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Abstract1

In this work, we study the e¤ect of epistemic uncertainty in the ranking and categorization of elements2

of probabilistic safety assessment (PSA) models. We show that, while in a deterministic setting a PSA3

element belongs to a given category univocally, in the presence of epistemic uncertainty, a PSA ele-4

ment belongs to a given category only with a certain probability. We propose an approach to estimate5

these probabilities, showing that their knowledge allows to appreciate �the sensitivity of component6

categorizations to uncertainties in the parameter values�[US NRC Regulatory Guide 1.174]. We inves-7

tigate the meaning and utilization of an assignment method based on the expected value of importance8

measures. We discuss the problem of evaluating changes in quality assurance, maintenance activities9

prioritization (etc.) in the presence of epistemic uncertainty. We show that the inclusion of epistemic10

uncertainly in the evaluation makes it necessary to evaluate changes through their e¤ect on PSA model11

parameters. We propose a categorization of parameters based on the Fussell-Vesely and Di¤erential12

Importance (DIM) measures. In addition, issues in the calculation of the expected value of the joint13

importance measure are present when evaluating changes a¤ecting groups of components. We illustrate14

that the problem can be solved using DIM. A numerical application to a case study concludes the work.15

Keywords: Epistemic Uncertainty, Importance Measures, Probabilistic Safety Assessment.16



1 Introduction1

The purpose of this work is to introduce a methodical approach to the categorization of system structures2

and components (SSCs) in the presence of epistemic uncertainty.3

A wide literature dealing with uncertainty in Risk Assessment problems is available. While its4

complete consideration is out of the scope of this work, we recall the works of Apostolakis (1990) [3],5

(1995) [4], Breeding et al (1992) [11], Helton and Breeding (1993) [19], Ho¤man and Hammond (1994)6

[25], Helton (1994) [20], Patè-Cornell (1996) [34], Helton (1997) [21], Helton et al (1999) [22]. These7

works underline that in probabilistic risk assessment it often emerges the need to distinguish between8

two types of uncertainties. Aleatory uncertainty, i.e., uncertainty about the occurrence of a random9

event, and epistemic uncertainty, i.e., uncertainty in the values of the probabilities of such occurrences.10

Risk-Informed Decision Making means to make use of the information that is derived from the11

Probabilistic Safety Assessment (PSA) model. Importance measures are sensitivity indicators that are12

utilized to identify the safety/risk signi�cance (S/RS) of systems, structures and components (SSCs).13

Quoting directly from Appendix A of the NRC regulatory guide 1.174 [33]: �the Fussell-Vesely (FV )14

Importance, Risk Reduction Worth, and Risk Achievement Worth (RAW ) are the most commonly15

identi�ed measures in the relative risk ranking of SSCs.� Information derived from these importance16

measures (Cheok et al, 1998, [14]) is used in the evaluation of risk-informed decisions in applications17

such as the prioritization of maintenance activities, changes in quality assurance programs, changes18

in maintenance or testing activities, aging processes, that tend to alter the status quo of the plant119

(Brewer and Canady, 1999 [12]; Caruso et al, 1998[13]).20

Technical issues in the use of importance measures are summarized in Appendix A of Regulatory21

Guide 1.174: �(1) ... risk rankings apply only to individual contributions and not to combinations or22

sets of contributors, and (2) ... risk rankings are not necessarily related to the risk changes that result23

from those contributor changes�[33]. The issues are revealed and discussed in Fleming (1996) [17],24

Vesely (1998) [40], Cheok et al (1998) [14], Vasseur and Llory (1999)[41], Borgonovo and Apostolakis25

1 In the remainder we shall refer to these applications as �changes.�
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(2001) [6], and Borgonovo (2007) [9].1

A further issue associated with the use of importance measures is highlighted in Regulatory Guide2

1.174, Appendix A: �The sensitivity of component categorizations to uncertainties in the parameter3

values should be addressed by the licensee. Licensees should be satis�ed that SSC categorization is not4

a¤ected by data uncertainties�[33]. In fact, SSCs ranking and categorization is usually based on values5

of importance measures estimated when all parameters are at their base case values, i.e., it is the6

result of a deterministic calculation. The presence of epistemic uncertainty causes the decision-maker�s7

view to be characterized by a (joint) subjective distribution on the parameters, so that the base case8

value of the parameters is just one of a (possibly in�nite) set of values that parameters can assume.9

Quoting from Saltelli et al, 2004 [35], one runs the risk of drawing inappropriate conclusions generated10

by �underestimation of predictive uncertainty�[35]. This issue is highlighted also in the work of Cheok11

et al (1998) [14]: �the broad uncertainty distributions of these events can pose a challenge when ranking12

events based on risk importance . . . (Cheok et al, 1998 [14])�and �consideration of uncertainty should13

be a factor of the integrated decision making process (Cheok et al, 1998 [14])�.14

Monte Carlo analysis is utilized to determine the distributions of the importance measures. In His15

�Recommendations for Future Work�, Lambert (1975a) [27] states that: �It would also be useful to16

incorporate an option in the IMPORTANCE computer code to allow for an error analysis. This can be17

accomplished by placing prior distributions on the failure rate data and then use Monte Carlo simulation18

to determine the spread in the importance rankings�(Lambert, 1975a; p. 229). It is not, however, till 2019

years later that a �rst systematic approach to incorporate epistemic uncertainty in component rankings20

is introduced by Modarres and Agarwal [31], who propose �methodologies for performing risk-based21

ranking under uncertainty�(Modarres and Agarwal, 1996 [31]; p. 230).22

This work has a twofold purpose. The �rst purpose is to build an approach that allows to rank and23

categorize PSA elements giving full credit to the decision-maker�s state of belief. We recall that ranking24

PSA elements means to attribute them a relative importance, while categorizing PSA elements means to25

assign them to Safety/Risk Signi�cance (S/RS) regions. S/RS regions are identi�ed by threshold values26
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set on (usually) two importance measures. As far as ranking is concerned, we complement the work of1

Modarres and Agarwal (1996) [31] by introducing a probability matrix (P = [pij ]) to be associated with2

the point estimate ranking. P contains the probabilities that SSC i is more important than SSC j. We3

discuss the properties of P (we show that pji = 1� pij) and its use in establishing the decision-maker�s4

degree of con�dence in the importance measure results.5

We then de�ne the probabilistic inequalities that allow the creation of S/RS diagrams in the pres-6

ence of epistemic uncertainty. By comparing the deterministic categorization with the results of the7

probability calculations, a decision-maker can assess Her/His con�dence in the deterministic categoriza-8

tion. In addition, we propose a categorization method based on the expected value of the importance9

measures. Through a standard mathematical argument, we show that an expected value categorization10

is a synthesis bridge between the probabilistic and deterministic analyses.11

The second purpose of this work is to deal with issues generated by the presence of epistemic12

uncertainty in the evaluation of changes. Cheok et al (1998) [14] evidence that �the uncertainties in13

individual basic events may be correlated (Cheok et al, 1998, p. 223)[14]�. We show that, if a change14

a¤ects identical components and epistemic uncertainty is taken into consideration, then the basic events15

become 100% correlated and the change must be modeled as a¤ecting PSA model parameters. Thus,16

to evaluate the risk signi�cance of such changes, one ought to determine the S/RS of the parameters17

impacted by the change. However, as RAW is not de�ned for parameters, such a categorization cannot18

be achieved through and S/RS plane formed using FV and RAW . A solution to such a problem is19

found by proposing a parameter categorization based on FV and DIM .20

The application of the approach is discussed by means of the importance analysis of the large21

loss of coolant accident (LOCA) sequence of the Advanced Test Reactor (ATR) (Eide et al, 1991 [15];22

