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Abstract

In this work, we introduce a generalized rationale for local sensitivity analysis methods that allows

to solve the problems connected with input constraints. Several models in use in the risk analysis

�eld are characterized by the presence of deterministic relationships among the input parameters.

However, sensitivity analysis issues related to the presence of constraints have been mainly dealt

with in a heuristic fashion. We start with a systematic analysis of the e¤ects of constraints. The

�ndings can be summarized in the following three e¤ects. i) Constraints makes it impossible to

vary one parameter while keeping all others �xed. ii) The model output becomes insensitive to a

parameter if a constraint is solved for that parameter. iii) Sensitivity analysis results depend on

which parameter is selected as dependent. The explanation of these e¤ects is found by proposing

a result that leads to a natural extension of the local sensitivity analysis rationale introduced in

Helton (1993). We then extend the de�nitions of the Birnbaum, Criticality and the Di¤erential

importance measures to the constrained case. In addition, it is introduced a procedure that allows

to obtain constrained sensitivity results at the same cost as in the absence of constraints. The

application to a non-binary event tree concludes the paper providing a numerical illustration of the

above �ndings.

Keywords: Sensitivity Analysis, Local Importance Measures, Event Trees, Risk Analysis Models.



1 Introduction

Sensitivity analysis (SA) is one of the key steps both in the building and utilization of risk analysis

models. In Kessler and McGuire (1999) �sensitivity runs� are utilized in the corroboration of

the 162 branch event tree model of the Yucca Mountain waste disposal system. Saltelli et al

(2000) demonstrate the use of SA in the model building process. Saltelli (2002) underlines the

role of on global methods for importance assessment. Frey and Patil (2002) and Patil and Frey

(2004) present, besides global methods, a thorough overview and application of local methods for

deterministic models in food-safety assessment. Iman et al (2005a) and (2005b) illustrate the use of

uncertainty and SA techniques in the evaluation of hurricane losses. Borgonovo (2006a) compares

di¤erent global methods in determining uncertainty importance. Although some of the former

works deal with local methods, and some with global methods, all the presented techniques rest

on a common assumption: no deterministic relationships must be respected by parameters during

the sensitivity. Several applications, however, entail the creation of models in which parameters are

constrained. Examples are event trees (see Philipson and Wilde, 2000), decision trees (see Clemen,

1997), Markov-chain based models (Rief, 1998.) To study the sensitivity of the output to changes in

the probabilities, one needs to account for the fact that probabilities of outcomes of the same node

(event trees and decision trees) or in the same row (Markov matrices) must sum to unity. The way

one deals with the constraint is usually heuristic. For example, it is customary to express the last

probabilities in each node as the complement to unity of the others (see for instance Clemen, 1997,

p. 133.) This approach, however, can be subject to criticism. Besides noting that the solve-for-one

parameter method cannot be applied in general � if the constraint is not analytically solvable, it

is not possible to express one of the parameters as an explicit function of the others, � one is also

left with the question of how/whether the sensitivity results change if, instead of solving for the last

probability, one solves for any other probabilities in the same constraint.

In this work, we address the issues connected with local SA of model output in the presence of

constraints and introduce a result that allows their solution. The �rst step is the investigation of

the di¤erences between a constrained and an unconstrained sensitivity exercise. We summarize the

�ndings of the analysis into three main E¤ects: 1) the change in one parameter induces a change

in the other parameters bound by the same constraint; 2) SA results depend on which parameters
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are selected as dependent in the constraints; 3) once a parameter is selected as dependent, the

sensitivity of the output on that parameter is null. E¤ect 1 implies that one cannot perform a

one-parameter-at-a-time SA in the presence of constraints. Thus, E¤ect 1 impairs the applicability

of techniques as Tornado Diagrams (Clemen, 1997 or Howard, 1988) or Nominal range sensitivity

(Frey and Patil, 2002) � as well as its variations, as the �LOR method in (Frey and Patil,

2002) � that evaluate the �e¤ect on model outputs exerted by individually varying only one of

the model inputs across its entire range of plausible values, while holding all other inputs at their

nominal or base-case values (Frey and Patil, 2002).�E¤ects 2 and 3 have the following numerical

implications. To inspect the change in results connected with the dependent parameter choice it

is, in principle, necessary to apply the sensitivity algorithms as many times as there are available

choices of dependent parameters. If the model is computationally intensive, having to repeat the

sensitivity runs can become time consuming (if not impossible.)

As the local sensitivity e¤ects of constraints have not been systematically studied (nor have been

the global ones, but the focus of this work is on the local results1), we are then left with answering

the question of the mathematical explanation of the E¤ects. To explain the E¤ects, we start with

the rationale for local SA proposed in Helton (1993) and look for a generalization of the rationale

that allows to perform local SA in the presence of any (solvable and non-solvable) constraints. The

result is obtained by nesting the di¤erentiation of the constraints into the di¤erentiation of the

model output.

Since several local importance measures descend from Helton�s (1993) rationale, one needs to deal

with the impact of the generalized rationale on the de�nition of these local sensitivity indicators. In

particular, we determine the modi�cations induced by constraints on the de�nitions of the Birnbaum

[Birnbaum (1969)], the Criticality [Cheok et al (1998), Borgonovo and Apostolakis (2001), Frey

and Patil (2002), Patil and Frey (2004)] and the Di¤erential importance measures [Borgonovo and

Apostolakis (2001), Borgonovo (2007)].

We are then left with addressing the computational implications of the new approach. We show

1 In this work, we do not discuss the e¤ects of constraints in global Sensitivity Analysis, which are the subject
of future research. We can brie�y summarize some of the features: the �rst e¤ect is that, in performing the global
sensitivity exercise, one needs to generate inputs that not only re�ect the analyst uncertainty, but that also match the
equation of the constraint. This generates several complications, as illustrated in Philipson and Wilde (2000) for the
case of probabilities summing to unity. The second e¤ect is that deterministic constraints induce correlations among
the inputs. As a consequence, one cannot utilize techniques that rely on independence among the parameters.

