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Abstract

Uncertainty in parameters is present in many risk assessment problems and leads to uncer-

tainty in model predictions. In this work, we introduce a global sensitivity indicator which

looks at the in�uence of input uncertainty on the entire output distribution without reference

to a speci�c moment of the output (moment independence) and which can be de�ned also

in the presence of correlations among the parameters. We discuss its mathematical proper-

ties and highlight the di¤erences between the present indicator, variance-based uncertainty

importance measures and a moment independent sensitivity indicator previously introduced

in the literature. Numerical results are discussed with application to the probabilistic risk

assessment model on which Iman (1987) �rst introduced uncertainty importance measures.

Keywords: Importance Measures, Uncertainty Analysis, Global Sensitivity Analysis, Un-

certainty Importance Measures, Probabilistic Risk Assessment.
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1 Introduction

Dealing with uncertainty is one of the challenges of many quantitative risk assessment prob-

lems (Apostolakis (2005) [3]). As Hammit and Shiyakhter (1999) [12] underline, it is often

�the lack or sparsity of data�which prevents the analyst/decision-maker from assigning a

certain value to the parameters. Uncertainty in the inputs is re�ected in uncertainty in model

results and predictions (Apostolakis (1995) [2].)

Saltelli (2002) [42] de�nes sensitivity analysis (SA) as the study of how �uncertainty

in the output of a model (numerical or otherwise) can be apportioned to di¤erent sources

of uncertainty in the model input (Saltelli (2002) [42]).�With this respect, Saltelli (2002)

[42] remarks that SA techniques to be utilized in the context of uncertainty analysis should

satisfy the following three requirements: �global, quantitative and model free.�By global one

means that the technique allows to take into consideration the entire input distribution. By

model independent one means that no assumptions on the model functional relationship to

its inputs is necessary in order for the SA method to produce accurate results.

Saltelli (2002) [42] shows that variance-based methods provide a set of tools that share the

three above mentioned requirements. The works of Saltelli et al (2000) [40], Sobol�(1993),

(2001) and (2003) ([46], [47], [48]), Rabitz et al (1998) [34], Rabitz and Alis (1999) [35]

and Alis and Rabitz (2001) [1] have established the theoretical and numerical background

for the utilization of variance-based techniques. The demonstrated merits of variance-based

global SA methods are the consideration of the entire range of variation of the inputs and

the ability to identify individual parameter contributions and parameter interactions in a

model independent fashion. Since Sobol�decomposition method rests on the assumption of

independent inputs, a limitation of a technical nature appears when one performs variance
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decomposition in the presence of input correlations. More precisely, Bedford (1998) [4]

proves that �the values taken on by the indices depend on the ordering of the variables.�The

problem has next been tackled by Tarantola (2000) [49], Ratto et al (2001) [36] and Saltelli

and Tarantola (2002) [41], who thoroughly discuss the use of variance based uncertainty

importance measures in the presence of correlations among the parameters.

However, it has been recognized that the interpretation of global sensitivity analysis based

on the sole variance as a way of indicating how �the total uncertainty in model prediction is

apportioned to uncertainty in the model input parameters (Homma and Saltelli (1995) [17])�

or �the expected percentage reduction in the uncertainty ... that is attributable to each of the

input variables (Iman et al (2005) [25])�is not entirely satisfactory. In fact, Saltelli (2002) [42]

underlines that variance-based methods �implicitly assume that this moment (variance) is

su¢ cient to describe output variability.�Indeed, a decision-maker/analyst state of knowledge

on a parameter or on a model output is represented by the entire uncertainty distribution

(Savage (1972) [43]). With this respect, Helton and Davis (2003) ([16] Section 2, page 25)

underline that any moment of a random variable �provides a summary�of its distribution

with the inevitable �loss of resolution�that occurs when the information contained in the

distribution is mapped into a single number. Thus, if an analyst aims at assessing which

parameter in�uences the decision-maker state of knowledge the most, a sensitivity indicator

should refer to the entire output distribution and not to one of its moments. With this

respect, inspection of the whole decision-maker uncertainty requires to add a fourth feature

to Saltelli�s three requirements, namely, moment independence.

In this work, we analyze how these issues can be addressed. To do so, we propose a

global SA indicator (called �) that considers the entire distribution both of the input and

of the output (global) in a moment independent fashion (Figure 1). We de�ne � so that

its computation is well posed in the presence of correlations among the parameters. We

derive analytically the main mathematical properties of �, showing that the importance of a

parameter equals zero when the output is independent of the parameter and that � equals
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Figure 1: � aims at assessing the in�uence of the entire input distribution on the entire

output distribution without reference to a particular moment of the output.

unity when the set of all inputs is considered. We propose an algorithm for its computation

and analyze the numerical procedure.

We then compare � to both variance-based indicators and to the moment independent

sensitivity indicator introduced by Chun et al (2000) [10]. With this respect, we show that

the main di¤erence between � and the Chun-Han-Tak (CHT ) importance measure is that

CHT requires to hypothesize a �sensitivity case (Chun et al (2000) [10], p. 314),�while �

does not. Thus, CHT is investigating which of the parameters in�uence output uncertainty

the most given the hypothesized change, while � does not require to presuppose a sensitivity

case.

The application to the Ishigami test function (Nakashima and Iamato (1982) [30], Homma

and Saltelli (1996) [17]) details the comparison of the ranking obtained with � to the ranking

obtained with the importance indicators of Iman-Hora (1990) [24], the global sensitivity

indices (Homma and Saltelli (1996) [18]) and CHT (Chun et al (2000) [10]).

We then discuss the application of � to the uncertainty and global SA of a probabilistic

safety assessment model �rst introduced in Iman (1987) [22] and next utilized as a test case
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in several works (Chun et al (2000) [10].) In this analysis, we also focus on the importance of

parameter groups and interactions, which shall enable us to further highlight the di¤erence

between � and variance-based approaches.

Results of both applications show that variance-based global SA indicators and � agree

in identifying the less relevant parameters with respect to (w.r.t.) the output uncertainty.

However, di¤erences in the ranking of the most relevant parameters emerge, due to the

di¤erent scope of the indicators.

