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Abstract
In this work, we discuss the e¤ect of risk measure selection in the determination of

inventory policies. We consider an inventory system characterized by the loss function
of Luciano et al (2003.) We derive the optimization problems faced by risk neutral,
quadratic utility, mean-absolute and CVaR decision makers. Results show that while
the global nature of the optimal policy is assured for risk coherent and risk neutral
decision makers, the convexity of the quadratic utility problem depends on the stochas-
tic properties of demand. We investigate the economic and stochastic determinants of
the di¤erent policies. This allows us to establish the conditions under which each type
of decision maker is indi¤erent to imprecision in the distribution families. Finally, we
discuss the numerical impact of the choice of the risk measure by means of a multi-item
inventory. The introduction of an approach based on Savage Scores allows us to o¤er
a quantitative measurement of the similarity/discrepancy of policies re�ecting di¤erent
risk attitudes.
Keywords: Inventory Management, Coherent Risk Measures, Optimization with Co-

herent Risk Measures, Random Demand Modelling.

1 Introduction

The purpose of this work is to investigate the quantitative implications of the risk measure
choice on optimal inventory policies. We introduce a structured approach to allow the deter-
mination of the extent of the discrepancies in the policies selected by decision makers with
di¤erent risk attitudes � in particular, we compare risk neutral policies to the policies of
decision makers selecting variance, absolute deviation (MAD) and conditional value at risk
(CVaR) as risk measures1. �
Relevant literature in the last 20 years has evidenced the importance of �nancial and deci-

sion theoretical aspects in inventory management. The works of Grubbström and Thorsten-
son (1986), Thorstenson (1988), Luciano (1998), Luciano and Peccati (1999) and Luciano

1We refer to Ogryczak and Ruszczynski (1999) for the relationship between stochastic dominance and
mean-risk models, to Artzner et al (1999) for a de�nition of coherent risk measures and to Rockafellar and
Uryasev, 2002 for the de�nition of conditional value at risk. A de�nition of mean-absolute deviation can be
found in Ruszczynski and Shapiro, 2005, who also discuss in detail the theory of risk measure optimization.
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et al (2003), Koltay (2006) focus on applications of the discounted cash �ow methodology
to inventory policies. Bogataj and Hvalica (2003) propose to utilize, besides an expected
value criterion, the maximin approach. The maximin approach to the newsvendor problem
is discussed in Gallego and Moon (1993) and Gallego et al (2001.) Earlier, alternative op-
timization criteria for the newsvendor problem have been studied in Lau (1980.) This lines
of thought can be seen as leading to the recent formulation of inventory management prob-
lems in terms of coherent risk measures [Chen et al (2005,) Ahmed et al (2006,) Gotoh and
Takano (2006).] Chen et al (2005) analyze risk aversion in inventory problems comparing risk
measures and expected utility optimization. Ahmed et al (2006) derive the structure of the
solution of coherent risk measure optimization for the newsvendor loss function. Gotoh and
Takano (2006) discuss the solution of the newsvendor problem with conditional value at risk
(CVaR.) Common feature in these works is the utilization of the newsvendor loss function.
Distinctive features are, in Gotoh and Takano (2006,) CVaR minimization with the extension
of the loss function to a multi-item single-period problem, and, in Ahmed et al (2006), the
treatment of the single-item multi-period (�nite horizon) problem.
In this work, we consider a multi-item inventory system whose �nancial characteristics

are described by the pro�t function of Luciano et al (2003) � �LCP model� from now
on. In order to assess the e¤ect of alternative risk aversion representations, we are faced
with formulating and studying the optimization problems of the four decision makers in the
presence of the LCP model. Results show that while a risk neutral and a coherent risk averse
optimal policy is always a global one, the conditions under which a mean-variance decision
maker�s optimal policy is globally optimal are determined by the stochastic properties of
demand.
We then investigate the determinants of the optimal policies. By deriving the analytical

expressions of the optimization problems, we identify and discuss the stochastic properties
that are needed by the four types of inventory managers to identify the optimal policies.
This allows us to determine the conditions under which the decision makers are insensitive to
imprecision in the demand distributions. As far as economic aspects are concerned, �ndings
show that while a risk neutral policy can be determined based on the sole knowledge of
revenues and variable costs, risk averse decision makers need the additional knowledge of the
system �xed costs.
We then carry out a numerical discussion aimed at highlighting the quantitative di¤er-

ences among the optimal policies selected by the di¤erent decision makers. To compare the
policy structures we introduce a methodology based on Savage�s score correlation coe¢ cients
(Iman and Conover, 1987.) The numerical impact of imprecision in the demand distribution
is assessed by confronting numerical results obtained with �nite support distributions (Beta)
to the results obtained via an in�nite support distribution (Gamma.)
The remainder of the paper is organized as follows. Section 2 illustrates the problem

settings in the presence of a generic loss function. Section 3 presents the problem settings
for the LPC pro�t function. In particular, Section 3.1 discusses the optimization problem for
a risk neutral decision maker. Section 3.2 derives the optimization problem for a quadratic
utility risk averse decision maker. Section 3.3 discusses the problem for an inventory manager
utilizing MAD. Section 3.4 presents the optimization problem for a CVaR decision maker.
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Section 4 compares the di¤erent problems, discusses numerical results and evaluates the e¤ect
of imprecision in the demand distributions. Section 5 o¤ers conclusions.