2



that, in virtue of the generalized rationale, no further runs of the sensitivity algorithm are necessary

to inspect the e¤ect of changes in the parameter selections, with a computational cost saving of order

(at least) n. Furthermore, in the case of probabilistic models, the generalized rationale allows to �nd

constrained sensitivity results through the sole output di¤erentiation, i.e., at the same cost of an

unconstrained SA. Finally, we illustrate the implementation of the generalized rationale structured

into four steps by means of the application to a non-binary event tree.

The remainder of the paper is organized as follows. In Section 2, we discuss the E¤ects of

constraints and list some examples of models in use in risk analysis and decision making that involve

input constraints. In Section 3, we present the rationale for local SA with constraints and discuss

how it explains the constrained sensitivity E¤ects. In Section 4, we illustrate the generalization

of the de�nitions of the Birnbaum, Criticality and Di¤erential importance measures. In Section 5,

we de�ne a stepwise implementation of the rationale and illustrate its application to a non-binary

event tree. Conclusions are o¤ered in Section 6.

2 E¤ects of Constraints in Local SA and Examples of Constrained Sensitivity

Problems

In this Section, we carry out the �rst step of the analysis, namely, the identi�cation of the key

features of the presence of constraints. We introduce them by means of an example.

Figure 1: First branhces form the 162 Branch Case of the IMARC model in Kessler and McGuire
(1999.)
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Example 1 Figure 1 reproduces the �rst of the 162 branches of the IMARC logic tree [Figure 3

in Kessler and McGuire (1999).] Suppose that an analyst is interested in the sensitivity of the

model output to a change in P (Minor GH E¤ect) from 0:25 to 0:31. P (Minor GH E¤ect) is in the

same node as P (Moderate GH E¤ect) and P (Permanent GH), whose base case values are 0:70 and

0:05 respectively. To assess the sensitivity let us apply a Tornado Diagram scheme [see Chapter

5 of Clemen (1997); the name Tornado Diagram is attributed to Howard (1988.)] The de�nition

of Tornado Diagram foresees that one performs the sensitivity by keeping all parameters �xed, but

the one of interest. In so doing, one would have: P (Minor GH E¤ect) + P (Moderate GH E¤ect) +

P (Permanent GH) = 1:06 thus violating the laws of probability. In fact, it must hold that:

P (Minor GH E¤ect) + P (Moderate GH E¤ect) + P (Permanent GH) = 1 (1)

The problem is overcome if one, as usual, adopts the solve-for-one-probability approach. For exam-

ple, if one selects P (Moderate GH E¤ect) as dependent and writes: P (Moderate GH E¤ect) = 1�

P (Minor GH E¤ect)�P (Permanent GH), one would get P (Moderate GH E¤ect) = 1�0:31�0:05 =

0:64 and then one can appreciate the sensitivity of the output inserting the values: P (Minor GH

E¤ect) = 0:31, P (Moderate GH E¤ect) = 0:64 and P (Permanent GH) = 0:05.

Example 1 shows the �rst e¤ect generated by the presence of constraints:

E¤ect 1 the sensitivity on one of the parameters, P (Minor GH E¤ect) in the example, induces

a change in the values of the other parameters that are bound by the same constraint. In

our case, the change in P (Minor GH E¤ect) from 0:25 to 0:31 is rebalanced by the change in

P (Moderate GH E¤ect) that shifts from 0:70 to 0:64 to respect the constraint.

E¤ect 1 implies that, in the presence of constraints, one cannot perform a one-variable-at a-time

SA, i.e., one cannot vary solely the parameter of interest while keeping the other parameters �xed.

Thus, techniques as Tornado Diagrams (Clemen, 1997- Ch. 5, or Howard, 1988), nominal range

sensitivity (Frey and Patil, 2002) and their variations (Frey and Patil, 2002) cannot be directly

applied in the presence of constraints.

A second e¤ect induced by the presence of constraints is revealed by the next Example.
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Example 2 Suppose that, instead of P (Moderate GH E¤ect) one considers P (Permanent GH)

as dependent and solves the constraint writing: P (Permanent GH) = 1 � P (Minor GH E¤ect) �

P (Moderate GH E¤ect). In this case, one would end up with: P (Permanent GH) = 1�0:31�0:7 =

�0:1. That is, the sensitivity is feasible if one solves the constraint for P (Moderate GH E¤ect), but

not feasible if one solves for P (Permanent GH).

Example 2 is a re�ection of the following E¤ect 2.

E¤ect 2 In the presence of constraints, SA results depends on the selection of the dependent/independent

parameter(s).

It is worth noting that a numerical complication is associated with E¤ect 2. It originates in an SA

application to portfolio management (we refer to Reyes Santos and Haimes, 2004 for an overview

of portfolio problems.) In presence of budget constraints the asset weights must sum to unity:Pn
i=1 xi = 1: The solution one adopts is to solve the constraint for the n

th asset, xn = 1�
Pn�1
i=1 xi.

Such an asset, then, has its variation determined by the others, and act only as a rebalancing entity.

It is called the pivotal asset. It is of interests to analysts to inspect the e¤ect of the pivotal asset

choice [see Borgonovo and Percoco, 2007]. However, this implies to repeat the SA n times2 � in

fact, given n inputs and 1 constraint there are n possible choice of the pivotal asset. � More in

general, it could be of interest in the SA of any model to appreciate the e¤ect of a certain selection

of the pivotal parameters. Thus, one would need to run the sensitivity algorithm as many times

as there are available choices, with the consequence that, if the model is computationally intensive,

the SA exercise can become extremely time consuming.

Finally, there is a third e¤ect related to the choice of the dependent variables:

E¤ect 3 once a parameter is selected as dependent, it disappears from the independent variable

list and the sensitivity of the output on that parameter is null.

The above considerations signal that constraints introduce features in a SA of model output

that are not encountered if parameters are free.

2Quoting directly from Manganelli et al, 2002: �by changing the pivotal asset, one obtains di¤erent sensitivity
measures. Computing these sensitivity measures for each single asset of the portfolio, it is possible to compute a
matrix of sensitivities analogous to the variance-covariance matrix.�
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In the remainder of this Section, we present, without the purpose of being exhaustive, examples

of models involving input constraints.

