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Measuring Uncertainty Importance: Investigation and
Comparison of Alternative Approaches

Emanuele Borgonovo∗

Uncertainty importance measures are quantitative tools aiming at identifying the contribution
of uncertain inputs to output uncertainty. Their application ranges from food safety [Frey and
Patil (2002) (Risk Analysis, 22(3), 553–571)] to hurricane losses [Iman et al. (2005)]. ResultsQ1
and indications an analyst derives depend on the method selected for the study. In this work,
we investigate the assumptions at the basis of various indicator families to discuss the informa-
tion they convey to the analyst/decision maker. We start with nonparametric techniques, and
then present variance-based methods. By means of an example we show that output variance
does not always reflect a decision maker state of knowledge of the inputs. We then examine
the use of moment-independent approaches to global sensitivity analysis, i.e., techniques that
look at the entire output distribution without a specific reference to its moments. Numerical
results demonstrate that both moment-independent and variance-based indicators agree in
identifying non-influential parameters. However, differences in the ranking of the most rele-
vant factors show that inputs that influence variance the most are not necessarily the ones that
influence the output uncertainty distribution the most.

KEY WORDS: global sensitivity analysis; Importance measures; probabilistic risk assessment; uncer-
tainty analysis; uncertainty importance measures

1. INTRODUCTION

Several recent works demonstrate that uncer-
tainty and sensitivity analyses have become an es-
sential part of the modelling and risk assessment of
complex systems (Saltelli, 2002); Patil & Frey 2004;
Iman et al., 2005a, 2005b). For example, as reported
in Iman et al. (2005a), the Florida Commission on Hur-
ricane Loss Projection Methodology underlines that
“an important part of the auditing process requires un-
certainty and sensitivity analyses to be performed with
the applicant’s proprietary model.” Apostolakis (1995,
2005) highlight that the treatment of uncertainties can
play a critical role in probabilistic risk assessment.

Saltelli (2002) defines sensitivity analysis (SA) as
the determination of how “uncertainty in the output

∗ Bocconi University, Quantitative Methods, Viale Isonzo 25, Mi-
lan, 20135, Italy; tel: 0039-02-5836-5608; emanuele.borgonovo@
unibocconi.it

of a model (numerical or otherwise) can be appor-
tioned to different sources of uncertainty in the model
input (Saltelli, 2002).” The origin of global SA can be
traced back to Cuckier et al. (1973), and since then
various indicators have been introduced to address
uncertainty importance. Without the claim of being
exhaustive, we summarize the uncertainty indicators
in the categories of nonparametric techniques (Saltelli
& Marivoet, 1990; Iman et al. 2005a), screening meth-
ods1 (Morris, 1991), variance-based methods (Sobol,
1993, 2001, and 2003; Rabitz et al., 1998; Rabitz &
Alis, 1999; Saltelli et al., 2000; Alis & Rabitz, 2001;
Frey & Patil, 2002; Saltelli, 2002; Patil & Frey 2004)

1 Although of interest with respect to the problem of the curse of
model dimensionality (Alis and Rabitz, 2001), screening meth-
ods will not be dealt with in this work since not in the scope of
the present investigation. We limit ourselves to recall the quite
successful approach proposed by Morris (1991) and utilized, for
example, in Campolongo and Saltelli (1997).

1 0272-4332/06/0100-0001$22.00/1 C© 2006 Society for Risk Analysis



2 Borgonovo

Table I. The Uncertainty Importance Measures Dealt with in This Work

Uncertainty Importance
Importance Measure Acronym Family Measured Referring at

Andsten-Vaurio (1992) AV Variance based Output variance
Pearson correlation coefficient PEAR Nonparametric Input–output correlation
Standardized correlation coefficient SCC Nonparametric Input–output correlation
Partial correlation coefficient PCC Nonparametric Input-output correlation
Helton (1993) H Variance based Output variance
Iman (1987) I Variance based Output variance
Sobol (1993) Si1,i2,...,i r Variance based Output variance
FAST (Saltelli et al., 1999) S1, ST Variance based Output variance
Borgonovo (2005) δ Moment independent Entire output distribution

and moment-independent approaches (Park & Ahn,
(1994), Chun et al., 2000; Borgonovo, 2005). Table I
lists the indicators discussed in this work.

We investigate how these families of global SA
techniques address the problem of identifying uncer-
tainty drivers. We examine common features and dif-
ferences in their definitions and compare the infor-
mation they convey to analysts/decision makers. In
fact, Frey and Patil (2002) demonstrate that the in-
formation a decision maker derives from the analysis
depends on the choice of the technique.

As Saltelli (2002) and Frey (2002) underline, the
selected methods ought to satisfy the requirements
of being “global, quantitative, and model free.” The
works of Sobol (1993, 2001, 2003), McKay (1996),
Saltelli et al. (1999), Rabitz and Alis (1999), and Alis
and Rabitz (2001) have solved the problem of achiev-
ing a complete output variance decomposition orig-
inated by Cuckier (1973), and variance-based meth-Q2
ods have established themselves as the preferred way
of measuring uncertainty importance. In addition, as
Sobol (2001) and Alis and Rabitz (2001) have proven,
variance decomposition reflects the underlying func-
tion decomposition in the absence of correlations
among the parameters. Therefore, a variance-based
analysis provides analysts with information not only
on parameter contribution to the output variance,
but also on model structure when parameters are
independent.

The use of variance-based techniques has some-
times been given a broader interpretation, assuming
that “this moment is sufficient to describe output vari-
ability. (Saltelli, 2002).” For example, Homma and
Saltelli (1995) highlight the use of variance-based SA
as a way of determining how “the total uncertainty in
model prediction is apportioned to uncertainty in the
model input parameters.” Following the same inter-
pretation, Iman et al. (2005) refers to variance-basedQ3
indictors as “the expected percentage reduction in the

uncertainty . . . that is attributable to each of the input
variables.” As Oakley and O’Hagan (2004) underline, Q4
in correspondence of the realized value of the uncer-
tain parameter, variance can increase, in contrast with
the expectations. By means of an example, we show
that, in this case, relying on the sole variance as an in-
dicator of uncertainty would lead the decision maker
to non-informative conclusions.