In Section 2, we present an overview of global SA as used in Risk Analysis, starting with

variance based techniques and ending with a moment independent SA indicator introduced

in Chun et al (2000). Section 3 proposes a new moment independent importance measure

and discusses its mathematical properties. In Section 4, the application to the Ishigami test

function is discussed with the purpose of illustrating the properties of the new indicator

and comparing results with those of the other uncertainty importance measures presented in

Section 2. In Section 5 the application to the uncertainty analysis of the probabilistic risk

assessment model on which uncertainty importance measures were �rst introduced by Iman

(1987) [22] is detailed. Section 6 deals with computational aspects and presents perspectives

of future research. Section 7 o¤ers conclusions.

2 Global Sensitivity Analysis

Global sensitivity analysis (SA) is the term utilized to denote the set of techniques aimed

at determining which of the input parameters in�uence output the most when uncertainty

in the parameters is propagated through the model (Iman (1987) [22], Iman and Conover

(1987) [23], Iman and Hora (1990) [24], Helton (1993) [14], McKay (1996) [27], Saltelli (1997)

[38], Helton and Davis (2003) [16].) In the family of global SA indicators one can include

non-parametric techniques (Saltelli and Marivoet (1990) [37], Helton and Davis (2000) [15],

Helton and Davis (2003) [16],) variance based techniques (Hora and Iman (1986)[19], Iman

(1987) [22], Sobol�(1993) [46], (2001) [47] and (2003) [48], Rabitz et al (1998) [34], Rabitz

and Alis (1999) [35] and Alis and Rabitz (2001) [1], Saltelli et al (1999) [39], Saltelli et al
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(2000) [40],) and moment independent techniques (Park and Ahn (1994) [33], Chun et al

(2000)[10].) Indicators created for global SA purposes are called global importance measures

(Homma and Saltelli (1996) [17]) or uncertainty importance measures (Bier (1993) [5], Iman

and Hora (1990) [24], Homma and Saltelli (1996) [17], Chun et al (2000) [10]) to di¤erentiate

them from local importance indicators (Borgonovo and Apostolakis (2001) [6], Cheok et al

(1998) [9], Borgonovo et al (2003) [7],) and screening methods (Morris (1991) [29], Kelijnen

(2005) [21].)

With reference to Saltelli�s requirements, several authors have underlined that non-

parametric methods often lack model independence. For example, regression based methods

are appropriate when a linear input-output relationship exists (Frey and Patil (2002) [11] dis-

cuss limitations). Saltelli and Marivoet (1990) [37] and Hora and Helton (2003) [20] underline

the fact that ranking provided for by the Spearman rank correlation coe¢ cient would be sig-

ni�cant if a monotone input/output relationship were to hold. To overcome this limitation,

a test for non-monotone relationship is introduced in Hora and Helton (2003) [20].

As an alternative way of measuring uncertainty importance, after the early works of

Nakashima and Yamato (1982) [30] and Bier (1983) [5], particular attention is deserved by

the Iman and Hora indicator (Hora and Iman (1986) [19], Iman (1987) [22], Iman and Hora

(1990) [24],) de�ned as follows:

IHi = V [Y ]� E fV [Y jXi ]g = V fE [Y jXi ]g (1)

where V [Y ] is the variance of the model output Y , and E fV [Y jXi ]g is the conditional

expected value of V [Y ] given Xi and the expectation is taken over the possible values of

Xi, weighted by the appropriate density. It can be proven that the Iman-Hora uncertainty

importance measure (IHi from now on) is the expected reduction in output variance that can

be achieved if uncertainty in Xi is eliminated (Saltelli (2002) [42], and Saltelli et al (2000)

[40]).

As Saltelli et al (2000) [40] underline, robustness problems connected with IHi have been

solved through the global importance measures introduced in the works of Sobol�(1993) [46]
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and further developed by Homma and Saltelli (1996) [17], Sobol� (2001) [47] and (2003),

Rabitz and Alis (1999) [35] and Alis and Rabitz (2001) [1]. In these works it is shown that,

letting X 2 [0; 1]n be a set of random independent variables uniformly distributed in the

unitary hypercube, and

Y = g(X) (2)

a square-integrable function, then g(X) can be uniquely decomposed as follows

g(X)� g0 =
nX
i=1

gi(Xi) +
X
i<j

gi;j(Xi; Xj) + :::+ g1;2;:::n(X1; X2; :::; Xn) (3)

and the variance of Y can be decomposed in the following sum

V [Y ] =
nX
i=1

Vi +
X
i<j

Vi;j +
X
i<j<m

Vi;j;m:::+ V1;2;:::n (4)

where 8>>>>>>>>><>>>>>>>>>:

Vi =
R
���
R
[gi(X)]

2 dXi

Vi;j =
R
���
R
[gi;j(Xi; Xj)]

2 dXidXj

::::

Vi;j;:::;m =
R
���
R
[gi;j:::;m(Xi;Xj ; :::; Xm)]

2Q
k=i;j;:::;m dXk

(5)

Each of the integrands gi;j:::;m(Xi;Xj ; :::; Xm) in eq. (5) is found by iterative expectations on

Y (Sobol�(1993) [46], Bedford (1998) [4]). Eqs. (3) and (4) imply that, in the absence of

input correlations, variance decomposition directly mirrors the model structure, evidencing

the presence of interactions and the contribution to the model output due to individual and

parameter groups.

It turns out that the �rst order terms, Vi, are the �expected amount of variance reduction

that would be achieved for Y , if we were able to specify Xi exactly (Bedford (1998) [4], Saltelli

et al (2000) [40])�and, therefore, coincide with the IHi indicator [eq. (1)].

Sobol�(1993) [46] introduced the �sensitivity estimates�of order r:

Si1;i2;:::ir �
Vi1;i2;:::ir
V [Y ]

(6)

Si1;i2;:::ir are the ratios of the interaction terms of order r; Vi1;i2;:::ir in eq. (4), and V [Y ].

Homma and Saltelli (1996) [18] introduced the concept of global sensitivity indices. Particular
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interest is deserved by the interpretation of the �rst order (S1i) and total order sensitivity

indices (STi) � or �total e¤ects�in Saltelli (2002) [42]. � The �rst order indices:

S1i �
Vi
V [Y ]

(7)

represent the expected percentage reduction in V [Y ] which is obtained when uncertainty in

Xi is eliminated (Saltelli (2002) [42]). Note that if one selects S1i as uncertainty importance

measure of Xi, one would obtain the same ranking as with IHi.

The total e¤ects

STi �
nX
r=1

X
l1;:::;lr

Sl1;:::;lr (l1 = i) (8)

represent the expected percentage of variance that remains if all parameters were known

but Xi (Saltelli (2002) [42]). Selecting STi as uncertainty importance measure one would be

measuring the importance of a parameter as the percentage of the output variance associated

with the parameter (Homma and Saltelli (1995) [17] and (1996) [18], Saltelli et al (1999) [39],

Saltelli et al (2000) [40]).