Event Trees. Starting with the work of Kaplan and Garrick (1981,) risk is expressed in terms

of triplets of the form fsi; pi; cig where si is a scenario, pi the corresponding probability and ci the

consequence associated with the scenario. In the context of risk assessment of complex technolog-

ical systems, the calculation of pi requires to consider �all possible outcomes of events occurring

sequentially [Papazoglou (1998)].�Diagrams built with the purpose of enabling the assessment of

possible consequences and their likelihood are event trees [Papazoglou (1998)]. Let R be the risk

metric of interest (examples of risk metrics in nuclear risk assessment are the core damage frequency

or the large early release frequency, see Cheok et al, 1998.) R is a function of the probabilities of

the sequences of outcomes leading to the consequence of interest: R = f(p).

For the purposes of this discussion it is convenient to use the following notation. Let:

w = (w1; w2; :::; wn) be the set of all outcomes (events) in the event tree;

p = (p1; p2; :::; pn) be the corresponding subjective conditional probabilities;

L be the number of sequences (paths) that lead to consequence c;

Sl = (w1l ; w2l ; :::; wQl) � W be the subset of outcomes that form the lth sequence leading to

consequence c (l = 1; 2; :::L); Kl = (1l; 2l; :::; Ql) be the corresponding set of indices.

By construction (Papazoglou, 1998), the probability of sequence Sl is P (Sl) =
Y
k2Kl

pk and,

therefore:

R =
LX
l=1

P (Sl) =
LX
l=1

0@Y
k2Kl

pk

1A = f(p) (2)

The speci�cation of the constraints is as follows. Let q = 1; 2; :::; Q the number of nodes involved

in the event tree. Let nq the number of outcomes associated with each node with, clearly, n =

n1 + n2 + :::+ nQ: As the (conditional) probabilities of all outcomes of the same node must sum to

unity, one has the set of constraints:

8>>>>>>><>>>>>>>:

Pn1
s=1 ps = 1Pn1+n2
s=n1

ps = 1

:::Pn
s=n1+n2+:::+nQ�1

ps = 1

(3)
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Hence, the SA problem can be formulated as:

Study the Sensitivity of

R = f(p);

subject to (s.t.)8>>>>>>><>>>>>>>:

Pn1
s=1 ps = 1Pn1+n2
s=n1

ps = 1

:::Pn
s=n1+n2+:::+nQ�1

ps = 1

(4)

i.e., it is a constrained SA problem with multiple constraints.

Decision Trees. Papazoglou (1998) establishes that the mathematical foundations and formulas

that hold for event trees are also applicable to decision trees: �the same is true for other applications

of event trees like decision trees where the consequences of a particular combination of decision and

event outcomes are evaluated in a possibly multidimensional consequence space [Papazoglou, 1998,

p. 170.]�Borgonovo and Peccati (2006b) show that for decision making problems represented in

the form of in�uence diagrams and decision trees the SA of the model output is a constrained one.

Markov Chains. As a further example of risk analysis models whose SA is a constrained problem,

we mention models supported by discrete time Markov processes. In such models (see Rief, 1988),

an n� n input matrix of the form P = [pij ] i; j = 1; 2; :::; n feeds into the model. As the rows of P

must sum to unity, one is led to study the sensitivity of a model output with the inputs constraints

represented by
nX
j=1

pij = 1; 8i = 1; 2; ::; n: (5)

Hence the SA problem discussed in Rief (1998) is indeed a constrained one.

Finally, we also recall that constrained sensitivity problems are encountered in the SA of portfolio

properties (Borgonovo and Percoco, 2007).

In summary, several models utilized in risk analysis in both the �nancial and technological

realms impose the presence of input constraints. Thus, in performing their local SA, an analyst has

to cope with E¤ects 1, 2 and 3. In the next Section, we present a result that allows to explain the

three E¤ects and to streamline the computation of local SA.
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3 Generalized Rationale for Local Sensitivity Analysis

In this section, we provide a result that allows to modify the rationale for local SA to include the

presence of constraints and to explain E¤ects 1, 2 and 3.

Let

Y = f(x); f : X � Rn ! R (6)

a di¤erentiable deterministic n-variate model. We denote the base case of the parameters as x0 2 X

� Rn and Y 0 = f(x0) the corresponding base case the model output. Assuming, as usual, that f is

di¤erentiable, the change in Y provoked by the (small) changes dx =

266666664

x1 � x01
x2 � x02
:::

xn � x0n

377777775
can be expressed

as (see Helton, 1993):

Y � Y 0 = d1Y + d2Y + :::+ dnY + o(
x� x02) (7)

where

diY =
@f

@xi
jx0 dxi (8)

is the �rst order contribution of xi (i = 1; 2; :::; n) to the total output change dY .

Eqs. (7) and (8) represent the Taylor series expansion used by Helton (1993) and provide

the local SA rationale from which several local indicators can be derived (see also Borgonovo and

Apostolakis, 2001.) Eq. (8), however, holds if parameters are free.

Let us now study how the rationale [eqs. (7) and (8)] is modi�ed by the presence of constraints.

To illustrate the procedure, we make use of a single constraint in the next derivation. We provide

the extension to the case of multiple constraints at the end of this Section. Therefore, we face the

following problem:

8



Study the Sensitivity of

Y = f(x1; x2; :::; xn)

s.t.

g(x1; x2; :::; xn) = c

(9)

Eq. (9) states the constraint as an implicit equation (the most general form). We suppose that

g(x) satis�es the hypotheses of the implicit function theorem and by di¤erentiation of both sides,

we get:
@g

@x1
dx1 +

@g

@x2
dx2 + ::+

@g

@xk
dxk + :::+

@g

@xn
dxn = 0 (10)

Eq. (10) displays the relationship that binds parameter changes, namely, it shows that parameters

are no more �free� to vary. In virtue of eq. (10), one cannot perform the sensitivity on xi while

keeping the other parameters �xed. One or more of the other parameters must vary in accordance

with eq. (10) to rebalance the change in xi, so that g(x) = c (the constraint) is satis�ed. Thus, eq.