2 Problems Settings for Generic Inventories

In this Section, we present a brief overview of risk measure optimization, introducing results
that are relevant in the remainder of the paper.
We start with considering a real valued random variable, Z = f(x; !) that depends on

decision vector (x 2 RN) and ! 2 
, where (
;B(
); P ) is a measure space [Ruszczynski
and Shapiro (2005).] If Z represents a loss or a disutility (Ruszczynski and Shapiro, 2005)
the optimal risk-neutral choice solves the stochastic programming problem:

min
x2S

EP [f(x; !)] (1)

where S is the feasible set.
Many authors, have questioned expected value optimization, as the resulting policy is

optimal �on average [Ruszczynski and Shapiro (2005)].�Indeed, the most general formulation
of an optimization problem is in terms of expected utility maximization. The problem is
stated as

max
x2S

EP [u(f(x; !))] (2)

The utility function, u(�), captures the decision maker preferences, giving full consideration
to His/Her risk aversion/proneness. However, the form of u(�) can be �extremely di¢ cult
to elicit [Ruszczynski and Shapiro (2005)].�A �rst way to go around such a di¢ culty is to
pre-determine the shape of the utility function [see Chen et al (2005),] or to approximate it
through a series expansion. When the expansion is arrested at the second order one obtains
the quadratic assumption which is at the basis of Markowitz�s (1952) portfolio selection
model. A decision maker possessing a quadratic utility function, ought to select x such that:

min
x2S

VP [f(x; !)] (3)

As second way to take risk aversion into consideration, which has been successfully proposed
in the �nance literature in the seminal work of Artzner et al (1999,) consists of making use
of coherent measures of risk. Let �(Z) denote a function satisfying the following axioms of
Artzner et al,1999:
1) Translational Invariance: �[Z + a] = �[Z] + a
2) Subadditivity: �[Z1 + Z2] � �[Z1] + �[Z2]
3) Positive Homogeneity: 8� > 0 �[�X] = ��[X]
4) Monotonicity: Given Z1; Z2 such that Z1(!) � Z2(!) 8! 2 
 then �[Z2] � �[Z1]
5) 8Z 6= 0, �[Z] > 0
Then, �(Z) is a coherent measure of risk and a decision maker modeling risk aversion

through �(Z) solves the following problem [Artzner et al (1999), Ruszczynski and Shapiro
(2005):]

min
x2S

�[f(x; !)] (4)
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For a complete commentary on the meaning of the Axioms, we refer to Artzner et al (1999.)
We, however, place emphasis on the following results that provide the background for the
�ndings presented in the next sections.

Remark 1 1. The axioms of Subadditivity and Positive Homogeneity lead to the convexity
of �[f(x; !)];

2. Monotonicity assures that �[f(x;!)] is convex in x if f(x;!) is convex2;

3. If the set S is convex, then the optimization Problem becomes a convex program [see
also Ruszczynski and Shapiro (2005).]

The implementation of Problem (4) in inventory management is accomplished if one
lets f(x;!) coincide with the loss function of the inventory model under consideration. In
particular, the observations in Remark 1 assure that:

Remark 2 if the loss function of the inventory model is convex, then the optimization Prob-
lem (4) is a convex program.

Variance can be taken as a measure of dispersion, and originates the so called mean-
variance risk function [Ogryczak and Ruszczynski (1999,) Ruszczynski and Shapiro (2005).]
However, Ogryczak and Ruszczynski (1999) show that the mean-variance risk measure is not
consistent with second order stochastic dominance in the presence of asymmetric distribu-
tions, and Ruszczynski and Shapiro (2005) show that it does not satisfy the monotonicity
axiom, i.e., the mean-variance risk function is not a coherent measure of risk. We then
contrast the result of a quadratic decision maker to those obtained by decision makers uti-
lizing the following two coherent risk measures: mean-absolute deviation measure (MAD)
and CVaR. The MAD measure is de�ned [Ruszczynski and Shapiro (2005) and Ahmed et al
(2006)] as:

�(Z) = EP [Z] + 
 fEP [jZ � EP [Z]j]g (5)

with 0 < 
 � 0:5:
The CVaR measure (denoted as ��(x), with � 2 [0; 1], see also Table 1) has been intro-

duced in Rockafellar and Uryasev (2002):

��(x) = mean of the �� tail distribution of Z (6)

CVaR is a generalization of Value at Risk (VaR.) CVaR enables to overcome the lack of
subadditivity associated with VaR and satis�es the axioms of Artzner et al (1999) [Rockafellar
and Uryasev (2002,) Ruszczynski and Shapiro (2005), Gotoh and Takano (2006) and Ahmed
et al (2006).]
In the next sections, we derive the Problems faced by a risk neutral, a mean-variance, a

MAD and a CVaR decision maker in the case the inventory system is described by the LPC
pro�t function.