Several studies have been performed on the computation of the global sensitivity indices:

estimation procedures are the Extended FAST (Saltelli at al. (1999) [39],) the method of

Sobol�(Sobol�(2001) [47],) and others (see Homma and Saltelli (1995) [17] and (1996) [18],

and Alis and Rabitz (2001) [1].)

We note that Sobol�theorem holds under the assumption that inputs are independent.

Oakley and O�Hagan (2004) [31] evidence that in the case of uncorrelated inputs �the rep-

resentation (i.e. Sobol� decomposition) re�ects the structure of the model itself,� while it

does not re�ect the model structure when correlations emerge. In the case of dependent

inputs, Bedford (1998) [4] shows that the function decomposition is no more unique, and

�the values taken on by the indices depend on the ordering of the variables.�This problem

has then been addressed by Saltelli and Tarantola (2002), which have identi�ed two lottery

settings for sensitivity analysis in the presence and absence of correlations. The �rst setting

consists in identifying the factor that, if determined, would lead to the greatest reduction
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Figure 2: Unconditional (V [Y ]) and Conditional variance (V [Y jXi = x�i ]) of Y when Xi is

�xed at x�i .

in the variance of Y. The idea is that, by �xing Xi = x�i , one would obtain a new output

distribution, namely fY jXi(y), that would produce a new output variance (Figure 2):

V [Y jXi = x�i ] (9)

However, (see Saltelli and Tarantola (2002)), since Xi is a random variable, V [Y jXi = x�i ]

is in its turn a random variable. Then

EXi fV [Y jXi]g (10)

is the expected remaining variance if one came to know Xi exactly. Utilizing eq. (1), one

notes that the factor associated with the lowest EXi fV [Y jXi]g are the more e¤ective in

reducing output variance (Saltelli et al (2000) [40].)

The second lottery setting of Saltelli and Tarantola (2002) [41] parallels the �rst, and

consists in betting on the sets of factors that lead to

V [Y ] < Vtar (11)

8



where Vtar is a target variance. In this case, the terms V [Y jXi; Xj ; :::; Xm ] matter, and by

extension of eq. (1), the sensitivity measures become:

Vi;j;::m = V [E(Y jXi; Xj ; :::; Xm )] (12)

We note that, based on classical utility theory, variance is not su¢ cient to the determi-

nation of the decision maker state of knowledge in general. According to the theory, variance

is su¢ cient to describe uncertainty in the following two cases: a) the decision maker pos-

sesses a quadratic utility function; b) the random variable is normally distributed (Huang

and Litzenberger (1988) [13], Ch.3, pp. 61-62.) Hence, identifying which of the parameters

reduces variance the most is not equivalent to identify which parameters in�uence the deci-

sion maker state of knowledge of the output the most, since V [Y ] is just one of the moments

of the output distribution.

Following this line of thought, Chun et al (2000) [10] introduced a global sensitivity

indicator which is moment independent and looks at the entire distribution of the model

output. The de�nition of the CHT indicator is as follows:

CHTi =

�Z
(yi� � y0�)2d�

� 1
2

=E
�
Y 0
�

(13)

where yi� is the �
th quantile of Y for the sensitivity case, and y0� is the �

th quantile of Y for

the base case. CHTi is expressed in terms of the cumulative distribution function of Y (FY ),

and, intuitively speaking, represents the (square of the) area related to a shift in FY from

the base case to the sensitivity case. By sensitivity case it is meant a recomputation of the

model when: �1) the uncertainty in a parameter is completely eliminated; 2) the uncertainty

range is changed; and 3) the type of distribution is changed� (Chun et al (2000) [10]). All

three cases re�ect a change in the state of knowledge of the analyst regarding the input

parameters.

It is useful to remark two main di¤erences in the de�nitions of CHTi on the one side and

STi=IHi on the other side:

C CHTi requires the performance of a sensitivity case, while STi and IHi do not;
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C STi and IHi refer to a particular moment of the distribution of Y , namely, V [Y ], while

CHTi does not:

In other words, the question answered by CHTi concerns the parameter that provokes

the greatest change in the distribution of Y when, for example, the uncertainty in all the

parameters is reduced by, say, a factor of 10 (Chun et al (2000) [10]). STi and IHi measure

the relevance of the parameter contribution to V [Y ] given the current state of knowledge, i.e.

without requiring to specify a sensitivity case that re�ects an hypothetical decision-maker

state of knowledge change.

In the next Section, we introduce a global sensitivity indicator, which is independent of

the moments of the model output and independent of the sensitivity case.

3 A Moment Independent Importance Measure

In this Section, we present an uncertainty importance measure with the following character-

istics: it does not refer to a particular moment of Y � and with this respect is similar to

CHTi but di¤erent from STi � and does not require a �sensitivity case�� with this respect

it is similar to STi but di¤erent from CHTi. � We also try and de�ne the new indicator

in such a way that its de�nition is properly posed in the presence of correlations among the

parameters.

We start with the relevant notation. Let:

1.

X = (X1; X2; :::; Xn) 2 Rn (14)

the set of uncertain input parameters;

2.

Y = g(X); g(X) : E � Rn �! R (15)

be the functional relationship between output Y and input X;

3. x = (x1; x2; :::; xn) a realization of X;
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4. FX(x) the (subjective) cumulative distribution of X, i.e. the joint cumulative distrib-

ution of the Xi. FX(x) expresses the analyst state of knowledge on X;

5. fX(x) the corresponding joint density of X;

6. fXi(xi) the marginal density of xi: As it is well known it is related to the joint density

by:

fXi(xi) =

Z
:::

Z
fX(x)

Y
s 6=i
dxs (16)

7. FY (y) the cumulative distribution function of the model output Y ;

8. fY (y) the corresponding density;

9. fY jXi (y) the conditional density of Y given that one of the parameters, Xi, assumes a

�xed value.

The rationale behind the de�nition of the following moment independent importance

indicator is as follows. The unconditional density/cumulative distribution of Y obtained

with all parameters free to vary in their uncertainty range are fY (y)=FY (y) (the continuous

line in Figure 3 shows an example of density fY (y)). Suppose now that we are able to �x

one of the inputs at, say, x�i . We would obtain the conditional density/distribution of Y

given that Xi is �xed at x�i , namely fY jXi (y)=FY jXi (y) (dashed line in Figure 3).

