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Abstract Westudy the optimal dynamic portfolio exposure to predictable default risk,
taking inspiration from the search for yield by means of defaultable assets observed
before the 2007–2008 crisis and in its aftermath. Under no arbitrage, default risk is
compensated by an ‘yield pickup’ that can strongly attract aggressive investors via
an investment-horizon effect in their optimal non-myopic portfolios. We show it by
stating the optimal dynamic portfolio problem of Kim and Omberg (Rev Financ Stud
9:141–161, 1996) for a defaultable risky asset and by rigorously proving the existence
of nirvana-type solutions.We achieve such a contribution to the portfolio optimization
literature by means of a careful, closed-form-yielding adaptation to our defaultable
asset setting of the general convex duality approach of Kramkov and Schachermayer
(Ann Appl Probab 9(3):904–950, 1999; Ann Appl Probab 13(4):1504–1516, 2003).
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1 Introduction

The massive risk taking observed before the 2007–2008 financial crisis did not shun
defaultable assets. A chief example is offered by the banking industry’s course of
action during the bullish years up to early 2007. A large quantity of assets exposed
to default risk did find its way into commercial and investment banks’ portfolios,
the corresponding escalation of which was mainly backed by short-term wholesale
funding. More broadly, before and after the market turmoil of 2007–2008, sophisti-
cated investors with possibly long investment horizons have been quite sensitive to
the higher yield provided by defaultable assets (e.g., Rajan 2005; Diamond and Rajan
2009; Gennaioli et al. 2014). Such a reaching-for-yield behavior involving default-
able assets has been especially pronounced at times of low volatility and of surging
markets. What does optimal dynamic portfolio theory have to say about the search for
yield carried out by means of defaultable assets?

We offer a novel closed-form optimal portfolio analysis of non-myopic speculation
on predictable default risk, which is inspired by the reaching-for-yield behavior that
has been involving assets exposed on predictable default risk in the years preceding
and following the 2007–2008 crisis.We show that the ability of a default-prone asset to
provide an ‘yield pickup’ (an excess expected return that endures at times of subdued
volatility and of high market value) can lead an aggressive investor (he/she is less
averse to risk than a log-utility agent) to take significant long geared positions in
the asset through an investment-horizon effect. We assume a Cox and Ross (1976)
defaultable asset value process, forwhich no arbitrage comes from the balance between
‘yield pickup’ and predictable default risk. Such a balance is rooted in the inverse
relationship between asset returns and their subsequent volatility: upward asset-value
paths that enjoy tremendous Sharpe ratios (paths characterized by shrinking volatility)
are counteracted by downward asset-value paths that end up with predictable default
(paths characterized by swelling volatility). In ourmodel, Sharpe ratio risk is intimately
linked to predictable default risk. The aggressive investor non-myopically speculates
on Sharpe ratio risk by going long the asset (the investor seeks more wealth in the
states coupled with a high productivity of wealth). The aggressive investor places a
non-myopic (possibly geared) bet on the upward asset-value paths to unfold before
his/her investment maturity. A clear investment-horizon effect emerges. The longer
the maturity is, the more muscular and geared non-myopic the speculation becomes:
the bet has more time to make good.

Our paper is related to the search-for-yield literature, as we use optimal dynamic
portfolio theory to assess why non-conservative long-term financial institutions like
banks could engage in conspicuous levered reaching-for-yield activities that expose
them to default risk. We contribute to the important debate on banks’ risk taking
and search for yield (e.g., Dell’Ariccia et al. 2014; Buch et al. 2014; Jiménez et al.
2014; Ioannidou et al. 2015) by emphasizing that banks’ long investment horizon is
a distinct optimal portfolio channel of momentous exposure to default risk. On the
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Reaching nirvana with a defaultable asset? 33

other hand, our optimal portfolio analysis offers a precise market-timing rationale
for the yield-seeking efforts observed even for less aggressive investors. Kacperczyk
and Schnabl (2013) show that relevant segments of the shadow banking system like
the money funds have been reaching for yield by increasing their portfolio exposure
to default-prone commercial paper and bank obligations in the run-up to the crisis.
Di Maggio (2013), Chodorow-Reich (2014), and Di Maggio and Kacperczyk (2016)
show a similar behavior for the money funds in the years following the crisis. Con-
sistently, our optimal portfolio results imply that conservative financial institutions
with short investment horizons increase their optimal exposure to defaultable assets
at times of low volatility and of surging market value while their hedging demand
is minor. We also show that conservative investors with longer horizons exhibit the
same optimal portfolio response to low volatility and high valuations while their hedg-
ing demand remains bounded albeit stronger (Becker and Ivashina (2015) document
insurance companies’ portfolio tilt toward higher yield bonds exposed to corporate
default risk).