Borgonovo et al, 2003 [7]). We obtain the deterministic, probabilistic and expected value categorizations23

of basic events with FV and RAW and parameters with FV and DIM . We utilize the results of the24

categorizations to assess the relevance of changes a¤ecting parameters and basic events of components25

involved in the LOCA sequence.26
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On a broader perspective, we must remark the di¤erence in the present work, and works in the1

global sensitivity analysis literature (see for example Frey and Patil (2002) [18], Helton and Davis2

(2002) [23], Saltelli (2002) [36], Patil and Frey (2004) [32], Borgonovo et al (2003) [7], Borgonovo (2006)3

[8], Helton et al (2006) [24]). The purpose of global sensitivity analysis is to identify the parameters that4

in�uences uncertainty in model results the most. In our analysis, we aim at characterizing and managing5

uncertainty concerning the results of a sensitivity analysis exercise which, given its own purpose, is local6

in nature.7

The remainder of the paper is organized as follows. In Section 2, we present the de�nitions of the8

importance measures used in this work. In Section 3, we present a formal approach to PSA element9

categorization in the presence of epistemic uncertainty. Section 4 discusses the e¤ect of epistemic10

dependence on the modeling of changes. In Section 5, we present the point estimate categorization, the11

corresponding probabilities and the results of expected value categorization for both basic events and12

probabilities of the Large LOCA sequence. In Section 6, we illustrate the application of the approach13

in the evaluation three changes a¤ecting di¤erent basic events and parameters of systems involved in14

the ATR Large LOCA sequence. Conclusions are o¤ered in Section 7.15

2 Importance Measures Used in this Work16

The PSA model is built to estimate the risk metric (R) of interest in the safety problem at hand. In

the nuclear industry, R can be a core damage frequency (CDF) or Large Early Release Frequency (see

[6]). The PSA model estimates R as a function of the basic event probabilities (p) and initiating event

frequencies (fIE)2:

R = h(fIE ;p) (1)

If the decision-maker�s state of belief were such that She/He can assign a precise value f0IE , p
0 to fIE

and p, then R would take on the certain value:

R0 = h(f0IE ;p
0) (2)

2 fIE represents the vector of initiating event frequencies: fIE =
�
f1IE ; f

2
IE ; :::; f

z
IE

�
, where z is the number of initiating

events. Similarly, p is a vector p =(p1; p2; :::; pm) where m is the number of basic events.
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Importance measures convey information on the S/RS of a basic event or SSC by performing mathe-1

matical operations on R. The earliest literature on techniques for measuring the importance of events2

in technological starts with the works of authors as Birnbaum, Barlow, Proshan, Fussell, Vesely and3

Lambert the 1970�s (see Lambert, 1975b [28] for a comprehensive introduction to importance measures).4

The Fussell-Vesely (FV ) importance of basic event j is de�ned as the fraction of R associated with

basic event j (see eq. (9) in Lambert, 1975b, page 90; and also Cheok et al, 1998 [14]), i.e.,

FVj(f
0
IE ;p

0) =
fr([MCSj)

R0

����
(f0IE ;p

0)

(3)

where fr([MCSj) is the frequency of the union of the minimal cut sets (MCS) containing basic event5

j and R0 is the base case value of the risk metric. Eq. (3) tells us that FVj(f0IE ;p
0) is the fraction of6

the risk associated with basic event j, when the input variables, namely fIE and p, are at their nominal7

value, (f0IE ;p
0).8

The RAW of basic event j is de�ned as (Cheok et al, 1998 [14]):

RAWj(f
0
IE ;p

0) =
Rj

R0

����
(f0IE ;p

0)

(4)

where Rj is the value of the risk metric achieved when basic event j has happened. Eq. (4) shows that9

RAWj(f
0
IE ;p

0) ranks basic events according to the risk that we achieve, if the event associated to basic10

event j happens.11

The di¤erential importance of basic event j is de�ned as (Borgonovo and Apostolakis, 2001 [6]):

DIMj(f
0
IE ;p

0) =
djR

dR

����
f0IE ;p

0

(5)

where djR is the change in risk provoked by a change in the probability of basic event j. The interpre-12

tation of DIMj(f
0
IE ;p

0) [eq. (5)] is as follows: the greater the change in R provoked by a change in pj ,13

the more relevant is the corresponding basic event. Other two importance measures relevant in PSA14

are the Birnbaum importance measure (Birnbaum, 1969 [10]) and the criticality importance measure15

(for its de�nition, see Cheok et al, 1998 [14], Epstein and Rauzy, 2005 [16] or Borgonovo, 2007 [9]). It16

can be shown (see Borgonovo and Apostolakis, 2001 [6] and Borgonovo, 2007 [9]) that the Birnbaum17

5



importance measure produces the same ranking as DIM under the assumption of uniform changes in the1

basic event probabilities. DIM and the criticality importance measure produce the same ranking, under2

the assumption of proportional parameter changes. Finally, given the type of dependence of h(f0IE ;p
0)3

[eq. (1)] on the basic event probabilities, DIM , FV and the criticality importance measures give rise4

to the same basic event ranking under the assumption of proportional changes. We refer the reader to5

Borgonovo, 2007 [9] for a complete discussion on the relationship between DIM and other importance6

measures at the basic event level.7

In many applications failure probabilities are estimated through the aid of submodels. For example,

it is a typical reliability choice that the failure probability of equipment i is modeled via an exponential

distribution [29]:

p(�) = P (equipment fails before t;�) = 1� e��t (6)

with � representing the failure rate. Note that it is not necessary that all probabilities are expressed

through submodels and therefore are function of parameters. Thus, in general, R is a function of para-

meters, basic event probabilities and initiating event frequencies (see also Borgonovo and Apostolakis,

2001):

R = h(fIE ;p;�) = g(x) (7)

In the remainder, we shall use the symbol x = (x1; x2; :::; xn) to denote a generic input (fIE ; or p or �)8

to the PSA model.9

In terms of importance measures, Borgonovo and Apostolakis (2001) [6] have shown that it is possible

to extend both DIM and FV to the parameter level, while an extension of the de�nition of RAW is

not feasible.3 The FV of parameter �i is de�ned as (Borgonovo and Apostolakis, 2001 [6]; see also

