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Abstract

This paper deals with the sensitivity analysis (SA) of inven-
tory management models when uncertainty in the input parame-
ters is given full consideration. We make use of Sobol�function
and variance decomposition method for determining the most in-
�uential parameters on the model output. We �rst illustrate the
method by means of an analytical example. We provide the ex-
pression of the global importance of demand, holding costs, order
costs of the Harris EOQ formula. We then present the global
SA of the inventory management model developed by Luciano
and Peccati (1999) for the economic order quantity estimation
in the context of the temporary sale problem. We show that by
performing global SA in parallel to the modeling process an an-
alyst derives insights not only on the EOQ structure when its
expression is not analytically known, but also on the relevance of
modeling choices, as the inclusion of �nancing policies and special
orders.
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1 Introduction

Uncertainty in inventory policy making stems from a variety of factors.
Just as a simple example, consider a �rm that uses the Harris Economic
Order Quantity (EOQ) formula as a support to its inventory policies
([18], [24], [30]). In order to come to a �nal decision on the EOQ, the
�rmmust estimate demand, unit order costs and holding costs. Demand
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is seldom steady, and its value cannot be determined with certainty in
most of the cases ([2], [35], [23], [47], [27], [15]). Costs can be a further
source of uncertainty (see [30]): on the one hand the criteria of cost
classi�cation are not always be sharply set and, on the other hand, even
once the criteria are set, variability characterizes the costs themselves
[30]. Hence, rarely one can predict the behavior of an inventory system
with the inputs �xed at a certain value; more likely, the decision maker
will be able to assign parameters within ranges determined by the analy-
sis ([30], [7], [8]). To cope with the corresponding uncertainty in model
predictions, usually a sensitivity analysis (SA) exercise is performed.
The more direct SA scheme is the testing of the change in model output
that follows a change in the parameters when they are shifted within the
limits of their variation ranges: this type of one-variable-at-a-time SA
is performed in Ray and Sahu (1992) [34], Arcelus and Rowcroft (1993)
[3], Ray and Chaudhuri (1997) [35], Powell (2000) [29]. Ganeshan et
al study the sensitivity of supply chain performance to three inventory
parameters [19]. Perturbation analysis has been developed and em-
ployed in the works of Glasserman, Bogataj et al ([20], [5], [16], [6], [9]).
The previous approaches belong to the family of local SA approaches.
Local SA techniques are the set of methods that study the behavior
of a mathematical model around a point of the input parameter space
for �nite or small changes in the input parameters. To the family of
local SA methods [49] belong the technique of comparative statics [39]
and the di¤erential importance measure ([10], [12].) An SA method is
Global if it tests the sensitivity of the model in consideration of the un-
certainty distribution re�ecting the decision-maker state of knowledge in
the parameters. Global SA techniques can be divided in the categories of
non-parametric techniques [36], screening methods [28], response surface
methodology [17], and variance-based methods ([40], [42], [44]). Target
of variance-based global SA methods is the model output variance, which
is decomposed in a series of summands of increasing dimensionality ([40],
[44], [42]). In this work, we focus on variance decomposition through the
Sobol�([42], [44]) and the Extended FAST methods [40].
Our �rst application is the determination of the global importance

of the parameters in the classical Harris inventory management model
([24], [18]). We derive analytically Sobol�function and variance decom-
position of the Harris EOQ formula and provide the expression of the
input parameter global importance (GI). By means of numerical re-
sults, we illustrate that parameters associated with the highest value of
GI, are the most e¤ective in reducing the variance of the EOQ.
We then apply the techniques to the inventory management model

introduced by Luciano and Peccati (1999) in the context of the tempo-
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rary sale problem [26]. Starting point of the model is the loss function
corresponding to the consideration of the cost of capital which is ob-
tained by making use of the adjusted present value (APV) technique
([21], [22], [31], [32], [48]). Luciano and Peccati (1999) then formulate
the cost functions that include third party �nancing, and the presence
of special orders. None of the cost functions allows for the analytical
expression of the EOQ. We show that performing a step-by-step global
SA an analyst gains insights on both the modeling aspects and the EOQ
structure. As far as modeling aspects are concerned, the use of global
SA allows to ascertain whether the inclusion/exclusion of a certain as-
sumption has a signi�cant or negligible impact on the EOQ. As far as
the EOQ structure is concerned, one gains a quantitative indication on
the type of dependency of the EOQ on the parameters. This information
would not be gained without a global SA when one does not possess the
analytical expression of the EOQ. Results show that, for the uncertainty
ranges at hand, the cost of debt, followed by the cost of capital and the
special order discount are the most relevant parameters. Not only, but
their inclusion impacts the EOQ structure in a signi�cant way, shifting
EOQ dependence on the parameters from additive to non-additive .
Section 2 describes the principles and theorems at the basis of global