(10) o¤ers the explanation of E¤ect 1.

Now, suppose that one selects parameter xk as dependent. Provided that
@g

@xk
6= 0, eq. (10) can

be solved for dxk:

dxk =
� @g

@x1
dx1 �

@g

@x2
dx2 � :::�

@g

@xn
dxn

@g

@xk

(11)

Inserting dxk [eq. (10)] into eq. (8) and rearranging eq. (7), the change in Y becomes:

Y � Y 0 =

0B@ @f

@x1
� @f

@xk

@g

@x1
@g

@xk

1CA jx0 �x1 � x01�+
0B@ @f

@x2
� @f

@xk

@g

@x2
@g

@xk

1CA jx0 �x2 � x02� :::+
:::+

0B@ @f

@xn
� @f

@xk

@g

@xn
@g

@xk

1CA jx0 �xn � x0n�+ o(x� x02)
(12)

Hence, the following holds.

1. Comparing eq. (12) with eq. (7) one infers that, in the presence of constraints, the change in

9



Y can be written as Y � Y 0 =
Pn
i=1 diY + o(

x� x02) where:

diY =

0BB@ @f

@xi
� @f

@xk

@g

@xi
@g

@xi

1CCA jx0 dxi (13)

Eqs. (12) and (13) generalize Helton�s (1993) rationale [eq. (7)] in the presence of one

constraint.

2. Comparing eqs. (8) and (13), one notes that, in the constrained case, the output rate of

change is represented by
@f

@xi
� @f

@xk

�
@g

@xi

�
@g

@xk

�
, which plays the same role as

@f

@xi
in the

unconstrained case. We use the notation:

fijk =
@f

@xi
� @f

@xk

�
@g

@xi

�
@g

@xk

�
(14)

and call fijk the constrained derivative of f w.r.t. xi, and xk the dependent or pivotal para-

meter.

In fijk , each free partial derivative
@f

@xi
is diminished by a term [

@f

@xk

�
@g

@xi

�
@g

@xk

�
] generated

by the presence of the constraint.

We have mentioned above that eq. (10) explains E¤ect 1. Let us now investigate how the

generalized rationale [eqs. (12), (13)] and fijk [ eq. (14)] explain E¤ects 2 and 3.

E¤ect 2 Eq. (14) shows that, in the presence of constraints, local SA results depend on the choice

of the dependent asset, as fijk changes as k changes.

E¤ect 3 Letting i = k in eq. (14), one gets:

f
kjk = 0 (15)

Eq. (15) implies that, once a variable is chosen as dependent, the sensitivity of the output on

that variable is null.

In risk assessment models, it is particularly relevant the case of linear constraints, i.e., the case
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in which g(x) = c can be written as:
nX
i=1

xi = c (16)

For linear constraints [eq. (16)], all the partial derivatives
@g

@xi
are equal to unity. Substituting

@g

@xs
= 1 8i = 1; 2; :::; n in eq. (14), one gets:

fijk =
@f

@xi
� @f

@xk
(17)

Eq. (17) states that, for linear constraints, the constrained derivative fijk is the di¤erence between

the rate of change of f w.r.t. the parameter of interest (
@f

@xi
) and the rate of change of f w.r.t. the

dependent parameter (
@f

@xk
).

In many applications, multiple constraints apply [e.g., eqs. (3)-(5).] The extensions to multiple

constraints of the generalized rationale [eq. (12)] and of constrained derivatives [eq. (14)] leads to

the following result. Suppose that the parameters can be grouped in Q constraints (Appendix A),

and let

g(x) =

8>>>>>>><>>>>>>>:

g1(x1; x2; :::; xn1) = c
1

g2(xn1+1; xn1+2; :::; xn2) = c
2

::::

gQ(xnQ�1 ; xnQ�1+1; :::; xn) = c
Q

. (18)

If one reproduces the approach utilized in the derivation of eq. (12) for each of the Q constraints

and denotes the pivotal parameter for each constraint as xkq , one obtains the following result (see

Appendix A):

Generalized Rationale in the presence of multiple constraints, the change in model output can

be written as:

Y � Y 0 =
QX
q=0

nq+1X
s=nq+1

�
@f

@xs
� @f

@xkq

�
@gq

@xs

�
@gq

@xkq

��
dxs + o(

x� x02) (19)

and the constrained derivatives as:

fijkq =
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

�
(20)
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where xi and xkq belong to the same constraint.

One notes that eq. (20) maintains the same form as eq. (14) and that there is one dependent

parameter for each constraint.

The fact that the rate of change of the output in the presence of constraints is represented

by fijkq instead of
@f

@xi
has an impact on the de�nition of all indicators that can be derived from

Helton�s (1993) rationale. This is the subject of discussion in the next section.

4 E¤ect of Constraints on Local Importance Measures

In this section, we study the impact of the generalized rationale on the de�nition of local importance

measures.

The local importance measures a¤ected by the change in rationale are: the Birnbaum [Birnbaum,

(1969),] the Criticality [Helton (1993), Cheok et al (1998),] and the Di¤erential (Borgonovo and

Apostolakis, 2001) importance measures. Before introducing the e¤ects of constraints, we formulate

the analysis in terms of two �Settings [Saltelli and Tarantola (2002)3]�

Setting 1 The basis for Setting 1 is represented by Samuelson�s de�nition of local SA. Samuelson

(1947) de�nes SA as the problem of addressing �the response of our system to changes in

certain parameters.�Thus, Setting 1 concerns the determination of the direction of change of

the output in response to input changes.

In terms of eqs. (7) or (12)/(19), Setting 1 consists of determining the sign of diY , which

coincides with the sign of
@f

@xi
in the unconstrained case, and the sign of fijkq in the constrained

case.

Setting 2 The basis for Setting 2 is the following de�nition of SA: �the study of how the variation in

the output of a model can be apportioned to variations in the input (Tarantola, 2000).�Thus,

setting 2 concerns the determination of the parameter contributions to the output change.