Our paper is linked to the dynamic asset allocation literature that examines the opti-
mal non-myopic portfolio implications of Sharpe ratio risk. Related studies include,
e.g., Merton (1971), Kim and Omberg (1996), Bekaert and Ang (2002), Wachter
(2002), Lioui and Poncet (2003), Guidolin and Timmermann (2007), Liu (2007),
Guidolin and Hyde (2012), Della Corte et al. (2012), Larsen and Munk (2012), and
Branger et al. (2013), who have, however, focused on non-defaultable risky assets
only. Our analysis of non-myopic speculation on predictable default risk is associated
with the so-called nirvana solution to optimal dynamic portfolio problems. Nirvana
optimal portfolio solutions grow to large levels over suitably long investment horizons,
and they have been originally conjectured by Kim and Omberg (1996) for dynamic
asset allocation problems characterized by subdued levels of risk aversion and by fee-
ble mean-reversion in the Sharpe ratio process. Kim and Omberg (1996) consider a
non-defaultable asset and assume its Sharpe ratio to be a stationary Gaussian process.
Battauz et al. (2015) provide a convex duality-based derivation of the nirvana solutions
in the original Kim andOmberg setting. In this paper, we prove the existence of nirvana
solutions in the presence of a defaultable asset and of a non-stationary non-Gaussian
Sharpe ratio. We argue that frail/absent mean-reversion makes the unfolding of paths
with swelling Sharpe ratios a plausible event to punt on for non-myopic aggressive
investors.

Our paper is also related to the literature on the analytical/numerical solution tech-
niques for optimal dynamic portfolio problems. Kim and Omberg (1996) do not
provide verification theorems for their Hamilton–Jacobi–Bellman approach results
and in particular for their nirvana-case conjecture. Such a challenge for the Hamilton–
Jacobi–Bellman approach remains open because the unbounded nirvana-case value
function lacks the usual differentiability requirements (see, e.g., Gozzi and Russo
2006). An alternative route is the use of duality-based solution methods. Since our
financial market is complete, one would be tempted to employ the standard mar-
tingale method of Cox and Huang (1989). However, our setting does not meet the
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Cox and Huang (1989) price-system assumptions.1 We overcome this difficulty by
using the more general convex duality approach of Kramkov and Schachermayer
(1999, 2003), which is expressly designed to solve optimal dynamic asset allocation
problems for a very broad class of arbitrage-free risky markets. Our closed-form opti-
mal portfolio results contribute a significant example of the flexibility of such a general
approach, thus introducing a useful technical toolkit to the financial-economics read-
ership. Numerical martingale methods for optimal dynamic portfolio problems are
discussed by, e.g., Detemple et al. (2003, 2005).

The paper is organized as follows: Sect. 2 details the features of the defaultable asset
value. Section 3 shows that large long geared positions can be the rational outcome
of the dynamic portfolio problem. Section 4 draws the conclusions, and ‘Appendix’
collects the proofs of the propositions in Sect. 3.

2 The defaultable asset

Given a terminal investment date T (0 < T < +∞), there are essentially two prop-
erties we want the value process (Pt )0≤t≤T of the risky defaultable asset to have: (i)
it must be arbitrage-free and (ii) it must support an ‘yield pickup’ (a positive excess
expected return that endures at times of subdued volatility). Property (i) is meant to
rule out the possible emergence of extreme portfolios due to the existence of free
lunches. Property (ii) is meant to bestow the asset with a glamor similar to the one
defaultable assets seemed to possess in the years straddling the crisis.

The Cox and Ross (1976) value process parsimoniously meets the two properties
of interest. Its dynamics is

d Pt = Pt

(
r +√

Ytσt

)
dt + Ptσt d Zt , σt ≡ Pt

− 1
2 , P0 = p ≥ 0, (2.1)

Yt ≡
(

ξ

σt

)2

= ξ2Pt (squared Sharpe ratio), (2.2)

where the excess expected return on the asset is ξ > 0 and the risk-free rate is
r > 0. (Zt )0≤t≤T is a Wiener process under the objective probability measure P. The
riskless security with value Bt = ert is the money market account. From the boundary
classification, the point 0 is an attainable state for the process (Pt )0≤t≤T . The point 0
is an exit boundary2 (bankruptcy) and is consistent with zero recovery at default.3

Predictable default becomes possible only if the asset returns’ local volatility inflates
as the asset value deteriorates. Importantly, what makes predictable default possible
also engenders what we refer to as the asset’s ‘yield pickup’: the excess expected return

1 Cox and Huang (1989) require the global Lipschitz continuity of the diffusive coefficient for the risky
asset-value process [see Conditions A and B at p. 46 in Cox and Huang (1989)]. By contrast, the diffusive
coefficient in our setting is the square root of the risky asset value.
2 See, for instance, Davydov and Linetsky (2001), p. 952, first paragraph, with St = Pt and p = 1

2 .

3 The objective probability of the asset defaulting within the date T > 0 is

P
[
Ph = 0, 0 ≤ h ≤ T P0 = p

] = �
(

2(r+ξ)p
1−e−(r+ξ)T , 1

)
, where � (k, l) = ∫+∞

k ul−1e−udu, k ≥ 0 is

the incomplete gamma function [see, e.g., the Proposition 1 in Campi and Sbuelz (2005)].
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ξ is positive and constant, no matter how small, along upward asset-value paths, the

local volatility P− 1
2 is. The Cox and Ross (1976) value process naturally possesses

property (ii).
The Cox and Ross (1976) value process does enjoy property (i), as the following

proposition maintains.