SA. Section 3 illustrates the application and provides analytical results
for the Harris EOQ formula. Section 4 presents the global SA of the
Luciano-Peccati model, comparing the di¤erent cost functions and the
corresponding SA results. Conclusions are o¤ered in Section 5.

2 Variance-Based Global Sensitivity Analysis

The purposes of performing a global SA of model output are many, as
the works of Saltelli (1999) [38] and Saltelli at al (2000) [42] discuss.
Two are the characteristics of global SA that we are going to exploit
and discuss in this work:

the ability to enable the understanding of the type of model structural
dependence on the input parameters when the explicit dependence
is not available;

the ability to assess the in�uence of parameters, thus providing guid-
ance in data collection and input estimation (see also Borgonovo
and Peccati (2005) [14]).

We start with introducing the mathematical de�nitions and theorems
at the basis of global SA based on variance decomposition [42].
Let X � Rn be the input parameter space, B(X) a Borel algebra on

X, � a probability measure on B(X).
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Then, let
Y = f(x); f : X � Rn ! R (1)

denote the generic model output, where x = (x1; x2; :::; xn) 2 X is the
�set of input parameters.�
Target of the analysis is the model output variance, V [Y ], for which

it is sought a decomposition of the type ([25], [44]):

V [Y ] =
nX
i=1

Vi +
X
i<j

Vi;j +
X
i<j<m

Vi;j;m + :::+ V1;2;:::n (2)

In eq. (2), Vi represents the contribution to the output variance
provided for by parameter xi individually. Vi;j is the contribution to
the variance of the interaction1 between parameter xi and xj. Vi;j;m
is the contribution to the output variance of the interaction between
parameters xi; xj and xm. Finally, V1;2;:::n is the residual portion of the
variance that can only be explained as e¤ect of the interaction among
all the parameters. There follows that

Pn
i=1 Vi represents the portion

of the model variance explained by individual parameter contributions.P
i<j Vi;j is the portion of V [Y ] explained by terms containing parameter

pairs and so on. As highlighted in Sobol�(2001) and Rabitz and Alis
(1999), eq. (2) generalizes ANOVA ([44], [45], [43], [33]).
The variance decomposition terms in eq. (2) can be computed from

the function decomposition proven by Sobol�[44].

Assumption 1 d� =
nY
i=1

d�i, where �i is the measure of each parameter

[Rabitz and Alis (1999) [33]]:

Assumption 2 f is measurable [Sobol�(1993) [44]].2

1Rabitz and Alis (1999) also use the term �cooperation�as a synonym for �inter-
action.�

2Assumption 2 is of a technical nature, insofar it is required to perform the in-
tegrations. Assumption 1, however, shares two interpretations. In Rabitz and Alis
(1999) it is broadly underlined that the decomposition of a measurable function can
be performed without adding to the integration operation a state-of-knowledge mean-
ing. That is, suppose one is given a multivariate measurable function f(x) and that
x1; x2; ::xn vary in ranges [�1 � ai; bi � 1] one can compute its decomposition
by mechanically performing nested integrations as stated in the theorem. With this
respect Sobol�/Rabitz function decomposition would not di¤er conceptually from a
decomposition in Taylor polynomials. However, if the measure � is selected to re�ect
the uncertainty of a decision-maker on the input parameters, then Assumption 1 is
equivalent to state that � is such that the parameters are independent. In the case
parameters are not independent and correlations emerge, Bedford (1998) shows that
the variance decomposition in eq. (2) depends on the lexicographic ordering of the
parameters (see also Bedford (1998) [13] and Borgonovo (2005) [13] for a further
discussion.)
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Theorem 1 (Sobol�(1990) [44] and also Rabitz and Alis (1999) [33]).
Under the above assumptions, the following decomposition of f(x) is
unique

f(x) = f0 +

nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f1;2;:::n(x1; x2; :::; xn) (3)

where

f0 = Ex[Y ] =
R
���
R
f(x)d�

f0 + fi(xi) =
R
���
R
f(x)

Q
k 6=i d�k

f0 + fi(xi) + fj(xj) + fi;j(xi;xj) =
R
���
R
f(x)

Q
k 6=i;j d�k

:::

(4)

We brie�y discuss eq. (3). First, let us rewrite it as follows:

f(x)� f0 =
nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f1;2;:::n(x1; x2; :::; xn) (5)

and then compare eq. (5) to eq. (2). The right hand sides of the
two equations contain the same number of terms. Furthermore, since
V [Y ] = E

�
(f(x)� f0)2

�
, this means that the right hand side of eq. (2)

is the expected of the square of the left hand side of eq.(5), i.e.

