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Abstract

In this work, we deal with the problem of establishing which parameters impact
an inventory policy the most. A new sensitivity measure (�) is introduced by relating
the di¤erential importance (D) and the comparative statics (CS) techniques. We
discuss the properties of the new indicator, and show that it shares the additivity
property. We provide the expression of � for optimization models. Numerical results
are o¤ered for the sensitivity analysis of a recently introduced inventory management
model.
Keywords: Comparative Statics, Sensitivity Analysis, Inventory Management,

Importance Measures, Economic Order Quantity.

1 Introduction

In the recent past, the �eld of sensitivity analysis (SA) of model output has been steadily
growing and has assisted to the development of several new SA methods capable of study-
ing how the variation in the output of a model can be apportioned to variations in the input1

[Tarantola (2000), [31]]. These methods are traditionally called importance measures ([5],
[23], [24].)
Saltelli et al (2000) [24] demonstrates that the application of these SAmethods bene�ts

both the modelling process and the utilization of model results. However, the use of
importance measures in inventory management (IM) has not been fully explored yet.
Applications of �what if�SA schemes can be found in the works of Ray and Sahu (1992), in
Ray and Chaudhuri (1997), in Arcelus and Rowcroft (1993) ([21], [22], [1]). In these works,
the sensitivity of the model results is tested for individual changes in the parameters.
Ganeshan et al (2001) study the sensitivity of supply chain performance to three inventory
parameters [11]. Perturbation analysis has been developed and employed in the works
of Glasserman and Tayur (1995) [12], Bogataj and Cibej (1994) [3], and Bogataj and
Bogataj (2004) [4]. As far as importance measures are concerned, a �rst application in
IM is the one in Borgonovo and Peccati (2006) [8] that introduces global SA methods to
deal with uncertainty in parameters of IM models.

�Corresponding Author: emanuele.borgonovo@unibocconi.it

yWe thank Prof. R.W. Grubbstroem for useful comments on an earlier work of the author, presented
at the 12th International Working Seminar on Production Economics, IGLS (Austria) 2002. Financial
support from Bocconi University is gratefully acknowledged.

1In some sensitivity analysis applications the term input is used as a synonym for parameter.
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The purpose of this paper is to establish which of the parameters in�uences an inven-
tory policy the most given the IM model at hand. This task presents several new features.
In fact, all importance measures ([23], [5]), have been de�ned for models of the explicit
form:

x = h(�) h : A � Rn �! X � Rm (1)

where x = (x1; x2; :::; xm) denote the set of choice variables and �=(�1; �2; :::; �n) 2 A the
parameters. In many IM models, the choice variable x is the result of an optimization
process and the model takes on the more general form:

f(x; �) = 0 f : X � A! Y � Rm with X � Rm, A � Rn (2)

where f(x;�) = [f 1(x;�); f2(x;�); :::; fm(x;�)]T is the set of model equations.
From eq. (2) is not always possible to extract the analytical expression of x = h(�)2.
Thus, the �rst part of this paper deals with the extension of the de�nition of para-

meter importance from explicit [eq. (1)] to implicit models [eq. (2)]. We show that to
come to this de�nition it is necessary to link the comparative statics (CS) technique and
the di¤erential importance measure (D). Result of the analysis is the introduction of a
generalized importance indicator, denoted by �.
We illustrate the mathematical properties of �, and show that it shares the additivity

property3.
We next discuss the application of � to IM models. As inventory policies are often

determined as the solution to an optimization problem (minimization of a loss function or
maximization of a utility function) we derive the expression of � for generic optimization
models.
We then apply CS and � to an IM model proposed by Luciano and Peccati (1999) [18]

(LP model from now on). The model output is the modi�ed EOQ that takes into account
�nancing policies. CS results show that an increase in demand and order costs lead to
an increase in the modi�ed EOQ, while an increase in the cost of capital, and in the unit
price of goods in inventories decreases the modi�ed EOQ. However, we illustrate that no
indication can be inferred on the importance of parameters from CS results. In fact, since
parameters have di¤erent units, partial derivatives cannot be compared. Thus, making
use of CS results to infer parameter relevance, one would draw misleading conclusions.
Instead, the application of � enables one to estimate the importance of the parameters
and to identify the relevant and non-relevant ones. Numerical results show that demand,
cost of capital and order costs have the same in�uence on the modi�ed EOQ, while holding
costs have a negligible in�uence. Next, the additivity property of � allows to assess the
joint e¤ect of changes in the parameters in a straightforward way. Results indicate that a
contemporary proportional increase in demand and cost of capital hedge each other away,
leaving the modi�ed EOQ unchanged.
In Section 2 the relevant SA background on CS andD is discussed. Section 3 introduces

the de�nition of �, and proves its main properties. Section 4 illustrates the derivation of
importance measures for optimization problems. Section 5 provides an application and
discusses numerical results. Conclusions are o¤ered in Section 6.