2See Ruszczynski and Shapiro (2005), Section 6 and Theorem 5.1 in Rockafellar (1970.)
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3 Problem Settings for the Multi-Item LPC Inventory Model

The cost function at the basis of our analysis is the one proposed in Luciano et al (2003).
The model foresees a single item inventory characterized by stochastic demand, D, with
one-period pro�t function given by [Luciano et al (2003)]:

�(x;D) =

�
px� a� hx

2

2D

�
(7)

where x is the order quantity, p > 0 the revenue per unit of inventoried good, a > 0 the
�xed order cost component, and h > 0 the unit holding cost [Luciano et al (2003)]. We let
D 2 �D� R+ � f0g ; and (�D,B(�D),P ) is the corresponding measure space (we refer to
Table 1 for notation and symbols.) As far as the convexity of eq. (7) is concerned, it holds
that:

Remark 3 Since p > 0; a > 0, h > 0 and D > 0, �(x;D) is (strictly) concave 8D, while
the corresponding loss function

L(x;D) = ��(x;D) (8)

is (strictly) convex 8D.

Proof. By di¤erentiation, �00(x;D) = � h
D
< 0, and L00(x;D) > 0 8D:

Then, a risk-averse inventory manager faces the Problem:

min
x2S

�[L(x;D)] (9)

We note that combining Remarks 2 and 3 one obtains the following:

Remark 4 Given the LPC loss function in eq. (8), (9) is a convex program for any coherent
risk measure

On the other hand, a risk neutral inventory manager would face the Problem:

max
x�0

EP [�(x;D)] (10)

whose unique solution is:
x� =

p

hm
(11)

where m = EP [1=D].
The settings in eqs. (10)-(5) apply to an inventory system which is represented as

composed of one item. When the inventory is disaggregated into its various items, let
i = 1; 2; :::; N denote the types of goods (items). Then, p, a, h; D become N -dimensional
vectors (p, a, h; D 2 (R+)N .) There follows that

�D = �D1 ��D2 � :::��DN� (R
+)N (12)
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and one needs to characterize an N -variate random demand3. We let F = P (D < d) the
corresponding joint probability function. As far as cost (pro�t) aggregation is concerned,
maintaining the same hypothesis as in Assumption 2.2 of Gotoh and Takano (2006)4, i.e.
value additivity, the total inventory cost or pro�t is the sum of the costs or pro�ts deriving
from the individual products in the inventory [eq. (7)]. In the case of the LPC model one
gets the total pro�t function:

�(x;D) =

NX
i=1

�
pixi � ai �

hix
2
i

2Di

�
(13)

As far as the concavity of eq. (13) is concerned, by direct di¤erentiation or by noting that
eq. (13) is the sum of convex functions, one obtains that:

Remark 5 The pro�t function of eq. (13) is concave 8D and the corresponding loss function

L(x;D) = ��(x;D) (14)

is convex 8D.

We have now all the tools needed to discuss the optimization problems that are faced
by risk-neutral, quadratic utility, mean-absolute and CVaR risk averse decision makers for
multi-item inventories with loss function given by the extended LPC model [eq. (13).]

3.1 Risk Neutral Decision Maker
We start with a risk neutral decision maker. One can state the following:

Proposition 1 Given the LPC pro�t function [eq. (13)], a risk neutral decision maker solves
the following Problem:

Prisk�neutral =
(
max
x=0

NX
i=1

�
pixi � ai �

mihix
2
i

2

�
(15)

where

mi := EF
�
1

Di

�
(16)

Proof. A risk neutral decision maker maximizes the expected value of pro�t [Problem (10)].
We have:

EF [�(x;D)] = EF
�PN

i=1

�
pixi � ai �

hix
2
i

2Di

��
=

�PN
i=1 EF

�
pixi � ai �

hix
2
i

2Di

��
=

=
PN

i=1

�
pixi � ai �

hix
2
i

2
EF
�
1

Di

�� (17)

3Gotoh and Takano (2006) discuss the solution of a multi-item newsvendor problem with N goods and a
discrete joint mass function.

4The assumption of value additivity, albeit standard in literature, is hiding the possibility of interactions
(discounts, sinergies) among inventory items. It is utilized in this work as the construction of a non-addivite
multi item function is out of the scope of the present paper and it is the subject of future work of the authors.
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We note that, by the linearity of the expectation operator or by direct di¤erentiation,
EF [�(x; D)] is strictly concave. This implies that a unique maximum (minimum for L(x; D))
exists [Takayama (1993), Ch. 2.], which is given by:

x� =

�
1

h1m1

p1;
1

h2m2

p2; :::;
1

hNmN

pN

�
(18)

One can note that x� is determined by holding costs (h), revenue per unit of inventoried
items p, and by m, which is a stochastic property of demand and, in general, depends on
the choice of the demand distribution. In this respect, the following holds.

Remark 6 The optimal risk-neutral inventory policy is invariant if two distributions F1 and
F2 are such that:

EF1 [�(x;D)] = EF2 [�(x;D)] (19)

i.e., risk neutral decision makers are indi¤erent among demand distributions that lead to the
same m.