V [Y ] = E

24( nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f1;2;:::n(x1; x2; :::; xn)

)235
(6)

This has been proven in Sobol�(1993) and is possible due to the following
property of the summands in eq. (5) [see also eqs. (4)]:Z

� � �
Z
fi1;i2:::;ik � fj1;j2:::;jmd�3 = 0

�
if k 6= m
if (i1; i2:::; ik) 6= (j1; j2:::; jk)

(7)

Eq. (7) states that the integral of the product of any two terms in the
function decomposition of eq. (5) is zero when either the two terms
contain a di¤erent number of parameters � k 6= m � or their argument
di¤ers in even only one parameter [33].
As a result of this property, the partial variances of Y can be written

as ([44], [45]):

Vi;j:::;m =

Z
� � �
Z
[fi;j:::;m(xi;xj; :::; xm)]

2
Y

k=i;j;:::;m

d�k (8)

3We have dropped the dependency of the integrands on xi1 ; xi2 ; :::; xik and
xj1 ; xj2 ; :::; xjm for synthetic notation purposes.
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It is easy to verify that if a model is of the form

f(x) =
X
i

gi(xi) (9)

then only individual terms appear in the decompositions of eqs. (3) and
(2) [11]. Eq.(9) is a su¢ cient condition for uncertainty to be explained
by �rst order e¤ects only. In the SA jargon, one says that the model
is additive over the uncertainty range. However � and we show this
in our �rst example � the converse can happen: a model can respond
�additively� over a certain input range without being of the form of
eq.(9). This would mean that the higher order terms in the function
decomposition [eq. (3)] had a negligible in�uence for the uncertainty
range at hand.
In order to quantify the e¤ect of parameter groups, the global sensi-

tivity indices (GSI) of order r; where r is the number of parameters in
the group, are introduced as the ratios of the terms in eq. (2) and V [Y ]
([45], [40]):

Si1;i2:::;ir =
Vi1;i2:::;ir
V [Y ]

(10)

The total order GSI of parameter xl;(STl), is the sum of all the GSI
related to xl:

STl =
nX
r=1

X
i1;:::;ir

Si1;:::;ir (i1 = l) (11)

i.e. STl is the ratio of all individual and interaction terms involving xl
and V [Y ]:
By global importance of xl [GIl] one means the relevance of xi on Y

when the entire distributions of x and Y are considered. Then ([40]):

GIl �
nX
r=1

X
i1;:::;ir

Si1;:::;ir [(i1 = l)] = STl (12)

A note on the computation of eqs. (3), (2) and (12). The estimation of
the GSI can be achieved either analytically or numerically. An analyt-
ical approach is obviously feasible only if the expression of Y is known
explicitly as a function of x. The convenience of an analytical approach
deteriorates rapidly with the number of parameters: the number of inte-
grals to be computed for the sole decomposition of f(x) is 2n�1. Thus,
a numerical approach based on Monte Carlo integration is adopted in
most of the cases ([33], [1], [45]). The computational cost of a numerical
calculation is de�ned in terms of number of model runs necessary to
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estimate the sensitivity measure. The cost (M) for computing all terms
in the variance decomposition of eq. (2) is given by [33]:

M = N �
nX
i=0

n!

(n� i)!i! (13)

where N is the sample size and n the number of parameters. Supposing
that a model contains n = 10 parameters, one �nds: M = N � 1024.
Since sample sizes N < 1000 produce appreciable results in few cases,
it is not di¢ cult to realize that one is dealing with a substantially high
number of model runs. This problem has been tackled by Saltelli et.
al (1999) [40] and Alis and Rabitz (2001) [1]. In particular, utilizing
the Extended FAST approach proposed by Saltelli et al (1999) [40], one
would be able to compute the �rst order and the total order indices at
a cost of order N; with a gain of

Pn
i=0

n!
(n�i)!i! model runs.