Proposition 2.1 The value process with dynamics described by (2.1) complies with
the no-arbitrage assumption. In particular, there exists a unique equivalent martingale
measure, with Radon–Nikodym density

η = exp

(
−
∫ T

0

√
Ysd Zs − 1

2

∫ T

0
Ysds

)
. (2.3)

Proof Theorem 2.3 in Delbaen and Shirakawa (2002) holds. ��
Under no arbitrage, predictable default risk balances the presence of bullish asset-

value paths along which the Sharpe ratio
√

Y bloats. If no free lunches are to emerge,
predictable default risk must counteract the ‘yield pickup’ offered by the defaultable
asset. This is borne out by the following proposition.

Proposition 2.2 Consider the positive value process with dynamics described
by (2.1), that is (Pt )0≤t≤T under the conditional objective probability measure
P [ · | PT > 0 ]. For such a positive value process there always exist arbitrage oppor-
tunities.

Proof Theorem 4.2 of Delbaen and Shirakawa (2002) holds. ��
Weitzman (1998, 2009), Gollier (2002), and Martin (2012) show that the no-

arbitrage value of a long-dated asset may be dictated by extreme outcomes. In our
Cox and Ross (1976) setting the no-arbitrage value of the defaultable asset comes
from the balance between the predictable default event and the extreme outcome rep-
resented by exploding Sharpe ratios. In the next section, we show that the fair pricing
of such an extreme outcome does not deter rational aggressive investors with a suf-
ficiently long investment maturity from massively gambling on it. The allure of the
asset-value paths along which the Sharpe ratio

√
Y inflates can become supreme for

aggressive investors, making them ‘rationally forget’ about the balancing force of
default risk.

3 A duality approach to dynamic asset allocation

The investor seeks to maximize the expected utility from his/her terminal wealth by
allocating his/her capital to two assets, the risk-free asset and the defaultable asset
introduced in Sect. 2. There is no intermediate consumption or income. The investor
has constant relative risk aversion (CRRA) utility from terminal wealth,

U (z) =
{

z1−φ/ (1 − φ) for z > 0 ,

−∞ for z ≤ 0 ,

where the level of relative risk aversion equals the parameter φ > 0.
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36 A. Battauz et al.

By construction (see Equation 2.2), the squared Sharpe ratio (Yt )0≤t≤T of the
defaultable asset is always nonnegative and has square-root-type dynamics deprived
of mean-reversion,

dYt = Yt (r + ξ) dt + ξ
√

Yt d Zt , Y0 = y ≥ 0. (3.1)

The correlation between its innovations and the defaultable asset value innovations
is 1. The initial squared Sharpe ratio y supplies all the available information on the
investment opportunities. Indeed, Nielsen and Vassalou (2006) show that, in typical
continuous-time portfolio problems, the only time variation that matters for portfolio
choice is the time variation in the slope (the Sharpe ratio) and the intercept (the risk-free
rate) of the instantaneous capital market line.

Let W = (Wt )0≤t≤T be the value process of a self-financing portfolio, given the
investor’s initial wealth w. The discounted process is given by

W̃t = e−r t Wt = w +
∫ t

0
Hsd P̃s

where P̃t = Pt e−r t and the adapted portfolio quantity Ht represents the units of
the defaultable asset held at time t . We call the strategy H = (Ht )0≤t≤T admissible
if there exists some constant C > 0 such that

∫ t
0 Hsd P̃s ≥ −C almost surely for

any t ∈ [0, T ]. Admissibility rules out doubling strategies. The discounted monetary
investment in the defaultable asset at time t is

ψt = Ht P̃t .

We collect in the set W (w) all the nonnegative self-financing portfolios4 with initial
value w, and denote with W̃(w) the set of the corresponding discounted portfolios,
namely

W̃ ∈ W̃(w) ⇐⇒ W̃t = w +
∫ t

0
Hsd P̃s ≥ 0 almost surely for any t ∈ [0, T ] .

Kramkov and Schachermayer (1999, 2003) consider the general problem of expected
terminal wealth utility maximization in a market where arbitrage-free asset prices are
semimartingales. They solve it by employing a flexible duality approach based only on
the finiteness of the value function and on the non-emptiness of the set of martingale
measures, which is implied by the absence of arbitrage opportunities. The following
proposition uses the duality approach of Kramkov and Schachermayer (1999, 2003)
to express the investor’s value function in our Cox and Ross (1976) setting.5 The

4 The nonnegativity requirement is innocuous in our setting as the utility function U is −∞ for negative
wealth levels.
5 Battauz et al. (2015) apply the Kramkov and Schachermayer (1999, 2003) approach to the standard Kim
and Omberg (1996) portfolio problem with a non-defaultable risky asset.
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filtration representing the investor’s information meets the usual assumptions, so that
the conditional expectation at time t = 0 coincides with the unconditional expectation.

Proposition 3.1 If E
[
η
1− 1

φ

]
< +∞, the investor’s value function is

J (w, T, y) =
(

erT
)1−φ

sup
W̃∈W̃(w)

E[U (W̃T )]

and admits the representation

J (w, T, y) = U (werT )F (T, y) ,

F (T, y) =
(

E

[
exp

(
1 − φ

φ

∫ T

0

√
Yt d Zt + 1 − φ

2φ

∫ T

0
Yt dt

)])φ

.