As far as the computation of m is concerned, we note that a simpli�cation is possible
if stochastic independence is assumed. In fact, under the independence assumption it holds

that F =
NY
i=1

Fi and dF =
NY
i=1

dFi. Then the mi�s can be computed for each item separately5

and mi =
R
�Di

1
Di
dFi.

We now turn to the problem of determining the optimal policy for a risk averse decision
maker selecting variance as a risk measure.

3.2 Risk Averse Decision Maker: Variance as a Risk Measure
For a risk averse decision maker with a quadratic utility function, the dispersion measure is
variance [in this respect, see Ogryczak and Ruszczynski (1999).] The Problem of the optimal
inventory policy selection becomes:

P 0V =
�
minx2S VF [�(x;D)] (20)

In order to discuss the conditions under which Problem P 0V is a convex one, we derive the
explicit expression of the objective function for a quadratic utility inventory manager when
the cost function is the multi-item LPC one [eq. (14).]

5In fact: mi =
R
�D

1
Di
dF =

R
�D1

��D2
�:::��DN

1
Di

NY
l=1

dFl =
R
�Di

�
1
Di
dFi

�0@ NY
l=1;l 6=i

R
�Dl

dFl

1A
=
R
�Di

1
Di
dFi, since

0@ NY
l=1;l 6=i

R
�Dl

dFl

1A = 1:
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Proposition 2 Let
M = [mi;j : mi;j = CovF

�
D�1
i ; D

�1
j

�
(21)

be the covariance matrix of inverse item demands. Given the LPC pro�t function [eq. (13),]
a quadratic risk averse the decision maker solves the following Problem (PV):

PV =
n
minx2S

1
4

PN
i=1

PN
j=1 hihjx

2
ix
2
jmi;j (22)

Proof. See Appendix A.
Concerning matrix M [eq. (21),] the following properties hold:

Remark 7 1. M is symmetric.

2. If stochastic independence holds, then M is diagonal and

mi;i=

Z
�Di

D�2
i dFi �m2

i (23)

From a technical point of view, clearly VF [�(x;D)] 2 C1(RN), and is increasing in x. As
far as its convexity is concerned, we note that letting x2i = yi, one can write VF [�(y;D)] =PN

i=1

PN
j=1

hihjyjyi
4

Cov[D�1
i ; D

�1
j ], i.e. VF [�(y;D)] is a quadratic form in y. Since hi,hj >

0 the concavity (convexity) of VF [�(y)] is determined by the covariance matrix, M . If
Cov[D�1

i ; D
�1
j ] is such that VF [�(x;D)] is convex, Problem PV becomes a convex program6.

Some signi�cant simpli�cation is achieved in the case of stochastic independence, as the above
Remark 7 implies that the de�niteness of M is determined only by the sign of the diagonal
elements and so is the convexity of VF [�(x;D)].
In terms of imprecision about the demand distribution, the following observation holds:

Remark 8 A quadratic risk averse decision maker is indi¤erent among demand distributions
that lead to the same M , i.e., the optimal quadratic risk-averse inventory policy is invariant
if two distributions F1 and F2 are such that:

CovF1
�
D�1
i ; D

�1
j

�
= CovF2

�
D�1
i ; D

�1
j

�
(24)

Remark 8 can be compared to Remark 6. Remark 8 implies that quadratic risk averse
decision makers are interested in the covariance matrix of the inverse demand distributions,
while risk neutral are interested only in their expected values.
We now deal with the Problem solved by a mean-absolute risk averse decision maker.

6From an analytical point of view, one can adopt a Kuhn-Tucker formulation, as the non-negativity
constraint x � 0 holds due to economic considerations [Takayama (1993).]
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3.3 Risk Coherent Decision Maker: the case of Mean-Absolute
Deviation

We start this Section with a result that assures the convexity of the optimization problem
for a decision maker selecting any coherent risk measure in the presence of the LCP loss
function. Let �[Z] denote the generic coherent risk measure. Then, a risk-coherent decision
maker solves the Problem:

P� =
�
minx2S �[L(x;D)] (25)

The following result holds.

Remark 9 Given L(x;D) of eq. (14), P� [25] is a convex program for any coherent risk
measure.

We now focus on a decision maker selecting the MAD measure [eq.(5)]. Problem (25) is
written as:

P 0MAD =
�
minx2S EF [L(x;D)] + 
 fEF [jL(x;D)� EF [L(x;D)]j]g (26)

We derive the explicit expression of P 0MAD in the following Proposition.

Proposition 3 A decision maker with mean-absolute risk aversion and LPC pro�t function
[eq.(13)] solves the following Problem:

PMAD =
n
minx2S �px+ 1a+

PN
i=1

hix
2
i

2

�
mi + 
(m

+
i +m

�
i )
�

(27)

where
m+
i =

R
�+D
(EF [ 1Di ]�

1
Di
)dF

m�
i =

R
��D
( 1
Di
� EF [ 1Di ])dF

(28)

Proof. See Appendix B.
About the calculation of m+

i +m
�
i ; we note that:

Remark 10
m+
i +m

�
i = mi[2F (�

+
D)� 1] +

Z
��D

1

Di

dF �
Z
�+D

1

Di

dF (29)

where F (�+D) is the measure of �
+
D, i.e., the probability that D 2 �+D.