3 Analytical Example: Application to the Harris
EOQ Formula

The purpose of this Section is to illustrate the global SA of an inventory
management model when it is possible to perform the function decom-
position of eq. (3) analytically. We consider a �rm that uses the classical
Harris EOQ formula ([30]). The model is deterministic, considers a �xed
order cost x1, constant demand x2 and �xed holding cost per unit time
x3, no time lag between order and delivery. Under these assumptions,
the EOQ is expressed as:

Q� = f(x) =
p
2

3Y
i=1

xpii (14)

where p = (1
2
; 1
2
;�1

2
). If costs and demand were known with certainty,

Q� would assume a certain value. For example with x = (30; 8000; 1),
Q� = 693:
Suppose now, that the �rm wants to consider the impact on Q� of

uncertainty in the value of the parameters (see Section 1). Formally,
we suppose that the �rm re�ects such uncertainty by means of measure

d� =
3Y
i=1

hi(xi)dxi where hi(xi) are the density functions of xi; i = 1::3:

Q� becomes an uncertain quantity, being a function of random variables.
To computeGIl, we are allowed to apply Sobol�decomposition method

analytically [eq. (14)], since f(x) is analytically known. We describe in
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detail the application of eq. (4) to eq. (14). For f0, One gets:

f0 =

Z Z Z p
2

3Y
i=1

xpii hi(x)dxi =
p
2

3Y
i=1

Z
xpii hi(xi)dxi =

p
2

3Y
i=1

E [xpii ] = E[Q
�]

(15)
For the �rst order terms one gets (l = 1; 2; 3):

fl(xl) =

Z Z p
2

3Y
i=1

xpii

3Y
s=1;s 6=l

hs(x)dxs�f0 =
p
2xpll

3Y
s 6=l;s=1

Z
xpss hs(xs)dxs�f0

=
p
2xpll

3Y
s 6=l;s=1

E [xpss ]�
p
2

3Y
i=1

E [xpii ] =
p
2 (xpll � E[x

pl
l ])

3Y
s 6=l;s=1

E [xpss ]

(16)
For the second order terms, the application of eqs. (4) to eq. (14) is as
follows:

fl;m(xl; xm) =

Z  p
2

3Y
i=1

xpii

!
hs(x)dxs (s 6=l;m) � fl(xl)� fm(xm)� f0 =

=
p
2xpll x

pm
m

Z
xpss hs(xs)dxs (s 6=l;m) � fl(xl)� fm(xm)� f0 =

=
p
2xpll x

pm
m E [x

ps
s ]�

p
2xpll

3Y
s 6=l;s=1

E [xpss ]�
p
2xpmm

3Y
s 6=m;s=1

E [xpss ]+
p
2

3Y
i=1

E [xpii ] =

=
p
2 (xpll x

pm
m � xpll E[xpmm ]� E[x

pl
l ]x

pm
m � E[xpll ]E[xpmm ])E[xpss ] (17)

Finally:

f1;2;3(x1; x2; x3) = f(x)�
3X
i=1

fi(xi)�
X
i<j

fi;j(xi; xj)� f0 (18)

The expression of the terms in Sobol�variance decomposition [eq. (2)]
is obtained by squaring and integrating the terms of Sobol� function
decomposition in eqs. (15-18). Thus:

Vl = 2

 Y
j 6=l

E[x
pj
j ]

!2
V [xpll ] (19)

Vl;m = 2E[x
ps
s ]

2
�
E[x2pmm ]E[x2pll ]� E[xpmm ]2E[x

2pl
l ]� E[x

pl
l ]
2E[x2pmm ] + E[xpmm ]

2E[xpll ]
2
	

(20)
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Order (r) Term Vi1;i2:::;ir Si1;i2:::;ir
1 V1 2554 0:329
1 V2 2554 0:329
1 V3 2621 0:337
2 V1;2 13:51 0:0017
2 V1;3 13:87 0:0018
2 V2;3 13:87 0:0018
3 V1;2;3 0 0

Table 1: V[Q*] decomposition results for the example

The residual term V1;2;3 is obtained from:

V1;2;3 = V [Q
�]�

3X
s=1

Vs � V1;2 � V1;3 � V2;3 (21)

where

V [Q�] = 2

24 3Y
i=1

E
�
x2pii
�
�
 

3Y
i=1

E [xpii ]

