u∗, r), and x = w − u∗. Then exploiting Assumptions 3 and 4 we have

F(θ, w) − F(θ, u∗) = F(θ, u∗ + x) − F(θ, u∗) = DF(θ, u∗)(x) + σ(θ, u∗, x) · ‖x‖X .

As a consequence
∣
∣V (w) − V (u∗)

∣
∣ ≤ sup

θ

∣
∣F(θ, w) − F(θ, u∗)

∣
∣

≤ sup
θ

∣
∣F(θ, w) − F(θ, u∗) − DF(θ, u∗)(x)

∣
∣ + sup

θ

∣
∣DF(θ, u∗)(x)

∣
∣

≤ sup
θ

∣
∣σ(θ, u∗, x)

∣
∣ · ‖x‖X + sup

θ

∣
∣DF(θ, u∗)(x)

∣
∣

≤ ξ ‖x‖2X + yx‖x‖X

We can then take the Y -norms of both sides. Assumption 4 implies that ‖DF(θ, u∗)(x)‖Y ≤
Mx for all θ ∈ Θ , where Mx = ‖yx‖Y ‖x‖X , that is, the family of operators (DF(θ, u∗))θ∈Θ

6 Similar requirements of equi-differentiability with respect to the choice parameter and of boundedness of
the derivative of F are made by Milgrom and Segal [14] to obtain the continuity and the differentiability of
the value function for the case in which the objective function takes values in �.
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is pointwise bounded. The Banach-Steinhaus theorem implies that there exists a constant Λ
such that

∥
∥DF(θ, u∗)(x)

∥
∥

Y ≤ Λ ‖x‖X

for all θ ∈ Θ. As a consequence,
∥
∥V (w) − V (u∗)

∥
∥

Y ≤ ξ ‖w − u∗‖2X + Λ
∥
∥w − u∗∥∥

X ,

which shows that V is continuous at u∗. 
�
Remark Our results on the continuity of the value function do not require the existence of
an optimal choice for u∗. In other words, while we ask for the supremum defining the value
function to be well defined in Y in a neighborhood of u∗, we do not require such supremum
to be attained for some optimal choice parameter.

2.3.2 Differentiability

We consider now the differentiability issue. We first present conditions under which an
Envelope formula holds in terms of Gateaux differentials. We then move to Fréchet differ-
entiability, and present a set of conditions that guarantee that an Envelope formula holds in
terms of Fréchet differentials.

Assumption 5 (i) There exists some r > 0, such that V (w) ∈ Y and the set Θ∗(w) is
non-empty for all w ∈ B(u∗, r);

(ii) the objective function F(θ, · ) isGateauxdifferentiable atu∗ for every θ ∈ Θ .Moreover,
for every direction x ∈ X and for every sufficiently small h ∈ �+

sup
θ∈Θ

∣
∣
∣
∣

F(θ, u∗ + hx) − F(θ, u∗)
h

− DF(θ, u∗)(x)

∣
∣
∣
∣
≤ Σ(u∗, x, h)

for some Σ(u∗, x, h) ∈ Y such that limh→0 ‖Σ(u∗, x, h)‖Y = 0;
(iii) for every direction x and h ∈ �+ such that ‖hx‖X < r , for every θ∗ ∈ Θ∗(u∗), the

Gateaux differential of F at u∗ satisfies:

lim
h→0

sup
θhx ∈Θ∗(u∗+hx)

‖DF(θhx , u∗)(x) − DF(θ∗, u∗)(x)‖Y = 0.

We are now ready to state our first main result.

Theorem 3 If Assumption 5 holds, then the value function V is Gateaux-differentiable at u∗
and DV(u∗) = DF(θ, u∗) for θ ∈ Θ∗(u∗).

To prove this result we need the following lemma:

Lemma 2 Suppose that Assumption 5 holds. Let θ ∈ Θ∗(u∗). Moreover, for a fixed direction
x ∈ X and h ∈ �+ such that ‖hx‖X < r , let θhx ∈ Θ∗(u∗ + hx). Then

lim
h→0

∥
∥
∥
∥

F(θhx , u∗ + hx) − F(θhx , u∗)
h

− DF(θ, u∗)(x)

∥
∥
∥
∥

Y
= 0.

Proof of Lemma We have, thanks to Assumption 5 (ii), that:
∣
∣
∣
∣

F(θhx , u∗ + hx) − F(θhx , u∗)
h

− DF(θhx , u∗)(x)

∣
∣
∣
∣
≤ Σ(u∗, h, x).
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Hence, the following inequalities hold:
∥
∥
∥
∥

F(θhx , u∗ + hx) − F(θhx , u∗)
h

− DF(θ, u∗)(x)

∥
∥
∥
∥

Y

≤
∥
∥
∥
∥

F(θhx , u∗ + hx) − F(θhx , u∗)
h

− DF(θhx , u∗)(x)

∥
∥
∥
∥

Y

+ ∥
∥DF(θhx , u∗)(x) − DF(θ, u∗)(x)

∥
∥

Y

≤ ∥
∥Σ(u∗, h, x)

∥
∥

Y + ∥
∥DF(θhx , u∗)(x) − DF(θ, u∗)(x)