3 Indeed, the works of Vesely ([40]) have taught us that the true meaning of FV is for basic events. At the parameter

level, the work of Borgonovo and Apostolakis (2001) showed that it is still possible to �nd what terms of the risk metric

contain a parameter, and therefore to compute an equivalent FV at the parameter level. However, consider the reliability

model:

R = f(�1; �2; �3) = e
��1T e��2T e��3T (8)

with �1 �2 �3. We have FV (�i) = 1, i = 1; 2; 3. Thus, one would consider the three parameters as equally in�uential
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Borgonovo et al, 2003[7]):

FVi(x
0) =

P
TR(xi)

R0

����
(x0)

(9)

where TR(xi) denotes any of the terms in the risk metric expression that contains parameter xi. The1

sum in the numerator of eq. (9) is carried over all terms in R that contain xi. The denominator is2

the point estimate value of R. Thus, according to eq. (9), FVi(x0) ranks parameters according to the3

portion of R0 related to them. FVi(x0), then, could be interpreted as the fraction of the risk that is4

associated with xi (Borgonovo and Apostolakis, 2001).5

The de�nition of DIM for parameters is as follows (Borgonovo and Apostolakis, 2001):

DIMi(x
0) =

@R

@xi

xi
YPn

s=1

@R

@xs

xs
Y

��������
x0

(10)

According to eq. (10), DIMi(x
0) is the fraction of the change in risk that is associated with a change6

in xi.7

Finally, we remark that the risk metric dependence on individual parameters [g(x), eq.(7)] is, in8

general, non-linear. Thus, as shown in Borgonovo and Apostolakis, 2001 [6] and FV and DIM give9

raise to di¤erent rankings (see also Borgonovo 2007 [9]).10

3 PSA Element Categorization in the Presence of Epistemic Uncertainty11

Categorizing PSA elements means assigning them to S/RS categories (Cheok et al, 1998 [14]). For

components or basic events, this is usually done setting S/RS thresholds on the values of the FV and

RAW (see Brewer and Canady (1999) [12])4. In general, let us denote with Y a PSA element, where

Y can be an SSC, a basic event or a parameter, and with IY a generic importance measure of Y . Let

also ThI the corresponding threshold. To assign Y to a given region, one has to check whether the

using FV. However, the parameters have a di¤erent DIM. Thus, one can distinguish their relative importance through

DIM. This example shows that FV and DIM do not provide the same information. As, due to the complexity of a PSA

model, an analyst does not know the analytical expression of the risk metric as a function of the parameters, the joint use

of FV and DIM also allows to avoid pitfalls of the type entailed in the previous example.
4 In Brewer and Canady (1999) [12], the value of the Safety thresholds are ThRAW = 2, and ThFV = 0:01, respectively.
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importance measure of Y is greater than the threshold value:

IY (x
0) > ThI (11)

In the deterministic case, inequalities of the type of eq. (11) allow to assign an SSC to a S/RS region with1

certainty. However, in most applications, information does not enable the decision-maker to determine2

x with certainty (Apostolakis, 1995 [4]). The PSA methodology foresees that the decision-maker is3

capable of assessing a prior/posterior distribution of the parameters5. PSA models are then kept alive,4

data are collected periodically and the distributions adjourned to re�ect new evidence (see Martz and5

Waller, 1991 [29]; as an example of data collection, see Marshall et al, 1998 [30]). Accordingly, the6

decision-maker�s state of belief of x is re�ected by a joint distribution function. We denote as X � Rn7

the set of all possible values that the inputs can assume (in other words, x 2 X � Rn). We then8

denote as A the Borel algebra associated with X and with F the joint subjective probability measure9

characterizing the decision-maker�s state of belief on x. Then, (X , A, F ) denotes the probability space10

of interest in this work.11

As a consequence of the introduction of epistemic uncertainty the inequality (11) becomes:

IY (x) > ThI (12)

Being x an element of (X , A, F ), the above inequality becomes stochastic, i.e., one can only estab-

lish that the importance measure of the component is greater than the threshold value with a given

probability. Now, let X+IY = fx : IY (x) > ThIg and X
�
IY
= XIY nX+IY or X

�
IY
= fx : IY (x) < ThIg, then

the probability that IY (x) > ThI is given by the probability that x2X+IY . This probability can be
5The foundations of PSA date back to the works of Lambert, Rasmussen in the 1970�s, and �nd their operational

formulation in the �risk triplets�of Kaplan and Garrick, 1981 [26] and in the work of Apostolakis (1990) in Science [3] It is

a shared assumption of the PSA methodology that the decision maker is capable of specifying probabilities for all events.

In the practice a Bayesian Decision maker is assumed {see Martz and Waller, 1991 [29]). Distributions are assigned and

updated through extensive data anlysis and as soon as new evidence is available (in this respect, one says that PSA models

are �kept alive�).
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estimated, via Monte Carlo propagation as follows:

PF (IY (x) > ThI) = lim
M!1

m

M
(13)

where1

� m is the number of trials in which a value of x is sampled according to F such that IY (x) > ThI2

� M is the number of Monte Carlo trials.3

We have mentioned that, when categorizing PSA elements, one introduces S/RS regions based on

two thresholds [ThI1, ThI2]. Then, one obtains four regions6. Y belongs to a given S/RS region with

the following probabilities:

Region Probability Name

I PF f(I1Y (x) > ThI1) \ (I2Y (x) > ThI2)g Very high S/RS

II PF f(I1Y (x) > ThI1) \ (I2Y (x) < ThI2)g High S/RS

III PF f(I1Y (x) < ThI1) \ (I2Y (x) > ThI2)g High S/RS

IV PF f(I1Y (x) < ThI1) \ (I2Y (x) < ThI2)g Low S/RS

(14)

The knowledge of the probabilities in (14) complements to the point estimate categorization. In fact,4

it provides the decision-maker�s degree of con�dence in the results of the point estimate categorization.5

The probabilities in (14) can be computed in a similar way as the probabilities in eq. (13). Let

X 1IY = fx : (I1Y (x) > ThI1) \ (I2Y (x) > ThI2)g the subset of X such that Y belongs to region 1, when

x2 X 1IY . Then,

PF f(I1Y (x) > ThI1) \ (I2Y (x) > ThI2)g = lim
M!1

m1

M
(15)

where6

� m1 is the number of trials in which a value of x is sampled according to F such that (I1Y > ThI1)7

and (I2Y > ThI2)8

6One usually deems as region of Very High S/RS region I, in which both importance measures overcome the thresholds.