!235 (22)

GIl is then found as:

GIl =

Vl +

3X
k=1;k 6=l

Vl;k + V1;2;3

V [Q�]
; l = 1; 2; 3 (23)

Eqs. (19)-(23) suggest that the global importance of the parameters
is a function of the moments of xpll . In appendix A we illustrate the
analytical calculations of such moments.
We now detail some numerical examples, considering two cases. For

the analysis, suppose that the decision-maker assignes a �25% variation
range for each of the input parameters. More formally, he utilizes a
uniform distribution for the parameters over the uncertainty range (
x1 � u[22:5; 37:5], x2 � u[6000; 10000], x3 � u[:75; 1:25]). Utilizing
eqs.(15) and (22), leads to: E [Q�] = 695 and V [Q�] = 7730. In order
to understand how uncertainty is apportioned by individual and group
contributions, we utilize eqs. (19-20). Substituting for the numbers, we
get the results in Table 1.
Table 1 shows that the model variance is explained by �rst order

terms, since
3X
l=1

S1l = 99%. This means that the Harris EOQ behaves
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Parameter GIl
x1 0:33
x2 0:33
x3 0:34

Table 2: Parameter global importance for the example

Term Si;j;::m
S1 0:13
S2 0:13
S3 0:56
S1;2 0:017
S1;3 0:071
S2;3 0:071
S1;2;3 0

Table 3: V[Q*] decomposition results for the example with increased
uncertainty

additively over the parameter uncertainty distributions considered. GIl
[eq. (23)] is displayed in Table 2.

Table 2 shows that x1, x2 and x3 have practically the same impor-
tance, i.e. they contribute to the EOQ variance in the same way.
Let us now consider the same example, but supposing that the decision-

maker assigns larger (�100%) uncertainty range to the parameters (we
shall refer to this case as �case 2�). Utilizing still uniform distributions,
we have: E[Q�] = 811, and V [Q�] = 6:14 � 105. We note two e¤ects
of the increased uncertainty: E[Q�] di¤ers now signi�cantly from the
deterministic Q� and V [Q�] is one order of magnitude bigger than in the
previous case. The global sensitivity indices [eq.(10)] are detailed in
Table 3.
As mentioned, Si;j;::m represents the normalized variance contribution

of parameter groups. Thus, Table 3 shows that the model is less additive
over the new input uncertainty. In fact, individual terms cover now a

lower portion of the model variance (
3X
l=1

S1l = 83%), against almost

100% of the previous case. The corresponding parameter importance is
shown in Table 4.
In this case x3 � holding cost � is the most important parame-

ter. We recall that in the previous case x1, x2 and x3 had the same
importance.
A practical implication of the above results in terms of uncertainty
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Parameter GIl
x1 0:23
x2 0:23
x3 0:66

Table 4: Parameter Global Importance for the case of increased uncer-
tainty

Order (r) Term Vi1;i2:::;ir(case 1) Si1;i2:::;ir(case 1) Vi1;i2:::;ir(case 2) Si1;i2:::;ir(case 2)
1 V1 2520 0:329 4:661E + 4 0:257
1 V2 2520 0:329 4:661E + 4 0:257
1 V3 2574 0:336 7:101E + 4 0:392
2 V1;2 13:2 1:72E � 3 4:032E + 3 0:022
2 V1;3 13:4 1:756E � 3 6:142E + 3 0:0034
2 V2;3 13:5 1:756E � 3 6:142E + 3 0:0034
3 V1;2;3 0 0 5:31E + 2 0

Table 5: Global SA rsults when the shape of the distribution is changed
from uniform to gamma

management is the following: ceteris paribus, collecting information on
x3 would be the most e¤ective way of reducing the variance of the EOQ.
We illustrate this concept by means of a numerical exercise. Suppose
that the decision maker orients resources to eliminate his uncertainty on
demand (x2), and becomes sure on the value x2 = 8000. In so doing the
model variance decreases from 6:2 � 105 to 5:3 � 105, with a reduction
of around 13%. Suppose now that, instead, the same resources were
spent in collecting information on x3; (say that it is �xed at x3 = 1).
In this case, the model experiences a much more signi�cant reduction,
from 6:2� 105 to 1:00� 105, which corresponds to an 84% decrease.
We then tested the robustness of the above results following a change

in the form of the distribution. We utilized gamma distributions 
i(xi;�i; �i)
(see Appendix A) and considered two cases with the values of �i; �i re-
�ecting the expected value and variance of xi in the 25% and in the
100% case respectively. The results are reported in Tables 5 and 6.