Proof See ‘Appendix.’ ��

F (T, y) equals
(

E
[
η
1− 1

φ

])φ

and is the key ingredient of the value function as it

summarizes the dependence on the state variable y of the investor’s indirect utility. The

next proposition makes sure that the assumption E
[
η
1− 1

φ

]
< +∞ in Proposition 3.1

holds true for any risk-averse investor (φ > 0) and provides an explicit characterization
of F (T, y).

Proposition 3.2 Assume

T < T ∗ = 1√
q
ln

(
b + √

q

b − √
q

)
for 0 < φ < 1.

One has

F (T, y) = exp

(
y

a (e
√

qT − 1)√
q + b + (√

q − b
)

e
√

qT

)
,

with

a = 1

φ
− 1,

b = (r + ξ) + aξ = r + ξ

φ
> 0,

c = ξ2

4φ
> 0,

q = b2 − 4ac = r2 + 1

φ

(
(r + ξ)2 − r2

)
> 0.

Proof See ‘Appendix.’ ��

123
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Proposition 3.2 implies that, for investors less risk averse than the log-utility agent
(0 < φ < 1), the value function U

(
werT

)
F (T, Y ) is a nirvana solution in the sense

of Kim and Omberg (1996) since it diverges to +∞ as the investment horizon T
tends to the positive finite time T ∗ from the left. Notice that the value function for the
investors with 0 < φ < 1 remains bounded if T < T ∗, whereas the value function for
the investors with φ > 1 remains bounded for any T .

F (T, y) enters the investor’s marginal indirect utility of wealth and plays a major
role in the optimal dynamic portfolio, which is qualified in detail by the following
proposition.

Proposition 3.3 The optimal monetary investment in the defaultable asset is ψ∗
0 =

ψ∗ (w, T, y), where

ψ∗ (w, T, y) = w

(
y

φξ
+ ln F (T, y)

φ

)
.

Proof See ‘Appendix.’ ��
Proposition 3.3 states that the optimal fraction of wealth invested in the defaultable

asset contains two components. The first component,

y

φξ
,

is the myopic demand for the defaultable asset. It is the allocation that an investor
optimally holds if the investment maturity T shrinks to zero—the investor does not
care about future investment opportunities. The second component,

ln F (T, y)

φ
,

is the intertemporal non-myopic demand [see, for instance,Merton (1971)]. The reason
the investor forms non-myopic demands is to deal optimally with changes in future
investment opportunities.

Since an unexpected drop in the asset value implies a deterioration in the invest-
ment opportunities offered by the asset (the Sharpe ratio drops), a non-log-utility and
sufficiently risk-averse investor hedges against such an adverse effect by shorting the
asset to profit from the unexpected drop in the asset value.6 The following proposition
highlights a standard investment-horizon effect: the longer the maturity T is, the more
energetic the hedging act becomes.7

6 There are parameter values that make the investor with φ > 1 take a net short position in the risky
defaultable asset.
7 Similar investment-horizon effects have been found in the literature on dynamic portfolio choice with
a risky non-defaultable asset characterized by a mean-reverting drift and a constant volatility [see, for
example, Koijen et al. (2009)].
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Proposition 3.4 Given a conservative investor (φ > 1), the non-myopic component

w ln F (T, y)

φ

of ψ∗ (w, x, T ) in Proposition 3.3 is negative and strictly decreasing in the investment
maturity T .

Proof If φ > 1, then a < 0 and
√

q > b. ��
Conversely, when the investor is less averse to risk than the log-utility agent, optimal

non-myopic speculation on the Sharpe ratio risk ensues.

Proposition 3.5 Given an aggressive investor (0 < φ < 1), the non-myopic compo-
nent

w ln F (T, y)

φ

of ψ∗ (w, x, T ) in Proposition 3.3 is positive and strictly increasing in the investment
maturity T .

Proof If 0 < φ < 1, then a > 0 and
√

q < b. ��
Proposition 3.5 shows that the aggressive investor non-myopically speculates on

Sharpe ratio risk by buying the defaultable asset, in contrast with the conservative
investor who non-myopically hedges against Sharpe ratio risk by shorting the asset.
Importantly, the conservative investor’s optimal non-myopic demand remains bounded
in the investmentmaturity T , whereas this is not the case for 0 < φ < 1. The aggressive
investor uses the defaultable asset to seek profits in the states that come with a high
productivity of wealth, that is, with high Sharpe ratios. Hence, it is optimal for the
aggressive investor to make a non-myopic gamble on the upward asset-value paths to
unfold before his/her investment maturity T (upward asset-value paths go along with
swellingSharpe ratios). If T stretches out, non-myopic gambling becomes increasingly
hefty and levered: the bet has more time to succeed.