∥
∥

Y

≤ ∥
∥Σ(u∗, h, x)

∥
∥

Y + sup
θhx ∈Θ∗(u∗+hx)

∥
∥DF(θhx , u∗)(x) − DF(θ, u∗)(x)

∥
∥

Y

Assumption 5 ((ii) and (iii)) implies that the right-hand term in the previous inequality
goes to 0 as h → 0. Hence the claim follows. 
�
Proof of Theorem 3 Let θu∗ ∈ Θ∗(u∗). Then, V (u∗) = F(θu∗ , u∗) ≥ F(θ, u∗) for any θ ∈
Θ . Now, for a given direction x , let h ∈ �+ be such that ‖hx‖X < r and take θhx in
Θ∗(u∗ + hx), which is not empty by Assumption 5 (i). Then

V
(

u∗ + hx
) = F(θhx , u∗ + hx) ≥ F(θ, u∗ + hx) for any θ ∈ Θ.

In particular, V (u∗) ≥ F(θhx , u∗) and V (u∗ + hx) ≥ F(θu∗ , u∗ +hx). Thus, we can write:

F(θu∗ , u∗ + hx) − F(θu∗ , u∗) ≤ V
(

u∗ + hx
) − V

(

u∗)≤ F(θhx , u∗ + hx) − F
(

θhx , u∗) .

Dividing by h and subtracting the differential DF(θu∗ , u∗)(x), we obtain the following
inequalities:

F(θu∗ , u∗ + hx) − F(θu∗ , u∗)
h

− DF(θu∗ , u∗)(x)

≤ V (u∗ + hx) − V (u∗)
h

− DF(θu∗ , u∗)(x)

≤ F(θhx , u∗ + hx) − F (θhx , u∗)
h

− DF(θu∗ , u∗)(x)

Take now the limit as h → 0+. Since the first and the last term converge to 0 in Y -norm, the
middle term must converge to 0 as well. This implies that V is differentiable at u∗ along the
direction x and V ′(u∗; x) = F ′(θu∗ , u∗; x) = DF(θu∗ , u∗)(x). The same argument can be
repeated for every x ∈ X , hence V is directionally differentiable along every direction x and
V ′(u∗; · ) = DF(θu∗ , u∗). Since this is a linear and continuous operator, we can finally say
that V is Gateaux-differentiable at u∗ and DV(u∗) = DF(θu∗ , u∗). 
�

To conclude we address the issue of Fréchet-differentiability. To this end, by suitably
readjusting Assumption 5 we state:

Assumption 6 (i) There exists some r > 0, such that V (w) ∈ Y and the set Θ∗(w) is
non-empty for all w ∈ B(u∗, r);

(ii) Assumption 3 holds, namely, the objective function F(θ, · ) is Fréchet differentiable at
u∗ for every θ ∈ Θ . Moreover,

F(θ, u∗ + x) − F(θ, u∗) = DF(θ, u∗)(x) + σ(θ, u∗, x) · ‖x‖X

where |σ(θ, u∗, x)| ≤ ξ ‖x‖X , for ξ ∈ Y , for all θ ∈ Θ , for x ∈ X such that u∗+x ∈ U ;
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(iii) for w ∈ B(u∗, r), for every θ ∈ Θ∗(u∗), the Fréchet differential of F at u∗ satisfies:

lim‖w−u∗‖X →0
sup

θw∈Θ∗(w)

sup
‖v‖X ≤1

‖DF(θw, u∗)(v) − DF(θ, u∗)(v)‖Y = 0.

Assumption 6 (ii) implies Assumption 5 (ii), where, in addition, the error term goes to zero
uniformly in x, namely limh→0 sup‖x‖X ≤1 ‖Σ(u∗, x, h)‖Y = 0. An argument similar to that
employed in the proof of Theorem 3 establishes now the Fréchet-differentiability of the value
function. Formally, we have:

Theorem 4 Let Assumption 6 hold. Then the value function V is Fréchet-differentiable at
u∗ and DV(u∗) = DF(θ, u∗) for θ ∈ Θ∗(u∗).

Remark Our results can be strenghtened by requiring Assumptions 5, respectively 6, to hold
for a given selection of optimal choices, instead of imposing them on the whole set of optimal
choices. This stronger version would be particularly useful when the optimization problem
has enough structure so that an optimal selection on which to test our assumptions can be
readily identified.

3 Envelope results for asset pricing models with a general information
filtration

In this section we focus on security markets with a general information filtration. In this
framework, the first-order conditions for optimality of an agent maximizing a smooth utility
can be formulated as the martingale property of prices, after normalizing by a state-price
process. Such state-price process can be characterized in terms of the agent’s utility gradient
(see for instance Duffie [9]). For a wide class of state-dependent utilities, the Envelope
theorems of the previous section enable us to extend the link between the differential of
the optimal utility of consumption and the differential of the maximum remaining utility of
wealth to this case of a general information filtration.