Parameter GIl (Case 1) GIl (Case 2)
x1 0:33 0:32
x2 0:33 0:32
x3 0:34 0:45

Table 6: Parameter global importance with gamma distributions
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The comparison of Tables 5 and 6 and Tables 1, 2, 3 and 4 shows that
the results are robust w.r.t. the choice of the uncertainty distributions
made in this exercise. In particular the following remarks hold: i) the
response of the EOQ is additive in the �rst uncertainty case for both
the uniform and the gamma distribution choices (Tables 2 and 5) and
non-additive over an increased uncertainty range (Tables 3 and 5); ii) in
case 1 ; iii) the fact that V1 = V2 and GI1 = GI2 in all cases re�ects the
symmetry of the Harris EOQ formula�dependence on x1 and x2:

4 Application: the Evaluation of Financing Policies
and the Temporary sale Problem

The purpose of this Section is to present the insights in terms of EOQ
structure and modelling choices that are gained from a variance-based
global SA when an analytical expression of the EOQ is not available.
We do so by studying the model proposed by Luciano and Peccati

(1999), which allows the evaluation of inventory management policies
with explicit consideration of �nancing choices [26]. Utilizing the Ad-
justed Present Value (APV) approach ([21], [22], [31], [32]), the model
o¤ers, in a logic cascade, the cost functions that enable the EOQ cal-
culation in the presence of, respectively, the cost of capital, third party
�nancing and special orders � we refer the reader to [26] for the com-
plete illustration of the model. �
The �rst case treated by the model is the inclusion in the EOQ of

the cost of capital [26]. The following cost function is introduced [26]:

L1(Q) =
�
c+ �

2

�
Q+ 


1� e��Q=D (24)

where

8>>>><>>>>:
c = price of the good in inventory
� = holding cost percentage
D = demand

 = unit order cost
� = cost of capital

The EOQ, Q�1; that cannot be determined analytically, depends im-
plicitly on the following 5 parameters:

Q�1 = q1(c; �;D; 
; �) (25)

With the following numerical assumptions: c = 10, D = 8000, � = 0,

 = 30, � = 30%; the optimal order quantity is estimated at Q�1 = 399
[26].
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Parameter Distribution S1l GIl % of interaction Rank
c �(5; 15; 2; 2) 0.33 0.37 9 2
� �(0; 0:3; 2; 4) 0 0.02 99 5

 �(20; 40; 2; 4) 0.10 0.12 17 3
D �(7500; 8000; 2; 4) 0.003 0.02 85 4
� �(0:1; 0:4; 2; 2) 0.53 0.55 4 1

Table 7: Uncertainty distributions of the input parameters for Q*1

Let us now consider the e¤ect of uncertainty in the �ve input para-
meters. They are assigned the densities4 displayed in Table 7.
Since an analytical expression for Q�1 is not available, one has to

resort to a numerical approach ([45], [25], [40]), computing the terms
of eqs. (3) and (2) via the appropriate random generation technique
([40], [41], [25]). In correspondence to each input generation, Q�1 is re-
evaluated. The sampled values of Q�1 are then utilized to estimate the
global sensitivity indices. We have employed the FAST method, thus
obtaining GIl and S1l at a computational cost equal to the sample size
(see the end of Section 2). For the inputs of Table 7, we determined
the sample size by iteratively increasing the number of model runs until
the estimation of GIl di¤ered by less than 1% in two next calculations.
For the case at hand, convergence was obtained with a sample size of
N = 5000:
The result for the global importance of the parameters are reported

in Table 7. Q�1 is almost additive, since
P5

i=1 S1l = 96%. Note that
S1� + S1c = 86%, i.e. �;and c, individually explain around 86% of the
model variance with the other parameters playing a relatively minor
role. � is the least in�uential parameter, with practically no individual
in�uence and with all its (low) importance due to interactions with the
other parameters (the column �% of interaction�in Table 7 represents
the percentage of the parameter importance due to interaction with the
other parameters). We note that the ranking does not change if one
considers the �rst order or the total order indices, as a consequence of
the high additivity of Q�1 in this case.
In the case inventories are funded by external debt, one needs to

model the presence of third party �nancing. The cost function becomes
[26]:

L2(Q) = �
�
c+ �

2

�
Q+ 


1� e��Q=D +
h�
c+

�

2

�
Q+ 


i
� k (26)

4For notation clarity: �(a; b; r; q) = 1
�(r;q)

(x�a)r�1(b�x)q�1
(b�a)r+q�1
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Parameter S1l GIl % of interaction Rank
c 0:005 0:051 91 3
� 0:002 0:048 96 6

 0:003 0:049 94 5
D 0:003 0:050 94 4
� 0:27 0:60 54 2
� 0:41 0:72 44 1

Table 8: Importance of the parameters in the presence of �nancing

with k = 1�
R1
0
�(s)e��sds is the NPV of the cash �ows5 generated by

a debt increase of one unit [26]. Under the assumption of a constant
repayment policy, with installments coinciding with interest repayments
at maturities s = 1; 2:::n, then k = 1� �

e��1 = g(�; �), where � = interest
rate for one period [26]. In the case of eq. (26), the EOQ turns out to
be a function of 6 parameters, with � adding to the previous 5:

Q�2 = q2(c; �;D; 
; �; �) (27)

Assuming � = 20%, the point estimate of Q�2 produces Q
�
2 = 1013.

Hence, the choice of modeling third party �nancing with a point value
of 20% leads to an increase in the point estimate of the EOQ of around
600 units, from Q�1 = 399 to Q�2 = 1013. Let us now utilize variance-
based SA to determine whether in correspondence of the modeling of
the new aspect, i.e. the presence of �nancing, a relevant or non-relevant
parameter has been introduced and whether the structure of the EOQ
has changed. Utilizing � � �(0; 0:4; 2; 2), one �nds the results reported
in Table 8.
Table 8 shows that � is the most in�uential parameter, when both its

individual and group importance are considered. �, that resulted as the
most in�uential parameter on Q�1, ranks now second. GI� and GI� are
much higher than the GIl of the other parameters. c; �; 
 and D have a
similar impact on Q�2, and their GI is mainly attributable to interactions
with the other parameters. With respect to the global SA of Q�1, a high
relevance of interaction terms is registered (see Column 4 of Table 8).
Note also that the ranking di¤ers if one utilizes �rst order terms rather
than GIl. Thus, the e¤ect of modeling external debt is felt both on the
parameter ranking, with � being the most important parameter, and on
the EOQ structure, with a reduction of additivity.
Luciano and Peccati (1999) consider also the case of a special order

5�(s) is the cash �ow generated at s by a debt increase of 1 unit.
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Parameter S1l GIl % of interaction Rank
c 0:0005 0:129 99 4
� 0:0001 0:114 99 7

 0:0002 0:128 99 5
D 0:0003 0:125 99 6
� 0:02 0:180 90 2
� 0:76 0:957 20 1
d 0:0014 0:177 99 3

Table 9: Importance of the parameters in the presence of �nancing and
of a special order

to be placed at t0 = 0 [26]. The cost function turns out to be [26]:

L3(Q) = �
�
c+ �

2

�
Q+ 


1� e��Q=D +
h�
c� d+ �

2

�
Q+ 


i
� k + d �Q (28)

where d = reduction of c in the special order. In this case, the EOQ is
a function of the following seven parameters:

Q�3 = q3(c; �;D; 
; �; �; d) (29)

Assuming d = 1, and maintaining all the previous numerical assump-
tions, Q�3 = 1769 [26]. Again, the modeling of a special order leads to
a signi�cant change in the point value of the EOQ: from Q�2 = 1013 to
Q�3 = 1769.
Let us now perform the global SA of the model letting d � �(0:5; 2; 2; 2).

One �nds the results shown in Table 9, with the sample size increased
to N = 12000 to assure convergence.
Table 9 shows that � is still the most in�uential parameter, with

increased in�uence. The newly introduced parameter, d; turns out to be
a relevant one, ranking 3rd over 7, and having an in�uence similar to �.
The remaining parameters, c, �, 
, and D have a much lower in�uence
on Q�3.
In terms of model structure, one notes that the addition of d causes

the EOQ to further deviate from the additive result obtained in the
absence of � and d (Table 9, Column 4).