In terms of eqs. (7) or (12)/(19), Setting 2 consists in assessing the magnitude of diY: Then, xi

is more in�uential than xj if jdiY j > jdjY j.
3The formulation of lottery settins for global sensitivity analysis can be found in Tarantola (2000), and later in

Saltelli and Tarantola (2002).
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Let us start with partial derivatives. Partial derivatives are tantamount in the determination

of a model�s sensitivity and are at the basis, for example, of the Comparative Statics technique in

Economics. In Risk Assessment, the Birnbaum importance measure (B) (Birnbaum, 1969) is the

partial derivative of the system unavailability with respect to a basic event probability [see also

Cheok et al (1998) and Borgonovo (2007).] We write:

Bi :=
@f

@xi
jx0 (21)

The former de�nition of B [eqs. (21)] holds under the assumption that parameters are free to

vary. Based on the results of Section 3, we know that the derivative of an output given a set of

constraints is represented by eq. (14), which replaces
@f

@xi
. Let xi belong to the qth constraint.

Then the Birnbaum importance of xi becomes:

Bijkq =

�
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

��
jx0 (22)

Frey and Patil (2002) propose a survey of local and global sensitivity indicators. In presenting

the automatic di¤erentiation technique, they underline that �the values of partial derivatives are

a measure of local sensitivity� [see also Helton (1993).] Indeed, Bi is the rate of change of the

output w.r.t. the change in xi. Therefore, it is always suited for Setting 1. However, it is not

always suited for Setting 2. For instance, B cannot be utilized to determine parameter importance

when inputs have di¤erent dimensions. In fact, if xi and xj are denominated in di¤erent units,

the respective partial derivatives cannot be compared as they have di¤erent units too [Borgonovo

and Apostolakis (2001), Borgonovo and Peccati (2006a)]. More in general, for partial derivatives to

become an appropriate measure for Setting 2, one needs to add the assumption that changes in the

parameters are uniform, i.e.,

Hypothesis 1: xi � x0i = dxi = xj � x0j = dxj 8i; j: (23)

In fact, if eq. (23) is true, then studying jdiY j
<

>
jdjY j turns into determining whether the Birnbaum
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importance of xi is bigger than the Birnbaum importance of xj4.

Several authors [Helton (1993), Cheok et al (1998), Frey and Patil (2002), Patil and Frey (2004),

Saltelli et al (2000), Epstein and Rauzy (2005)] utilize a normalization of partial derivatives which

gives rise to the Criticality importance measure (C:) C is also known in Economics under the name

of Elasticity (Samuelson, 1947, Takayama, 1993.) The rationale below C as a sensitivity measure

for Setting 2 can be found in Helton (1993), who bases the introduction of C on the following

normalization of eq. (7):

Y � Y 0
Y 0

=
@Y

@x1

x01
Y 0

�
x1 � x01

�
x01

+
@Y

@x2

x02
Y 0

�
x2 � x02

�
x02

+ :::+
@Y

@xn

x0n
Y 0

�
xn � x0n

�
x0n

=

= C1

�
x1 � x01

�
x01

+ C2

�
x2 � x02

�
x02

+ :::+ Cn

�
xn � x0n

�
x0n

(25)

Then:

Ci =
@f

@xi
jx0

x0i
Y 0

(26)

Utilizing the generalized version of the rationale [eq. (19) instead of eqs. (7) and (8)] and apply-

ing the same normalization, one extends the criticality importance measure to the case of input

constraints as follows:

Cijkq =

�
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

��
jx0

x0i
Y 0

(27)

Now, let us assumes proportional changes in the parameters, i.e.,

Hypothesis 2:

�
xi � x0i

�
x0i

=

�
xj � x0j

�
x0j

8i; j. (28)

Then,
���Cijkqi ��� > ���Cjjkqj ��� () jdiY j > jdjY j, i.e., xi is more important than xj . Hence, C mea-

sures the importance of parameters under the assumption of proportional changes [Borgonovo and

Apostolakis (2001), Borgonovo and Peccati (2004) and (2006a)].

The above discussion shows that local sensitivity results are dependent on the relative parameters

4Let xi and xj belong to the qth and rth constraints respectively. jdiY j
<

>
jdjY j is equivalent to:���� @f@xi � @f

@xkq

�
@gq

@xi

�
@gq

@xkq

�
dxi

���� <>
���� @f@xj � @f

@xkr

�
@gr

@xj

�
@gr

@xkr

�
dxj

���� (24)

If Hypothesis 1 holds, then dxi and dxj can be simpli�ed and the above inequality reduces to the comparison of the
Birnbaum importances of xi and xj .
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changes, i.e., on the way inputs are varied. Rheinboldt (1993) provides a geometric interpretation of

this fact, stating that local sensitivity results depend on the direction of change. To account for all

the possible ways in which parameters are varied one needs to resort to the di¤erential importance

measure (D) (Borgonovo and Apostolakis, 2001):

Di =
diY

dY
=

@f

@xi
jx0 dxiPn

j=1

@f

@xj
jx0 dxj

(29)

D measures the importance of xi as the ratio of the change in Y provoked by a variation of xi [diY ,

numerator of eq. (29)] to the change in Y provoked by all inputs [total di¤erential, denominator of

eq. (29).]

In view of the generalized rationale, eq. (19), the di¤erential importance measure in the presence

of constraints becomes:

Dijkq (x; dx) =

�
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

��
jx0 dxiPQ

q=1

Pnq
l=nq�1

�
@f

@xl
� @f

@xkq

�
@gq

@xl

�
@gq

@xkq

��
jx0 dxl

. (30)

In terms of Setting 1, if dY is greater than 0, than the sign of Di directly re�ects the sign of

diY . If dY is negative, then the direction of change of Y is opposite to the sign of D.

In terms of Setting 2, we note that no matter what assumption is stated on the parameter

changes

jDij � jDj j () xi is more important than xj (31)

Thus, D is always suited for Setting 2.