The shift between fY (y) and fY jXi (y) can be measured by the total area evidenced in

Figure 3. Such an area is given by:

s(Xi) =

Z ��fY (y)� fY jXi (y)�� dy (17)

Eq. (17) shows that s(Xi) is dependent on Xi, and as such, it is a function of random

variable. The expected shift is given by:

EXi [s(Xi)] =

Z
fXi(xi)

�Z ��fY (y)� fY jXi (y)�� dy� dxi (18)

We then propose the following de�nition.
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Figure 3: fY (y) (continuous) and fY jXj=x�j (y) (dashed). The shift between the two densities

is measured by the shaded regions.

De�nition 1 We name the quantity

�i =
1

2
EXi [s(Xi)] (19)

moment independent sensitivity indicator of parameter Xi w.r.t. output Y .1

�i represents the normalized expected shift in the distribution of Y provoked by Xi.

We now discuss some of the properties of �i (Table 1.)

Property nr. 1 in Table 1 bounds the possible values that the �i of an individual parameter

can assume: it can be proven that �i lies between 0 and 1 (the proof is in Section 8.1 in the

Appendix). In particular, one �nds that �i is zero when Y is independent of Xi (Property

2 in Table 1.) In fact, if Y is independent of Xi, one would not get any change in fY (y) for

any value xi assumed by Xi. Thus, fY jXi (y) = fY (y) and the integrand in eq. (18) is null

for all xi.

Property nr. 3 suggests that the � of all parameters equals unity. To prove the property,

however, we need to extend the de�nition of � from an individual parameter to a group of
1A more technical de�nition of �i is as follows:

�i =
1

2
EXi [

Z ���d�Y � d�Y jXi

���] (20)

where �Y and �Y jXi
are, respectively, the unconditional and conditional measures of Y .
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Nr. Property Meaning Proof

1 0 � �i � 1 Bounds the possible values �i can assume § 8.1

2 �i = 0 If Y is independent of Xi then � = 0 Main body

3 �1;2;:::;n = 1 The importance of all parameters equals unity § 8.2

4 �ij = �i If Y is dependent on Xi but independent of Xj then �ij = �i Footnote

5 �i � �ij � �i + �jji Bounds the possible values �ij can assume § 8.3

Table 1: Properties of the Uncertainty Importance Measure introduced in this work.

parameters. This is done as follows.

De�nition 2 Let R = (Xi1 ; Xi2 ; :::; Xir) be any group of parameters. Then:

�i1;i2;:::;ir =
1

2
ER[s(R)] =

=

Z
fXi1 ;Xi2 ;:::;Xir (xi1 ; xi2 ; :::; xir)

�Z ���fY (y)� fY jXi1 ;Xi2 ;:::;Xir (y)��� dy
�
dxi1dxi2 :::dxir (21)

where

fXi1 ;Xi2 ;:::;Xir (xi1 ; xi2 ; :::; xir) =

Z
:::

Z
fX(x)

Y
k 6=i1;i2;:::;ir

dxk (22)

The above de�nition then enables to prove Property 3 in Table 1 which states that

�1;2;:::;n = 1 (23)

i.e. the joint importance of all parameters equals unity (for the proof, see Section 8.2 in the

Appendix.)

One can summarize these three properties as follows. The � of an individual parameter

or of a group can assume values between 0 and 1. It will equal 0 when Y is independent of

the parameter or group of parameters at hand. It will equal 1 when the group including all

inputs is considered.

A couple of remarks. As far as correlations are concerned, we observe that De�nitions 1

and 2 hold independently of whether the parameters are correlated. In fact, eqs. (19) and
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(21) require the speci�cation of the joint density, fX(x), without reference to the eventual

independence of the parameters.

Let us now study the interpretation of De�nitions 1 and 2 in terms of sensitivity analysis

settings. One can see that De�nition 1 resembles Setting 1 of Saltelli and Tarantola (2002)

with a main similarity and a main di¤erence. The similarity is that both settings involve

conditioning with respect to Xi = x�i . The di¤erence lies in the fact that Setting 1 of Saltelli

and Tarantola (2002) [41] looks for the parameters that achieve the greatest reduction in the

variance of Y , while the setting implied by De�nition 1 is the identi�cation of the parameters

that in�uence the entire distribution the most. Similarly, De�nition 2 parallels Setting 2 of

Saltelli and Tarantola (2002) [41] insofar groups are concerned. However, we note that Setting

2 of Saltelli and Tarantola (2002) [41] again refers to variance reduction, while De�nition 2

concerns in�uence with respect to the entire distribution.

We now discuss the computation of � for a simple example, with the purpose of illustrating

its de�nition.

Example 1 Suppose that the unconditional density of Y = g(X) is:

fY (y) = Beta(y; 1; 3) (24)

Suppose further that one of the parameters, Xi is a discrete random variable than can assume

four values, namely, x1i , x
2
i , x

3
i , x

4
i with P (Xi = x

m
i ) = 1=4 (m = 1:::4): Suppose that either

analytically or numerically, You are able to obtain the 4 conditional distributions of Y given

that Xi = xm and that they are as follows:

fY jXi=xmi (y) =

8>>>>>>>>><>>>>>>>>>:

fY jXi=x1i (y) = Beta(y; 2; 3)

fY jXi=x2i (y) = Beta(y; 5; 3)

fY jXi=x3i (y) = Beta(y; 7; 3)

fY jXi=x4i (y) = Beta(y; 9; 3)

(25)

Figure 4 shows the unconditional and conditional distributions named above. Let us compute
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Figure 4: fY (y), fY jXi=x�i (y) and s(xi) for the example.

�i. For each of the conditional distributions we have [eq. (17)]:

s(xmi ) =

Z ���fY (y)� fY jXi=xmi (y)��� dy, m = 1:::4 (26)

For Xi = x1i , we have:

s(x1i ) =

Z 1

0
j�(y; 1; 3)� �(y; 2; 3)j dy = 0:6 (27)

s(x2i ), s(x
3
i ), s(x

4
i ) are computed in a similar fashion (Figure 4.) The resulting value of �i is

found as �i = 1
2

�
1
4s(x

1
i ) +

1
4s(x

2
i ) +

1
4s(x

3
i ) +

1
4s(x

4
i )
�
= 0:75.