Proof. Proof: R
�+D
(EF [ 1Di ]�

1
Di
)dF +

R
��D
( 1
Di
� EF [ 1Di ])dF =R

�+D
(EF [ 1Di ]�

1
Di
)

NY
i=1

dFi +
R
��D
( 1
Di
� EF [ 1Di ])

NY
i=1

dFi =

= mi

�R
�+D
dF
�
�
R
�+D

1
Di
dF +

R
��D

1
Di
dF �mi

R
��D
dF =

miF (�
+
D)�miF (�

�
D) +

R
��D

1
Di
dF �

R
�+D

1
Di
dF =

= mi[F (�
+
D)� F (��D)] +

R
��D

1
Di
dF �

R
�+D

1
Di
dF

(30)

Now, it holds that: F (�+D) + F (�
�
D) = 1and substituting F (�

+
D) = 1� F (��D) completes the

proof.
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As far as the e¤ect of the demand distribution is concerned, the following holds:

Remark 11 Mean-absolute risk averse policies are invariant for distributions leading to the
same m and m+ +m�:

The above Remark can be seen also as stating that, to �nd the optimal policy, a mean-
absolute risk averse decision maker needs to determine the quantities m;m+;m� �besides
the economic parameters, of course.

3.4 Risk Coherent Decision Maker: the case of CVaR
In this Section, we formulate the optimization problem for a decision-maker adopting CVaR
as a coherent measure of risk (see Section 2.) Following Rockafellar and Uryasev (2002) [see
also Gotoh and Takano (2006),] we introduce the auxiliary function (see also Table 1 for
notation):

H�(x; �) = � +
1

1� �EF
�
[L(x;D)� �]+

	
(31)

where
[L(x;D)� �]+ = max[L(x;D)� �; 0] (32)

Theorem 10 in Rockafellar and Uryasev (2002) then assures that the following holds:

��(x) = argmin
�
H�(x; �) and ��(x) = H�(x; ��(x)) (33)

One can write the optimization problem in one step (see also Rockafellar and Uryasev (2002),
Gotoh and Takano (2006)) as:

P 0CV aR� =
�
min

x;�2S�R
H�(x; �)

�
(34)

In Appendix C, we show that the following holds.

Proposition 4 A decision maker utilizing the LPC loss function and adopting CVaR as a
coherent risk measure solves the problem:

PCV aR� =
(
min

x;�2S�R
� +

1

1� �

"
(1a� px� �)F (��+D ) +

NX
i=1

hix
2
im

�+
i

2

#)
(35)

where
F (��+D ) =

R
��+D

dF

m�+
i :=

R
��+D

1
Di
dF

(36)

Note that F (��+D ) being the measure of �
�+
D is the probability that D 2 ��+D , i.e., the

probability of incurring a loss greater than �.
As far as imprecision in the demand distribution is concerned, the following holds:

Remark 12 A CVaR decision maker is indi¤erent among demand distributions that lead to
the F (��+D ) and m

�+
i [eq. (36).]

The next Section compares the numerical results that are obtained by decision makers
that solve the four problems presented in this Section.
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4 Numerical Discussion and the E¤ect of Demand Distribution
Imprecision

In this section, we analyze and compare structure, numerical results and sensitivity to the
choice of the demand distribution of the four problems discussed in Sections 3.1, 3.2, 3.3 and
3.4.
We utilize as a constraint the fact that the decision maker wishes to minimize risk while

maintaining a certain expected pro�t, i.e., in problems PV, PMAD and PCV aR, we set S:

S = fx : EF [�(x;D)] � � and x � 0g (37)

We have seen in the above section that EF [�(x;D)] is concave. This assures that S is convex
[Theorem 1.8 in Takayama (1993).] Thus, the global nature of the solution to PV, PMAD and
PCV aR is preserved.
The �rst question we are going to answer by means of our numerical analyses is the

sensitivity of the optimal policy to the choice of the risk measure7. For this discussion,
we suppose that the decision maker assumes that each item�s demand can vary between its
lowest value Dinf

i and its highest value, Dsup
i (see Table 1 for the notation and Table 2 for

the numerical values) according to a Beta density, i.e., She/He lets:8><>:
�BetaD = (Dinf

1 ; D
sup
1 )� (Dinf

2 ; D
sup
2 )� :::� (Dinf

N ; D
sup
N )

fBeta(D; r;q;D
inf ;Dsup) =

NY
i=1

1R 1
0 y

r�1
i (1�yi)q�1dyi

� (Di�D
inf
i )r�1(Dsup

i �Di)q�1
(Dsup

i �Dinf
i )r+q+1

(38)

where r and q are shape factors (Table 1.) Given this density, PBeta is such that the demand
among items are independent. Thus, the covariance matrix M is diagonal (Remark 7.)
We utilize an inventory made of N = 10 items and the demand distribution numerical

assumptions reported in Table 2.

[*** Table 2 is about here ****]

The Economic parameters of the inventory Problems are reported in Table 3.