We then examine the use of moment-independent
uncertainty importance measures (Chun et al. 2000;
Borgonovo, 2005), i.e., uncertainty importance mea-
sures that look at the entire output distribution with-
out referring to one of its moments2. We focus on
an importance measure recently introduced in Bor-
gonovo (2005). We discuss its properties and compare
this technique to nonparametric and variance-based
uncertainty importance measures.

We deal with the comparison of the numerical re-
sults provided for by the above discussed families of
indicators. The numerical analysis is carried out by
means of the probabilistic risk assessment model uti-
lized by Iman (1987). On this model uncertainty im-
portance measures were introduced for the first time,
and the model has then been utilized as a test case
in several works on uncertainty importance measures
(see also Chun et al., 2000). We examine whether the
indicators agree in identifying the top-ranked and/or
the low-ranked parameters by computing the corre-
lation coefficients on the ranking and on the corre-
sponding Savage scores3.

2 Most of the works at the basis of Bayesian statistics maintain that
it is the entire distribution to reflect the decision maker state-
of-knowledge on an uncertain quantity (de Finetti, 1937; Savage,
1972).

3 Savage scores have been originally introduced by Iman and
Conover (1987). For illustrations on their application we also re-
fer the reader to Saltelli and Marivoet (1990) and Campolongo
and Saltelli (1997).
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Results show that parameters that are nonrele-
vant on the entire distribution—low value of the mo-
ment independent indicator—tend also not to be in-
fluential on input–output correlation and on output
variance. A higher disagreement is registered among
the ranking of the most influential factors. This reveals
that inputs influencing the entire distribution the most
are not necessarily the ones that influence variance
the most. We show that the difference is explained
by the scope and meaning of the indicators and can
be exploited by the decision maker to gain full in-
formation on uncertainty propagation results. In fact,
by utilizing variance-based techniques, an analyst is
capable of gaining insights on the model structure—
besides obtaining the parameter contribution to the
output variance—and by using moment-independent
indicators she/he obtains insights on the influence the
uncertain inputs have on the output distribution.Q5

The remainder of the article is organized as fol-
lows. We start with a decision maker/analyst who
chooses to measure uncertainty importance as result
of input–output correlation making use of nonpara-
metric techniques (Section 2). After showing that the
mixed indicators introduced with the differential anal-
ysis of Helton (1993) and nonparametric techniques
would produce equivalent ranking under the assump-
tion that a linear regression fits the model output, in
Section 3 we present the definition of variance-based
importance measures (Iman, 1987) and the global sen-
sitivity indices (Sobol, 1993, 2001, and 2003; Rabitz
et al., 1998; Rabitz & Alis 1999; Saltelli et al., 1999,
Saltelli et al., 2000; Alis & Rabitz, 2001). Through an
example we show that non-informative results can be
obtained when a decision maker relies on variance
as the sole representative of the output uncertainty.
Section 4 deals with moment-independent sensitivity
indicators. Section 5 presents a quantitative compar-
ison among the results of the techniques by applica-
tion to the Iman (1987) model. Ranking agreement is
analyzed by the computation of the correlation coef-
ficients on both ranks and Savage scores. Conclusions
are offered in Section 6.

2. MEASURING UNCERTAINTY
IMPORTANCE AS INPUT–OUTPUT
CORRELATION

In this section, we deal with a decision
maker/analyst who decides to utilize correlation as a
measure of the influence of uncertain inputs on output
uncertainty. The analyst then ranks as more influential
the parameter Xi with the highest correlation coeffi-

cient with respect to (w.r.t.) the output (Y). Please
refer to Tables I and II for acronyms and notation
utilized throughout this work respectively.

Methods explored in the early literature to as-
sess parameter uncertainty importance based on cor-
relation and regression are classified under the name
of nonparametric techniques. Saltelli and Marivoet
(1990) provide a thorough description of these tech-
niques, their properties, and applicability.

As Saltelli and Marivoet (1990) discuss, the
Pearson correlation coefficient (PEAR) belongs to
the family of nonparametric techniques defined as
follows Q6

PEARl = Cov(Y, Xl)
σlσY

. (1)

Suppose now that the model output can be fitted by a
linear regression on the inputs, i.e., (Helton, 1993 or
Frey & Patil, 2002)

Y = g(X
¯

) � b0 +
n∑

i=1

bi Xi . (2)

If the approximation in Equation (2) works then a nat-
ural measure of the sensitivity of Y on Xl is the stan-
dardized regression coefficient (SRC) (Saltelli and
Marivoet, 1990)

SRCl = blσl

σY
, (3)

where σ l and σ Y are the standard deviations of xl

and Y, respectively, and bl is the coefficient of the
multivariate linear regression of Y on X

¯
. Note that,

if parameters are independent, since bl = Cov(Y,Xl )

σ2
l

, then
SRCl and PEARl actually coincide: SRCl = Cov(Y,Xl )

σl σY
.

Other representatives of this family of methods
are discussed in Saltelli and Marivoet (1990). In this
work, we make use of the partial correlation coeffi-
cient (PCCl) and the Spearman correlation coefficient
(SPEARl). As Saltelli and Marivoet (1990) demon-
strate, the performance of nonparametric techniques
in explaining model variance is synthesized by the
model coefficient of determination, R2

Y. Let x
¯

i be the
ith realization of the input, i = 1, 2, . . . , N,4 yi the out-
put values registered in correspondence of the input

4 N denotes sample size (Table II).
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realizations. R2
Y is defined as

R2
Y =

N∑
i=1

(ŷi − ȳ)2

N∑
i=1

(yi − ȳ)2

, (4)

where ŷi is the estimate of the output obtained when
each of the xi is substituted in the linear regression,
ȳ is the average of the yi, the effectively registered
output values.

R2
Y represents the fraction of the model variance

explained by the regression. A low value of R2
Y would

signal “a poor regression model (Campolongo and
Saltelli, 1997)”. In that case, the ability of nonpara-
metric techniques in capturing output variability is
low, and “it is hence unrealistic to assess influence of
the input variables based on SRC’s (Campolongo and
Saltelli, 1997).” As Frey and Patil (2002) underline
and, as Saltelli and Marivoet (1990) discuss, this hap-
pens for nonlinear models and also when interactions
among parameters emerge. In the next section, we
discuss how variance-based methods can be utilized
to integrate and improve the information obtained by
nonparametric techniques.