De�nitions 1, 2 and the example can be utilized to indicate a possible algorithm for the

numerical computation of �i. Preliminary step is an uncertainty propagation leading to the

determination of the unconditional density of Y ; second step is the sampling of a value of

xi from fXi(xi); third step is the sampling of the conditional distribution of Y given Xi, i.e.

fY jXi (y); fourth step is the computation of s(Xi); �fth step the estimation of �i from the

computed s(xi)�s.

In the remainder of this Section, we detail some observation on properties of the im-

portance of parameter groups (�R, De�nition 2). To do so, we begin with groups of two
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parameters, R = (Xi; Xj).

According to De�nition 2, the delta of Xi and Xj is given by:

�ij =
1

2
EXiXj [s(Xi; Xj)] (28)

where

s(Xi; Xj) =

Z ���fY (y)� fY jXiXj (y)��� dy (29)

is the shift obtained �xing Xi at xi and Xj at xj : Based on the above discussion, it is

immediate to observe that, if Y is independent of Xj , then (Property 4, Table 1):

�ij = �i (30)

Eq. (30) simply re-states the fact that no contribution to model uncertainty comes from Xj

if Y does not depend upon it2.

However, if there is a contribution to uncertainty coming from Xj , one would expect �ij

to increase. Indeed, let us think of s(Xi; Xj) as obtained in two steps. The �rst step is

given by �xing Xi at xi and the second step is obtained by then �xing of Xj at xj (Figure

5). We limit ourselves to an intuitive explanation; a formal treatment is o¤ered in Section

8.3. Note that from a mathematical viewpoint � shares the properties of a distance (see

Malliavin (1995) [26] for de�nition of distance). Hence, �i represents the expected distance

between the density of Y and the conditional density of Y given Xi. Similarly, �ij is the

distance between the density of Y and the conditional density of Y given Xi and Xj . Now,

geometrically, going from fY (y) to fY jXiXj (y) through fY jXi (y) is the same as moving from

point A to point C but �rst going through point B. The length of path AB-BC is greater

then the length of AC, unless the three points lie on the same line.

With this in mind, one can write:

fY (y)� fY jXiXj (y) =
�
fY (y)� fY jXi (y)

�
+
h
fY jXi (y)� fY jXiXj (y)

i
(31)

2 In fact, if Y is independent of Xj , then
���fY (y)� fY jXiXj

(y)
��� = ��fY (y)� fY jXi

(y)
�� that leads to eq. (30)

by de�nition of �.

16



fY(y)

fY|Xi(y)

fY|XiXj(y)

δi δj|i

δij

Figure 5: Geometric Interpretation of Property nr. 5.

and interpret
�
fY (y)� fY jXi (y)

�
(�rst di¤erence in the right hand side of eq. (31)) as the

di¤erence between the unconditional density of Y and the conditional density found �xing

Xi and fY jXi (y) � fY jXiXj (y) as the residual di¤erence between fY jXi (y) and fY jXiXj (y)

obtained �xing Xj after Xi has been �xed. Now, de�ning the conditional � for the second

step as

�jji =
1

2
EXiXj

�Z ���fY jXi (y)� fY jXiXj (y)��� dy� (32)

Noting �jji � 0 and that �jji = 0; if Y is independent of Xj , it is possible to see that

(Appendix, Section 8.3):

�i � �ij � �i + �jji (33)

which states that the joint importance of Xi and Xj is greater than the individual importance

of Xi, but limited by the importance of the residual term �jji .

Suppose now that the observed shift in uncertainty due to Xj is always independent of

the value assumed by Xi. In that case, one would expect �jji = �j . If it happens that

�ij = �j + �i (34)

i.e. the three points lie on the same line, we say that the e¤ects of the uncertainty in Xi and
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Xj on fY (y) are separable.

The next Section describes the application of � to the global sensitivity analysis of the

Ishigami test function, highlights the computational aspects in greater detail and illustrates

a �rst comparison of � with the previously introduced importance measures listed in Section

2.

4 A Test Function Analysis

This Section describes the numerical computation of � and the comparison with variance-

based techniques and the CHT indicator by studying the application of � to the Ishigami

test function (Chun et al (2000) [10]). The mathematical expression of the function is:

Y = g(X) = sinX1 + a sin
2X2 + bX

4
3 sinX1 (35)

and theXi are assumed independent and uniformly distributed between �� and �. The input

distributions, the sample size (N = 1000) and the values of the constants a and b (5 and 0:1

respectively) are the same as in Chun et al (2000) [10] to allow for a direct comparison.

Let us �rst discuss the uncertainty analysis of Y . Uncertainty propagation (Figure 6)

produces fY (y) best �tted by a logistic density, with a Kolmogorov-Smirnov statistics equal

to 0:02.

We now describe the computation of �(X1). One �rst generates a value for X1, namely

x11 sampling from fX1(x1). In our �rst generation, we get x11 = 1:029. Given this value,

the conditional density of Y is obtained by propagating uncertainty in the model keeping

X1 = x
1
1. The resulting density, fY jX1=x11 (y), is shown in Figure 7.

fY jX1=1:029 (y) is now �tted by a beta distribution (the parameters are illustrated in

Figure 7) with a Kolmogorov-Smirnov statistics of 0:07. s(x11) is, then, computed from a

simple numerical integration of the absolute value of the di¤erence between the unconditional

(Figure 6) and the conditional density (Figure 7). In this case, it turns out that s(x11) = 0:638.

The next step is to repeat the procedure to produce x21 (equal to 2:84 in our second run),

determine the new conditional density of Y and compute s(x21), which, in this case, turns

18



Logistic(2.4758, 1.7944)
X <= 7.76

95.0%
X <= 2.81

5.0%

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

15 10 5 0 5 10 15 20

Fit

Figure 6: The uncertainty propagation in the example results in a logistic distribution for

fY (y).
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Figure 7: Conditional density given X1=1.0219, fY jX1=1:029 (y).
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Parameter �i S1i STi CHTi

X1 0:33 0:39 0:62 0:66

X2 0:39 0:29 0:34 0:98

X3 0:28 0:02 0:28 0:67

Table 2: Parameter global importance measured with delta.

out to be equal to 0:58. Repeating this steps for a 1000 times, �i is then estimated to be

�i = 0:33.

Proceeding in a similar fashion for X2 and X3, the moment independent indicators for

X2 and X3 are computed. The results are reported in Table 2.

Table 2 shows that X2 is the most in�uential parameter, followed by X1 and X3. As

far as interactions are concerned, one can observe also that �1 + �2 + �3 �= 1, in this case.