5 Conclusions

This work has concerned the application of global Sensitivity Analysis
(SA) to inventory management models. Global SA techniques are the
most appropriate for performing the SA of model output when full con-
sideration is given to the uncertainty in the parameters.
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We have presented the mathematical bases of global SA and the
relevant theorems and introduced the de�nition of global importance of
a parameter (GIl). We have �rst dealt with the analytical application
of Sobol�function and variance decomposition method to the classical
Wilson-Harris inventory model. We have discussed the derivation of the
analytical expressions for the global importance of demand, holding and
order costs. We have shown how the method can be used to analyse the
model dependence on the input parameters with two set of assumptions,
re�ecting di¤erent states of knowledge of the decision maker.
We have then turned to the global SA of the Luciano-Peccati model.

The model presents the cost functions that determine the EOQ�s in con-
sideration of the cost of capital, the presence of �nancing and the pres-
ence of a special order, respectively. We have seen that in the absence
of �nancing and special orders, the EOQ depends on �ve parameters.
The most relevant one is the cost of equity, �. In the presence of third
party �nancing, the EOQ becomes a function of six parameters, the pre-
vious �ve plus the cost of debt, �: � turns out to be the most relevant
input, followed by �. With the evaluation of a special order, the EOQ
becomes a function of seven parameters. The parameter added to model
the special order, d, results third, after �; � ranks still �rst. In none
of the above cases the analytical expression of the EOQ was feasible.
However, the analysis has shown that the application of variance based
global SA enables one to gain:

Modeling insights. The results provide an analyst with direct and quan-
titative information on whether the inclusion/exclusion of certain
aspects in/from the model would correspond to consider/neglect
relevant aspects. In the Luciano-Peccati model, for example, not
to model third party �nancing (�), the cost of equity (�) or the
presence of a special order would have resulted in neglecting as-
pects with a signi�cant impact on the EOQ.

EOQ structure insights. We have seen that the EOQ dependence on the
parameters changed from additive to non-additive as third party
�nancing and the presence of a special order were included in the
model.

Uncertainty management insights. By de�nition, parameters associ-
ated with high values of GIl are the ones that are capable of re-
ducing variance in the output the most. In the presence of limited
time and resources, there can result a precious information the
knowledge of the parameters on which to orient resource and data
collection to reduce the variance of model output the most.
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6 Appendix A: Moment Calculations

As mentioned in Section 3, the variance and function decomposition for
the Harris EOQ formula is analytically feasible and is a function of the
moments of the three parameters. This Appendix details the calculation
of the relevant moments that appera in (15) - (23).
Let us start with E [xpii ] i = 1; 2; 3. We have:8>><>>:

E[x
1=2
1 ] =

R b1
a1

z1=2

b1�a1dz =
1

b1�a1

�
2
3
b
3
2
1 � 2

3
a
3
2
1

�
E[x

1=2
2 ] =

R b2
a2

z1=2

b2�a2dz =
1

b2�a2

�
2
3
b
3
2
2 � 2

3
a
3
2
2

�
E[x

�1=2
3 ] =

R b3
a3

z�1=2

b3�a3dz =
1

b3�a3

�
2
p
b3 � 2

p
a3
� (30)

The above three moments can then be inserted in eqs. (15) - (18).
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In order to compute the numerical values of the variance decomposi-
tion in eqs. (19) - (22), one must also compute the following moments:
V [xpii ] and E[x

2pi
i ]. Noting �rst that:

V [xpii ] = E[x
2pi
i ]� E[x

pi
i ]
2 (31)

and that E[xpii ] have been provided in eq. (30), then one needs only to
estimate E[x2pii ], i = 1; 2; 3. We have:8<:

E[x2p11 ] = E[x1] =
a1+b1
2

E[x2p22 ] = E[x2] =
a2+b2
2

E[x2p33 ] = E[x�13 ] =
ln b3�ln a3
b3�a3

(32)

For the case of u[22:5; 37:5], x2 � u[6000; 10000], x3 � u[:75; 1:25] we
have: 8>>>>>><>>>>>>:

a1 = 22:5
b1 = 37:5
a2 = 6000
b2 = 10000
a3 = 0:75
b3 = 1:25

(33)

The numerical values of the moments become:8>>>>>>><>>>>>>>:

E[x
1=2
1 ] = 5:46

E[x
1=2
2 ] = 89:21

E[x
�1=2
3 ] = 1:01

E[x2p11 ] = E[x1] = 30

E[x2p22 ] = E[x2] = 8000

E[x2p33 ] = E[x�13 ] = 1:02

(34)

One can then substitute back in eqs. (19) - (21) and �nds the results
reported in Section 3.
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