3. MEASURING UNCERTAINTY
IMPORTANCE USING VARIANCE

After the works of Sobol (1993, 2001 and 2003),
Rabitz et al., (1999), Alis and Rabitz (2001), SaltelliQ7
et al. (2000), Saltelli et al. (1999), and Saltelli (2002)
variance-based techniques have been recognized as
the preferred methods for assessing uncertainty im-
portance. Before these works, uncertainty importance
measures based on output variance were introduced
in the works of Nakashima and Yamato (1982), Bier
(1983), Iman (1987), and Iman and Hora (1990).

Let us consider the differential approach to sen-
sitivity analysis utilized by Helton (1993). In this case
the model output is written as

Y ∼= g(X
¯

0) +
n∑

i=1

∂g(X
¯

0)
∂ Xi

(
Xi − X0

i

)

+ 1
2

n∑
i=1

n∑
k=1

∂2g(X
¯

0)
∂ Xi∂ Xk

(
Xi − X0

i

)(
Xk − X0

k

)
. (5)

Helton (1993) shows that if the first-order terms of
the above approximation are used, one can estimate

the model variance as

V[Y] ∼=
n∑

i=1

[
∂g(X

¯
0)

∂ Xi

]2

V[Xi ]. (6)

Hence, Helton (1993) envisions as natural sensitivity
measures of the importance of a parameter on the out-
put variance the quantity (see also Chun et al., 2000) Q8

Hl =

√√√√[
∂g(X

¯
0)

∂ Xl

]2
V[Xl]
V[Y]

= ∂g(X
¯

0)
∂ Xl

σl

σY
, (7)

which represents the uncertainty importance of Xl

measured as the partial derivative of the output w.r.t.
input Xl( ∂Y

∂ Xl
) normalized through the ratio of the stan-

dard deviation of Xl(σ j ) and Y (σ Y). A similar mea-
sure is proposed in Andsten and Vaurio (1992), and
defined as

AVl =

[
∂g(X

¯
0)

∂ Xl

]2

σ 2
l

n∑
s=1

[
∂g(X

¯
0)

∂ Xs

]2

σ 2
s

. (8)

It is easy to prove the following relationship between
AVl and Hl

AVl = H2
l

n∑
s=1

H2
s

. (9)

It is worth noting that, if a model is linear or well
approximated by a linear regression, i.e., Equation (2)
holds, then one can write

∂g(X
¯

0)
∂ Xl

= bl , (10)

and therefore the Helton indicator for parameter Xl

coincides with SRCl
5:

Hl = ∂Y
∂ Xl

σl

σY
= blσl

σY
= SCRl . (11)

As in the case of a linear regression, the accuracy of
the variance approximation in Equation (6) deteri-
orates rapidly with the nonlinearity and nonadditiv-
ity of the model. Hence, assessing the relevance of a
parameter on the model variance utilizing Hl (Equa-
tion (7)) or SRCl (Equation (3)) could lead to non-
efficient results.

5 Thanks to Equation (9) the ranking induced by AVl would be the
same as those of Hl , SRCl for a linear model.
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To overcome this problem, i.e., to find a variance-
based indicator independent of the model linearity, an
alternative class of importance measures have been
developed. They have been referred to as uncertainty
importance measures (Iman, 1987 and also Iman and
Hora, 1990) and determine the influence of Xl as the
reduction in output variance that follows a reduction
in the uncertainty in Xl (Iman, 1987, see also Chun
et al., 2000 and Saltelli et al., 2000, or Saltelli, 2002).
We report their definition as given in Saltelli et al.
(2000)

Il = V[Y] − E{V[Y | Xl]} = V{E[Y | Xl]}. (12)

where V[Y] is the variance of the model output Y,
and E{V[Y | Xl]} is the conditional expected value of
V[Y] given Xl and the expectation is taken over the
possible values of Xl, weighted by the appropriate
density.

It can be proven that the Iman uncertainty im-
portance measure (Il from now on) is the expected
reduction in output variance that can be achieved if
uncertainty in Xl is eliminated (Saltelli et al., 2000;
Saltelli, 2002). Il produces the importance of individ-
ual parameter effects on the output variance, but ne-
glects interaction effects. It has been generalized by
global importance measures introduced in the works
of Sobol (1993), Homma and Saltelli (1995, 1996).
The model output variance is decomposed as follows
(Efron and Stein, 1981; Sobol’ (1993, 2001), and 2003)

V[Y] =
n∑

l=1

Vl +
∑
l< j

Vl, j +
∑

l< j<m

Vl, j,m + · · · + V1,2,...,n

(13)

In Equation (13), Vl represents the contribution to
the output variance provided for by parameter Xl in-
dividually. It turns out that Vl is the “expected amount
of variance reduction that would be achieved for Y, if
we were able to specify Xl exactly (Bedford, 1998)”
and, therefore, coincides with the Il indicator (Equa-
tion (12)). Vl,j is the contribution to the variance of
the interaction6 between parameter Xl and Xj. Vl, j,m

is the contribution to the output variance of the in-
teraction between parameters Xl, Xj, and Xm. Finally,
V1,2,...,n is the residual portion of the variance that can
only be explained as effect of the interaction among
all the parameters.

Sobol (1993, 2001, and 2003), Homma and Saltelli
(1995, 1996) introduce the sensitivity indices of order
r as the the ratios of the interaction terms of order r ,

6 Rabitz and Alis (1999) also use the term “cooperation” as a syn-
onym for “interaction.”

Vi1,i2,...,i r in Equation (13), and V[Y]

Si1,i2,...,ir ≡ Vi1,i2,...,ir

V[Y]
. (14)

Particular interest is deserved by the interpretation
of the first-order (here denoted as S1l) and total or-
der sensitivity indices—or “total effects” in Saltelli
(2002)—(STl). The first-order indices, are defined as

S1l ≡ Vl

V[Y]
l = 1, 2, . . . , n, (15)

represent the expected percent reduction in V[Y]
which is obtained when uncertainty in Xl is elimi-
nated (Saltelli et al., 2000; Saltelli, 2002). Note that
if one selects S1l as uncertainty importance measure
of Xl, one would obtain the same ranking as with Il.

