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Abstract

This paper discusses the use of global Sensitivity Analysis
(SA) techniques in investment decisions. Global SA is a branch
of Statistics that complements and improves Uncertainty Analy-
sis (UA) providing the analyst/decision-maker with information
on how uncertainty is apportioned by the uncertain factors. In
this work, we introduce global SA in the investment project eval-
uation realm. We then need to deal with two aspects: 1) the
identi�cation of the appropriate global SA method to be used and
2) the interpretation of their results from an investment uncer-
tainty point of view. For task 1), we compare the performance
of two family of techniques: non-parametric and variance decom-
position based. For task 2), we explore the determination of the
cash �ow global importance (GI) for valuation criteria utilized
in investment project evaluation. For the Net Present Value
(NPV), we show that it is possible to derive an analytical expres-
sion of the cash �ow GI, which is the same for all the techniques.
This knowledge enables us to: 1) o¤er a direct way to compute
cash �ow GI; 2) illustrate the practical impact of global SA on the
information collection process. For the Internal Rate of Return
(IRR), we show that the same conclusions cannot be driven. In
particular, a) one has to utilize a numerical approach for the com-
putation of the cash �ow in�uence, since an analytical expression
cannot be found and b) di¤erent techniques can produce di¤erent
ranking. These observations are illustrated by means of the ap-
plication to a discounted cash �ow model utilized in the energy
sector for the evaluation of projects under survival risk . The
quantitative comparison of cash �ow ranking with respect to the
NPV and IRR concludes the paper, illustrating that information
gained on the NPV through global SA cannot be transferred to
the IRR.
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1 Introduction

This paper introduces the use of global Sensitivity Analysis (SA) tech-
niques in investment valuation. When �rms deal with investment
projects, many factors are uncertain. Uncertainty Analysis (UA) is
usually performed as part of the decision-making (DM) process, and
dedicated subroutines are nowadays included in the most di¤use busi-
ness software (Excel or Lotus) or in dedicated software packages as the
one discussed in [31]. Through uncertainty propagation, the decision
maker (DMr) is able to understand his/her degree of con�dence in the
decision ( [1]), and to assess the project risk obtaining information about
the likelihood of favorable and adverse scenarios ([31], [3], [12], [6], [13]).
In the presence of limited time and resources, it could be of great help
to the DM information on the factors on which to devote data collection
resources so that to reduce uncertainty most e¤ectively/rapidly. This
information cannot be obtained by means of the standard UA methods
available on most industrial DM software [18], but have to be accom-
panied by a global SA exercise. Several global SA methods have been
recently developed in the literature, and they have not yet entered the
investment project valuation realm ([2], [5], [8], [9], [10], [11], [12], [13],
[14], [15], [17], [19], [18], [20], [24], [27], [28], [21], [22], [23]).
It is the purpose of this paper to illustrate the utilization and mean-

ing of global SA in the uncertainty management of investment project
evaluation. We undertake the analysis in two steps. The �rst step
is the identi�cation of the appropriate techniques to estimate cash �ow
GI in discounted cash �ow (DCF) valuation models ([29], [3], [4]). The
second step is the analysis of the application of cash �ow GI and of its
role in the DM process. For the �rst step, we examine the following
global SA techniques: Sobol� global sensitivity indices [Sr(xi)1] ([28],
[21], [22], [24]), the Pearson Correlation Coe¢ cients (PEAR) and the
Standardized Regression Coe¢ cients (SRC) [20]. Sr(xi) belong to the
family of variance decomposition based (VDB) techniques and estimate
the GI of a parameter by means of the complete decomposition of the
model variance. PEAR and SRC are non-parametric (NP) global SA
techniques and compute the GI by means of a regression of the output
on the uncertain parameters.
We show that, if the DMr selects as a valuation criterion a Net

Present Value (NPV) or one of its generalized forms, then the GI of
cash �ows: a) can be computed analytically; b) coincides with the frac-
tion of the NPV variance associated with the cash �ow; is equivalently
estimated by all the techniques; c) has a straightforward interpretation