We note that:

1. the relationships that hold between B, C and D in the absence of constraints [Borgonovo

and Apostolakis (2001), Borgonovo (2007)] still hold in the presence of constraints. Under
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Hypothesis 1 (uniform changes) [eq. (23),]

Dijkq (x; dx) =

�
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

��
jx0PQ

q=1

Pnq
l=nq�1

�
@f

@xl
� @f

@xkq

�
@gq

@xl

�
@gq

@xkq

��
jx0

=
B
ijkqPn

j=1Bjjkq
(32)

i:e:, D(1) induces the same ranking as B.5 Under Hypothesis 2 (proportional changes) one

has:

D(2)
ijkq

=

�
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

��
jx0 x0iPQ

q=1

Pnq
l=nq�1

�
@f

@xl
� @f

@xkq

�
@gq

@xl

�
@gq

@xkq

��
jx0 x0l

=
C
ijkqPn

j=1Cjjkq
(33)

and therefore C and D(2) lead to the same ranking;

2. as the total di¤erential is the sum of the di¤erentials, D shares the additivity property also in

the constrained case. I.e., the joint D of a group of parameters is the sum of the importances

of the parameters in the group;

3.

Dkq jkq (x; dx) = 0 8dxi; dxj (34)

which implies that once a parameter is chosen as dependent, the importance of such a para-

meter is null, independently of the direction of change. Thus, in the case of uniform changes,

Bkq jkq = 0 and, in the case of proportional changes, Ckq jkq = 0.

The results of this section and of Section 3 explain the E¤ects of constraints and extend the

de�nitions of importance measures to the presence of constraints. We are now left with discussing

how the numerical implications of E¤ects 1, 2 and 3 can be tackled in view of the generalized

rationale. This is presented in the next Section.

5 Numerical Implementation of the Generalized Rationale

5.1 The Steps

The purpose of this Section is to show the numerical implications of the results presented in Sec-

tion 3. As mentioned in Sections 1, 2 and 3, there are n possible choices of pivotal parame-

5We use the symbols D(1) and D(2) to denote that D is computed under assumptions 1 and 2 respectively.
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ters. Let us state the problem as follows. Let z = fz1; z2; ::; zn; zn+1; zn+2; :::; zn+mg denote the

set of all variables involved in the problem. Fink and Rheinboldt (1984) maintain that �it of-

ten happens in applications that certain quantities are naturally identi�ed as parameters.� That

is, z can be partitioned into two sets of variables, say, x = fx1 = z1; x2 = z2; ::; xn = zng and

Y = fY1 = zn+1; Y2 = zn+2; ::; Ym = zn+mg, in which the second group (output) is seen as depen-

dent on the �rst (input/parameters). In a constrained SA, the selection of what is a parameter or

an output can be �less natural�and more dependent on the analyst�s choice than in unconstrained

problems. To illustrate the concept, consider the following example. The output of an event tree, z4,

is a function of three probabilities (z1; z2; z3.) It is natural to set x = fz1; z2; z3g and Y = fz4g. This

is the parameter selection (partition) that one obtains if parameters are free. If the three events are

emanating from the same node (see for instance Example 1,) then the following constraint applies

on x: z1 + z2 + z3 = 1. If one solves the constraint for the third probability as dependent on the

�rst two, one is indeed adopting the following partition: [x = (z1; z2), Y = (z4, z3)]. Similarly, if

one solves for z2, or z1, one is adopting the following partitions [x = (z1; z3), Y = (z4, z2)] and

[x = (z2; z3), Y = (z4; z1)] respectively. Since, as proven in Section 3, the sensitivity results depend

on the choice of the parameters, to inspect the change in results obtained by changing the selection,

one has to repeat the sensitivity calculations n = 3 times, in correspondence of each pivotal para-

meter choice (partition). This could make the sensitivity exercise cumbersome (if not impossible)

when the model at hand is time consuming. The results proven in Section 3, however, can be

utilized to obtain constrained sensitivity results without having to repeat the sensitivity algorithm

in correspondence of each partition. The approach is based on the concept of constrained derivative

[eq. (20)] and is illustrated in the following steps.

Step 1) Identify the output of interest and apply a �rst partition [x; Y ] ignoring the constraints,

i.e., considering all parameters as free;

Step 2) Apply a di¤erentiation scheme to compute the free derivatives of the output (
@f

@xi
) and

the derivatives of the constraints (
@gq

@xi
);

Step 3) Select the pivotal parameters and apply eq. (14) or (20) to obtain the constrained deriv-

atives;
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Step 4) Compute the importance measures based on the results of Section 4.

Note that Steps 1 and 2 need not to be repeated, if one changes the selection of the pivotal

parameters. Thus, one can examine how the SA results change due to a change in the selection

without further model runs. This grants a computational cost saving of order n � t, where n are

the available choices of pivotal parameters and t the model runs required by the di¤erentiation

algorithm.

We note that linear constraints grant a further numerical simpli�cation. In fact, as all derivatives

of the constraints are equal to 1, in Step 2 the di¤erentiation of the constraint becomes unnecessary

and one obtains the constrained SA results directly by subtracting
@f

@xkq
from

@f

@xi
. This means

that constrained SA results are obtained at the same cost of the unconstrained case.

5.2 A Numerical Illustration

In this Section, we illustrate the application of the constrained sensitivity Steps via a numerical

discussion. We consider the event tree presented in Papazoglou (1998) and reported in Figure 2.

Each sequence ends into four possible states. The system is working in state I, while states II,

III and IV correspond to system damage (c). There are 6 sequences (paths) leading to c (Figure

2): S1 = (w1; w4; w10), S2 = (w1; w5), S3 = (w2; w6; w13); S4 = (w2; w6; w14), S5 = (w2; w7),

S6 = (w2; w3). Utilizing the notation of eq. (2) � see also Figure 2, � eq. (4) becomes:

Study the Sensitivity of

R = h(p) = p1p4p10 + p1p5 + p2p6p12 + p2p6p13 + p2p7 + p3

s:t:8>>>>>>>>>><>>>>>>>>>>:

p1 + p2 + p3 = 1

p4 + p5 = 1

p6 + p7 = 1

p8 + p9 + p10 = 1

p11 + p12 + p13 = 1

(35)

We adopt the numerical values for the probabilities displayed in Table 1.