3.1 The model

We consider a frictionless security market in which J assets are traded over the investment
horizon T = {0, 1, . . . , T }. We take as given a filtered probability space (Ω,F, P, {Ft }T

t=0).
As usual, we assume that F is augmented with all the P−null sets, F0 is the trivial sigma-
algebra {∅,Ω} and FT = F . All the processes are adapted to F . We denote by d j (t) (resp.
S j (t)) the cash flow distributed by (resp. the ex-dividend price of ) asset j at date t, with
j = 1, . . . , J . Given p ∈ [1,+∞[, we assume that S j (t) , d j (t) ∈ L p(Ft ) for all t . Without
loss of generality, we assume that the assets distribute no cash flow at date 0 and a liquidating
one at date T , that is d j (0) = S j (T ) = 0 almost surely.

A dynamic investment strategy θ = {θ (t)}T −1
t=0 is a J -dimensional process where θ j (t)

represents the position (in number of units) in assets j taken at date t and liquidated at date
t + 1. We denote by Vθ = {Vθ (t)}T

t=0 the value process of θ , given by

Vθ (t) =
{

θ(t) · S(t) t < T
θ(T − 1) · d(T ) t = T .
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The cash flow xθ (t) generated by the strategy θ at t is

xθ (t) =
⎧

⎨

⎩

−Vθ (0) t = 0
θ (t − 1) · [S(t) + d(t)] − Vθ (t) t = 1, . . . , T − 1
Vθ (T ) t = T .

(3.1)

Henceforth, we call the sequence xθ = {xθ (t)}T
t=0 the cash-flow process of θ . We call

admissible any dynamic investment strategy θ such that Vθ (t), xθ (t) ∈ L p(Ft ) for t =
0, 1, . . . , T . We denote with Θ the set of all admissible dynamic investment strategies.

An agent in this market is identified by an initial endowment e0 ≥ 0 and a complete

and transitive preference relation on the set C =
T∏

t=0
L p(Ft ) of consumption sequences c =

(c(0), c(1), . . . , c(T )), with c(t) ∈ L p(Ft ) for all t . In choosing the optimal intertemporal
consumption and asset allocation, each agent (e0,�) in A faces the budget constraint

B(e0) = {

c ∈ C | c(0) ≤ xθ (0) + e0, c(t) ≤ xθ (t)∀ t > 0 for some θ ∈ Θ
}

.

We consider the class of agents whose preferences have a time-additive von Neumann-
Morgenstern representation, such that the period-utilities are allowed to depend on the state
ω and on both the individual’s past and present consumptions. In this way our model is able
to accomodate habit formation models of both the internal and external type (see for instance
[7]). For sake of notation, we denote with ct,s the stream of consumption from time t to time
s, that is ct,s = (c(t), . . . , c(s)). Analogously, we let xt,s(θ) = (xθ (t), . . . , xθ (s)) denote
the cash-flow generated by a dynamic trading strategy θ from t to s. We assume that the
preference U (c) of an agent over consumption sequences c ∈ C takes the form

U (c) =
T

∑

t=0

∫

Ω

ut (c0,t (ω), ω)dP(ω) =
T

∑

t=0

E
[

ut
(

c0,t
)]

(3.2)

where, for all t ≤ T , the period utilities ut : �t+1×Ω → � satisfy the following conditions:

(i) for all t , the function ut (γ, ω) : �t+1 × Ω → � is measurable with respect to the
product σ -algebra B(�t+1) ⊗ Ft (where B(�) denotes the Borel σ -algebra);

(ii) for all c ∈ B(e0), the integrals
∫

Ω
ut (c0,t (ω), ω)d P(ω) are well defined and they are

either finite or they take the value −∞ so that U (c) < +∞ for all c ∈ B(e0);
(iii) for every t , the function ut ( · , ω) : �t+1 → � is real-valued and strictly increasing7

for almost every ω.

An optimal consumption-portfolio choice for such an agent is a couple (c∗, θ∗) ∈ C × Θ

such that c∗(0) ≤ xθ∗(0) + e0, c∗(t) ≤ xθ∗(t) for t = 1, . . . , T and U (c∗) ≥ U (c) for all
c ∈ C such that c(0) ≤ xθ (0) + e0, c(t) ≤ xθ (t) for t = 1, . . . , T for some θ ∈ Θ . We make
the following assumption:

Assumption 7 There exists an optimal solution to the consumption-portfolio problem for
an agent with preferences as in (3.2) and initial endowment e0.

As a consequence of the strict monotonicity of the period-utilities, the budget constraint is
binding at the optimum, namely c∗(0) = xθ∗(0) + e0 and c∗(t) = xθ∗(t) for t = 1, . . . , T .

7 The function u:�t+1→� is strictly increasing if u(c0, . . . , ct ) > u(c̃0, . . . , c̃t ) for every pair
(cs )0≤s≤t , (c̃s )0≤s≤t such that cs ≥ c̃s for all s and cs̄ > c̃s̄ for at least one s̄.
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To any optimal consumption-portfolio choice (c∗, θ∗) for an agentwith preferences as in (3.2)
and initial endowment e0, we associate the optimal intertemporal wealth W ∗ = {W ∗(t)}T

t=0
generated by θ∗, that is

W ∗(t) =
{

e0 t = 0
θ∗(t − 1) · [S(t) + d(t)], t = 1, . . . , T .