The total effects

STl ≡
n∑

r=1

∑
i1,i2,...,ir

Si1,i2,...,ir (i1 = l), (16)

represent the expected percentage of variance that
remains if all parameters but Xl were known (Saltelli,
2002). By selecting STl as an uncertainty importance
measure, one would be measuring the importance of
a parameter as the percentage of the output variance
associated with the parameter (Homma and Saltelli,
1995, 1996; Saltelli et al., 1999; Saltelli et al., 2000). Q9

The variance decomposition terms in Equation
(13) can be computed from the function decomposi-
tion proven by Sobol (1993)—see also Rabitz and Alis
(1999) and Alis and Rabitz (2001)

g(X
¯

) = g0 +
n∑

l=1

gl(Xl) +
∑
l< j

gl, j (Xl , Xj )

+ · · · + g1,2,...,n(X1, X2, . . . , Xn), (17)

where

g0 = E[Y] =
∫

· · ·
∫

g(x
¯
)
∏

k

fXk(xk) dxk

g0 + gl(Xl) =
∫

· · ·
∫

g(x
¯
)
∏
k�=l

fXk(xk) dxk

g0 + gl(Xl) + g j (Xj ) + gl, j (Xl , Xj )

=
∫

· · ·
∫

g(x
¯
)

∏
k�=l, j

fXk(xk) dxk.

. . .

(18)

Note that each of the summands in the variance
decomposition of Equation (13) is the average of the
square of the corresponding term in Sobol function
decomposition (Sobol, 2001)
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Vl, j ...,m =
∫

· · ·
∫

[gl, j,...,m(xl , xj , . . . , xm)]2

×
∏

k=l, j,...,m

fXk(xk) dxk. (19)

Equation (19) implies that variance analysis leads di-
rect information on the model structure.

Sobol function decomposition rests on the follow-
ing assumptions:

Assumption 1. g(X
¯

) is measurable (Sobol 1993,
2001, and 2003).

Assumption 2. fX(x
¯
) = ∏n

l=1 fXi (xi ), where
fXi (xi) is the density of each of the parameters
(Rabitz and Alis, 1999).

Assumption 1 is of a technical nature, insofar it is
required to perform the integrations. Assumption 2,
however, shares two interpretations. In Rabitz and
Alis (1999) it is broadly underlined that the decom-
position of a measurable function can be performed
without adding to the integration operation a state-
of-knowledge meaning. That is, suppose one is given
a multivariate measurable function g(X

¯
) and that X1,

X2, . . . , Xn vary in ranges [−∞ ≤ ai, bi ≤ ∞]; one can
compute its decomposition by mechanically perform-
ing nested integrations as stated in Equation (17).
In this sense, Sobol/Rabitz function decomposition
would not differ conceptually from a decomposition
in Taylor polynomials. However, if the probability dis-
tribution ought to reflect the uncertainty of a decision
maker on the input parameters, then Assumption 2
is equivalent to state that the inputs are statistically
independent. In case parameters are not independent
and correlations emerge, Bedford (1998) shows that
the function decomposition is no more unique, and
“the values taken on by the indices depend on the or-
dering of the variables.” In terms of model structure,
Oakley and O’Hagan (2004) evidence that in the case
of uncorrelated inputs “the representation (i.e., Sobol
decomposition) reflects the structure of the model it-
self ,” while it does not reflect input–output depen-
dence when correlations emerge.

The problem of variance-based SA under corre-
lations, has then been addressed by Saltelli and Taran-
tola (2002) (see also Saltelli et al., 2004). Saltelli and
Tarantola (2002) establish two lottery settings. The
first setting consists in identifying the factor that, “if
determined, (i.e., fixed to its true value) would lead
to the greatest reduction in the variance of Y.” They
show that the factors associated with the lowest EXi

{V[Y | Xi]} are the more effective in reducing out-
put variance (Saltelli et al., 2000) both in the pres-
ence and in the absence of correlations. Note that

Equation (12) states that parameters with low value
of EXi{V[Y | Xi]} are the ones with a high value of the
Iman importance.

The second lottery setting of Saltelli and Taran-
tola (2002) parallels the first, and consists in identi-
fying the smallest number of factors that lead to a
predetermined variance reduction. In this case, the
terms V[Y | Xi, Xj, . . . , Xm] matter, and by extension
of Equation (12), the sensitivity measures become
Vi, j,...,m = V{E(Y| Xi, Xj, . . . , Xm)}.

As the above discussion illustrates, variance-
based importance measures are built in such a way
that the parameter with the highest value of the in-
dicator is the most effective in reducing output vari-
ance V[Y]. The interpretation is, however, somewhat
stretched so that they are deemed to measure “the
relative importance of each input in driving the un-
certainty (Oakley and O’Hagan, 2004).” This implica-
tion is related to the traditional choice of V[Y] as the
privileged indicator of uncertainty. However, Saltelli
(2002) observes that focusing on variance as the sole
measure of uncertainty, is equivalent to assume “that
this moment is sufficient to describe output variability.”
More specifically, the conditions under which V[Y]
is in a one-to-one correspondence with the decision
maker uncertainty are (Huang & Litzenberger, 1988),
Ch. 3, pp. 61–62): (1) the decision maker possesses a Q10
quadratic utility function, independently of the distri-
bution of Y; (2) Y is normally distributed, indepen-
dently of the form of the utility function.