The region de�ned by values of both importance measures below the thresholds are called of Low S/RS, the other two

regions of High S/RS.
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� M is the number of Monte Carlo trials.1

Operationally, eq. (15) can be implemented as follows. After a value of x (say x1) is sampled, one

registers the two corresponding values I1Y (x1) and I2Y (x1). One then determines the region to which

Y belongs, comparing these values to the threshold values. The procedure is repeated M times. We

note that, in so doing, one also obtains the distributions of I1Y (x) and I2Y (x). Such distributions can

then utilized to compute

EF [I1Y (x)] and EF [I1Y (x)] (16)

Then, consider the inequality:

EF [IY (x)] > ThI (17)

Since EF [Z], where Z is a random variable, is the quantity that expresses the decision-maker�s expec-

tation on Z, inequality (17) can be interpreted as answering the question of whether the decision-maker

expects the importance measure to be greater than the threshold or not. One can then de�ne the

following four regions:

Region Name

I EF [I1Y (x)] > ThI1 and EF [I1Y (x)] > ThI2 Very high S/RS

II EF [I1Y (x)] > ThI1 and EF [I1Y (x)] < ThI2 High S/RS

III EF [I1Y (x)] < ThI1 and EF [I1Y (x)] > ThI2 High S/RS

IV EF [I1Y (x)] < ThI1 and EF [I1Y (x)] < ThI2 Low S/RS

(18)

A categorization based on expected values would assume the meaning of assigning SSC�s to S/RS regions2

based on the decision-maker�s expectations, giving full credit to the view implied by Her/His state of3

belief. From a technical viewpoint, the expected value categorization represents a step in between the4

probabilistic approach and the deterministic one. In fact, the expected value of an importance measure5

(EF [IY (x)]) is equal to its point estimate [IY (x0)] in the absence of epistemic uncertainty. This is6

readily obtained by Taylor expanding IY (x) around x0.7 The result suggests that the expected value7

7

EF [IY (x)] = IY (x0) +
nX
j=1

nX
i=1

@2IY
@xj@xi

����
x0
Cov [xi; xj ] + o(�

2
X) (19)
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of an importance measure includes the point estimate value of the importance measure [IY (x0)] plus1

terms that are generated by the decision-maker�s uncertainty in the parameters. These terms are null2

when parameter are known with certainty.3

We end this Section with a discussion concerning the e¤ect of epistemic uncertainty on relative

ranking (see also Modarres and Agarwal, 1996 [31]). We recall that ranking means to establish whether

Yi is more important than Yj according to a given importance measure (see, for example Cheok et al,

1998 [14]). Thus, if IYi > IYj one says that Yi is more important than Yj .
8 If the parameters are

�xed at a certain value, then the inequality IYi(x
0) > IYj (x

0) is deterministic, i.e., the statement �Yi

is more important than Yj� is either true or false. Let X
Yi>Yj
IY

=
�
x : IYi(x) > IYj (x)

	
and X Yi�YjIY

=�
x : IYi(x) � IYj (x)

	
. Clearly, X = X Yi>YjIY

[ X Yi�YjIY
, and X Yi>YjIY

\ X Yi�YjIY
= ?. The probability with

which PSA element Yi is more important than Yj ,

PF (IYi(x) > IYj (x)) (20)

is the probability with which x 2X Yi>YjIY
. The above framework allows to estimate PF (IYi(x) > IYj (x))

through Monte Carlo simulation. Similarly to eqs. (13) and (15), PF (IYi(x) > IYj (x)) is equal to:

PF (IYi(x) > IYj (x)) = lim
M!1

mij

M
(21)

where mij is equal to unity if Yi is more important than Yj in a given Monte Carlo run.4

It is useful to arrange the information of eq. (20) in matrix form:

P = [pi;j = PF (IYi(x) > IYj (x))
i = 1; 2; :::; n

j = 1; 2; :::; n

] (22)

(by default, we let pi;j = 1 when i = j). Note that the following holds for the elements of M :

pi;j = 1� pj;i, when i 6= j (23)

8Ranking PSA elements means to attribute a relative importance. In other words, one is comparing PSA elements

within themselves. In categorizing, one is introducing an external element (the threshold) and comparing the importance

of PSA elements against the threshold values.

11



In fact,

PF
�
IYi(x) > IYj (x)

	
= 1� PF

�
IYi(x) > IYj (x)

	
(24)

Let us examine the insights that a decision-maker derives from P. In the remainder, let Yi be more1

important than Yj in the point-estimate ranking (i.e., IYi(x
0) > IYj (x

0)). In the presence of epistemic2

uncertainty, the inequality IYi(x) > IYj (x) is evaluated in several Monte Carlo runs. If IYi(x) >3

IYj (x) is always true, then pij = PF
�
IYi(x) > IYj (x)

	
= 1(or 0) and correspondingly pji = 1 �4

PF
�
IYi(x) > IYj (x)

	
= 0 (or 1). This means that, if in P the non-diagonal elements are close to5

pij = 1 (or pji = 0), then the propagation of epistemic uncertainty does not alter the ranking induced6

by the point estimate values of the importance measure. One could say that the decision-maker is7

con�dent in the point-estimate ranking. Alternatively, it can happen that in some Monte Carlo runs8

IYi(x) > IYj (x) and in some IYi(x) > IYj (x). One can say that the decision-maker has a pij degree of9

con�dence that Yi is more important than Yj . As the value of pij moves from 1 to 0:5 (correspondingly10

pji moves from 0 to 0:5), the decision-maker is progressively less con�dent that Yi is more important11

than Yj . A value of pij lower than 0:5 would signal that epistemic uncertainty leads to a ranking12

reversal. In fact, such a value indicates that IYi(x) < IYj (x) in most of the scenarios, while, based on13

the point-estimate ranking, one would expect PF
�
IYi(x) > IYj (x)

	
> PF

�
IYi(x) < IYj (x)

	
.14

In the next Section, we discuss the implications generated by the presence of epistemic uncertainty15

in the evaluation of the S/RS of changes.16

4 The E¤ects of Epistemic Uncertainty on Changes Evaluation17

In this Section, we illustrate four di¤erent ways of modelling changes. As mentioned in the introduction,18

the need of PSA element categorization arises in applications such as the prioritization of maintenance19

activities, changes in quality assurance programs, changes in maintenance or testing policies, i.e., any20

activity that tends to alter the status quo of the plant (see Section 1). Before discussing the importance21

measure computation, a premise is necessary. The types of applications discussed in this work assume22

that changes are small. In general, however, changes can impact recovery actions or associated common-23

cause failures. One should consider whether eventual modi�cations to the PSA model are necessary24
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to properly evaluate the impact of the change. In the case, the incorporation of these changes in the1

model is required before the importance measure calculations. We refer the reader to Smith, 1998 [37]2

for a detailed discussion.3

Concerning the evaluation of changes a¤ecting multiple basic events we can then proceed as follows.4

The four possible cases we consider are:5

� Case a): changes a¤ecting a single basic event.6

� Case c): changes a¤ecting individual parameters.7

� Case b): changes a¤ecting multiple basic events.8

� Case d): changes a¤ecting multiple parameters.9

The need to distinguish between changes a¤ecting individual or multiple basic events is related to10

the issues in the computation of joint importance measures mentioned in Section 1.11