We structure our discussion following the steps proposed in Section 5.1.
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Figure 2: Non-binary Event Tree from Fig. 3 of Papazoglou (1998.)

Step 1) The output of interest is R and the parameters are the probabilities in the event tree.

Therefore the partition is [x = fp1; p2; :::; p13g, Y = fRg].

Step 2) The partial derivatives of R w.r.t. the pi�s are illustrated in Figure 3. The derivatives of

the constraint are all equal to unity as g(x) is linear in eq. (35).

As far as the numerical results are concerned, one notes that all the unconstrained derivatives

are positive or null (
@R

@pi
� 0, i = 1; 2; :::; 13). This could lead one to conclude that no increase in

Table 1: Values of the probabilities, free derivatives and constrained derivatives for the non-binary
event tree.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
Value 0:6 0:25 0:15 0:3 0:7 0:6 0:4 0:1 0:6 0:3 0:5 0:3 0:2
@R

@pi
0:79 1:3 1 0:18 0:6 0:375 0:25 0 0 0:18 0 0:15 0:15

Rijk �0:21 0:3 0 �0:42 0 0:125 0 0 0 0:18 0 0:15 0:15

19



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

Figure 3: Free partial derivatives (
@R

@pi
) (left) vs constrained derivatives (Rijkq ) (right).

any of the probabilities can lead to a decrease in risk. This conclusion, however, is not valid, as the

p�s are constrained and the rate of change is not given by
@R

@pi
, but by Rijk .

We have Q = 5 constraints [eq. (35).] One needs 5 pivotal parameters, xkq , q = 1; 2; :::; 5. Let

us inspect the following choice: xk1 = p3; xk2 = p5; xk3 = p7; xk4 = p8; and xk5 = p11. Then the

selection becomes: [x = fp1; p2; p4; p6; p9; p10; p12; p13g, Y = fR; p3; p5; p7; p8; p11g]:

Step 3) One obtains the constrained derivatives by subtracting
@R

@pkq
from

@R

@pi
. The numerical

values are illustrated in the fourth row of Table 1.

We note that R3j3 = R5j5 = R7j7 = R8j8 = R11j11 = 0 as the probabilities p3, p5, p7, p8 and p11

have bee taken as pivotal. This result is a re�ection of E¤ect 3 and eq. (15).

It is observed that the constrained derivatives are no more all positive or null (Figure 3.) As

an example, let us consider R4j5 = �0:42 (Table 1, Figure 3.) In the presence of constraints, the

positive e¤ect of an increase in p4 alone � if it were free to vary the rate of change would be
@R

@p4
= 0:18 � is diminished [eq. (20)] by the e¤ect of p5 (

@R

@p5
= 0:6), as p5 bounces back in order

for the constraint to be satis�ed.

Some of the constrained derivatives are indeed equal to the free derivatives, as a result of the

choice of the pivotal parameters. In our example, R10j8 =
@R

@p10
and R12j11 =

@R

@p12
. In fact, p8 and

p11 appear in the constraints but R does not depend upon them. Hence,
@R

@p8
= 0 and

@R

@p11
= 0,

and thanks to eq. (20), the constrained derivative equals the free derivative.
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Let us now interpret the results in the light of Settings 1 and 2 (Section 4.) In terms of Setting

1; Table 1 and Figure (3) show that an increase in p1 and p4 leads to a decrease in R, while an

increase in p2, p6, p10, p12, and p13 leads to an decrease in R.

In terms of Setting 2, Figure 4 shows the D(1)=B and D(2)=C importance measures6.

.
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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D
2

Figure 4: D(1)/B (left) and D(2)=C (right).

Figure 4 shows that probabilities associated with a zero value of the corresponding constrained

derivatives have null importance. Regarding ranking, under the assumption of uniform changes,

the most important probability is p4, followed by p1 and p2. Suppose now an analyst is interested

in the joint e¤ect of a simultaneous changes in the probabilities of node 1 in the event tree, namely

p1, p2 and p3 (Figure 2.) The answer is found by utilizing the additivity property of D to get:

D
(1)
1;2;3j3 = D

(1)
1j3 +D

(1)
2j3 +D

(1)
3j3 = 0:327 (36)

Under the assumption of proportional changes (D(2)=C), the importance measure values are dis-

played in Figure 4 (right diagram.) We observe that the ranking is not the same as the one obtained

with D(1)=B. The most important probabilities are now p1 and p4, followed by p2 and p6. This

is due to the di¤erent de�nition of the importance measures and has the geometric interpretation

proposed in Section 4. Similarly to the case of Hypothesis 1, the importance of simultaneous propor-

6We have used the notation D(1)=B and D(2)=C since D produces the same ranking as B under the hypothesis of
uniform changes and of C under the assumption of proportional changes.
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tional changes in the probabilities related to the �rst node is: D(2)1;2;3 = D
(2)
1 +D

(2)
2 +D

(2)
3 = �1:889,

in this case.

Finally, it is worth to point out that the current results have been obtained with the selection

[x = fp1; p2; p4; p6; p9; p10; p12; p13g, Y = fR; p3; p5; p7; p8; p11g]: Let us then discuss how the e¤ects

of a change in the partition can be determined. If, as it is often done in the practice, one solves the

�rst constraint for p3 = 1 � p2 � p1, the second for p5 = 1 � p4, and the others for p7, p8 and p11

and substitutes into the model, one obtains R as the following function of the parameters, namely

R = q(p1; p2; p4; p6; p10; p12; p13) = 1� p1p4(1� p10)� p2p6(1� p12 � p13) (37)

Computing the derivatives of q [eq. (37)], one obtains the constrained derivatives in Table 1. As an

example,
@q

@p1
= R1j3 . Let us now choose a di¤erent partition, say [x = fp1; p3; p5; p7; p8; p10; p11; p13g,

Y = fR; p2; p4; p6; p9; p12g]. If one were using the solve-for-a-parameter method, one would need

to resolve the constraints for p2; p4; p6; p9; p12, express R as a function the selected parameters, ob-

taining, say, R = m(p1; p3; p5; p7; p8; p10; p11; p13) and recompute the derivatives
@m

@pi
. These further

calculations are not necessary given the Steps in Section 5.1. In fact,
@m

@pi
are determined by the

di¤erence between the free derivatives
@R

@pi
� displayed in the second row of Table 1, � and the

derivatives of the newly selected pivotal parameters.