[*** Table 3 is about here ****]

The optimal policy of the four decision makers are reported in Table 4.

[*** Table 4 is about here ****]

7We utilize � = 5000 in this illustration.
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The unconstrained expected pro�t equals 1:1E+4 and the unconstrained variance 2:7E+7.
The total number of items ordered is

P10
i=1 x

�RiskNeutral
i ' 1850. A quadratic utility risk-averse

inventory manager, would adhere to the optimal policy reported in Table 4, third row. The
value of the minimized variance is V�Beta[�(x;D)] = 9:0E+4, with a sensible reduction w.r.t.
the risk neutral case. The total number of purchased items is

P10
i=1 x

�Quadratic
i = 464. The

same reduction e¤ect can be seen in Figure 1, which shows the sensitivity of the optimal
inventory policy for a mean-absolute risk averse decision maker with 
 increasing from 0:2
to 0:5: the number of purchased items decreases linearly with 
 for each type of good.

[*** Figure 1 is about here ****]

The optimal policy obtained with 
 = 0:5 is reported in the fourth row of Table 4.
The total number of ordered items is

P10
i=1 x

�MAD
i = 1429. A CVaR decision maker would

adopt the policy in the �fth row of Table 4 with
P10

i=1 x
�CV AR
i = 804: These results lead

to the following �rst observation: risk aversion causes the decision maker to reduce the
total number of ordered items in order to incur in lower losses 8. More precisely, we have
obtained that

P10
i=1 x

�Quadratic
i <

P10
i=1 x

�CV AR
i <

P10
i=1 x

�MAD
i <

P10
i=1 x

�RiskNeutral
i . Such an

ordering does not concern only the total number of ordered items, but Table 4 shows that
it is maintained for individual items, i.e., x�Quadratici < x�CV ARi < x�MAD

i < x�RiskNeutrali ,
i = 1; 2; :::; 10. This leads us to analyze the similarity/discrepancies in the structure of the
policies. To do so, we make use of an approach based on the technique of Savage Scores9.
The method requires to �rst transform the raw �gures of the ordered items (x) into their
ranks and then convert the ranks into Savage Scores (� - Table 1.) The resemblance among
the policies is then synthesized by the correlation coe¢ cient on the scores. In our case,
results are as follows. The correlation coe¢ cient between ��CV aR and ��Quadraticis unity, as
indeed the two policies have indeed the same structure. Similarly, the correlation coe¢ cient
between ��MAD and ��RiskNeutral is 1. The correlation coe¢ cient between ��MAD/��RiskNeutral

and ��Quadratic/��CV aR is equal to 0:98, signalling a very high structural agreement among
the policies. More in detail, item 10 is the most ordered across all types of risk measure
choices, followed by items 8, 2, 1, 4. Items 5, 9 and 3 are the least ordered for all policies.
The only shift happens between item 6 and 7, which rank 6th and 8th respectively for variance
and CVaR decision makers, while they rank eight and sixth for the risk neutral and MAD
decision makers.
Finally, we analyze the e¤ect of imprecision in the demand distribution. We suppose that

the decision maker wishes to shift from a �nite (Beta) to an in�nite support distribution

8Technically, this is consistent with the form of the loss function as L(x;D) is decreasing in D (see eq.
(14).)

9Savage Scores have been introduced in Statistcs as a measure of agreement among rankings by Iman and
Conover, 1987. For their mathematical de�nition and the illustration of their application we also refer to
Campolongo and Saltelli (1997.) Borgonovo and Peccati (2005) and Borgonovo (2006.)
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(Gamma): 8><>:
�GammaD = (Dinf

1 ;1)� (Dinf
2 ;1)� :::� (Dinf

N ;1)

fGamma(D;D
inf ;�;�) =

NY
i=1

�
�i
i (Di�Dinf

i )�i�1e��i(Di�D
inf
i )

�(�i)

(39)

where �;� are the parameters of the Gamma densities (Table 1.) Before proceeding, we
recall Remarks 6, 8, 11, and 12 that identify the conditions under which an optimal policy
is insensitive to distribution changes. To implement the �ndings of these Remarks, we select
the values of � and � so that the Gamma densities [eq. (39)] lead to the same m and
m+ +m� obtained with the Beta densities (eq. (38 and Table 2.) The matching equations
are solved numerically and produce the values of � and � reported in Table 2. It can be
seen that, although such a choice does not preserve the expected value and variance of the
individual item demands, the optimal policies of a risk neutral and a MAD decision maker
do not change. However, the policies of a quadratic and a CVaR decision makers are a¤ected
by the change, as the choice of � and � does not preserve the moments in Remarks 11, and
12 (sixth and seventh rows of Table 4.)