We illustrate the effect of points (1) and (2)
through an example. Consider the following model
output

Y = g(X1, X2) = eX1 | sin X2|, (20)

and, for the moment, suppose that the decision maker
characterizes his/her uncertainty in the inputs as fol-
lows: X1 is distributed according to a standard normal
and X2 according to a normal distribution with mean
and standard deviation equal to 1. Given this state
of knowledge, the output variance induced by uncer-
tainty in both parameters is

VX1 X2 [Y] = 2.72. (21)

Note that since both terms in the product of Equa-
tion (20) are greater than zero, Y is not characterized
by a normal distribution. Now, the decision maker is
offered to pay a very small amount7 in order to get
perfect information on X2 (X2 = 1.) He/she bases
his/her decision on V[Y]. In other words, the decision

7 More precisely, the decision maker is offered to pay much less
than the expected value of perfect information on X2.
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maker accepts the offer if variance is reduced by the
new information; he/she refuses the offer if variance
is increased, because in this second case he/she would
consider himself more uncertain. Note that there is
an expected variance reduction associated with X2

equal to 10%. Before accepting the offer, the deci-
sion maker recomputes the model output variance
and gets

VX1 [Y] = (e2 − e)(sin2(1)) = 3.31, (22)

where we have used the subscript X1 in VX1 [Y] to
denote that VX1 [Y] is provoked by uncertainty in X1

alone. One can then understand the decision maker
disappointment: he/she expected a reduction in vari-
ance, while the new information is provoking an un-
certainty (variance) increase. He would then refuse
the perfect information offer, judging it misleading.
However, since he/she was asked to pay less than the
expected value of perfect information, refusing the of-
fer would mean to go against a basic decision analysis
rule. Paraphrasing Saltelli (2002), the assumption that
variance is sufficient to describe uncertainty does not
hold in this case. In fact, what reflects a decision maker
state of knowledge on an uncertain quantity is the dis-
tribution (Fig. 1) (de Finetti, 1937; Savage, 1972). In
the next section, we discuss methods for global SA
that consider the entire input and output distributions,
without reference to a particular moment.

4. MEASURING UNCERTAINTY
IMPORTANCE LOOKING AT THE ENTIRE
DISTRIBUTION

Uncertainty importance measures that do not re-
fer to a particular moment of the output but look at
the entire distribution (Fig. 1) have been introduced in
the works of Park and Ahn (1994), Chun et al. (2000),
and Borgonovo (2005).

For the sake of brevity, while we refer to Bor-
gonovo (2005) and Chun et al. (2000) for a compari-
son of the indicators, we focus on the following def-
inition of moment-independent importance measure
(Borgonovo, 2005)

δl = 1
2

EXl [s(Xl)], (23)

where:

� δl is the importance of uncertain input Xl;
�

s(Xl) =
∫

| fY(y) − fY|Xl (y)| dy, (24)
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Fig. 1. A visual representation of global SA, in whch the relevance
of an input is determined by considering the entire input and output
distributions.

is the area between the output density f Y(y)
(continuous line in Fig. 2) and the conditional
density of Y given Xl , fY|Xl=xl (y) (dashed line
in Fig. 2).

� EXl [s(Xl)] is found from

EXl [s(Xl)]

=
∫

fXl (xl)
[∫

| fY(y) − fY|Xl (y)| dy
]

dxl ,

(25)

where fXl (xl) is the density of Xl (Table II).

Let us now illustrate the meaning of the above
definition (Equation (23)). s(Xl) (Equation (24))
measures the shift which is provoked in the output
distribution when Xl is fixed at one of its possible

0 0.5 1

2

4

10 y

fY(y)

fY|X=x*(y)

Fig. 2. f Y (y) (continuous) and fY|Xj =x∗
j
(y) (dashed). The shift be-

tween the two densities is measured by the shaded regions.
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Table II. Mathematical Notation Utilized in This Work

Symbol Meaning

Y Model output
g(X

¯
) Input-output functional relationship

X
¯

= (X1, X2, . . . , Xn) Vector of uncertain input parameters
x
¯

= (x1, x2, . . . , xn) A realization of the input vector
n Number of parameters
N Sample size
FX

¯
(x

¯
) Joint distribution of the input vector

fX(x
¯
) Joint density of the input

fXl (xl ) = ∫
. . . Marginal density of input Xl∫

fX(x
¯
)
∏

s �=l dxs

FY (y) Distribution of the output
f Y (y) Density of the output
fY|Xl (y) Conditional density of Y given Xl

values. If one lets uncertainty coincide with the out-
put distribution, then s(Xl) provides an indication of
the change in the decision maker view of the output
provoked by knowledge of Xl. If the knowledge of Xl

changes the output distribution significantly, then the
area between the conditional and unconditional dis-
tributions of Y will be significant and the input will be
registered among the relevant ones. If a parameter is
nonrelevant to the decision maker view of the model
output, then little or no change in the distribution of Y
will be registered and the parameter will be associated
with a low importance. Indeed, in the extreme case in
which Y is independent of Xl, then fY(y) = fY|Xl (y)
and δl equals 0. Now, since s(Xl) is dependent on Xl,
s(Xl) is a function of random variable. Taking the ex-
pectation based on the marginal distribution of Xl,
namely EXl [s(Xl)] (Equation (25)), one measures the
average shift in the decision maker view on the output
provoked by Xl.

The definition of δ can be extended to any group
of inputs, R = (Xi1 , Xi2 , . . . , Xir ), as follows (Bor-
gonovo, 2005)

δi1,i2,...,ir = 1
2

ER[s(R)], (26)

=
∫

fXi1 ,Xi2 ,...,Xir
(xi1 , xi2 , . . . , xir )

×
[∫

| fY(y) − fY|Xi1 ,Xi2 ,...,Xir
(y)| dy

]
× dxi1 dxi2 . . . dxir , (27)

where

fXi1 ,Xi2 ,...,Xir

(
xi1 , xi2 , . . . , xir

)
=

∫
. . .

∫
fX

¯
(x

¯
)

∏
k�=i1,i2,...,ir

dxk. (28)

Table III. Properties of the Delta Uncertainty Importance
Measure

No. Property

1 0 ≤ δi ≤ 1
2 δi = 0 if Y is independent of Xi

3 δ1,2,...,n = 1
4 δi j = δi if Y is dependent on Xi but independent of Xj

5 δi ≤ δi j ≤ δi + δ j |i

Given the definitions in Equations (23) and (26), δ

shares the properties reported in Table III (the proofs
can be found in Borgonovo (2005)). One can summa-
rize these properties as follows. Property 1 implies
that the δ of an individual parameter or of a group
can only assume values between 0 and 1. Property 2
suggests that a parameter/group has null importance
when the model output Y is independent of that pa-
rameter/group. Property 3 states that the joint impor-
tance of all inputs equals 1. Properties 4 and 5 refer
to the joint importance of two (or more) parameters.
Property 4 says that if Y is dependent on Xi but inde-
pendent of Xj then δi j = δi . Property 5 states that the
joint importance of two parameters is greater than the
importance of an individual parameter, but limited by
the sum of such importance and the conditional term
δj|i given by