Note that W ∗(t) = xθ∗(t) + Vθ∗(t) = c∗(t) + Vθ∗(t) for t = 1, . . . , T − 1.
Fix now t ∈ {0, 1, . . . , T −1}, a sequenceof past consumptions c0,t−1 and aFt -measurable

random variable W . An agent who, at time t , has a level of wealth W , can choose among the
infinitely many consumption-portfolio pairs such that c(t)+Vθ (t) ≤ W and c(s) ≤ xθ (s) for
s > t . Every pair determines a “remaining utility” (conditionally to the information available
at time t) which is a Ft -measurable random variable. The proper notion of supremum to
employ is therefore the one of essential supremum. We recall here that for any set Φ of
random variables, there exists a random variable ϕ∗, called the essential supremum of Φ and
denoted as ϕ∗ = ess sup

ϕ∈Φ

ϕ, such that: (i) ϕ∗ ≥ ϕ P-a.s for all ϕ ∈ Φ; (ii) any other random

variable ϕ̃ such that ϕ̃ ≥ ϕ for all ϕ ∈ Φ satisfies ϕ̃ ≥ ϕ∗ P-a.s. ([11], Theorem A.18).
The maximum remaining utility (or continuation utility) at time t for an agent whose current
level of wealth is W , is the random variable defined as follows

H(t, c0,t−1, W ) ≡ ess sup
(c,θ)∈C×Θ

T
∑

s=t

Et
[

us(c0,t−1, ct,s)
]

s.t.

{

c(t) + Vθ (t) ≤ W
c(s) ≤ xθ (s) s = t + 1, . . . , T

(3.3)

for t = 0, 1, . . . , T , where Et [ · ] denotes the conditional expectation with respect to Ft . We
assume that the integrals E

[

us(c0,t−1, ct,s)
]

(and hence the conditional expectations in (3.3))
are well defined and, for all consumption levels satisfying the budget constraint at time t, they
are either finite or take the value −∞ (in which case we set Et

[

us(c0,t−1, ct,s)
] = −∞). In

particular, when c0,t−1 = c∗
0,t−1 = (c∗

0, . . . , c∗
t−1) andW = W ∗(t), then H(t, c∗

0,t−1, W ∗(t))
represents the maximum remaining utility given the optimal past consumptions and the opti-
mal wealth. Battauz et al. [2] in Proposition 1 prove that, in this framework, the value function
H is well-defined and finite at the optimum, and it satisfies the Dynamic Programming Prin-
ciple, that is

H
(

t, c∗
0,t−1, W ∗(t)

) =
T

∑

s=t

Et
[

us
(

c∗
0,s

)]

= ut
(

c∗
0,t

) + Et
[

H
(

t + 1, c∗
0,t , W ∗(t + 1)

)]

. (3.4)

3.2 The Envelope results

In what follows, we consider the time t as fixed and we let H(c0,t−1, W ) ≡ H(t, c0,t−1, W )

to streamline the notation. Given the stream of past-optimal consumptions c∗
0,t−1, a strategy

θ and a level of wealth W , we define the map F(c∗
0,t−1, θ, W ) as follows:

F
(

c∗
0,t−1, θ, W

) = ut
(

c∗
0,t−1, W − Vθ (t)

)

+Et

[
T

∑

s=t+1

us
(

c∗
0,t−1, W − Vθ (t), xt+1,s(θ)

)

]

(3.5)
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The strict monotonicity of the period-utilities forces the constraints to be binding, which
implies that problem (3.3) is equivalent to

H
(

c∗
0,t−1, W

) ≡ ess sup
θ∈Θt

F
(

c∗
0,t−1, θ, W

)

. (3.6)

where Θt is the linear space of strategies that are admissible from time t on, that is the set
of sequences θ = {θ (s)}T −1

s=t of J -dimensional, Fs−measurable random variables such that
Vθ (s), xθ (s) ∈ L p(Fs) for s = t, . . . , T . From now on we assume W ∈ L p(Ft ) and that
F(c∗

0,t−1, θ, W ) takes values in L1(Ft ) in a neighborhood of the optimal wealth W ∗(t), so
that our initial problem takes the form (2.1), with the parameter W lying in the Banach space
L p(Ft ) and the objective function taking values in the Banach lattice L1(Ft ).

We are interested in the first place to relate the differentiability of F with respect to wealth
and the differentiability of the period utilities with respect to consumption. In particular,
we observe that, since all future period utilities depend on current consumption, the differ-
entiability (and the differential) of F with respect to current wealth, will depend not only
on the differentiability (and differential) of the current period utility with respect to current
consumption, but on those of all future period-utilities. To see this more precisely, let

ũs,θ ( · ) ≡ us
(

c∗
0,t−1, · , xt+1,s(θ)

)

s = t, . . . , T, (3.7)

take any strategy θ ∈ Θt , any two wealth levels W1, W2 ∈ L p(Ft ), let ci (t) = Wi − Vθ (t)
for i = 1, 2 and exploit (3.5) to see that

F(c∗
0,t−1, θ, W1) − F(c∗

0,t−1, θ, W2) = ũt,θ (W1 − Vθ (t)) − ũt,θ (W2 − Vθ (t))

+Et

{
T

∑

s=t+1

[

ũs,θ (W1 − Vθ (t)) − ũs,θ (W2 − Vθ (t))
]

}

= ũt,θ (c1(t)) − ũt,θ (c2(t))