We now discuss the distinctive features in the use of importance measures in the evaluation of12

changes in the four cases.13

� Case a): changes a¤ecting one basic event at a time. After identifying the basic event in the PSA14

model a¤ected by the change, using the S/RS plane of FV and RAW the safety signi�cance of15

individual basic events is readily established. The decision-maker can then accept or reject the16

change based on the S/RS of the a¤ected basic event.17

� Case b): changes a¤ecting individual parameters. At the parameter level, one can build the S/RS18

plane using FV [eq. (9)] and DIM [eq. (10)]. Comparing the FVi(x0) and DIMi(x
0) to their19

thresholds, the decision-maker has information regarding the S/RS of the change9.20

9Similarly to what discussed in the previous footnote, to decide on the S/RS of the change, an S/RS threshold for

parameter DIM (ThDIM ) must be established. One could adopt a uniform contribution criterion, setting ThDIM = 1=Np,

with Np the number of parameters.
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� Case c): changes a¤ecting multiple basic events. There are two possible situations. In the �rst1

case, one or more of the individual basic events a¤ected by the change is/are risk signi�cant. We2

note that, as the importance of a single PSA element is lower than or equal to the importance of a3

set of elements, a change a¤ecting multiple PSA elements will be more safety/risk signi�cant than4

a change a¤ecting only individual PSA elements. Thus, one can consider a change safety/risk5

signi�cant, if the change involves at least one safety/risk signi�cant basic event. The second6

situation foresees that none of the involved basic events is individually safety/risk signi�cant.7

In this case, the analyst has still no information on whether the combined change is safety/risk8

signi�cant, as the S/RS plane provides information on the S/RS of basic events individually. One9

needs then to compute of the joint importance of the basic events. As underlined in Cheok et10

al (1998) [14] (see also our introduction), this is not feasible with RAW and not straightforward11

with FV . However, a direct way to obtain an importance measure of joint basic event changes12

is to make use of DIM . We recall that, under the assumption of proportional changes, DIM13

produces the same basic event ranking as FV (see also Borgonovo and Apostolakis, 2001 [6] and14

Borgonovo, 2007 [9]). Furthermore: i) as shown in Borgonovo (2007), one can infer the individual15

basic event DIM from other importance measures, without running additional calculations; ii)16

DIM shares the additivity property, and, therefore, the importance of the change is the sum of the17

individual importance measures (DIM�s) of the basic events a¤ected by the change (Borgonovo18

and Apostolakis, 2001). Thus, the importance of the joint change is readily appreciated using19

DIM10. The use of DIM for the evaluation of joint changes at the basic event level also shares20

the following interpretation: a) DIM ranks basic events according to their impact on the change21

in the risk metric; b) the e¤ect of the change is supposed to be a small one, in accordance with22

10To decide on the S/RS of the change, an S/RS threshold for DIM (ThDIM ) must be established. One could adopt

a uniform contribution criterion, setting ThDIM = 1=NBE , with NBE the number of basic events. The rationale is that,

since DIM is the fraction of the change associated with each basic event, if all the basic events contributed in the same

way, their contribution would be equal to 1=NBE : The decision-maker can then compare the sum of the DIM�s of the basic

events involved in the change against this threshold value and decide on the S/RS of the change.

14



the underlying philosophy.1

� Case d): changes a¤ecting multiple parameters. In this case the evaluation is done using FVj;l;::;k2

and DIMj;l;::;k. We recall that the calculation of FVj;l;::;k requires the identi�cation of the terms3

in the risk metric that involve any of the parameters in the group, and therefore one has to re-run4

the FV algorithm. DIM
j;l;::;k

is the sum of the the DIM�s in the group and therefore requires5

no additional runs. Looking at the S/RS region to which FVj;l;::;k and DIMj;l;::;k belong, the6

decision-maker has information regarding the S/RS of the change.7

The above observations have been stated with reference to the deterministic case. They also hold8

in the presence of epistemic uncertainty, but with a further feature, which we are to discuss.9

In Cases b and d, the following issue is generated by the presence of epistemic uncertainty in expected

value assignment [Section 3, eq. (18).] Let Yi; Yj ; :::; Yk denote a group of PSA elements. Then, one

would need to estimate:

EF
�
IYi;Yj ;:::;Yk

�
(25)

In general, importance measure of the group is not the sum of individual importance measures of the

elements in the group, i.e.,

IYi;Yj ;:::;Yk 6= IYi + IYj + :::+ IYk (26)

Inequality (26) implies that, in general:

EF
�
IYi;Yj ;:::;Yk

�
6= EF [IYi ] + EF

�
IYj
�
+ :::+ EF [IYk ] (27)

Thus, to compute the expected value of the importance of groups when importance measures are not10

additive, one would have to repeat the calculations as many times as many the groups of interest are.11

On the other hand, if I = DIM , one has11:12

EF
�
DIMYi;Yj ;:::;Yk

�
=EF

�
DIMYi +DIMYj + :::+DIMYk

�
= (28)

=EF [DIMYi ] + EF
�
DIMYj

�
+ :::+ EF [DIMYk ]

11We recall that the expecation operator is linear, i.e., EF [aX + bY ] = aEF [X] + bEF [Y ].
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Eq. (28) implies that the expected value of the DIM of a group of PSA elements can be found from1

the individual expected DIM�s of the elements in the group, thanks to the linearity of the expectation2

operator and the additivity of DIM . Thus, the information on group importance under uncertainty3

can be found through DIM without further model runs.4

In the following Sections, we discuss the results of the application of this approach to a reference5

PSA model.6

5 Application: the E¤ect of Epistemic Uncertainty on Ranking and on Categoriza-7

tion8

In this Section, we discuss the numerical �ndings of propagation of epistemic uncertainty in both the9

ranking and categorization of the elements of a PSA Model.10

The reference model is the large loss of coolant accident (LOCA) sequence of the Advanced Test11

Reactor, a research reactor located in the National Engineering Environmental Laboratory, Idaho Falls,12

Idaho (Eide et al, 1991 [15]). The Event Tree used in this paper is the same as in Borgonovo et al,13

2003. Two major safety systems are involved in the large LOCA accident, namely the SCRAM system14

and the Firewater Injection system. Failure of the SCRAM system leads directly to core damage. If the15

SCRAM system is successful, the Firewater Injection System must also be successful to prevent core16

damage (CD.)17

The model contains 44 basic events, for a total of 289 MCSs (for a detailed list of the parameters18

and basic events, Borgonovo et al, 2003, p. 180). The number of parameters is 31. The number of19

parameters is lower then the number of basic events, as the same parameters are used for basic events20

of identical components to account for complete epistemic dependence (Apostolakis and Kaplan, 198121

[2]). As from the original model, an error factor12 equal to 10 has been associated with all the basic22