Recalling Property 3 in Table 1, then it holds that �123 = �1 + �2 + �3, i.e., using the

terminology introduced in Section 3, eq. (34), the e¤ects of uncertainty in the parameters

on the uncertainty in Y are separable � for this model and for the given input distributions.

�

We now discuss the comparison of the above results to the ones obtained for the CHTi

indicator and for variance-based techniques, S1i and STi (Table 2).

The fourth column of Table 2 shows the total sensitivity indices of the three parameters

estimated with the Sobol�method, utilizing the software SIMLAB [44]. The third column

shows the result for the S1i indicator [eq. (1)] and the �fth column for the CHT indicator

[eq. (13)], as reported in Chun et al (2000)3 [10]. We note that STi and S1i produce the

same ranking, while �i and CHTi produce di¤erent ranking w.r.t. the other indicators (see

also Figure 8).

The di¤erent ranking between STi/S1i and �i/CHTi is explained by the fact that STi and

S1i are variance-based, while �i and CHTi are moment independent. This result con�rms

3Note that IHi = S1i � V [Y ]; hence the ranking obtained with S1i is the same as the ranking obtained

with IHi. Such ranking is reported in Chun et al (2000).
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Figure 8: Parameter ranking comparison.

that a parameter which in�uences variance the most is not necessarily the parameter that

in�uences the output distribution the most. The di¤erence between the ranking produced by

�i and CHTi can be explained as follows. CHTi results in Table 2 are the importance of the

parameters when uncertainty in each of them, one at a time, is completely eliminated (Table

3). Hence, CHTi ranks inputs given that an hypothesized change in the state of knowledge

of the decision maker happens. On the other hand, �i represents the importance of the entire

distribution of Xi w.r.t. the entire distribution of Y , given the current state of knowledge

and without considering an arti�cially hypothesized change.

Finally, given the above discussion, comparing the ranks obtained with the four indicators

in Table 2 enables one to conclude that X2 is the most important parameter when the entire

output distribution is considered (it ranks �rst with both � and CHT ), while X1 is the most

important parameter in explaining the variance of the model output.
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Parameter Distribution Mean Error Factor

X1 lognormal 2 2

X2 lognormal 3 2

X3 lognormal 1� 10�3 2

X4 lognormal 2� 10�3 2

X5 lognormal 4� 10�3 2

X6 lognormal 5� 10�3 2

X7 lognormal 3� 10�3 2

Table 3: Distributions for the parameters of the PRA model of Iman (1987).

5 Application to a Probabilistic Risk Assessment Model

The purpose of this Section is to illustrate the application of � to the probabilistic risk

assessment (PRA) model utilized in Iman (1987) [22] where uncertainty importance measures

were �rst introduced. The model has also been utilized in Chun et al (2000) (see [10] for

a comparison of the CHT indicator with the Iman-Hora importance measure.) Besides

computing the � for the model parameters, we also estimate the �rst and total order global

sensitivity indices, to highlight the di¤erences between Sobol�interactions and �-interactions

(�jji.)

The probability of the top event is written as (Iman (1987) [22]):

YTop = X1X3X5 +X1X3X6 +X1X4X5 +X1X4X6 +X2X3X4 +X2X3X5+

+X2X4X5 +X2X5X6 +X2X4X7 +X2X6X7 (36)

The numerical values of the input distributions utilized in this analysis are the same as the

ones used in Chun et al (2000) [10] and are presented in Table 3.

The result of uncertainty propagation with a sample of size N = 1000 are displayed in

Figure 9. Figure 9 shows that fYTop(y) is lognormal, with mean equal to 2E � 6 and error

factor equal to 2:4. The calculation of the � importance measure for the parameters has been
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Figure 9: fYTop(y) as a result of uncertainty analysis.

Parameter X1 X2 X3 X4 X5 X6 X7

�i 0:11 0:17 0:09 0:13 0:18 0:20 0:11

Table 4: Delta for the parameters of the PRA model of Iman (1987).

performed in accordance with the computation algorithm proposed in Section 3. We have

found the results of Table 4.

Table 4 shows that X6 is the most relevant parameter, followed by X5, X2, X4, X7, X1

and X3. Thus, we can say that X6 is the most in�uential parameter on the top event while

X3 is the least in�uential.

We then compare the above results to the ones obtained by making use of the Sobol�

total e¤ects, the CHTi and S1i indicators. Table 5 shows the results. The ranking obtained

with CHTi have been computed in Chun et al (2000) [10] and are as such reported in Table

5, while S1i and STi have been computed with the Software SIMLAB [44].

To analyze the agreement among the ranking obtained with the four importance measures,

we computed the Savage Score Correlation Coe¢ cients (SSCC) (�rst introduced in Iman and

Conover (1987) [23]; for an illustration see also Campolongo and Saltelli (1997) [8]) on the

ranking in Table 5. The result is reported in Table 6.
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Parameter �i S1i STi CHTi

X1 6 6 5 6

X2 3 1 1 1

X3 7 7 7 7

X4 4 4 4 4

X5 2 2 3 2

X6 1 3 2 3

X7 5 5 6 5

Table 5: Parameter Ranking with the four uncertainty importance measures.

�i S1i STi CHTi

�i 1 0:49 0:59 0:49

STi 0:59 0:93 1 0:93

CHTi 0:49 1 0:93 1

S1i 0:49 1 0:93 1

Table 6: SSCC matrix for the four importance measures used in this Section.
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One notes that the ranking of CHTi coincides with that of S1i, while it di¤ers from both

the �i and the STi ranking. Table 6 also shows that �i results are in a higher agreement with

STi results then with CHTi and S1i.

We now turn our attention to a more detailed comparison of the global sensitivity indices

and �: We start with the ranking obtained with STi and �i. One notes that both indicators

agree in the identi�cation of the least relevant parameters: X3 ranks 7th according to both

indicators; X1 6th, X7 5th and X4 4th. Some di¤erence in the agreement is found on the

ranking of the most relevant parameters: X6 ranks �rst according to �i, while it ranks

second according to STi; X5 ranks 2nd according to �i, while it ranks 3rd according to STi;

X2 ranks 3nd according to �i, while it ranks 1st according to STi. Since the ranking di¤erence

ought to be attributed to the di¤erent meaning of the importance indicators, the following

summary of the result becomes natural: i) X3; X1; X7 and X4 are non-relevant on the model

uncertainty, both when the entire distribution (�i) or its variance (STi) are considered; ii) the

most relevant parameter w.r.t. the entire output distribution is X6, while the most relevant

w.r.t. the output variance is X2.