+Et

{
T

∑

s=t+1

[

ũs,θ (c1(t)) − ũs,θ (c2(t))
]

}

which shows that, since in this case all future period utilities from time t on depend in general
also on time t consumption, the increment of F corresponds now to the sum of the conditional
expected increments in all future period utilities. The correct relation is stated in the next
proposition:

Proposition 3 Assume that the functions ũs,θ ( · ) = us(c∗
0,t−1, · , xt+1,s(θ)) are Gateaux

(Fréchet) differentiable at some point W − Vθ (t) for all s = t, . . . , T . Then the function
F(c∗

0,t−1, θ, · ) is Gateaux (Fréchet) differentiable at W and, in this case,

DF(c∗
0,t−1, θ, W )(X) =

T
∑

s=t

Et
[

Dũs,θ (W − Vθ (t))(X)
]

. (3.8)

This proposition is an immediate consequence of the following lemma.

Lemma 3 Let g : L p → L1 be Gateaux (resp. Fréchet differentiable) at some point W ∈ L p.
Then the function G(W ) = Et [g(W )] is Gateaux (resp. Fréchet differentiable at W ) and
DG(W )(X) = Et [Dg(W )(X)].
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Proof The arguments for the Gateaux and Fréchet differential case are the same. Therefore,
we will prove the result only for the case of Fréchet differentiability. Since g is Fréchet
differentiable at W , we have that

lim‖X‖L p →0

E [|g(W + X) − g(W ) − Dg(W )(X)|]
‖X‖L p

= 0.

On the other hand, exploiting the properties of conditional expectation and, in particular,
Jensen’s inequality, we obtain that:

E [|G(W +X)−G(W )−Et [Dg(W )(X)]|] = E [|Et [g(W +X)−g(W )−Dg(W )(X)]|]
≤ E [Et [|g(W + X) − g(W ) − Dg(W )(X)|]]
= E [|g(W + X) − g(W ) − Dg(W )(X)|] .

It follows immediately that

lim‖X‖L p →0

E [|G(W + X) − G(W ) − Et [Dg(W )(X)]|]
‖X‖L p

= 0

which implies that G is Fréchet differentiable at W and DG(W ) = Et [Dg(W )]. 
�
We are now ready to show, as a first result, that the Envelope condition holds when the

value function and the period utilities are differentiable.

Proposition 4 Let (c∗, θ∗) be an optimal consumption-portfolio pair. Assume that all the
time s-period utilities ũs,θ∗(·) = us(c∗

0,t−1, · , c∗
t+1,s) are Gateaux (Fréchet)-differentiable

at the optimal consumption c∗(t) and the time t value function H(c∗
0,t−1, · ) is Gateaux

(Fréchet)-differentiable at the optimal wealth W ∗(t) = c∗(t) + Vθ∗(t). Then

DH
(

c∗
0,t−1, W ∗(t)

)

(X) =
T

∑

s=t

Et
[

Dũs,θ∗(c∗(t))(X)
]

. (3.9)

Proof An immediate consequence of the Dynamic Programming Principle (3.4) is that the
optimal strategy θ∗ satifies F(c∗

0,t−1, θ
∗, W ∗(t)) = H(c∗

0,t−1, W ∗(t)). Proposition 3 implies
that F(c∗

0,t−1, θ
∗, W ) is differentiable at W ∗(t) and

DF
(

c∗
0,t−1, θ

∗, W ∗(t)
)

(X) =
T

∑

s=t

Et
[

Dũs,θ (W ∗(t) − V ∗
θ (t))(X)

]

.

Theorem 1 yields the claim. 
�
Remark In the special case where the period-utilities do not depend on past consumptions,
but only on current consumption, that is ut (c(0), . . . , c(t)) ≡ ut (c(t)), the differentiability of
F with respect to current wealth is equivalent to the differentiability uniquely of the current
period-utility ut with respect to current consumption. In particular, in this case, formula
(3.8) becomes DF(θ, W ) = Dut (W − Vθ (t)) = Dut (c(t)) and the Envelope formula (3.9)
reduces to DH(W ∗(t)) = Dut (c∗(t)).

A first set of conditions on the primitives of the optimal consumption-portfolio problem
which guarantees that the value function is differentiable consists in requiring the period
utilities to be concave. If all the period utilities from t on are concave then F(c0,t−1, θ, W ) is
manifestly concave with respect to both θ and W . The following result is then an immediate
consequence of Theorem 2 in Sect. 2.

123



Math Finan Econ (2015) 9:303–323 317

Proposition 5 If the period utilities us are concave, and Gateaux (resp. Fréchet)-
differentiable at the optimal consumption c∗(t) , for all s = t . . . , T , then the value function is
concave, continuous and Gateaux (resp. Fréchet)-differentiable at the optimal wealth W ∗(t)
and equality (3.9) holds.

Consider now the general case in which concavity of the period utilities is not required. To
apply our general Envelope results to this asset pricing setting, we rephrase the assumptions
of Sect. 2.3 in terms of the period utilities us or, equivalently, in terms of the transformed
period utilities ũs,θ defined in (3.7).