2As an example, in the Arrow-Harris-Marshak [2] models, the modi�ed EOQ of the static model is an
explicit function of the parameters, while the (s; S) policy of the dynamic model is de�ned by an equation
which, in general, does not give rise to an explicit solution.

3By additivity we refer to the ability of a sensitivity technique to obtain the importance of groups of
parameters as sum of the results of the one-parameter-at-a-time SA. This property enables one to obtain
joint sensitivity results without having to perform further model runs and, thus, it is desirable in many
applications (Borgonovo and Apostolakis, 2001 [5]).
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2 Sensitivity Analysis background

2.1 The Methodology of Comparative Statics: a brief Literature
Survey and Introduction to the Mathematical Formulation

The methodology of Comparative Statics (CS) has been fully developed by Samuelson in
his seminal work of 1947 [25]. CS has since then provided as the basic methodology for
the sensitivity analysis in Economics and its importance in the economic literature cannot
be overemphasized. A comprehensive literature review is out of the scope of this paper.
We limit ourselves to a brief summary, starting with the applications in Microeconomics
by Samuelson Himself that leads to the Duality Principle ([26]), and by Silberberg in
his works on the theory of the �rm ([27], [28]). Following Samuelson�s statement: �it is
hoped to formulate qualitative restrictions on slopes, curvatures etc. of our equilibrium,
so as to be able to derive de�nite qualitative restrictions upon the response of our system
to changes in certain parameters�([25] p. 20) the most recent developments in CS have
focused on the use of CS for predicting the direction of changes in equilibria provoked by
parameter changes. The works of Quirk, Yamada, Je¤ries and other have established the
qualitative CS methodology (see [20] for a comprehensive literature review). The works
of Milgrom and Shannon (1994) [19] and Topkis (1995) [32] have made monotone CS a
cornerstone in modern Economics.
For the purpose of this work, i.e., to quantify the importance of parameters in IM

models, we deal with CS in the form presented in [9], and [30], in the line of the classical
approach of Samuelson�s Foundations ([25]). Starting point of the problem is the set of
implicit equations of the form of eq. (2). Then, we let

Jx(x; �)=
�
f jxi(x; �)

�
i; j = 1; 2; :::;m (3)

denote the (Jacobian) matrix of the partial derivatives of f(x; �) w.r.t. x (the output)
and

J�(x; �)=
�
f j�s(x; �)

�
j = 1; 2; :::;m, s = 1; 2; :::; n (4)

denote the matrix of the partial derivatives of f(x;�) w.r.t. � (the parameters.) We also
let

Jsx(x; �) and J
s
�(x; �) (5)

denote the sth column vector of Jx(x; �) and J�(x; �) respectively. The following vectors
are also going to be used:

dxJ(x; �) = Jx(x; �)dx (6)

d�J(x; �) = J�(x; �)d� (7)

The usual regularity assumptions on f(x;�) and the condition jJx(x�; ��)j 6= 0 � where
x�; �� satisfy eq. (2) � assure that the implicit function theorem holds and that the
system of eqs. (2) de�nes the set of continuously di¤erentiable functions x� = h(��) on
an interval around (x�; ��) ([30]): CS aims at quantifying the rate of change in the output
x� that is caused by a change in the parameters ��. The change is obtained di¤erentiating
both sides of eq.(2) ([9], [30]):

dxJ(x
�; ��) + d�J(x

�; ��)= 0 (8)

Eq. (8) can be solved for matrix

dx

d�

��
(x�;��) = �Jx(x�; ��)�1J�(x�; ��) (9)
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whose components are the partial derivative of the output w.r.t. the parameters. Eqs.
(2), (8) and (9) set forth the mathematical framework for CS.