δ j |i = 1
2

EXi Xj

[∫
| fY|Xi (y) − fY|Xi Xj (y)| dy

]
. (29)

δj|i represents the expected shift from having fixed Xi

and then fixing Xj. Let us clarify (see also Borgonovo,
2005). Based on the meaning of δi, δij represents the
expected shift provoked by fixing both Xi and Xj. One
can think of such a shift as obtained in a two-step pro-
cess. Starting with f Y(y) (Fig. 3), the first step is fix-
ing Xi at xi. This step leads to fY|Xi =i (y). The second
step then consists of fixing of Xj at xj, which leads
to fY|Xi Xj (y). Now, δ shares the properties of a dis-
tance (see Malliavin, 1995 for definition of distance).
Thus, the first step is measured by δi, which repre-
sents the distance between the density of Y and the
conditional density of Y given Xi. The second step is
measured by δ j |i , which is the distance between the
density of Y given Xi , fY|Xi (y), and the conditional
density of Y given both Xi and Xj , fY|Xi Xj (y). Now,
going from f Y(y) to fY|Xi Xj (y) through fY|Xi (y) one is
following a longer path than going directly from f Y(y)
to fY|Xi Xj (y). Therefore, one finds: δi j ≤ δi + δ j |i .

Two remarks. The definitions of the δ uncertainty
importance for individual parameters (Equation (23))
and for groups (Equation (26)) hold independently of
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fY(y)

fY|Xi(y)

fY|XiXj(y)

δi δj|i

δij

Fig. 3. Geometric interpretation of Property 5.

whether the parameters are correlated. In fact, Equa-
tions (23) and (27) require the specification of the
joint density, fX

¯
(x

¯
), without reference to the eventual

independence of the parameters (i.e., it is not neces-
sary that fX

¯
(x

¯
) = ∏n

i=1 fXi (xi )). As far as Saltelli and
Tarantola’s (2002) settings discussed in Section 3 are
concerned, δl (Equation (23)) could be seen as corre-
sponding to a bet regarding the identification of which
of the uncertain inputs change the view of the decision
maker on the problem the most. We recall that Setting
1 in Saltelli and Tarantola (2002) concerned the pa-
rameters that lead to the highest expected variance re-
duction. Similarly, δi,j,...,k enables to identify the group
of parameters that shifts the decision maker view the
most, while Setting 2 in Saltelli and Tarantola (2002)
concerns the group expected to reduce variance the
most.

Let us now summarize the discussion of Sections
2–3. A decision maker can look at uncertainty impor-
tance in different ways (Table I, Column 4.) Choos-
ing nonparametric techniques, one measures uncer-
tainty importance looking at input–output correla-
tion; using variance-based methods, one measures un-
certainty importance based on contribution to output
variance; making use of a moment-independent ap-
proach one measures uncertainty importance consid-
ering the whole output distribution. Since the indica-
tors differ both in their conceptual and mathematical
formulation, one can expect that, in general, different
rankings are obtained with the measures. In the next
section, we discuss the comparison of the numerical
results for the Iman (1987) model.

5. QUANTITATIVE COMPARISON

This section details the quantitative comparison
of the uncertainty importance measures presented in

Table IV. Distributions for the Parameters of Iman (1987) Model

Error Error
Parameter Distribution Mean Factor I Factor II

X1 lognormal 2 2 6
X2 lognormal 3 2 6
X3 lognormal 1 × 10−3 2 6
X4 lognormal 2 × 10−3 2 6
X5 lognormal 4 × 10−3 2 6
X6 lognormal 5 × 10−3 2 6
X7 lognormal 3 × 10−3 2 6

Sections 2, 3, and 4 by means of their application to the
Iman (1987) model. The model calculates the risk of a
system failure measured by the top event frequency as
a function of seven parameters, X

¯
= (X1, X2, . . . , X7),

where X1 and X2 are initiating event frequencies and
the remaining parameters are system failure proba-
bilities.

We present two cases, a reference case which is the
same as in Chun et al. (2000) and a case of increased
uncertainty. We denote the two cases with the sym-
bols I and II, respectively. Table IV reports the input
distributions8

The result of uncertainty propagation with a sam-
ple of size N = 1000 for Case I are displayed in Fig. 4.
Fig. 4 shows that f Y(y) is lognormal, with mean equal
to 2.32 × 10−6 and error factor equal to 2.32. The
sample size has been increased to 10,000 in Case II, to
cope with the increased uncertainty. The correspond-
ing output density is again fitted by a lognormal shape,
but with mean equal to 2.12 × 10−6 and error factor
equal to 9.94.

Table V reports the values of the nonparamet-
ric uncertainty importance indicators in the two cases
and the corresponding ranking (in parenthesis) ob-
tained with the software SIMLAB (see, Reference
41) The most important parameter is X2 in all cases

8 The chosen distributions coincide with the ones selected in Chun
et al. (2000). As often happens in risk analysis, the lognormal
distribution

fX(x) = 1

ξ X
√

2π
e
− 1

2

[
ln(X)−η

ξ

]2

,

is expressed through its mean and error factor. The error factor
is given by the ratio between the median and the 5th percentile
of the distribution, which, in the lognormal case, also equals the
ratio of the 95th percentile to the mean. From knowledge of the
mean and error factor, one can then derive the two parameters
(η, ξ) of the lognormal distribution from


ξ = ln(Error Factor)

1.645

η = ln(Mean) − ξ2

2

.
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Fig. 4. Case I. Density of the top event frequency, f Y (y), as a result
of uncertainty analysis for the Iman (1987) model.

and for all indicators, followed by X6 and X5, which
rank second and third with all measures in all cases.
X4 ranks fourth in all cases. X1, X3, and X7 are the
low-ranked parameters.