12As often happens in risk analysis, the lognormal distribution:

fX(x) =
1

�X
p
2�
e
� 1
2

h
ln(X)��

�

i2

is expressed through its mean and error factor. The error factor is given by the ratio between the median and the 5th

percentile of the distribution, which, in the lognormal case, also equal the ratio of the 95th percentile to the median. From
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events and no correlation has been assumed among the parameters.1

In Section 3, we have seen that, in the presence of epistemic uncertainty, both the ranking and the2

categorization exercises becomes probabilistic. One then faces the problem of obtaining the estimates3

of the probabilities in eqs. (14) and (20). To do so, we have extracted the MCS equations produced by4

the SAPHIRE code and implemented them in an ad-hoc software code. The Monte Carlo sample has5

been generated through the LpTau quasi-random sequence generator proposed by Sobol�1967 ([38])6

with a sample of size M = 4096.7

In the remainder of this Section, subsections 5.1 and 5.2 discuss the numerical �ndings concerning the8

e¤ects of epistemic uncertainty in the ranking of PSA elements and in their categorization, respectively.9

5.1 Ranking10

We start with the results for the relative ranking of basic events. Table 1 reports the ranking induced11

by point estimate values of FVj(f0IE ;p
0) and RAWj(f

0
IE ;p

0) [eqs. (3) and (4)] as outputted from a12

standard PSA software code (SAPHIRE, [39]).13

[Insert Table 1 about here]14

Figure 1 reports the elements of matrix P [eq. (22)] obtained through uncertainty propagation (eq.15

21). Due to space reasons, Figure 1 shows the �rst 36 columns, with the complete matrix being 44�44.16

17

[Insert Figure 1 about here]18

In Figure 1, a grey background indicates an element of P whose value is around 0:5; (more precisely19

between 0:40 and 0:60), a lighter grey background indicates an element of P with value in (0:6� 0:75]20

knowledge of the mean and error factor, one can then derive the two parameters (�; �) of the lognormal distribution from:8><>: � = ln(ErrorFactor)
1:645

� = ln(Mean)� �2

2
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or in [0:25 � 0:40]. A black background would be applied to cells whose value denotes the presence of1

a ranking reversal (See Section 3 for a description of the potential e¤ects of epistemic uncertainty).2

One notes that grey cells appears in groups in Figure 1. In order to understand the results, note3

that in Table 1 basic events are ranked in groups: basic events 3; 4; 5; 11; 12; 22; 37; 36; 39; 41; 42 rank4

1nd, basic events 6; 7; 8; 9; 10; 12; 13; 14 rank 14, etc.. The reason is that these basic events are logically5

related by an �or� gate. In fact, basic events related by an �or� relation have the same RAW, as6

proven in Borgonovo and Apostolakis, 2001 ([6]; Appendix C:2, p. 210). Since a logical relationship is7

a structural feature, it is una¤ected by epistemic uncertainty. Thus, the basic events related by an �or�8

gate maintain the same RAW in all Monte Carlo trials. Indeed, the appearance of blocks of grey cells9

in Figure 1 con�rms this behavior.10

Figure 2 shows the e¤ect of epistemic uncertainty on FV rankings.11

[Insert Figure 2 about here]12

One notes that now that epistemic uncertainty a¤ects a higher number of elements of P and in13

a sparse way (rather than in groups). To further understand these results, we have computed the14

uncertainty ranges of the importance measures and the variability in ranking, reported in Figure 3.15

[Insert Figure 3 about here]16

In Figure 3, graphs 3a and 3c report the 10% con�dence intervals on the importance measure values17

and on the ranking for RAW. Graph 3a show that there is little overlapping among the uncertainty18

ranges in RAW. Graph 3c shows that rank overlapping appears across groups of basic events. Graphs19

3b and 3d refer to FV. Graph 3b shows a high overlapping of the FV values. Correspondingly, graph20

3d shows a much more di¤use variability in the ranking.21

Let us now examing the use of the results of Figures 1 and 2 to answer the question of the degree of22

con�dence in the point estimate categorization. Figures 1 and 2 allow to determine how likely it is that23

a basic event which is high-ranked in a point estimate analysis is low-ranked when full credit is given to24
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epistemic uncertainty. Let us start withRAW and consider basic events 3; 4; 5; 11; 12; 22; 37; 36; 39; 41; 42.1

These basic events rank 1nd in the point estimate analysis. Following the rows corresponding to these2

basic events in Figure 1, one notes that these basic events rank �rst with probability 1. This result3

con�rms the point-estimate ranking: these basic events are the most risk-signi�cant also in the pres-4

ence of epistemic uncertainty. Let us then follow what happens for basic events ranked 42 in Table 2.5

Following the corresponding lines in Figure 2, one notes that the probability with which they become6

more important than any other basic event is null. Again, one obtains a 100% con�rmation of the point7

estimate calculation. Figure 2 shows that epistemic uncertainty makes the decision-maker less con�dent8

in the point-estimate ranking for basic events with �intermediate�importance. For example, there is a9

30% chance that basic events 16; 17; 18; 19; 20 become more important than basic events 6; 7; 8 and 9.10

Thus, Figure 1 shows that, a decision-maker using RAW is 100% con�dent about the most and least11

relevant basic events, but can have some uncertainty in the intermediate ranking.12

Let us now turn to FV rankings (Figure 2 shows the corresponding matrix P; the use of dark13

cells is the same as in Figure 1). When epistemic uncertainty is propagated, no basic event ranking14

is con�rmed with probability 1. Let us start with the �rst ranked basic events. Basic event 22 (who15

ranks �rst according to point-estimate) has 28%, 33%, 46%, 44%, 29% and 30% chances of ranking16

lower than basic events 4 (ranked 10); 5 (ranked 6); 11 (ranked 3); 12 (ranked 5); 30 (ranked 4) and 3917

(ranked 7) respectively. For basic event 11 (second according to the point-estimate ranking) we note18

that: i) there are non-negligible ranking exchange probabilities with the top 10 ranked basic events; ii)19

the value p11;23 = 0:25 means that there is a 25% chance that basic event 11 ranks lower than basic20

event 23, which ranks 14. Basic event 30 has 43% and 29% chances to become less important than basic21

event 37 (which ranks 14) and basic event 38 (which ranks 17) respectively. Basic event 12 has 31% and22

29% chances of ranking lower than basic events 35 and 37, which rank 12th and 14th respectively. Basic23

event 5 has a 30% chance of ranking higher than basic event 22, all other signi�cant pij�s are with basic24

events ranking among the �rst ten. For basic event 39, one notes that the number of pij�s cells that are25

highlighted in dark-grey in the corresponding row increases, signalling a lower con�dence in the ranking.26
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Let us now consider basic event 29, which would be the 7th most important basic event according to1

the point estimate ranking. One notes that there are 17 pij�s which are now in grey, indicating a higher2

variability in the raking. In particular, note the following values: p29;17 = 0:49, p29;31 = 0:28 = p29;32.3