5 Conclusions

In this work, we proposed an approach to quantify the di¤erences among inventory policies
determined by alternative risk aversion attitudes. We have dealt with the determination
of inventory policies in the presence of alternative risk measures for a multi item inventory
system described by the (extended) LCP loss function. We have considered the policies of
risk neutral decision makers, and of three risk averse inventory managers selecting variance,
MAD and CVaR as risk measures.
The optimization problem for each decision maker has been derived. This has enabled us

to observe that decision makers choosing any coherent risk measure always solve a convex
program, thus being assured of the global nature of the optimal policy. The same happens to
a risk neutral decision maker. However, the nature of the optimization problem for decision
maker selecting variance depends on the stochastic properties of demand.
We have then studied the economic and stochastic determinants of the inventory policies

to identify what information is relevant to the di¤erent types of managers in order to come
to an inventory management decision. Findings show that per unit revenues and variable
costs concur in the determination of all four policies. However, while a risk neutral decision
makers would not need to measure �xed costs to identify the optimal policy, such knowledge
is required to all risk averse decision makers. We have identi�ed the stochastic properties
needed to come to an optimal policy vary across the di¤erent risk measure selections. This
has also enabled us to state conclusions about the sensitivity of the policies to imprecision in
the demand distribution. More in detail: : i) risk neutral policies require the knowledge of
m (Table 1) and do not change in the presence of distributions leading to the samem (Table
1); ii) quadratic risk averse policies require the knowledge of M (Table 1) and are unaltered
by distributions leading to the same M (Table 1;) iii) MAD policies require the knowledge
of m, m+ +m� and are invariant for distributions leading to the same m, m+ +m�(Table
1;) and �nally iv) CVaR policies require the knowledge of F (��+D ) and m

�+ (Table 1) and
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are una¤ected if imprecision in the distributions leads to the same F (��+D ) and m
�+.

We have �nally addressed the quantitative comparison of optimal policies induced on the
same system by di¤erent risk measures. The approach to compare the structure of inventory
policies has been based on the statistical technique of Savage Scores (Iman and Conover,
1987.) Results for the 10 item inventory system analyzed in this exercise are as follows.
Risk aversion leads to a reduction in the optimal order quantity, with MAD decision makers
ordering less than risk neutral ones but more than CVaR, and quadratic utility decision
makers ordering the lowest number of items. However, risk aversion has not altered the
structure of the policies in a signi�cant way. Namely, items that were ordered the most by a
risk neutral decision maker have remained the most ordered also across the three risk averse
policies. The same has happened to the least ordered items.
This work opens future research directions by the authors. The �rst direction is the study

of optimal inventory policies in the presence of a non-additive loss function, so as to evidence
the e¤ects of synergies and discounts. The second direction is the implementation of the
methodology in the reverse direction, to infer the risk measure which the decision maker is
selecting from the actually chosen policy in the context of a case study.
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6 Appendix A: Proof of Proposition 2

Proof. From eq. (13), one gets:

VF [�(x;D)] = EF

24( NX
i=1

�
pixi � ai �

hix
2
i

2Di

�
�

NX
i=1

�
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mihix
2
i

2

�)235 (40)

Now, we have that:

NX
i=1

�
pixi � ai �

hix
2
i

2Di

�
�
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i
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and therefore

VF [�(x;D)] = EF

24( NX
i=1

x2ihi
2

�
mi �

1

Di

�)235 (42)

Then, since it is true that:(
NX
i=1

x2ihi
2

�
mi �

1

Di

�)2
=
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i=1

NX
j=1

hihjx
2
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by the linearity of the expectation operator, one derives:

VF [�(x;D)] = EF

"
NX
i=1

NX
j=1

hihjx
2
jx
2
i
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�
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��
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which equals

NX
i=1

NX
j=1

hihjx
2
jx
2
i

4
EF
��

1

Di

� EF
�
1

Di

���
1

Dj

� EF
�
1

Dj

���
(45)

But EF
h�

1
Di
� 1

EF [Di]

��
1
Dj
� 1

EF [Dj ]

�i
is nothing but the covariance between the random

variables D�1
i and D�1

j . Thus:

VF [�(x;D)] =
NX
i=1

NX
j=1

hihjx
2
jx
2
i

4
Cov[D�1

i ; D
�1
j ]

q.e.d..

16



7 Appendix B: Proof of Proposition 3

Proof. We have:

EF [L(x;D)]+
 fEF [jL(x;D)� EF [L(x;D)]j]g = � [EF [�(x;D)] + 
 fEF [j�(x;D)� EF [�(x;D)]j]g]

= �EF [�(x;D)]� 
 fEF [j�(x;D)� EF [�(x;D)]j]g
Now, j�(x;D)� EF [�(x;D)]j is equivalent to:

j�(x;D)� EF [�(x;D)]j =
�
�(x;D)� EF [�(x;D)] if �(x;D) > EF [�(x;D)]
EF [�(x;D)]� �(x;D) if �(x;D) � EF [�(x;D)]

(46)

The condition �(x;D) > EF [�(x;D)] partitions the space �D into two regions, �+D =
fD : �(x;D) > EF [�(x;D)]g and ��D = �Dn�+D or ��D = fD : �(x;D) < EF [�(x;D)]g :
Hence, one can write:

EF [j�(x;D)� EF [�(x;D)]j] =
Z
�D

j�(x;D)� EF [�(x;D)]j dF = (47)

=

Z
�+D

j�(x;D)� EF [�(x;D)]j dF +
Z
��D

j�(x;D)� EF [�(x;D)]j dF = (48)