Remark To see why imposing conditions on us is tantamount to imposing them on ũs,θ , let

C∗(W ∗(t)) =
{

c ∈
T

∏

s=t

L p(Fs) : c(t) = W ∗(t) − Vθ (t)
c(s) = xθ (s) for s = t . . . , T,

for some θ ∈ Θt

}

be the set of consumption streams admissible from t onward, given the optimal wealth W ∗(t),
and observe that ũs,θ is in fact the restriction of us to C∗(W ∗(t)). Let now c(t) = W ∗(t) −
Vθ (t), c(s) = xθ (s) for s = t . . . , T, θ ∈ Θt and consider a perturbation X ∈ L p(Ft ) of
c(t). Then

us
(

c∗
0,t−1, c(t) + X, ct+1,s

) − us
(

c∗
0,t−1, c(t), ct+1,s

) = ũs,θ (c(t) + X) − ũs,θ (c(t))

from which, taking the proper limits, one sees that the period-utility us(c∗
0,t−1, · , ct+1,s) is

differentiable at c(t) if and only if ũs,θ is differentiable at c(t), and Dus(c(t)) = Dũs,θ (c(t)).
Assumptions 3 and 4 become then a sort of equidifferentiability and uniform boundedness,
respectively, of the transformed period utilities ũs,θ over the set of these admissible con-
sumptions levels produced by deviations from the optimal strategy.

Assumption 8 (i) For every θ ∈ Θt , the function ũs,θ is Fréchet-differentiable at c(t) =
W ∗(t) − Vθ (t) and for every X ∈ L p(Ft ) with a sufficiently small norm

ũs,θ (c(t) + X) − ũs,θ (c(t)) = Dũs,θ (c(t))(X) + σs(c(t), X)

where |σs(c(t), X)| ≤ ξs‖X‖L p and ξs ∈ L1(Ft ).
(ii) For every X ∈ L p(Ft ) there exists an integrable random variable ΛX such that for all

θ ∈ Θt , c(t) = W ∗(t) − Vθ (t)

∣
∣Dũs,θ (c(t))(X)

∣
∣ < ΛX ‖X‖L p .

If this assumption is satisfied, the continuity of the value function follows from our general
Proposition 2.

Proposition 6 If for all s = t . . . , T the period utilities us satisfy Assumption 8, then the
value function is finite in a neighborhood of the optimal wealth and continuous at W ∗(t).

Proof Assumption 8 (i) implies the equidifferentiability of F(c∗
0,t−1, θ, W ∗(t)) (Assump-

tion 3). Indeed, let c(t) = W ∗(t) − Vθ (t) ∈ C∗(W ∗(t)). Then, exploiting Assumption 8 (i)
and Proposition 3 we get
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F(c∗
0,t−1, θ, W ∗(t) + X) − F(c∗

0,t−1, θ, W ∗(t))

= Et

{
T

∑

s=t

[

ũs,θ (c(t) + X) − ũs,θ (c(t))
]

}

=
T

∑

s=t

Et
[

Dũs,θ (W ∗(t) − Vθ (t))(X)) + σs(c(t), X)
]

= DF(c∗
0,t−1, θ

∗, W ∗(t))(X) +
T

∑

s=t

Et [σs(c(t), X)] .

Moreover, Jensen’s inequality and Assumption 8 (i) imply that

|Et [σs(c(t), X)] | ≤ Et [|σs(c(t), X)|] ≤ ξs‖X‖L p

hence Assumption 3 is fulfilled. The above equality also shows that Assumption 3 (ii) is
equivalent to Assumption 4. Then we can apply Proposition 2 to get the claim proved. 
�

To obtain the differentiability of the value function (and, as a consequence, the Envelope
formula) we reformulate Assumptions 5 and 6 in terms of the Gateaux and the Fréchet
differentials, respectively, of the transformed period utilities ũs,θ .

Let Θ∗(W ) denote the set of the optimal strategies from time t on, given the wealth level
W and the optimal past consumption stream c∗

0,t−1, that is:

Θ∗(W ) = {

θ ∈ Θt : F
(

c∗
0,t−1, θ, W

) = H
(

t, c∗
0,t−1, W

)}

.

An immediate consequence of the Dynamic Programming Principle (3.4) is that Θ∗(W ) is
non-empty when W = W ∗(t), where W ∗(t) is the time t wealth generated by the optimal
consumption-portfolio strategy (c∗, θ∗).

Assumption 9 (i) There exists r > 0 such that for each W ∈ B(W ∗(t), r) the set Θ∗(W )

is not empty.
(ii) For every θ ∈ Θt , the function ũs,θ is Gateaux differentiable at c(t) = W ∗(t) − Vθ (t)

and
∣
∣
∣
∣

ũs,θ (c(t) + h X) − ũs,θ (c(t))

h
− Dũs,θ (c(t))(X)

∣
∣
∣
∣
≤ Σt (W ∗, X, h)

for every X ∈ L p(Ft ), for very sufficiently small h ∈ �+, for some Σt (W ∗, X, h) ∈
L1(Ft ) such that limh→0 ‖Σt (W ∗, X, h)‖L1 = 0.