The value of p29;17 = 0:49 shows that basic event 29 ranks ahead than basic event 17 in 49% of the4

cases. This represents a reversal of the point estimate ranking, which saw basic event 17 as 11th and5

basic event 29 as 8th (the corresponding cells are black in Figure 2). The values of p29;31 and p29;326

show that there is a non-negligible probability of basic event 29 becoming less important than basic7

events 31 and 31, which rank 21st in the nominal ranking. Continuing with the remaining basic events,8

one notes an increasing e¤ect of epistemic uncertainty. The presence of epistemic uncertainty makes9

the decision-maker progressively less con�dent in the point-estimate ranking, and its e¤ects becomes10

particularly relevant starting from the seventh most important basic event.11

The same analysis has been carried out at the parameter level, with FV and DIM as importance12

measures. Results show the following: i) the response of the two importance measures is similar; ii) the13

impact of epistemic uncertainty is progressively felt. In particular, a decision-maker is con�dent about14

the relative ranking of the �rst 7 parameters, with an increasing number of elements of P being close15

to 0:5, from the 8th ranked parameter onwards.16

The analysis carried out in this Section has concerned the impact of epistemic uncertainty on17

relative rankings. In the next Section, we analyze the impact of epistemic uncertainty on PSA elements18

categorization .19

5.2 Categorization20

In this Section, we discuss the e¤ects of epistemic uncertainty in the categorization of PSA elements.21

We start with basic events. The following threshold values have been utilized in this exercise:22

ThRAW = 10 and ThFV = 0:05. The S/RS categories are displayed in Table 2 (column 5).23

[Insert Table 2 about here]24

Eight basic events are in the very high S/RS category, ten are in the high S/RS category (six in25
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region II and four in region III) and 27 are in the low S/RS region.1

The probabilities [eq. (14)] with which a basic event is assigned to a given category are reported in2

Table 2, columns 2 to 5. Basic events 41, 42, 43 and 44 are assigned to the corresponding point-estimate3

S/RS region with probability 1. Of the remaining, 33 basic events are assigned with highest probability4

to the same S/RS region of the point-estimate categorization, 8 basic events to a di¤erent S/RS region.5

For example, basic event 1 is assigned by point-estimate to S/SRS region IV (i.e., non risk-signi�cant).6

When epistemic uncertainty is considered, it is assigned to this region with probability 0:89 and, with7

probability 0:11, it is assigned to region III. Basic event 6 is assigned to region IV (the same as with the8

point-estimate assignment) with probability 0:72, to region II with probability 0:26 and to region I with9

probability 0:02. Basic events 4 and 5 have 65% and 54% chances to belong to region II, respectively.10

However, they were assigned by point estimate categorization to region I. Basic event 23 has a 0:7311

probability of belonging to region II, while it is assigned to region I by point estimate assignment. A12

similar behavior is registered for basic events 17, 19, 29, 30 and 35. For all these basic events, the13

region to which they belong with the highest probability is di¤erent from the point-estimate assignment14

region. We note that, however, all the probabilistic assignment regions are of lower safety signi�cance15

than the point-estimate ones. It is possible to explain this last �nding, by:16

� obtaining the distribution of the importance measures (FV and RAW in this case) for each basic17

event;18

� comparing the distributions to the threshold value;19

� computing the probabilities in eq. (13) that the importance measures are below/above the thresh-20

old values.21

As an example, let us apply the previous steps to basic event 23. The distributions of FVBE23(x)22

and RAWBE23(x) are reported in Figure 4.23

[Insert Figure 4 about here]24
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The vertical lines in Figure 4 evidence the thresholds. We have that P (RAWBE23(x) < ThFV ) =1

0:005. Thus, the RAW of basic event 23 lies above the threshold in almost all of the MC trials. Similarly,2

we have that P (FVBE23(x) < ThFV ) = 0:73, i.e., the FV of basic event 23 is below the threshold in 73%3

of the Monte Carlo trials. On the other side, the point estimate value of the FV for this basic event is4

0:062, which is above the threshold. This explains why the basic event is categorized by point-estimate5

in S/RS region I, but has a high probability of being in S/RS region II. Indeed, 0:73 in Table 2 is the6

value of the probability that the basic event lies in S/RS region II.7

In Table 2, consider basic event 12. Basic event 12 has 51% and 49% chances of belonging to regions8

I and II, respectively. Thus, the degree of con�dence of the decision-maker on the point estimate9

categorization is low for this basic event. Finally, consider basic events 16 and 17. Let us refer to10

column 8 in Table 2. This column reports the categorization obtained utilizing the expected value of11

the importance measures. This type of categorization is de�ned according to eq. (18). Table 2 shows12

that the two types of assignment give raise to very similar categorizations. Indeed, the only shift is13

registered for BE16 and BE17, whose S/RS regions are reversed by the two methods. This signals14

that, for the reference example, the uncertainty terms in eq. (19) do not play a major role, and, thus,15

EF [FVBEi(x)] and EF [RAWBEi(x)] are mainly driven by the their point estimates.16

Let us now turn to the categorization of parameters. The same procedure has been followed as for17

the basic events. The point-estimate categorization at the parameter level is reported in Table 3.18

[Insert Table 3 about here]19

Let us �rst discuss the point-estimate results for the model parameters. We recall that the model is20

non-linear at the parameter level, as one or more parameters are shared by basic events that appear in21

the same MCS�s, due to the complete epistemic dependence for the failure rates of identical components.22

Figure 6 displays the parameter S/RS plane, with ThDIM = ThFV = 0:008.23

[Insert Figure 6 about here]24
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We note that 17 parameters fall in the very high S/RS category, 3 in the high S/RS (zero in region1

II and seven in region III), and 11 in the low S/RS category.2

To analyze the e¤ect of epistemic uncertainty, let us refer to Table 3. We note that the region of3

highest probability for parameters 3, 6, 9, 15, 20, 23, 28 is region I, while they are assigned to regions4

of lower S/RS by the point estimate calculations. The explanation of these result is found by applying5

the three steps discussed above for the analysis of the distributions. In particular, one �nds values of6

P (DIMi(x) > ThDIM ) > 0:7 for all these parameters.7

Figure 6 also reports the S/RS regions obtained with expected value assignment. We note that: i)8

twenty-one parameters are ranked in S/RS region I, four more than with the point estimate analysis; ii)9

one parameter is in S/RS region II, while three parameters were in this region with the point estimate10

categorization (see Table 3); iii) nine parameters are assigned to S/RS region IV , while eleven were11

assigned with the point estimate rankings. Thus, expected value categorization di¤ers more than point12

estimate categorization at the parameter level than at the basic event level, for this case study.13

Overall, the analysis con�rms Cheok et al (1998)�s statement reported in the introduction that14

uncertainty is relevant in the integrated decision making process (see also Modarres and Agarwal, 199615

[31]). The previous �ndings have shown that, di¤erent assignment methods can bring to di¤erent basic16

event and parameter categorizations, due to the di¤erent information that each of the methods conveys.17