As shown in Appendix A, it holds that

�(x;D)� EF [�(x;D)] =
NX
i=1

hix
2
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2
(EF [

1

Di

]� 1

Di

) (49)

Therefore:
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Letting
R
�+D
(EF [ 1Di ]�

1
Di
)dF = m+

i and
R
��D
( 1
Di
� EF [ 1Di ])dF = m

�
i ; one can write:

EF [j�(x;D)� EF [�(x;D)]j] =
NX
i=1

hix
2
i (m

+
i +m

�
i )

2
(51)

Substituting eqs. (51) and (17) into eq. (26) completes the proof.
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8 Appendix C: proof of Proposition 4

Proof. In Problem 34, let us study

EF
�
[L(x;D)� �]+

	
= EF [max(L(x;D)� �; 0)] (52)

We have:

max[L(x;D)� �; 0] =
�
L(x;D)� � if L(x;D)� � � 0

0 if L(x;D)� � < 0 (53)

Thus, similarly to the MAD case, one can see �D partitioned into two regions which, now,
depend on �: We call the regions ��+D = fD : L(x;D)� � � 0g and ���D = �Dn��+D or
���D = fD : L(x;D)� � < 0g. We then write:

EF [max[L(x;D)� �; 0]] =
Z
��+D

[L(x;D)� �] dF +
Z
���D

0dF =

Z
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(54)
Let us study the �rst integralZ
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where F (��+D ) =
R
��+D

dF is the measure of ��+D , i.e., the probability that D 2 ��+D and

m�+
i :=

R
��+D

1
Di
dF . The second integral is:Z

��+D

�dF = �F (��+D ) (57)

Summarizing:

EF [max[L(x;D)� �; 0]] =
 

NX
i=1

ai �
NX
i=1

pixi � �
!
F (��+D ) +
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2
im

�+
i

2
(58)

Inserting eq. (58) into eq.(34) completes the proof.

18



Table 1: List of Symbols.
Symbol De�nition Meaning

(�D,B(�D),P ) Demand Measure Space
D fD1; D2; :::; DNg Random Demand
x fx1; x2; :::; xNg LCP pro�t function

�(x;D) eq. (13) LCP pro�t function
L(x;D) eq. (14) LCP loss function
a fa1; a2; :::; aNg Unit �xed costs per inventoried item
p fp1; p2; :::; pNg Unit revenues per inventoried item
h fh1; h2; :::; hNg Unit variable costs per inventoried item
m eq. (16) Expected values of of 1/Di

M eq. (21) Covariance matrix of 1/Di

m+ eq. (28) Coe¢ cient of x2i in MAD
m� eq. (28) Coe¢ cient of x2i in MAD

 eq. (28) MAD parameter
�+D eq. (29) �+D = fD : �(x;D) > EF [�(x;D)]g
�� (x) eq. (6) �-VaR at x
�� (x) eq. (6) �-CVaR at x
H�(x; �) eq. (31) Auxiliary Function for CVaR minimization
m�+
i eq. (36) Coe¢ cient of x2i in CVaR

F (��+D ) eq. (36) Probability that D 2 ��+D
��+D eq. (36) ��+D = fD : L(x;D)� � � 0g
� eq. (37) Minimum Pro�t in Pro�t Constraint

r;q;Dinf ;Dsup eq. (38) Parameters of the Beta Distributions
Dinf ;�;� eq. (39) Parameters of the Gamma Distributions

� Section 4 Symbol for Savage Scores

Table 2: Stochastic inputs and properties for the case of the Beta distribution.
Item 1 2 3 4 5 6 7 8 9 10
Dinf 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1
Dsup 40 30 25 28 27 26 31 42 35 32
r 2 2 2 2 2 2 2 2 2 2
q 3 2 3 2 3 2 3 2 3 2
� 2:5 2:7 2:5 2:7 2:5 2:7 2:5 2:7 2:5 2:7
� 0:15 0:17 0:24 0:18 0:22 0:20 0:19 0:12 0:16 0:16
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Table 3: Economics inputs for the optimization problems.
Item 1 2 3 4 5 6 7 8 9 10
p 10 11 12:5 13 12 9:5 14 13:5 12:5 15
a 1 2 2:5 1:5 1:8 2:2 2:3 4:1 1:9 2:7
h :55 :6 :65 :71 :53 :56 :68 :81 :92 :5

Table 4: Optimal policies.
Optimal Policy j Item 1 2 3 4 5 6 7 8 9 10
x�RiskNeutralBeta = x�RiskNeutralGamma 188 189 126 176 160 152 166 239 123 329

x�QuadraticBeta 48 49 36 45 43 44 42 53 35 66

x
�MAD(
=0:5)
Beta = x

�MAD(
=0:5)
Gamma 144 147 97 137 123 118 127 185 95 256

x�CV aRBeta 83 87 61 78 74 75 71 97 60 118

x�QuadraticGamma 48 51 35 46 42 46 40 55 34 67
x�CV aRGamma 97 98 70 90 85 87 79 112 68 140
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Figure 1: Sensitivity of the optimal order policy to the risk-aversion constant 
.
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