2.2 The Di¤erential Importance Measure
As mentioned in the Introduction, in order to measure the importance of parameters in
IM models it is necessary to extend the de�nition of importance measures from explicit to
implicit models. We discuss such extension in Section 3. In the remainder of this Section,
we brie�y review the de�nition and properties of the di¤erential importance measure (D),
since its link to the CS technique enables us to derive the importance of parameters in
implicit models.
Given a model in the form of eq. (1), the di¤erential importance (D) for parameters

�s is given by [5]:

Ds(�
0; d�) =

hs(�
0)d�sPn

j=1 hj(�
0)d�j

=
dsh(�

0)

dh(�0)
(10)

The requirements under which Ds is de�ned are that h(�) is di¤erentiable at �0 and
d� = [d�1; d�2; :::; d�n] is not orthogonal to the gradient of h at �0:
It is worth recalling that:

� D shares the additivity property with respect to the various parameters: the D of
some set of parameters is given by the sum of the individual D of the parameters
in that set ([5], [6], [7]). As a consequence the sum of all the individual parameter
D ( i = 1:::n) is always equal to unity ([5], [6], [7]).

� D accounts for the way parameters are varied through the dependence on d� ([5],
[6], [7]). In particular:

� in the hypothesis of uniform parameter changes (H1):

H1 : d�s = d�l 8s; l (11)

one �nds:

D1s(�
0; d�) =

hs(�
0)Pn

j=1 hj(�
0)

(12)

Eq. (12) implies that D1s(�0; d�) / hs(�0), i.e., partial derivatives assign the
same relevance to parameters as D under the assumption that all parameters
variations are equal [eq.(11)];

� in the hypothesis of proportional changes (H2),

H2 :
d�s
�0s

=
1

!
8s (13)

one �nds:

D2s(�
0) =

hs(�
0) � �0sPn

j=1 hj(�
0) � �0j

(14)

Recalling the de�nition of Elasticity (E), eq. (14) shows that D2s(�0; d�) /
Es(�

0), i.e., E assigns the same relevance to parameters as D under the as-
sumption of proportional parameter changes.
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2.3 A Remark
We can summarize the discussion in Sections 2:1 and 2:2 as follows. The framework of
CS is more general than the one set forth in Section 2.2 for D, in the sense that CS
deals with implicit models, that contain explicit models as a particular case. D and other
importance measures have been, up to now, de�ned for explicit models.
The purpose of CS and D is also di¤erent. In fact, through CS one mainly aims

at assessing whether a change in a parameter (�s) provokes an increase or a decrease in
the output (x�) � direction of change, Section 2:1. � Through D one quanti�es the
importance of the parameters (�) and ranks them based on their in�uence on the output
(x�). D then indicates what parameters matter the most w.r.t. the �nal choice.
Consider the case of a model whose parameters carry di¤erent units of measure. CS

allows the evaluation of the partial derivatives, but their comparison does not lead in-
formation on the parameter importance. In fact, partial derivatives corresponding to
parameters with di¤erent units have di¤erent units and cannot be compared. Thus, one
cannot utilize CS results, in general, to determine the importance of parameters. Techni-
cally, this is due to the fact that the uniform changes assumption [eq. (11)] cannot hold.
As mentioned, in Section 2:2, not only the rate of change is to be taken into consideration,
but also the relative way in which parameters are varied ([6]). Thus, one needs to inte-
grate the results of CS with D to acquire information on the importance of parameters.
The link between CS and D is discussed in the next Section.

3 Parameter Importance in Implicit Models

In this Section, we de�ne the importance of parameters in implicit models by making use
of the relationship between CS and D.
We start with introducing the following De�nition:

De�nition 1 Let
�(x�; ��) =

�

j;s
�
j = 1:::m, s = 1:::n (15)

be the matrix whose components represent the di¤erential importance of parameter �s
(s = 1:::n) w.r.t. output xj (j = 1:::m).

We then prove the following proposition.