Ideally, one would like to retain the information of all the methods, as in Tables 2 and 3. These tables18

allow decision makers to compare the di¤erent categorization, providing their degree of con�dence in19

the deterministic categorization results.20

In the next Section, we show that the information gained through the basic event and parameter21

categorizations can be utilized in the evaluation of changes that alter the status quo of the plant.22

6 An Application: the Evaluation of Changes with Epistemic Uncertainty23

In this Section, we apply the categorization results of the previous Section to the evaluation of the24

following changes:25
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� ChA-1: change in the testing interval on the SCRAM system.1

� ChA-2: change in QA procurements on deep-well pump 1.2

� ChA-3: change in QA procurement on the three pumps.3

We start with the modeling of ChA-1. ChA-1 a¤ects the testing of the SCRAM system. The4

testing scheme has the purpose to check that the sensors transmit the proper signal to the electronic5

sub-logic. This is represented in the model by basic event 42. If no epistemic dependence is considered6

and a unique basic event is involved in the change, one can model the change as a¤ecting an individual7

basic event. The evaluation is then straightforward using the categorization of basic events obtained8

in Section 5. We make reference to Table 6. We note that BE42 is ranked in region II by the point9

estimate results. Therefore, one would conclude that ChA-1 a¤ects a PSA element that is in the high10

S/RS category. Let us then investigate whether the consideration of epistemic uncertainty can change11

this conclusion. Table 6 still shows that expected value results would place the basic event in a region12

of high S/RS, while it is in region IV with probabilistic assignment. The decision-maker can use this13

information to accept or reject ChA-1.14

We now focus on ChA-2. The change a¤ects pump 1 random properties, namely its failure to15

start and failure while running. Since pumps 2 and 3 are not a¤ected by ChA-2, ChA-2 must be16

modeled as a¤ecting pump 1 individually. Therefore we can evaluate the change as altering basic events17

BE18 and BE19 that represent these two failure modes in the PSA model. Using Table 2, we note18

that BE18 and BE19 are not individually S/RS, since they are assigned to S/RS regions IV by all19

methods. To have information on their combined e¤ect, we follow the approach proposed in Section20

4, evaluating the change through the joint DIM , DIMBE18;BE19 . The individual DIMs are computed21

through simple manipulations by exploiting the availability of FV results (see Borgonovo, 2007). We get:22

DIMBE18(x
0) = DIMBE19(x

0) = 0:0042. Thus, DIMBE19;BE19(x
0) = DIMBE18(x

0)+DIMBE19(x
0) =23

0:0084. Comparing this number with ThDIMBE
, the analyst has information on whether the change24

exceeds or not the threshold. This information can than be used to accept or reject the change.25
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We are now left with the evaluation of ChA-3. ChA-3 has to be modeled at the parameter level, since1

it a¤ects a set of redundant components (see Section 4). In particular, the change a¤ects parameters2

14 and 15 that are shared among the three pumps and represent their failure-to-start probability and3

failure-to-run rate, respectively.4

Referring to Table 8, we note that both parameters are assigned to S/RS region I, by both point5

estimate and expected value assignments. Their combined e¤ect, can be evaluated through the use of6

their joint FV and DIM . Let us start with the point estimate assignment. In this case, FV14;15(x
0) =7

0:070 and their joint DIM14;15(x
0) = DIM14(x

0) + DIM15(x
0) = 0:03077. Then, one has all the8

quantitative information necessary to evaluate the change, by comparing these values to the threshold9

values. This information is then used by the decision-maker to accept or reject (most likely) the change.10

Finally, suppose that one wants to compare this result with the one She/He would obtain using11

the expected values assignment. Then, to �nd EF [FV14;15(x)] one has to repeat Monte Carlo trials12

computing FV14;15(x) in each of the trials. With DIM , however, the expected importance of a group is13

straightforwardly obtained as sum of the expected DIM�s in the group [eq. (28).] Thus, in the above14

example, using Table 7 one obtains: EF [DIM14;15(x)] = EF [DIM15(x)] + EF [DIM15(x)] = 0:03073.15

We also remark that we did not formulate the �nal decision-maker conclusions while commenting the16

three changes evaluation. This has had the purpose of maintaining this application an exercise and not17

to give general conclusions for two reasons: 1) we are dealing with just one sequence of the PSA model.18

The basic events of this example also appear in other sequences; 2) the decision-maker �nal resolution19

on the changes does not only involve quantitative information derived by importance measures, but20

undergoes a peer review through a panel of experts (Apostolakis, 2005 [5]) which integrates quantitative21

and qualitative information.22

7 Conclusions23

We have presented a methodical approach that allows a risk informed decision-maker to derive infor-24

mation on the categorization of PSA elements in the presence of epistemic uncertainty.25

In the presence of epistemic uncertainty, a decision-maker cannot rank SSC�s with certainty, nor26

25



assign them SSC to a safety/risk signi�cance (S/RS) regions with certainty, but only with a given1

probability. We have then structured the framework and proposed a method for the estimation of2

such probability. For the ranking exercise, we have formalized the notion of probabilistic ranking3

through probability matrix P, whose entries represent the probabilities that basic event (or another4

PSA element) i is more important than element j. We have discussed its properties and its use in the5

determination of the decision-maker�s degree of con�dence in the deterministic ranking.6

For the categorization, we have discussed two procedures to assign SSC�s to S/RS regions in the7

presence of epistemic uncertainty. The �rst, called probabilistic assignment, consists in estimating the8

probability with which a certain PSA element belongs to a given S/RS region. We have provided a9

formal de�nition of these probabilities and the relevant Monte Carlo estimation equations. We have10

also formalized a categorization procedure based on the expected value of the importance measures.11

We have discussed that such an assignment method would be a bridge between a deterministic and a12

probabilistic categorization.13

We have then investigated the impact of epistemic uncertainty on the evaluation of changes. We14

have seen that changes that a¤ect PSA model elements related by epistemic dependence (that is the case15

of redundant identical components) are properly modeled at the parameter level. On the other hand,16

changes that a¤ect individual or multiple failure modes, where no epistemic dependence is involved, are17

properly modeled at the basic event level.18

We have presented the application of the proposed framework to the PSA model of the Large19

LOCA sequence of the ATR reactor. We have discussed results for the probability matrix P, and for20

the categorization of basic event and parameters. We have compared the deterministic categorization21

with the categorization obtained assigning basic events and parameters to safety regions based on the22

expected value of the importance measures. We have discussed how the information obtained through23

these procedures allows decision makers to appreciate �the sensitivity of component categorizations to24

uncertainties in the parameter values [Regulatory Guide 1.174]�.25

We have then illustrated, through the same case study, the evaluation of three changes, which require26

26



modeling both at the basic event and parameter levels. We have seen that the S/RS of changes a¤ecting1

individual basic events or parameters can be directly established from the S/RS plane. For changes2

a¤ecting multiple basic events, a two step evaluation has been performed, with the second step relying3

on DIM to compute the importance of groups.4
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