We then discuss how � and global sensitivity indices interpret interactions. From Table

4 one notes that
P7
i=1 �i = 0:99. Recalling that �1;2;:::;7 = 1, we have that �1;2;::7 '

P7
i=1 �i,

i.e. interactions play a minor role according to �. Using the terminology introduced in

Section 3, we could say that the e¤ect of uncertainty in the Xi on uncertainty in the top

event are separable. Let us now examine the relevance of interactions that is revealed by

Sobol�variance decomposition. Figure 10 shows the comparison between the total e¤ects of

each of the parameters and the �rst order indices.

From Figure 10 one notes that the percentage of interaction terms in each of the parameter

importance is not as relevant. In fact,
P7
i=1 S1i = 94%, indicating that almost all of the

model variance is explained by individual e¤ects. Hence, results of Sobol�indices show that

the model responds additively to the input uncertainty. Thus, in this case both separability

and additivity play a role. We then performed additional calculations to verify whether the

25



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X1 X2 X3 X4 X5 X6 X7

S1
ST

Figure 10: The comparison of �rst order (S1) and total order (ST) sensitivity indices shows

the low relevance of interactions for the model at hand when the error factor equals 2.

above conclusion on interactions was robust w.r.t. the choice of the input distributions. We

increased all error factors in Table 3 from 2 to 6. Results now show that given the new

distributions
P7
i=1 S1i = 57%, signalling that a signi�cant portion of the model variance is

now explained by interaction terms. On the other hand,
P7
i=1 �i = 86%, implying that the

output uncertainty is mainly attributable to individual parameter contributions, although it

is not completely separable, as in the previous case.

6 Computational Aspects: an overview of current methods and opportu-

nity for future research

Although the primary purpose of this work is to introduce the de�nition, properties and

meaning of �, let us touch upon computational aspects of �. The computational cost of a

technique is de�ned in terms of number of model runs necessary to estimate the sensitivity

measure.

The estimation of � for the above mentioned models did not pose any particular numerical

issues. However, the cost for estimating �i using the algorithm proposed in Section 3 is equal
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to nNoNiwhere n is the number of parameters, No is the number of runs necessary for the

outer integration and Ni the number of integrals necessary for the internal integration. Thus

for computationally intensive models or models requiring sample sizes of N > 1000 4, the

estimation of �i can raise the �curse of dimensionality (Rabitz and Alis (1999) [35])�problem

which a¤ects most of global SA techniques (as an example, see the investigations of Frey and

Patil (2002) [11] and Patil and Frey (2004) [32]). The trade-o¤ between computational

complexity and amount of uncertainty information delivered by an SA technique is being

and has been extensively dealt with in the literature. For example Rabitz and Alis (1999)

report that the cost of computing all the sensitivity indices in Sobol�decomposition is equal

to N �
Pn
i=0

n!
(n�i)!i! , which grows exponentially with the number of parameters. After the

works of Homma and Saltelli (1996) [18], at least three approaches have been envisioned to

ease the estimation of the global sensitivity indices: i) Saltelli et al (1999) [39] proposed the

Extended FAST, which enables one to compute the �rst order and the total order indices

at a cost equal to N; with a gain of
Pn
i=0

n!
(n�i)!i! model runs; ii) Rabitz and Alis (1999)

[35] and Alis and Rabitz (2001) [1] propose a two step approach based on �nite di¤erence

decomposition; iii) Oakley and O�Hagan (2004) [31] demonstrate that further savings can

be obtained if one adopts a Bayesian approach.

Besides the estimation of variance based indicators, several authors have dealt with the

problem of increasing the e¢ cacy of sampling methods in uncertainty propagation for compu-

tationally intensive models. Some examples are: i) Sobol�quasi-random sequence generator

(Sobol� (1990) [45]) applied by Homma and Saltelli (1995) [17] in the computation of the

Iman-Hora importance measure of eq. (1); ii) Latin Hypercube sampling, �rst introduced

in McKay et al (1979) [28], and thoroughly discussed in Helton and Davis (2000) [15] and

Helton and Davis (2003) [16].

Another way of circumventing the curse of dimensionality is to make use of screening

methods. Screening methods are sensitivity analysis tools that enable to identify non-relevant

4This sample size is also used in Rabitz and Alis (1999) as a threshold for numerical complexity.
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parameters and therefore to eliminate from the analysis variables that do not deserve further

attention. We refer the reader to the methods of Morris (1991) [29] and the ones described

in Kleijnen (2005) [21].

As far as the estimation of � is concerned, one can think of utilizing combinations of

techniques to reduce either n or Ni=No or both. A �rst way is utilizing the algorithm used

in this work together with a sampling method (Latin Hypercube Sampling or Sobol�quasi-

random lp�); this should allow to maintain Ni and No at their lowest size. A second way is

applying a two-step method a la Alis and Rabitz (2001) [1]; this would reduce n. A third

way is adopting a Bayesian approach a la Oakley and O�Hagan (2004) [31]; this would be

e¤ective in reducing NiNo. A fourth way is utilizing screening methods �rst to screen out

non relevant inputs and then applying a full-�edged estimation of delta, eventually with an

appropriate sampling method: in this case both n and Ni and No would be reduced. The

re�nement of computational strategies for � shall be the subject of future research by the

author.

7 Conclusions

When uncertainty in model parameters is present, the problem of assessing which of the

inputs in�uences output uncertainty the most is properly addressed by global SA.

The most recent literature development has assisted to the re�nement and establishment

of the theoretical and computational framework of variance-based techniques. We have seen

that variance decomposition re�ects model structure when the inputs are uncorrelated and

provides guidance in data collection when an analyst wants to achieve a pre-determined

variance reduction (even when parameters are correlated). However, in terms of uncertainty

analysis, a limitation of a variance-based global SA is the fact that variance is just one of

the moments of the output distribution and, as such, cannot be elected as representative of

the whole decision-maker state of knowledge. In addition, when parameters are correlated,

the direct relationship between variance and model structure does not hold.

In this work, we have addressed these issues by introducing a moment independent uncer-
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tainty indicator (�) that looks at the entire input/output distribution and whose de�nition

is well posed also in the presence of correlations among the parameters. We have discussed

the mathematical properties of �. We have seen that it is always between 0 and 1, it equals

0 if the output is not dependent upon an input, it is readily de�ned for parameter groups

and it equals unity if the group of all inputs is considered. We have seen that its de�nition is

well posed in the presence of correlations among the parameters, since one needs to specify

a joint distribution of the inputs without requiring independence. We have also shown that

the indicator does not presuppose a sensitivity case, i.e. a change in the decision-maker

uncertainty, but re�ects the current analyst/decision-maker state of knowledge.