Figures 1 and 2 visualize the optimal portfolio results in Proposition 3.5 for an
aggressive investor with a coefficient of relative risk aversion of φ = 0.5. Given a
risk-free rate of 1% and a risk premium of 4%, a 15-year-horizon investor borrows
to invest in the defaultable asset 172% of his/her initial capital when the Sharpe ratio√

y is about 14% (100% is the myopic allocation), as shown by the left-hand panel of
Fig. 1. He/she assigns 86% of his/her capital to the defaultable asset when

√
y is 10%

(50% is the myopic allocation).
The right-hand panel of Fig. 1 illustrates the impact of a higher risk-free rate (r =

4%). There is a drift effect, which is the drop in the probability of default caused by
a higher drift r + ξ . The drift effect results stronger and non-myopic risk taking is
encouraged. The 15-year-horizon investor allocates 200% of his/her initial capital to
the defaultable asset when

√
y is about 14%. Figure 2 shows the optimal portfolio
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Fig. 1 Optimal fractional investment ψ∗
0 /w in the defaultable asset versus T (φ = 0.5, ξ = 4%)

Fig. 2 Optimal fractional investment ψ∗
0 /w in the defaultable asset versus T (φ = 0.5, r = 1%)

impact of changing the risk premium (r is fixed at 1%). An increase in ξ fosters non-
myopic risk taking more than an increase in r does. There is a stronger drift effect
that decidedly strengthens the incentive of placing the non-myopic bet on the upward
asset-value paths. A higher ξ tends to lift every Sharpe ratio path while shrinking the
probability of default. Given ξ = 5%, the 15-year-horizon investor devotes 178%
of his/her initial capital to the defaultable asset when

√
y is about 14% (80% is the

myopic allocation).
Figures 1 and 2 show that a surging market for the defaultable asset does entice the

aggressive investor via his/her optimal tactical and strategicmarket timing.Amounting
Sharpe ratio pushes up quadratically the optimal total exposure to the defaultable asset.
Importantly, such an optimal market-timing activity involves also the conservative
investors, as it can be seen in Figures 3 and 4 for which the coefficient of relative
risk aversion is φ = 3. Consistent with the observed reaching-for-yield behavior,
our optimal portfolio results imply that aggressive as well as conservative investors
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Reaching nirvana with a defaultable asset? 41

Fig. 3 Optimal fractional investment ψ∗
0 /w in the defaultable asset versus T (φ = 3, ξ = 4%)

Fig. 4 Optimal fractional investment ψ∗
0 /w in the defaultable asset versus T (φ = 3, r = 1%)

increase their optimal exposure to the defaultable asset at times of low volatility and
of surging market value.

Figures 5 and 6 show the optimal non-myopic exposure to predictable default
risk vis-à-vis the myopic benchmark, as the ratio ψ∗(w,T,y)

ψ∗(w,0,y)
is plotted against the

relative risk aversion parameter φ for a 10-year-horizon investor. The figures con-
firm our discussion of the optimal portfolios chosen by non-log-utility, non-myopic
investors.

4 Conclusions

There is extensive evidence that, before the 2007–2008 crisis and in its aftermath over
the following years, financial institutions have been embarking in reaching-for-yield
behavior by taking conspicuous long positions in defaultable assets. What does opti-
mal dynamic portfolio theory have to say about the search for yield accomplished by
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Fig. 5 Ratio ψ∗(w,T,y)
ψ∗(w,0,y)

versus φ (T = 10 < T ∗, ξ = 4%)

Fig. 6 Ratio ψ∗(w,T,y)
ψ∗(w,0,y)

versus φ (T = 10 < T ∗, r = 1%)

means of defaultable assets? Our answer to this important question is a novel closed-
form optimal portfolio analysis of non-myopic speculation on predictable default
risk.

Our paper takes inspiration from the search-for-yield literature.We employ optimal
dynamic portfolio theory to draw attention to a possible reasonwhy long-termfinancial
intermediaries like banks may take on major levered reaching-for-yield acts that load
predictable default risk. Our analysis is related to the debate on the sources of banks’
risk taking and search for yield as we highlight that banks’ long investment horizon
may largely amplify the optimal portfolio exposure to default risk. On the other hand,
our optimal portfolio analysis goes toward offering a market-timing rationale for the
search for yield observed even among less aggressive investors like money funds and
insurance companies.

Our analysis of optimal dynamic portfolio exposure to predictable default risk con-
tributes to the dynamic asset allocation literature that deals with Sharpe ratio risk.
We prove the existence of nirvana optimal portfolio solutions in the case of a default-
able risky asset and of a non-stationary non-Gaussian Sharpe ratio. We point out that
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Reaching nirvana with a defaultable asset? 43

frail/absent mean-reversion makes the unfolding of paths with swelling Sharpe ratios
a plausible event to punt on for non-myopic aggressive investors.

Our paper also contributes to the literature on the solution methods for optimal
dynamic portfolio problems. Our technical focus is the explicit solution of an optimal
dynamic asset allocation problem in an arbitrage-free defaultable risky market. As the
viability of the Hamilton–Jacobi–Bellman and Cox and Huang (1989) approaches is
impaired in our setting, we use the convex duality theory of Kramkov and Schacher-
mayer (1999, 2003) who aim at solving optimal dynamic portfolio problems in very
general arbitrage-free risky markets. Our closed-form optimal portfolio findings are
a significant illustration of how flexible and effective the Kramkov and Schacher-
mayer (1999, 2003) approach is, thus presenting a valuable technical toolkit to the
financial-economics readership.