The coefficient of model determination, R2
Y, is

equal to 0.92 in Case I and to 0.46 in Case II. This
implies that the model is well fitted by a linear regres-
sion in Case I, while the fit is less accurate in Case
II. As a consequence, a lower portion of model vari-
ance is explained by the liner regression in Case II.
One also ought to expect that interaction terms play
a more relevant role in this case. Let us now examine
how the results obtained using Il/S1l and STl con-
firm these observations. Table VI reports importance

Table V. Nonparametric Uncertainty Importance Measures for
the Iman (1987) Model

PEARl I PCCl I SPEAl I PEARl II PCCl II SPEAl II

X1 0.19 (6) 0.51 (5) 0.22 (5) 0.14 (5) 0.18 (6) 0.23 (5)
X2 0.59 (1) 0.90 (1) 0.60 (1) 0.41 (1) 0.49 (1) 0.52 (1)
X3 0.09 (7) 0.39 (6) 0.10 (7) 0.11 (6) 0.15 (7) 0.14 (7)
X4 0.35 (4) 0.72 (4) 0.35 (4) 0.20 (4) 0.27 (4) 0.33 (4)
X5 0.35 (3) 0.79 (3) 0.38 (3) 0.30 (3) 0.38 (3) 0.40 (3)
X6 0.50 (2) 0.86 (2) 0.49 (2) 0.35 (2) 0.43 (2) 0.43 (2)
X7 0.21 (5) 0.63 (7) 0.20 (6) 0.10 (7) 0.15 (5) 0.21 (6)

Table VI. Results for the Iman and Sobol Uncertainty
Importance Measures

Il/S1l I STl I Il/S1l II STl II

X1 0.03 (5) 0.09 (5) 0.02 (6) 0.11 (5)
X2 0.37 (1) 0.55 (1) 0.25 (1) 0.50 (1)
X3 0.02 (7) 0.06 (7) 0.01 (7) 0.09 (6)
X4 0.07 (4) 0.13 (4) 0.03 (5) 0.19 (4)
X5 0.14 (3) 0.23 (3) 0.06 (3) 0.36 (2)
X6 0.18 (2) 0.27 (2) 0.15 (2) 0.26 (3)
X7 0.03 (6) 0.07 (6) 0.05 (4) 0.09 (7)

measures and ranking (in parenthesis) obtained with
Il/S1l and STl.

Table VI shows that Il and STl produce the same
ranking in Case I, while their ranking differs in Case II.
In Case I, the sum of the first-order indices is around
94%, indicating that almost all of the model variance
is explained by individual effects. This is in agreement
with the estimated high value of the coefficient of
model determination testifying validity of the linear
regression. More precisely, we recall that in this case
Equation (6) holds and variance is the sum of individ-
ual contributions. This means that interaction terms
play a minor role, and their inclusion in S1l does not
affect raking. The ranking between S1l and STl, how-
ever, differs in Case II. In this case,

∑7
i=1 S1i = 57%

signalling that a higher portion of the model vari-
ance is explained by interaction terms. We also recall
the low value of the model coefficient of determina-
tion in this case (R2

Y = 0.46). This means that with
increased uncertainty interaction terms start playing
a relevant role for this model, and ought not to be
neglected.

We now come to the comparison of the ranking
obtained with variance-based indicators to the rank-
ing obtained with nonparametric techniques. We do so
by computing two measures of ranking agreement: the
correlation coefficients on the (raw) input ranks and
on their savage scores—see Campolongo and Saltelli
(1997) or Saltelli and Marivoet (1990) for the defini-
tion Savage scores. The difference between the two
correlations coefficients lies in the fact that, as Cam-
polongo and Saltelli (1997) underline, Savage scores
place emphasis on the agreement of top-ranked vari-
ables, while “disagreements on the exact ranking of
low-ranked variables” are not revealed by correla-
tions on Savage scores. Fig. 5 displays the correlation
coefficients on the ranking (left tables) and on the
corresponding Savage scores (right tables) in Cases I
(above) and II (below).
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Ranks PEAR I  PCC I SPEA I S1 ST I Savage PEAR I  PCC I SPEA I S1 I ST I
PEAR I 1 PEAR I 1
 PCC I 0.857 1  PCC I 0.952 1
SPEA I 0.929 0.964 1 SPEA I 0.966 0.994 1
S1 I 0.929 0.964 1 1 S1 I 0.966 0.994 1 1
ST I 0.929 0.964 1 1 1 ST I 0.966 0.994 1 1 1

Ranks PEAR II  PCC II SPEA II S1 II ST II Savage PEAR II  PCC II SPEA II S1 II ST II
PEAR II 1 PEAR II 1
 PCC II 0.893 1  PCC II 0.977 1
SPEA II 0.964 0.964 1 SPEA II 0.994 0.991 1
S1 II 0.786 0.964 0.893 1 S1 II 0.942 0.986 0.965 1
ST II 0.964 0.857 0.929 0.75 1 ST II 0.943 0.920 0.937 0.885 1

Fig. 5. Correlation coefficients on input
ranks (left) and Savage scores (right) for
variance based and nonparametric
uncertainty importance measures in
Cases I and II.

Fig. 5 (left tables) shows that the overall rank-
ing agreement is high in Case I. There is one case in
which ranking agreement is perfect, namely between
SPEAl and S1l and STl. The high values of the Savage
scores correlation coefficients signal agreement be-
tween nonparametric and variance-based techniques
in identifying the relevant parameters. Ranking dis-
crepancies increase in Case II, when the model be-
comes less linear. As we mentioned, the mathematical
reason of the higher disagreement is the worsening of
the linear regression approximation in Case II. How-
ever, nonparametric and variance-based technique in-
dications need not coincide since the indicators are
constructed so as to look at different output proper-
ties, as discussed at the end of Section 4.

We are now left with the exploration of the re-
sults obtained using δl. We recall that making use of a
moment-independent approach is equivalent to mea-
suring uncertainty importance with reference to the
entire output distribution (Table I). Table VII reports
the numerical value of δl and the corresponding pa-
rameter ranking (in parenthesis) in the two cases.