We have illustrated the numerical aspects of the computation of �. We have compared

its results to those of �rst and total order sensitivity indices, the Chun-Han-Tak and the

Iman-Hora indicators by studying the application of these techniques to the Ishigami test

function.

We have then discussed the application of the above techniques to the PRA model ana-

lyzed in Chun et al (2000) [10] and introduced in Iman (1987) [22].

Results of both applications show that variance-based indicators and � agree in identifying

the less relevant parameters w.r.t. the output uncertainty. Discrepancies in ranking between

the relevant parameters reveal that factors in�uencing variance the most are not necessarily

the ones that in�uence the entire output distribution the most.

In summary, the analysis has shown that if one utilizes the moment independent im-

portance measure introduced in this work one gains insights on which of the parameters

in�uence uncertainty the most. Utilizing the new measure jointly with variance-based indi-

cators would also enable the analyst to obtain insights on the parameters that achieve the

greatest variance reduction and, when parameters are independent, on the model structure

and interactions.

The work also paves the way to further research. The �rst line of research concerns the

selection of the appropriate computational algorithm in the estimation of � for numerically
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intensive models (see the discussion on alternative approaches illustrated in Section 6.) A

second line of research is represented by exploring the conditions on model structure and

input distributions under which separability holds (i.e. �1;2;:::;n = �1 + �2 + ::: + �n) and

whether, under the same conditions, additivity holds (i.e. (V =
Pn
i=1 Vi.)

8 Appendices

8.1 Proof of Property 1

Proof. We prove �rst that �i � 1. By the triangle inequality,

��fY (y)� fY jXi (y)�� � jfY (y)j+ ��fY jXi (y)�� (37)

Hence Z ��fY (y)� fY jXi (y)�� dy � Z jfY (y)j dy +
Z ��fY jXi (y)�� dy (38)

Since:
R
jfY (y)j dy = 1 and

R ��fY jXi (y)�� dy = 1, we have:Z ��fY (y)� fY jXi (y)�� dy � 2 (39)

Hence:

EXi [s(Xi)] = EXi [

Z ��fY (y)� fY jXi (y)�� dy] � EXi [2] = 2 (40)

Applying de�nition 2 [eq. (19)] there follows that �i � 1:

The fact that �i � 0 follows from the monotonicity property of integrals, since
��fY (y)� fY jXi (y)�� �

0.

8.2 Proof of Property 3

Proof. We prove that �1;2;::;n = 1. By de�nition, when X is �xed at X�, y� = g(X�) and

P (Y = y�) = 1: That is fY jX=X� (y) is a delta�Dirac measure on y�: Consider then a �nite

but small interval around y� and write (Figure 11):

efY jX=X� (y; y1; y2) =

8><>:
1

y2�y1 if y1 < y < y2

0 otherwise

(41)

Note that fY jX=X� (y) = limy1!y2
efY jX=X� (y; y1; y2). Now, consider still a small interval
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Figure 11: Unconditional density and conditional density when all the parameters are in a

small interval around X�.

around y� and compute the total shift when y belongs to such small interval around y�:

s(X) = lim
y1!y2

Z ���fY (y)� efY jX (y; y1; y2)��� dy (42)

Applying eq. (41) one gets:

s(X) = lim
y1!y2

Z y1

�1
jfY (y)j dy +

Z y2

y1

����fY (y)� 1

y1 � y2

���� dy + Z 1

y2

jfY (y)j dy (43)

which is equivalent to:

s(X) = lim
y1!y2

Z y1

�1
jfY (y)j dy +

Z 1

y2

jfY (y)j dy +
Z y2

y1

����fY (y)� 1

y1 � y2

���� dy (44)

Noting that:

lim
y1!y2

Z y1

�1
jfY (y)j dy +

Z 1

y2

jfY (y)j dy =
Z 1

�1
fY (y)dy = 1 (45)

and that fY (y)dy ! 0 as y1 ! y2, we have:

lim
y1!y2

Z y2

y1

����fY (y)� 1

y1 � y2

���� dy = lim
y1!y2

Z y2

y1

���� 1

y2 � y1

���� dy = 1 (46)

Substituting back into eq. (44) one �nds:

s(X) = 1 + 1 = 2 (47)
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There follows that

�1;2;:::;n =
1

2
EX [s(X)] =

1

2
EX [2] = 1 (48)

q.e.d..

8.3 Proof of Property 5

Proof. Note that:���fY (y)� fY jXiXj (y)��� � ��fY (y)� fY jXi (y)��+ ���fY jXi (y)� fY jXiXj (y)��� (49)

Taking the integral of both sides:Z ���fY (y)� fY jXiXj (y)��� dy � Z ��fY (y)� fY jXi (y)�� dy + Z ���fY jXi (y)� fY jXiXj (y)��� dy (50)

Now, one can take the expectation, to get:

EXiXj [

Z ���fY (y)� fY jXiXj (y)��� dy] � EXiXj �Z ��fY (y)� fY jXi (y)�� dy�+EXiXj �Z ���fY jXi (y)� fY jXiXj (y)��� dy�
(51)

Since fY jXi (y) depends on Xi and not on Xj , it is true that:

EXiXj

�Z ��fY (y)� fY jXi (y)�� dy� = EXi �Z ��fY (y)� fY jXi (y)�� dy� = 2�(Xi) (52)

On the other side,

EXiXj

�Z ���fY jXi (y)� fY jXjXi (y)��� dy� (53)

is a positive term, representing the expected shift between the distribution of Y given Xi

and the distribution of Y conditional on Xi. We denote this term as

EXiXj

�Z ���fY jXi (y)� fY jXjXj (y)��� dy� = 2�jji (54)

Again note that EXiXj
hR ���fY jXi (y)� fY jXiXj (y)��� dyi � 0 and that EXiXj hR ���fY jXi (y)� fY jXiXj (y)��� dyi =

0 if Y is independent of Xj . Combining this facts gives:

�ij � �i + �jji (55)

Note that combining eqs. (55) and (30) one can rewrite eq. (55) equivalently as:

�i � �ij � �i + �jji (56)

since �jji � 0, which is the thesis.
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