Proposition 2

�(x�; ��) =

�

j;s : 
j;s =

j�jsj
j�jj

�
(16)

where
�js =

�
J1x J

2
x ::: J

j�1
x Js�d�s J

j+1
x ::: Jmx

�
�j =

�
J1x J

2
x ::: J

j�1
x dJ� J

j+1
x ::: Jmx

� (17)

In 
j;s [eq. (16)] the denominator, j�jj, is the total di¤erential of output xj w.r.t. the
parameters and, as we show in the following proof, it is obtained by substituting vector
dJ� [eq. (7)] for the jth column of matrix Jx [eq. (3)]. The numerator of 
j;s [eq. (16)],
j�jsj, represents the portion of the di¤erential relating to the sole parameter �s. Note that
in eq. (16) the conditionj�j(x�; ��)j 6= 0 substitutes the CS condition jJx(x�; ��)j 6= 0
discussed in Section 2:1.
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The proof of the previous proposition can expressed in two alternative ways. We
present here the proof based on the di¤erential 4.
Proof. According to De�nition 1, applying eq. (10), we have:


j;s =
dsx

j

dxj
(18)

We need to compute dxj and dx1s: Solving eq.(8) for dx
j leads to (Cramer�s rule):

dxj = � j�jj
jJx(x�; ��)j

(19)

dxj represents the change in dxj due to a change in all the parameters. The sensitivity
of x1 on parameter �s alone is given by:

dxjs = �
j�sjj

jJx(x�; ��)j
(20)

Substituting eqs. (20) and (19) into 18 one obtains eq. (16), q.e.d.
We now show that �(x�; ��) shares the additivity property w.r.t. the parameters.

Proposition 3 Let S = fs1 ; s2 ; :::; skg, k � n, be the indices of a subset of the parameters.
Then:


j;S = 
j;s1 + 
j;s2 + :::+ 
j;sk (21)

Proof. The e¤ect of a change in S is given by:

dxjS =

���jS��
jJx(x�; ��)j

(22)

where now

�jS =

�
J1x J

2
x ::: J

j�1
x

X
i2S
J i�d�i J

j+1
x ::: Jmx

�
(23)

Hence:


j;S =

���jS��
j�jj

=

�����J1x J2x ::: J j�1x

X
s2S

Js�d�s J
j+1
x ::: Jmx

������
J1x J

2
x ::: J

j�1
x dJ� J

j+1
x ::: Jmx

� (24)

But thanks to the properties of determinants (property nr. 26.6, p.729 in [29]), one gets:�����J1x J2x ::: J j�1x

X
s2S

Js�d�s J
j+1
x ::: Jmx

����� =X
s2S

���J1x J2x ::: J j�1x Js�d�s J
j+1
x ::: Jmx

��� (25)

Hence:


j;S =

���jS��
j�jj

=

X
s2S

j�jsj

j�jj
=
X
s2S

j�jsj
j�jj

=
X
s2S


j;s (26)

q.e.d
Note that the sum of the rows of matrix �(x�; ��) is always equal to unity.
We now discuss the e¤ect of relative parameter changes. To do so we prove the

following Proposition.

4A second way of proving the results is based on computing the partial derivatives �rst.
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Proposition 4 If the parameters undergo a uniform change (case H1), then

�(x�; ��) = �1(x�; ��) (27)

with

�1(x�; ��) =

"

1j;s : 
1j;s =

���J1x J2x ::: J j�1x Js� J
j+1
x ::: Jmx

���Pn
i=1

���J1x J2x ::: J j�1x J i� J
j+1
x ::: Jmx

���
#

(28)

If proportional parameter changes are considered, then, (case H2):

�(x�; ��) = �2(x�; ��) (29)

with

�2(x�; ��) =

"

2j;s : 
2j;s =

���J1x J2x ::: J j�1x Js� J
j+1
x ::: Jmx

�����sPn
i=1

���J1x J2x ::: J j�1x J i� J
j+1
x ::: Jmx

�����i
#

(30)

Proof. Using the properties of determinants, we can write:


j;s =
j�jsj
j�jj

=
j�jsjPn
i=1 j�jij

(31)

Thanks to the determinant property relating to column multiplication by scalars (fact
26.4, p. 728 in [29],) one can write:���js�� = ���J1x J2x ::: J j�1x Js� J

j+1
x ::: Jmx

��� d�s (32)

i.e., it is possible to "extract" the di¤erential d�s from the jth column. Utilizing properties
nr. 26.6 and nr. 26. 4 in [29] one can write:

j�jj =
nX
i=1

���J1x J2x ::: J j�1x J i�d�i J
j+1
x ::: Jmx

��� d�i (33)

and 
j;s becomes:


j;s =
j�jsj
j�jj

=

���J1x J2x ::: J j�1x Js� J
j+1
x ::: Jmx

��� d�sPn
i=1

���J1x J2x ::: J j�1x J i� J
j+1
x ::: Jmx

��� d�i (34)

In the case of uniform parameter changes eq. (11) holds and one �nds:


1j;s =

���J1x J2x ::: J j�1x Js� J
j+1
x ::: Jmx

���Pn
i=1

���J1x J2x ::: J j�1x J i� J
j+1
x ::: Jmx

��� (35)

For proportional parameter changes, eq. (13) holds and one �nds:


2j;s =

���J1x J2x ::: J j�1x Js� J
j+1
x ::: Jmx

�����sPn
i=1

���J1x J2x ::: J j�1x J i� J
j+1
x ::: Jmx

�����i (36)

q.e.d.
Some observations:

Eqs. (16), (28) and (30) display that the way in which parameters are varied in�uences
their impact on the output. For uniform and proportional changes, eqs. (28) and
(30) apply. If the change under investigation is generic, then eq. (16) applies;
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Each element in �1(x�; ��) [
1j;s, eq. (28)] is the partial derivative of output xj w.r.t.
parameter �s divided by the sum of all the partial derivatives. Hence, ranking
parameters utilizing �1(x�; ��) is equivalent to rank them according to their partial
derivatives. This statement can also be read in the opposite direction: ranking
parameters based on their partial derivatives is equivalent to stating the assumption
that the parameters undergo a uniform change (see also [5], [6], [7].) Since partial
derivatives are an output of CS, one can see that CS results can be utilized to infer
parameter importance only if one assumes a uniform perturbation of the parameters;

Each element in �2(x�; ��) [
2j;s, eq. (30)] can be regarded, after a simple manipulation,
as the elasticity of output xj w.r.t. parameter �s normalized by the sum of all
elasticities. As we mentioned, ranking parameters based on their elasticities is
equivalent to stating the assumption that the parameters variations are proportional
to their values [eq. (13)].

4 Parameter Importance (�(x�; ��)) in Optimization Models

The purpose of this Section is to specialize the de�nition of � to optimization models.
The reason is that most often the choice variables determining optimal inventory policies
� EOQ, or one of its modi�ed forms, (S; s) or others depending on the IM model � are
the result of the maximization of a utility function or minimization of an expected loss or
cost function ([2], [17], [22], [18], [33]).
We denote such Loss/Utility function as L(x; �) and consider an optimization problem

of the form: 8<:
max
x
L(x; �)
s:t:

g(x; �) � 0
(37)

with g(x;�) = (g1(x;�); g2(x;�); :::; gc(x;�))T; where c is the number of constraints, with
c < m. Letting

�(x; �; �) = L(x; �) + �g(x; �) (38)

denote the Lagrangian function of the problem, and considering x > 0 and � > 0, the
FOCs for this problem [eq. (37)] are [30]:�

�x(x; �; �) = 0
��(x; �; �) = 0

(39)

where �x(x; �; �) = Lx(x; �)��gx(x; �), and ��(x; �; �) = g(x; �): The implicit di¤eren-
tiation of eq. (39) leads to: �

�x�d�+ �xxdx+ �x�d� = 0
��xdx+ ���d� = 0

(40)

From eq. (40), one �nds the fundamental equation of comparative statics ([30], p. 128):�
��s(x

�; ��)
x�s(x

�; ��)

�
= �

�
0 gx(x

�; ��)
gx(x

�; ��)T �xx

��1 �
���s
�x�s

�
(41)

where ��s(x
�; ��) is the matrix of the derivatives of the Lagrangian multipliers w.r.t. pa-

rameter �s and x�s is the matrix of the partial derivatives of the output w.r.t. �s. Matrix
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�
0 gx(x

�; ��)
gx(x

�; ��)T �xx

�
is the bordered Hessian (BH) of �(x; �). The non-singularity of

BH is required for performing CS [30].
For the computation of the parameter importance, it is convenient to collect all the

dependent variables in vector z = (�1; �2;:::; �c; x1; x2;:::; xm). Eq. (40) becomes:

�zzdz + �z�d� = 0 (42)

where

�zz =

�
�x� �xx
0 ��x

�
and �z� =

�
�x�
���

�
(43)

Note that �zz is an alternative way of writing the BH [30].
In order to �nd the importance of � w.r.t. x, i.e., �(x�; ��), we apply Proposition 2

to the �rst order conditions of problem (37) in eq. (42). We get:

�(z�; ��) =

"

j;s : 
j;s =

���1zz �2zz :::�j�1zz �sz� �
j+1
zz :::�c+mzz

�� d�sPn
r=1

���1zz �2zz :::�j�1zz �rz� �
j+1
zz :::�c+mzz

�� d�r
#

(44)

with s = 1; 2; :::n and j = 1; 2; :::c+m.
Note that the elements of the �rst c rows of �(z�; ��) in eq. (44) represent the impor-

tance of the parameters w.r.t. the Lagrangian multipliers. Elements 
j;s from row c+ 1
to c+m represent the sought importance of the parameters w.r.t. the choice variables x.
Finally, in the determination of the parameter importance in unconstrained optimiza-

tion, the Hessian of the loss function Lxx replaces the Bordered Hessian of the Lagrangian
function (�zz).