Table VII shows that X6 is the parameter asso-
ciated with the greatest value of δl both in Cases I
and II, followed by X5, X2, and X4. X3 is the least
relevant parameter in both cases. It is worth point-
ing out that the sum of the deltas practically equals
unity in both cases:

∑7
i=1 δi � 1. We recall that, since

Property 3 (Table III) states that the joint importance

Table VII. Results for the Delta Importance Measure in Cases I
and II

Parameter δl I δl II

X1 0.11 (6) 0.11 (5)
X2 0.17 (3) 0.16 (3)
X3 0.09 (7) 0.09 (7)
X4 0.13 (4) 0.14 (4)
X5 0.18 (2) 0.17 (2)
X6 0.20 (1) 0.18 (1)
X7 0.11 (5) 0.10 (6)

of all inputs equals 1, there follows that, in this case,
δ1,2,...,7 � δ1 + δ2 + · · · + δ7. In terms of Property 5 this
means that δi j = δi + δ j , or δ j |i = δ j , i.e., the effect
on Y of the uncertainty in Xj is independent of the
effect of Xi. Borgonovo (2005) refers to this effect as
“separability” of the uncertainty in Xi and Xj w.r.t.
the uncertainty in Y.9

We can then come to the comparison of the re-
sults of δ to the results of nonparametric and variance-
based indicators. Fig. 6 (left) shows that the correla-
tion coefficients on ranks vary from 0.82 to 0.93 in
Case I and from 0.79 to 0.96, an indication of an over-
all ranking agreement, with better agreement in the
case of low uncertainty. Let us then analyze this result
further starting with low-ranked inputs. X3 is ranked
7th or 6th by the measures reported in Table VII; X1

is ranked either 5th or 6th; X7 is ranked 5th or 6th,
with the exception of Case II, in which it ranks 4th
according to Il; X4 ranks either 4th or 5th; by all meth-
ods. One can then conclude that the methods agree
in identifying the nonrelevant parameters. Let us now
turn to the top-ranked parameters. The values of the
correlation coefficients on Savage scores vary from
0.59 to 0.97 in Case I and from 0.48 to 0.94 in Case II
(Fig. 6, right). By the meaning of Savage scores, these
values signal that lower agreement is registered for
the ranking of the most relevant inputs than for the
ranking of the less significant ones.

Q11

We finally highlight the information an analyst
would derive from a joint utilization of the techniques:
(1) X3, X1, X7, and X4 can be considered as nonrele-
vant on output uncertainty, since they are the least in-
fluential when their effect on the entire output distri-
bution (δl) or on its variance (Il, STi) or input/output
correlation (PEARl) are considered; (2) the model is
well fitted by a linear regression in Case I, while in-
teraction terms are relevant in Case II; (3) the most

9 Exploring whether there are systematc conditions that assure that
separability holds (i.e., δ1,2,...,n = δ1 + δ2 + · · · + δn) and whether,
under the same conditions, additivity holds (i.e., (V = ∑n

i=1 Vi ) is
subject of further investigations by the author.
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Ranks Delta   I S1 I ST   I PEAR  I Savage Delta   I S1 I ST   I PEAR  I
Delta   I 1 Delta   I 1
S1 I 0.86 1 S1 I 0.59 1
ST   I 0.86 1 1 ST   I 0.59 1 1
PEAR  I 0.82 0.93 0.93 1 PEAR  I 0.54 0.97 0.97 1

Ranks Delta   II S1 II ST II PEAR II Savage Delta   II S1 II ST II PEAR II
Delta   II 1 Delta   II 1
S1 II 0.79 1 S1 II 0.57 1
ST II 0.82 0.75 1 ST II 0.48 0.89 1
PEAR II 0.86 0.79 0.96 1 PEAR II 0.60 0.94 0.94 1

Fig. 6. Correlations among the
parameter ranking and Savage scores
obtained with δ, I/S1, ST, and PEAR.

relevant parameter w.r.t. the entire output distribu-
tion is X6, while the most relevant w.r.t. the output
variance is X2. This result implies that the parameter
influencing variance the most is not necessarily the pa-
rameter that influences the entire output distribution
the most; and (4) The ranking difference ought to be
attributed to the different meaning of the importance
indicators, as explained at the end of Section 4.

6. CONCLUSIONS

In this work, we have investigated the role of
global SA in indicating which among a set of uncer-
tain inputs influences output uncertainty the most.
To do so, we have compared different methods avail-
able in the literature by studying their definitions and
properties. We have started with nonparametric tech-
niques, i.e., SA methods that measure uncertainty im-
portance based on input–output correlation. We have
analyzed the assumptions on the basis of their uti-
lization. We have illustrated how the linear approxi-
mation of variance utilized in Helton (1993) links the
two approaches. We have then discussed the proper-
ties and meaning of variance-based techniques high-
lighting their formal definition and the related math-
ematical assumptions. We have seen that they convey
a twofold information: (i) in the absence of correla-
tions among the parameters, structural information is
gained due to the fact that output variance decompo-
sition is a direct reflection of the model function de-
composition; (ii) uncertainty information, in the sense
that parameters which influence output variance the
most are identified. This information is obtained both
in the presence or absence of correlations.

With this respect, we have investigated the va-
lidity of the assumption that variance “is sufficient to
describe output variability (Saltelli, 2002)” After pre-
senting standard results of utility theory, we have uti-
lized a simple example to highlight that variance alone
does not always measure the overall decision maker
uncertainty on the model output.

We have then examined the use of moment-
independent uncertainty importance measures, i.e.,

indicators that do not refer to a particular moment
of the output distribution. We have made us of an in-
dicator introduced in Borgonovo (2005), denoted as δ.
After providing the formal definition, we have sum-
marized its properties and interpretation. We have
seen that its definition is well posed in the presence of
correlations among the parameters, since one needs
just to specify a joint input distribution without re-
quiring independence.

We have obtained numerical results and quanti-
tatively discussed the comparison of the various tech-
niques by means of the risk assessment model utilized
in Iman (1987), where uncertainty importance mea-
sures were introduced for the first time. We have an-
alyzed two cases, a case of low and high uncertainty.

Results of both cases show that the indicators
agree in identifying the less relevant factors. Discrep-
ancies in the top-ranked inputs reveal that parameters
influencing variance the most are not necessarily the
ones that influence the entire output distribution the
most.

The analysis has also shown that a modeler would
mostly benefit from a joint utilization of the tech-
niques. In fact, using nonparametric techniques and
measuring the value of the model coefficient of de-
termination, one gains information on the linearity of
the model. If it holds, then one knows that variance-
based indicators will produce results close to those of
nonparametric techniques. Computing Sobol global
sensitivity indices would lead the decision maker to
obtain information on the model structure in the ab-
sence of correlations among the inputs. Finally, utiliz-
ing a moment-independent approach (δ) enables an-
alysts to measure the influence of an uncertain input
on the decision maker uncertainty.
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