6 Conclusions

In this work, we have proposed an approach to solve problems connected with the presence of

constraints in the local SA of model output. As these problems have not been studied in a systematic

way, the �rst step of our analysis has been the investigation of issues connected with the presence

of constraints. We have evidenced three main E¤ects and studied their implications. In particular,

we have seen that constraints do not allow to perform a one-variable-at-a-time SA and that the

sensitivity of the output becomes null on a parameter, once a constraint is solved for that parameter.

We have then provided a rigorous explanation the E¤ects. This has been done by introducing a novel

approach that, resting on the simultaneous di¤erentiation of the output and of the constraints, allows

a generalization of Helton�s (1993) rationale for local SA. We have then addressed the impact of

the new rationale on the de�nitions of local SA indicators based on di¤erentiation (the Birnbaum,
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Criticality and the Di¤erential importance measures.) We have seen that the result allows to

generalize the de�nitions of the indicators to the presence of constraints preserving their properties.

We have next presented a stepwise implementation of the generalized rationale that allows to

streamline the numerical complications generated by the presence of constraints. In particular, we

have seen that one is enabled to assess the in�uence of alternative parameter selections without

further SA algorithm runs, with a computational cost saving of order (at least) n.

The numerical illustration of the SA of a non-binary event tree has concluded the work, providing

a sample application of the above �ndings.

7 Appendix A: Extension to the Case of Multiple Constraints

Suppose that the parameters are grouped in Q < n groups. We call each group xq (q = 1:::Q). Each group

contains nq parameters (clearly
PQ
q=1 nq = n) and is subdivided as follows:

x1 x2 ::: xn1| {z }
x1

xn1+1 xn1+2 ::: xn2| {z }
x2

....
xnQ�1+1 xnQ�1+2 ::: xn| {z }

xQ
(38)

so that two groups do not have inputs in common (xl
\
xm = ?) and they cover all inputs (

Q[
q=1

xq = x).

Note that the number of parameters in group q is equal to nq � nq�1. Furthermore, we let n0 = 0 and

nQ = n. Each parameter group is constrained by:

g(x) =

8>>>>>>><>>>>>>>:

g1(x1; x2; :::; xn1) = c
1

g2(xn1+1; xn1+2; :::; xn2) = c
2

::::

gQ(xnQ�1 ; xnQ�1+1; :::; xn) = c
Q

(39)

In eq. (39) there is no loss of generality, as one can consider that the Qth group is the group of unconstrained

parameters, with a degenerate constraint. Then, one can di¤erentiate both sides of the constraints g(x)
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noting that the di¤erential of cq is zero for all q = 1; 2; :::; Q. One gets the set of equations:

8>>>>>>><>>>>>>>:

@gq

@x1
dx1 +

@g1

@x2
dx2 + :::+

@g1

@xn1
dxn1 = 0

@g2

@xn1+1
dxn1+1 +

@g2

@xn1+2
dxn1+2 + :::+

@g2

@xn1+n2
dxn1+n2 = 0

:::

@gQ

@xn1+n2+:::+nQ�1+1
dxn1+n2+:::+nQ�1+1 +

@gQ

@xn1+n2+:::+nQ�1+2
dxn1+n2+:::+nQ�1+2 + :::+

@gQ

@xn
dxn = 0

(40)

Let us now denote the parameter which is chosen as dependent in each group as xkq (xkq 2 xq). Then,

provided that @gq

@xkq
6= 0 8q, one can rewrite the equations (40) as:

8>>>>>>>><>>>>>>>>:

dxk1 = �
�
@g1

@x1

/
@g1

@xk1

�
dx1 � :::�

�
@g
@xn1

/
@g1

@xk1

�
dxn1

dxk2 = �
�

@g2

@xn1+1

/
@g2

@xk2

�
dxn1+1 � :::�

�
@g
@xn2

/
@g1

@xk2

�
dxn2

::::

dxkQ = �dxnQ�1+1
�

@gQ

@xnQ�1+1

�
@gQ

@xkQ

�
� :::�

�
@gQ

@xn

�
@gQ

@xkQ

�
dxn

(41)

Substituting eq. (41) into the di¤erential, one gets:

dY =

@f
@x1
dx1 +

@f
@x2
dx2 + :::�

Pn1
s=1
s 6=k1

�
@g1

@xs

/
@g1

@xk1

�
dxs + :::+

@f
@xn1

dxn1+

+ @f
@xn1+1

dxn1+1 + :::�
Pn2
s=n1+1
s 6=k2

�
@g2

@xs

/
@g2

@xk2

�
dxs + :::+

@f
@xn1+n2

dxn1+n2+

:::

+ @f
@xn1+n2+:::+nQ�1+1

dxn1+n2+:::+nQ�1+1 + :::�
PnQ
s=n1+1
s 6=kQ

�
@gQ

@xs

�
@gQ

@xkQ

�
dxs + :::+

@f
@xn
dxn

(42)

Rearranging, one obtains:

dY =
Pn1
s=n0

h
@f
@xs

� @f
@xk1

�
@g1

@xs

/
@g1

@xk1

�i
dx1 +

Pn2
s=n1+1

h
@f
@xs

� @f
@xk2

�
@g2

@xs

/
@g2

@xk2

�i
dxs + ::

+
Pn
s=nQ�1

�
@f
@xs

� @f
@xkQ

�
@gQ

@xs

�
@gQ

@xkQ

��
dxs

(43)

Eq. (43) shows that the rate of change given the change dxs that was represented by fijk [eq. (14)] in the
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single constraint case, in the case of multiple constraints is represented by:

fijkq =
@f

@xi
� @f

@xkq

�
@gq

@xi

�
@gq

@xkq

�
q.e.d.. (44)
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