In this paper we have sought the most parsimonious model to study the non-myopic
bets on predictable default risk made by rational aggressive investors and to examine
the market-timing portfolio decisions expressed by them and by more conservative
investors. We expect the introduction of an additional non-defaultable risky asset (say
a lognormal security) to leave our core results unchanged. Aggressive investors are
very likely to keep making non-myopic bets on the only asset that offers the default-
compensating prospect of a rising Sharpe ratio. However, a careful study of the optimal
portfolio composition and of its time variation in a multiple risky asset setting is surely
interesting avenue of future research.

Acknowledgements We would like to thank the editors and two anonymous referees for their insightful
comments and suggestions.

A Appendix

A.1 Proof of proposition 3.1

The problem of utility maximization can be written as J (w) = (
erT

)1−φ
u(w) where

u is defined as
u(w) = sup

W̃∈W̃(w)

E[U (W̃T )]. (A.1)

We apply to problem (A.1) the duality approach developed byKramkov and Schacher-
mayer (1999, 2003). To this aim, we observe that the utility function U satisfies Inada
conditions [equation (2.4) in Kramkov and Schachermayer (1999)]. Let V denote the

conjugate function8 of U , that is V (y) = φ
1−φ

y− 1−φ
φ , and define

v(y) = E [V (yη)]

where η is given by (2.3). Kramkov and Schachermayer (2003) show that if v(y) < ∞
for all y > 0, then u(w) < ∞ for all w > 0 and u and v are conjugate. They also

8 The functions U and V are conjugate if and only if U (w) = inf y>0(V (y) + wy) and V (y) =
supw>0(U (w) − wy).
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prove that the optimal solution W̃ ∗ ∈ W̃ (w) to (A.1) exists and is unique. Moreover,
taking y = u′(w) (or equivalently w = −v′(y)), they provide the dual relation for the
optimizer W̃ ∗ = −V ′(yη) (see Theorems 1,2 and Note 3).

Assuming that E

[
η

− 1−φ
φ

]
< +∞, from the condition w = −v′(y), we get

y =

⎛
⎜⎜⎝

w

E

[
η

− 1−φ
φ

]

⎞
⎟⎟⎠

−φ

and

W̃ ∗ = −V ′(yη) =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

w

E

[
η

− 1−φ
φ

]

⎞
⎟⎟⎠

−φ

η

⎞
⎟⎟⎠

− 1
φ

= w
η

− 1
φ

E

[
η

− 1−φ
φ

] .

The value function is then

J (w) =
(

erT
)1−φ

E
[
U (W̃ ∗)

]
= U (werT )E

⎡
⎢⎢⎣

⎛
⎜⎜⎝

η
− 1

φ

E

[
η

− 1−φ
φ

]

⎞
⎟⎟⎠

1−φ⎤
⎥⎥⎦

= U (werT )

(
E

[
η

− 1−φ
φ

])φ

= U (werT )

(
E

[
exp

(
1 − φ

φ

∫ T

0

√
Yt d Zt + 1 − φ

2φ

∫ T

0
Yt dt

)])φ

= U (werT )F(T, y).

��

A.2 Proof of proposition 3.2

Since a = 1−φ
φ

, then

E

[
exp

(
1 − φ

φ

∫ T

0

√
Yt d Zt + 1 − φ

2φ

∫ T

0
Yt dt

)]

= E

[
exp

(
a
∫ T

0

√
Yt d Zt + a

2

∫ T

0
Yt dt

)]
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We can write:

E

[
exp

(
a
∫ T

0

√
Yt d Zt + a

2

∫ T

0
Yt dt

)]
= E

[
LT exp

(
a2 + a

2

∫ T

0
Yt dt

)]

where

LT = exp

(
a
∫ T

0

√
Yt d Zt − a2

2

∫ T

0
Yt dt

)
. (A.2)

The random variable LT in (A.2) is the Radon–Nikodym density of a probability
measure equivalent to P. In fact, Theorem9 2.3 in Delbaen and Shirakawa (2002)
applied to SDS = Y, ρDS = 0.5, r DS = b > 0, σ DS = 2

√
cφ, μDS = b + 2a

√
cφ,

and θ DS = a implies that ηDS
T = LT is the Radon–Nikodym density of an equivalent

probability measure Q̂ equivalent to P. Girsanov’s theorem implies then that

Ẑt = Zt −
∫ t

0
a
√

Ysds (A.3)

is a Q̂-Brownian motion. Thus,

F(T, y) =
(

E Q̂

[
exp

(
a2 + a

2

∫ T

0
Yt dt

)])φ

, (A.4)

where Yt has the following dynamics under Q̂

dYt = bYt dt + 2
√

cφYt d Ẑt , (A.5)

with Y0 = y. We specify that, if we define the default time τy = inf{t ≥ 0 : Yt = 0},
we have Yt ≡ 0 on {τy ≤ t} and Y satisfies the stochastic differential Eq. (A.5) on the
whole time interval [0, T ]. To compute the expectation in (A.4), we define the process