5 An application

With the purpose of illustrating the previous framework, we present the SA of the IM
model proposed by Luciano and Peccati (1999) (�LP model�) [18].
To cope with the economic, �nancial and managerial aspects of Inventory Management

(IM) the Operations Research and Management Science literature has assisted to the
development of several models and methods. Models have evolved from the early Harris
work on the Economic Order Quantity of 1913 ([17], [10]), through the classical Arrow
model [2], to the dynamic optimization approach by Vienott [33], up to the use of system
dynamics and the analysis of the stochastic and stability properties of inventory systems
([15], [16].)
The purpose of the LP model is to allow the evaluation of IM policies while explicitly

revealing the impact of �nancing choices [18], through an Adjusted Present Value (APV)
approach ([13], [14].) We refer the reader to [18] for the complete illustration of the model.
The model estimates the modi�ed EOQ as the quantity Q� that minimizes the follow-

ing cost (loss) function [18]:

L(Q;�) =
�
u+ a

2

�
Q+ 


1� e��Q=R (45)

In the framework of eq. (2), the choice variable is Q and the vector of the parameters is

� =

8>>>><>>>>:
u = unitary price of the good in inventory
a = unitary holding cost
R = constant consumption intensity

 = the cost of placing one order
� = cost of capital
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Table 1: CS results for the case study
Parameter CS Expression Sign Magnitude Unit

u Qu � R(e
Q
R
��1)�Q�

�(e
Q
R
��1)( 1

2
a+u)

� 38
# items

cost per item

a Qa �
1
2
R(e

Q
R
��1)� 1

2
Q�

�(e
Q
R
��1)( 1

2
a+u)

� 19
# items

cost per item

R QR �
1
R
( 1
2
a+u)

�
R(e

Q
R
��1)�Q�e

Q
R
�
�

�(e
Q
R
��1)( 1

2
a+u)

+ 0:05
# items
# items

� Q� �Q( 1
2
a+u)(e

Q
R
��1)�


�(e
Q
R
��1)( 1

2
a+u)

� 5770 # items


 Q
 � ��

�(e
Q
R
��1)( 1

2
a+u)

+ 13
# items
cost

In the remainder, we utilize the following numerical assumptions: u = 10 [$ per item],
a = 1 [$ per Item], R = 8000 [Item], 
 = 30 [$], � = 7%:
Q� is found form the FOC:

LQ(Q�; �) =
�
1

2
a+ u

��
e
Q�
R
� � 1

�
R� �

�

 +Q�

�
1

2
a+ u

��
= 0 (46)

Eq. (46) cannot be solved to provide the analytical expression of Q�(�). The optimal
order quantity is then estimated numerically to be Q� �= 807.
Let us now analyze what information can be derived by the SA of the model performed

through the joint application of CS [eq. (46)] and � [eq. (44)]. CS results are reported in
Table 1.
We note that:

- an increase in u, a and � leads to a decrease in the EOQ;

- an increase in R and 
 leads to an increase in the EOQ;

- � is the parameter associated with the highest rate of change in the EOQ (Table 1).
From the results in Table 1, one could be induced to infer that � is the most relevant
parameter � practically the only relevant one. However, note that the partial
derivatives have di¤erent units and cannot be compared. Indeed, when parameters
have di¤erent dimensions, the assumption of uniform changes (H1) cannot hold.
More precisely, CS results cannot be utilized even in the case parameters have the
same dimensions, but the direction of change is not the uniform one (see Section
2:2).