(iii) Let X ∈ L p(Ft ) and h ∈ �+ such that W = W ∗ + h X ∈ B(W ∗(t), r); for every
θ∗ ∈ Θ∗(W ∗),

lim
h→0

sup
θW ∈Θ∗(W )

∥
∥Dũs,θ (W ∗ − VθW (t))(X) − Dũs,θ∗(W ∗ − V ∗

θ (t))(X)
∥
∥

L1 = 0

Assumption 10 (i) There exists r > 0 such that for each W ∈ B(W ∗(t), r) the set Θ∗(W )

is not empty.
(ii) For every θ ∈ Θt , the function ũs,θ is Fréchet-differentiable at c(t) = W ∗(t) − Vθ (t)

and

ũs,θ (c + X) − ũs,θ (c) = Dũs,θ (c)(X) + σt (c, X)

where |σt (c, X)| ≤ ξ‖X‖L p and ξ ∈ L1(Ft ).
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(iii) Let W ∈ B(W ∗(t), r); for every θ∗ ∈ Θ∗(W ∗),

lim‖W−W ∗‖L p→0

sup
θW ∈Θ∗(W )

sup
‖X‖L p ≤1

∥
∥Dũs,θ (W ∗ − VθW (t))(X)

−Dũs,θ∗(W ∗ − V ∗
θ (t))(X)

∥
∥

L1 = 0

Theorems 3 and 4 imply immediately the following Envelope theorem for state-dependent
utilities and for a general information structure.

Proposition 7 1. If for all s = t . . . , T the period utilities us satisfy Assumption 9, then
the value function is Gateaux-differentiable at the optimal wealth W ∗(t).

2. If for all s = t . . . , T the period utilities us satisfy Assumption 10, then the value function
is Fréchet-differentiable at the optimal wealth W ∗(t).

3. In both cases (3.9) holds.

An important application of this general result consists in giving a precise definition
of marginal utility of wealth for this general framework, and in showing how the intuitive
meaning of Envelope condition as the equality between marginal utility of consumption and
wealth extends to this general framework. Given the differential of H , we define a linear and
continuous functional EH : L p(Ft ) → � via

EH (Y ) = E
[

DH
(

c∗
0,t−1, W ∗(t)

)

(Y )
]

for all Y ∈ L p(Ft ).

Definition 1 We call marginal utility of optimal time t-wealth the unique random variable8

π H
t ∈ Lq(Ft ) such that E

[

π H
t Y

] = E
[

DH(c∗
0,t−1, W ∗(t))(Y )

]

for all Y ∈ L p(Ft ).

To define the marginal utility of time t-consumption, we first define the marginal time
s-utility of optimal time t-consumption:

Definition 2 We call marginal time s-utility of optimal time t-consumption the unique ran-
domvariableπu

ts ∈ Lq(Ft ) such that E
[

Dũs,θ∗(c∗(t))(Y )
] = E

[

πu
tsY

]

for all Y ∈ L p(Ft ).

In words, πu
ts measures the impact of a marginal change in the time t optimal consumption

on the time s ≥ t period utility. The total impact of a marginal change in the time t optimal
consumption is then measured by the quantity πu

t defined implicitly by summing up the
impacts on each of the future period utilities, that is:

E
[

πu
t Y

] =
T

∑

s=t

E
[

Dũs,θ∗(c∗(t))(Y )
] =

T
∑

s=t

E
[

πu
tsY

] = E

[
T

∑

s=t

πu
tsY

]

Therefore, exploiting the uniqueness of the Riesz decomposition, we give the following
definition:

Definition 3 We call marginal utility of optimal time t-consumption the random variable

πu
t =

T
∑

s=t

πu
ts .

8 Existence and uniqueness of such a random variable are guaranteed by Riesz representation theorem (see
also Duffie and Skiadas [10] for the definition of state-price densities by the Riesz representation property of
the utility gradient).
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Remark In the special case in which ut is state-independent and depend only on current
consumption (i.e. ut : � → �) and differentiable, then Dut (c∗(t))(Y ) = u′

t (c
∗(t))Y , which

shows how in that special caseπu
t = u′

t (c
∗(t)) coincides with the standard notion of marginal

utility.

Since, by the law of iterated expectation, E
[

Et
[

Dũs,θ∗(c∗(t))(Y )
]] = E

[

Dũs,θ∗(c∗(t))
(Y )

] = E
[

πu
tsY

]

, Proposition 4 and, once again, the uniqueness of the Riesz decomposition,
together imply the classical Envelope condition for marginal utilities.

Corollary 1 Under the assumptions of Proposition 4, π H
t = πu

t , namely, the marginal utility
of optimal time t-wealth equals the marginal utility of optimal time t -consumption.

The Dynamic Programming Principle allows to relate marginal utilities of today with
marginal utilities of tomorrow. In [2], we showed (Proposition 2 and Corollary 1) that when
the value function is differentiable at the optimum wealth and there exists a numeraire with
bounded returns, the Dynamic Programming Principle holds and the marginal utilities of
optimal wealth are state-price densities. We recall that a numeraire with bounded returns9

is a strictly positive self financing portfolio VB N such that Vθ B N (t + 1)/Vθ B N (t) ∈ L∞ for
all t . We can use that result to state a Euler’s equation in terms of the marginal utility of
consumptions.