Mt = exp

(
a2 + a

2

∫ t

0
Ysds

)
G(T − t, Yt ) (A.6)

where G(t, y) is a C1,2 function to be determined in such a way that G(0, y) = 1 and
M is a Q̂-martingale. In particular, Eq. (A.6) implies for t = 0 that M0 = G(T, y)

and for t = T

MT = exp

(
a2 + a

2

∫ T

0
Yt dt

)
G(0, YT ) = exp

(
a2 + a

2

∫ T

0
Yt dt

)
,

9 The superscript (·)DS refers to the notations of Delbaen and Shirakawa (2002), whereas a, b, c are defined
in the statement of Proposition 3.2.
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since G(0, ·) = 1. The martingality condition M0 = E Q̂[MT ] yields then

G(T, y) = E Q̂

[
exp

(
a2 + a

2

∫ T

0
Ysdt

)]
,

that allows us to find (A.4). By imposing 0 drift on the Ito decomposition under Q̂ of
the process Mt we get the partial differential equation for G

{
Gt = ξ2

2 yG yy + byG y + a2+a
2 yG

G(0, y) = 1.
(A.7)

We guess a solution of the form G(t, y) = eyg(t) and we obtain the following differ-
ential equation for g:

{
g′(t) = ξ2

2 g2(t) + bg(t) + a2+a
2

g(0) = 0.
(A.8)

Equation (A.8) is a Riccati equation whose solution is

g (t) = (a2 + a)(e
√

qt − 1)√
q + b + e

√
qt
(√

q − b
) .

Since Mt has 0 drift in the Ito decomposition under Q̂, Mt is a Q̂ local martingale. To
conclude that Mt is a martingale we define

zt = Mt

M0
,

which is a Q̂ local martingale as well, and show that zt is a Q̂martingale. To this aim,
we first observe that process zt is a stochastic exponential. In fact, Ito formula implies
that

d Mt = e
a2+a
2

∫ t
0 Ys ds ∂

∂y
G(T − t, Yt )2

√
cφYt d Ẑt

from the dynamics of Y with respect to Q̂ in Eq. (A.5). Since ∂
∂y G(T − t, Yt ) =

eYt g(T −t) · g(T − t) = G(T − t, Yt ) · g(T − t), we obtain

d Mt = e
a2+a
2

∫ t
0 Ys ds G(T − t, Yt ) · g(T − t)2

√
cφYt d Ẑt

leading to
d Mt = 2

√
cφYt Mt g(T − t)d Ẑt . (A.9)
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Therefore,

zt = 1 +
∫ t

0
zsdms

with

mt =
∫ t

0
2
√

cφg(T − s)
√

Ysd Ẑs .

We apply Theorem 4.1 in Klebaner and Lipster (2014) to conclude that zt is a true
martingale. In particular, with Klebaner and Lipster notations (4.2) at page 44

as(y) = by bs(y) = 2
√

cφ
√

y from (A.5) and

σs(y) = 2
√

cφg(T − s)
√

y from our def. of mt ,

we get

Ls(y) = 2yas(y) + (bs(y))2

= 2by2 + 4cφy

Ls(y) = 2y
[
as(y) + bs(y)σs(y) + (bs(y))2

]

= 2by2 + 8cφy2g(T − s) + 8cφy2

Since g is bounded, it follows that (σs(y))2 , Ls(y), and Ls(y) are all dominated by a
quadratic polynomial in y, and therefore, assumptions (1)-(2)-(3) of Theorem 4.1 are
satisfied. This allows us to conclude that zt = Mt

M0
is a martingale and therefore Mt is

a martingale as well. Hence we can write (A.4) as

F(T, y) =
(
exp

(
y

(a2 + a)(e
√

qT − 1)√
q + b + e

√
qT
(√

q − b
)
))φ

= exp

(
y

a(e
√

qT − 1)√
q + b + e

√
qT
(√

q − b
)
)

,

since

φ(a2 + a) = a.

��
A.3 Proof of proposition 3.3

In what follows, we will mainly work under the martingale measureQ,whose density
with respect to P is η in Eq. (2.3). We denote with ZQ

t the Q-Brownian motion
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ZQ
t = Zt +

∫ t

0

√
Ysds. (A.10)

Before proving the result, we first list some technical lemmas.

Lemma A.1 Let L∗ = LT
η

where LT is given by (A.2). Then L∗
t = EQ

[
L∗|Ft

]
satisfies the stochastic differential equation

d L∗
t = (a + 1)L∗

t

√
Yt d ZQ

t = 1

φ
L∗

t

√
Yt d ZQ

t (A.11)

with the initial condition L∗
0 = 1. In particular, L∗ is the Radon–Nikodym density of

the probability measure Q̂ (whose density with respect to P is L in (A.2) with respect
to Q and Ẑt defined in (A.3) can be written as

Ẑt = ZQ
t − 1

φ

∫ t

0

√
Ysds.

Proof It is easy to observe that

L∗ = LT

η
=

dQ̂
dP
dQ
dP

= dQ̂

dQ
,

and from the definitions of η in (2.3) and of L in (A.2) that

L∗
T = LT

η
= exp

(
a
∫ T

0

√
Ysd Zs − a2

2

∫ T

0
Ysds +

∫ T

0

√
Ysd Zs + 1

2

∫ T

0
Ysds

)

= exp

(
(a + 1)

∫ T

0

√
Ysd Zs + 1 − a2

2

∫ T

0
Ysds

)
.