To evaluate the importance of the parameters w.r.t. the EOQ one needs to account for
the relative parameter changes and utilize �(x; �) [see De�nition 1, eq. (16)]. For the LP
model in eq.(45), we have 1 choice variable, namely the modi�ed EOQ, and 5 parameters.
Hence, in this case:

�(Q�; �) = [
j;s] j = 1; s = 1; 2; :::; 5 (47)

In the LP model, Q� is determined through unconstrained optimization. Hence eq. (44)
holds with the Bordered Hessian of the Lagrangian function coinciding with the Hessian
of the loss function. Applying eq. (44), under H2 [eq. (13),] one �nds the results reported
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Table 2: Sensitivity Analysis results for Parameter Importance
Index Parameter Importance Expression Sign Magnitude Rank

1 u �2u(Q
�; ��)

�
R(e

Q
R
��1)�Q�

�
uP5

j=1Q
�
j�j

� 1:10� 103 4

2 a �2a(Q
�; ��)

�
1
2
R(e

Q
R
��1)� 1

2
Q�

�
aP5

j=1Q
�
j�j

� 5:6� 101 5

3 R �2R(Q
�; ��)

( 1
2
a+u)

�
R(e

Q
R
��1)�Q�e

Q
R
�
�

P5
j=1Q

�
j�j

+ 1:183� 103 1

4 � �2�(Q
�; ��)

�
Q( 1

2
a+u)(e

Q
R
��1)�


�
�P5

j=1Q
�
j�j

� 1:182� 103 2

5 
 �2
(Q
�; ��) ��
P5

j=1Q
�
j�j

+ 1:180� 103 3

in Table 2. Columns 5 and 6 of Table 2 display the importance of the parameters and
their rank according to �2, respectively.

Note that j�2R(Q�; ��)j ' j�2�(Q�; ��)j ' j�2
(Q�; ��)j. This means that an increase
in R, � or 
 proportional to their values would impact the modi�ed EOQ in (practically)
the same way5. Figure ?? also shows that a is by far the less relevant parameter, while u
is slightly less signi�cant than R, �; 
. The information an analyst would infer from these
results is that a change in the modi�ed EOQ provoked by a change in a is negligible w.r.t.
the change in the modi�ed EOQ that is provoked by a change in each one of R, �; or 
.
The utilization of the additivity property of � also leads to the following result: a

contemporary proportional increase in � and R, or in 
 and R would leave the modi�ed
EOQ unchanged. In fact, let us apply Proposition 3. Let S = (�;R): Then, we have:

�2S(Q
�; ��) = �2�(Q

�; ��) + �2R(Q
�; ��) ' 0 (48)

signalling that a change in � neutralizes a change in R w.r.t. the modi�ed EOQ.
Similarly, for S = (
;R)

�2S(Q
�; ��) = �2
(Q

�; ��) + �2R(Q
�; ��) (49)

signalling that if order costs and demand grow by the same proportion, the modi�ed
EOQ would not change. Borrowing from Finance terminology, proportional changes in �
and/or 
 are locally hedged by proportional changes in R.

6 Conclusions

The purpose of this work has been the determination of which of the parameters in�uences
an IM model result the most.
To achieve this goal, we have linked the di¤erential importance measure (D) to the

technique of Comparative Statics (CS). The link has been necessary since: i) D and
importance measures utilized in the literature have not been de�ned for implicit models,
and, ii) the CS technique is not designed to infer the importance of parameters.
The analysis has lead to the introduction of a generalized importance indicator (�)

for implicit models. We have discussed the mathematical framework of the new indicator,
proven its properties, with particular reference to additivity.

5Note that � is no more the only infuential parameter.
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We have obtained the expression of � for optimization problems, as inventory poli-
cies are often determined as a result of an optimization process (maximization of a util-
ity/pro�t function or minimization of a utility/loss function.)
We have illustrated the application of � and CS in the SA of an IM model proposed

by Luciano and Peccati (1999). The application of CS has enabled to understand the
rate of change of the modi�ed EOQ w.r.t. changes in the parameters. However, since the
model parameters have di¤erent units, CS results could not be utilized to determine the
importance of the parameters. This task has been made possible by the application of
the new importance indicator, �, that has allowed the identi�cation of the in�uential and
non-in�uential variables. Furthermore, we have assessed the joint e¤ect of contemporary
changes in the parameters by making use of the additivity property of �. The analysis
has evidenced that changes in the modi�ed EOQ provoked by changes in demand can
be neutralized by contemporary proportional changes in order costs or in the cost of
capital, leading to a natural hedging/management strategy for a decision maker willing
to maintain a constant modi�ed EOQ.
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