Corollary 2 Under the assumptions of Proposition 4, assume that there exists a numeraire
with bounded returns. Then (π H

t )0≤t≤T , or equivalently (πu
t )0≤t≤T , are state-price densities,

namely

(i) π H
t ∈ Lq(Ft ) and P(π H

t > 0) = 1

(ii) S j (t) = 1

π H
t

Et
[

π H
t+1

(

S j (t +1)+(d j (t +1)
)] = 1

πu
t

Et
[

πu
t+1

(

S j (t +1),+(d j (t +1)
)]

for j = 1, . . . , J, t = 0 . . . , T − 1.

4 Conclusions

In this paper we have extended a general class of Envelope results, due to Benveniste and
Scheinkman [3] and Milgrom and Segal [14], to the case in which the objective function
takes values in a general Banach lattice, and not necessarily the real line. Employing the
concept of differentiability in Banach spaces, our main results consist in identifying a set of
assumptions under which the value function is differentiable, and its differential coincides
with the differential of the objective function, seen as a function of the parameters. We then
apply our general result to the consumption-portfolio problem of an agent with time additive
but possibly state-dependent utility, in a context in which a general information structure is
considered. In this setting, at any time t the value function (maximum remaining utility) is
in fact a random variable itself, and not just a real-valued function defined on a set of state
variables. To investigate if the value function for this problem has a well-defined marginal
utility of wealth, defined as the differential of the value seen as a function of wealth levels
accumulated up to time t , we recognize that the value function takes values in L1, the space
of integrable random variables, and that L1 is indeed a Banach lattice. This allows us to bring
to full bearing our general results to identify a set of conditions under which the marginal

9 An example is the standard money market account.
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utility of wealth is well defined and coincides with the marginal utility of consumption, when
the last one exists.

5 Differentiability and concavity in normed vector spaces

In this section we summarize the main definition and results for cone-concave functions on
vector spaces and, in particular, on the relation between concavity and differentiability. Let
X , Y be normed vector spaces and G a mapping defined on an open domain U ⊂ X , with
values in Y .

Definition 4 We say that G admits derivative at a point u ∈ U in a direction x ∈ X if the
limit:

G ′(u; x) := lim
h→0+

G(u + hx) − G(u)

h
(5.1)

exists, where the limit is meant in Y -norm.
The function G is said to be Gateaux differentiable at u if it is directional differentiable at

u in every direction x ∈ X and the directional derivative G ′(u; · ) : X → Y is a continuous
and linear operator. In this case, we denote this operator with DG(u) (namely, DG(u)(x) =
G ′(u; x)) and call it the Gateaux differential of G at u.

Definition 5 We say that G is Fréchet-differentiable at u if there exists a continuous and
linear operator DG(u) : X → Y such that

lim‖x‖X →0

‖G(u + x) − G(u) − DG(u)(x)‖Y

‖x‖X
= 0 (5.2)

The operator DG(u) is called the Fréchet differential of G at u.

The results which follow can be found in [6,16,21]. Usually, definition and results are
stated for convex function. Since we work under a concavity assumption, we reformulated
them in the appropriate form for concave functions with values in the order complete Banach
lattice (Y, C,≥), where C is the positive cone of Y .

Definition 6 A function F : X → Y is C-concave (or simply concave) if for all x, y ∈ X ,
λ ∈ [0, 1]

F(λx + (1 − λ)y) ≥ λF(x) + (1 − λ)F(y),

namely, F(λx + (1 − λ)y) − λF(x) + (1 − λ)F(y) ∈ C .

The sets of points at which F is finite is called the essential domain of F and denoted by
dom F . The algebraic interior of F is denoted coreF .

Proposition 8 (Borwein [6], Proposition 2.3) Let G : X → Ȳ be concave. Assume that
there exists a function F : X → Ȳ such that G(x) ≥ F(x) for all x ∈ X . If F is continuous
at some point x0 ∈ X , then G is continuous at x0.

Let now L(X, Y ) denote the set of continous and linear operators between X and Y and
let F be a concave function from X to Ȳ .
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Definition 7 An operator L ∈ L(X, Y ) is called a superdifferential for F at x0 if for all
x ∈ X

L(x) ≥ F(x0 + x) − F(x0).

The superdifferential set is denoted by ∂ F(x0).

Proposition 9 (Borwein [6], Proposition 3.2 (a) and Proposition 3.7 (a)) If F : X → Ȳ is
concave, with x0 ∈ coreF , then

F>(x0, x) = sup
h>0

F(x0 + hx) − F(x0)

h

exists and is everywhere finite and superlinear.

Proposition 10 (Valadier [21], Proposition 4 and Théorème 6) If F : X → Ȳ is concave
and x0 ∈ coreF then:

(i) L ∈ L(X, Y ) is a superdifferential for F at x0 if and only if L(x) ≥ F>(x0, x) for all
x ∈ X;

(ii) if in addition F is continuous at x0, then ∂ F(x0) is non-empty, convex and equicontinuous
in L(X, Y ) and

F>(x0, x) = min{L(x) : L ∈ ∂ F(x0)}.
Proposition 11 (Papageorgiou [16], Theorem 4.6) Let F : X → Ȳ be a concave function.
If F is continuous at x0, then F is Gateaux-differentiable at x0 if and only if ∂ F(x0) is a
singleton.
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