From the definition of ZQ
s in Eq. (A.10) we get

L∗
T = exp

(
(a + 1)

∫ T

0

√
Ys

(
d ZQ

s −√
Ysds

)
+ 1 − a2

2

∫ T

0
Ysds

)

= exp

(
(a + 1)

∫ T

0

√
Ysd ZQ

s − (a + 1)2

2

∫ T

0
Ysds

)
.

This is equivalent to

d L∗
t = (a + 1)L∗

t

√
Yt d ZQ

t .
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Moreover, from the definition of Ẑt in (A.3) we get

Ẑt = Zt −
∫ t

0
a
√

Ysds

= ZQ
t −

∫ t

0

√
Ysds −

∫ t

0
a
√

Ysds (from (A.10))

= ZQ
t − (a + 1)

∫ t

0

√
Ysds

(
with a + 1 = 1

φ

)
,

that proves the lemma. ��
Lemma A.2 Let Mt be the Q̂-martingale defined in (A.6), namely

Mt = e
a2+a
2

∫ t
0 Ys dseYt g(T −t).

Then we have

d Mt = 2
√

cφYt Mt g(T − t)d Ẑt (A.12)

= 2
√

cφYt Mt g(T − t)

(
d ZQ

t − 1

φ

√
Yt dt

)

where Ẑt is defined in (A.3) and ZQ
t in Eq. (A.10).

Proof of the Lemma The first line in Eq. (A.12) is Eq. (A.9), that leads to (A.12) by
recalling that

Ẑt = ZQ
t − 1

φ

∫ t

0

√
Ysds.

��
Proof of proposition 3.3 The discounted optimizer

W̃ ∗ = w
η

− 1
φ

E

[
η

− 1−φ
φ

]

is the value at time T of a self-financing discounted portfolio, which admits the fol-
lowing representation under Q

W̃ ∗ = w +
∫ T

0
ψ∗

t
d P̃t

P̃t
= w +

∫ T

0

ξψ∗
t√

Yt
d ZQ

t (A.13)

since d P̃t = P̃t
√

Ytσt dt + P̃tσt d Zt = P̃t
ξ√
Yt

d ZQ
t from (2.1) and (A.10).

Therefore, we look for the Ito representation of W̃ ∗(t) = EQ[W̃ ∗|Ft ] to deriveψ∗.
Denoting with Lt = E

[
LT

∣∣∣Ft

]
, and ηt = E

[
η

∣∣∣Ft

]
, we have
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EQ
[
η

− 1
φ

∣∣∣Ft

]
=

E
[
η
1− 1

φ

∣∣∣Ft

]

ηt
(by Bayes’ rule)

=
E
[
exp

(
a
∫ T
0

√
Yt d Zt + a

2

∫ T
0 Yt dt

) ∣∣∣Ft

]

ηt

=
E
[

LT exp
(

a2+a
2

∫ T
0 Yt dt

) ∣∣∣Ft

]

ηt
(by (A.2))

=
Lt E Q̂

[
exp

(
a2+a
2

∫ T
0 Yt dt

) ∣∣∣Ft

]

ηt
(by Bayes’ rule)

= L∗
t E Q̂

[
exp

(
a2 + a

2

∫ T

0
Yt dt

) ∣∣∣Ft

]

= L∗
t E Q̂

[
MT

∣∣∣Ft

]
= L∗

t Mt (by the definition of M in (A.6)).

Hence,

W̃ ∗
t = EQ[W̃ ∗|Ft ]

= EQ

⎡
⎢⎢⎣w

η
− 1

φ

E

[
η

− 1−φ
φ

]

∣∣∣∣∣∣∣∣
Ft

⎤
⎥⎥⎦

= w

E

[
η

− 1−φ
φ

] EQ
[
η

− 1
φ

∣∣∣Ft

]

= w

E

[
η

− 1−φ
φ

] L∗
t Mt

= w

G(T, y)
L∗

t Mt

because G(T, y) = (F(T, y))
1
φ = E

[
η

− 1−φ
φ

]
. It follows that the differential of the

Q-martingale W̃ ∗
t is given by

dW̃ ∗
t = w

G(T, y)
d
(
L∗

t Mt
)

= w

G(T, y)
L∗

t Mt

[
1

φ
+ 2

√
cφg(T − t)

]√
Yt d ZQ

t by (A.11) and (A.12)

= W̃ ∗
t

[
1

φ
+ 2

√
cφg(T − t)

]√
Yt d ZQ

t
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Comparing this equation with Eq. (A.13), we obtain

ξψ∗
t√

Yt
= W ∗(t)

[
1

φ
+ 2

√
cφg(T − t)

]√
Yt

hence, recalling that 2
√

cφ = ξ and g(T − t) = 1
Yt
ln G(T − t, Yt ) = 1

φYt
ln F(T −

t, Yt ), we have:

ψ∗
t = W̃ ∗

t

ξ

[
1

φ
+ 2

√
cφg(T − t)

]
Yt

= W̃ ∗
t

[
Yt

φξ
+ ln F(T − t, Yt )

φ

]
.

In particular, at t = 0 we obtain ψ∗
0 = w

[
y

φξ
+ ln F(T,y)

φ

]
, as in the statement of the

proposition. ��
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