1Table 1 summarizes the acronyms used in this work

2



Acronyms Name
UA Uncertainty Analysis
SA Sensitivity Analysis
VDB Variance Decomposition Based
DM Decision-Making
DMr Decision-Maker
NP Non Parametric
GI Global Importance

PEAR Pearson correlation coe¢ cient
SRC Standardized regression coe¢ cient
Sr(xi) Sobol�Global Sensitivity Indices of order r
ST (xi) Sobol�total indices
FAST Fourier Amplitude Sensitivity Test

Table 1: Acronyms used in this work

in terms of the DMr uncertainty. It is then possible to study the rela-
tionship between GI, timing and uncertainty of a cash �ow. We show
that, if the DMr selects an Internal Rate of Return (IRR) to value the
investment, an analytical approach is not feasible. As a consequence,
not all the techniques can be equivalently used to estimate cash �ow GI.
In particular, NP techniques should not be utilized since their ability
to correctly estimate cash �ow global importance declines as the model
becomes non-linear.
For the second step, we show that these results have a direct impact

on the information collection process. To to so, we apply the previous
results to the global SA of a sample model utilized in the energy sec-
tor for the evaluation of projects under survival risk ([4]). The model
estimates three investment criteria: NPV, value at any time t (Vt), and
IRR. For the project NPV and Vt the computation of the cash �ow GI
is direct thanks to the analytical results mentioned above. In particular,
once the DMr has assessed a standard deviation of the cash �ows �
which is a direct output of a standard UA � then the computation of
the GI is direct [eq.(12)]. From GI the DMr has immediate information
on the in�uence of the cash �ows on the DMr uncertainty. Reducing un-
certainty in these cash �ows associated to the highest values of GI would
then provide the most e¤ective way to reduce the uncertainty in NPV
or Vt. We also show that knowing GI the DMr has immediate informa-
tion on how much His/Her uncertainty would be reduced by gathering
additional information. For the project IRR, we compute the cash �ow
GI numerically, comparing the results of ST (xi) computed via Extended
FAST, PEAR and SRC for the global SA of the investment IRR. We
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rank cash �ows based on their GI w.r.t. the IRR. We then compare the
cash �ow ranking produced by the NPV global SA to the IRR global SA
ranking, obtaining quantitative information through Savage Scores ([6],
[8]). The comparison shows little agreement between the ranking: cash
�ows do not have the same in�uence on uncertainty in the investment
NPV as they have on uncertainty in the investment IRR. As a conse-
quence, global SA results for the NPV cannot be directly transferred to
the IRR. More speci�cally, if one collects information on a cash �ow
which is in�uential on the IRR, one would not reduce uncertainty in the
NPV e¤ectively and vice-versa.
In Section 2, we present the principles of global SA and the tech-

niques used in this paper. In Section 3, we discuss the global SA of
equity valuation models. Section 4 presents the application of the re-
sults and techniques of Section 3 to a project evaluation model proposed
by Beccacece, Gallo and Peccati [4] and in use in the energy sector.
Conclusions are o¤ered in Section 5.

2 Global Sensitivity Analysis

Let us denote the generic model output as:

Y = f(x) (1)

where x = (x1; x2; :::; xn) is the set of input parameters. For the purposes
of this Section, x will be a uniformly distributed random vector in the
unitary hypercube.
By global importance of xi [GI(xi)] one means the relevance of xi on

Y when the entire distributions of x and Y are considered.
Techniques explored in the early literature to assess GI(xi) foresee

the use of correlation and regression based methods that are classi�ed
under the name of Non-Parametric (NP) global SA techniques ([20]).
Saltelli and Marivoet (1990) provide a thorough discussion of these tech-
niques, their properties and applicability [20]. In this work, we compare
the performance of two non-parametric techniques, PEAR and SRC [20],
of which we report the de�nitions used in this work below, for the sake
of notation clarity:

PEAR(xi) =
Cov(Y; xi)

�i�Y
(2)

SRC(xi) =
bi�i
�Y

(3)

where �i and �Y are the standard deviations of xi and Y , respectively,
and bi is the coe¢ cient of the multivariate linear regression of Y on x.
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NP techniques have the main advantage of simplicity from a compu-
tational point of view ([20], [24], [18], [28]). However, their ability in
estimating correctly the global importance of an assumption is heavily
linked to the linearity of the model, and it deteriorates as the model be-
comes non linear or interactions among parameters emerge. In the case
of non-linear models, ranking parameters according to these techniques
could become misleading.
The shortcomings of NP global SA techniques are overcome by the

use of VDB techniques. Sobol�([23]) proved that, under the assump-
tion that the xi are independent, the following decomposition of f(x) is
unique [23]:

f(x) = f0 +
nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f(xi; xj; :::; xn) (4)

with
f0 = Y =

R
���
R
f(x)dx

f0 + fi(xi) =
R
���
R
f(x)

Q
k 6=i dxk

f0 + fi(xi) + fi;j(xi;xj) =
R
���
R
f(x)

Q
k 6=i;j dxk

:::

(5)

The fi;j;:::k(xi;xj; :::; xk) terms in eq. (4) are orthogonal, and such
that

R
f(xi; ; :::xs)

Q
k=i:::s dxk = 0. As a result of these properties, the

variance of Y can be written as ([23], [28], [19]):

Vx[Y ] =
nX
i=1

Vi +
X
i<j

Vi;j +
X
i<j<m

Vi;j;m:::+ V1;2;:::n (6)

where

Vi;j;:::;m =

Z
� � �
Z
[fi;j:::;m(xi;xj; :::; xm)]

2
Y

k=i;j;:::;m

dxk (7)

Vi;j;:::;m are called partial or conditional variances ([2], [14], [19], [11],
[10]). They are also deemed as interaction terms of order r, where r is
the number of parameters they involve.

Pn
i=1 Vi represents the portion

of the model variance explained by the individual parameter uncertainty.
Similarly,

P
i<j Vi;j is the portion of �

2
Y explained by terms containing

parameter pairs and so on.
One de�nes the global sensitivity indices of order r [Sr(xi)] as the

ratios of the individual terms in eq. (6) and Vx[Y ] ( [28], [24], [21], [28]):

Sr(xi) =

P
i<j:::<m Vi;j;:::;m

Vx[Y ]
(8)
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Technique Type Computational
Cost

Model
Dependent

Complete �2

Decomposition
PEAR NP N Yes No
SPEAR NP N Yes No
Extended FAST VDB N No No
Sr(xi) VDB N � 2n No Yes

Table 2: Advantages and Limitations of global SA techniques

The total order global sensitivity index [ST (xi)] of parameter xi is the
sum of all the global sensitivity indices related to it:

ST (xi) =
Vi +

P
j 6=i Vi;j + :::+ V1;2;:::n

Vx[Y ]
(9)

i.e. the ratio of all individual and interaction terms involving xi and
Vx[Y ]: Then, being GI(xi) the number that synthesizes the in�uence of
the uncertainty in xi on the uncertainty in Y , one de�nes the parameter
global importance as ([28], [24], [6]):

ST (xi) =
Vi +

P
j 6=i Vi;j + :::+ V1;2;:::n

Vx[Y ]
= GI(xi) (10)

In the remainder of the paper, ST (xi) will denote the estimate of GI(xi)
obtained by VBD techniques. Numerical estimation methods are the
Fourier Amplitude Sensitivity Test (FAST) [24], the method of Sobol�
([27], [28]), and others ([14], [15]). We note that, the estimation of
GI(xi) through VDB techniques becomes model-independent, but can be
more costly from a numerical point of view than the estimation through
NP techniques. In particular, if one wants to obtain the numerical
assessment of Sr(xi) 8r, then one must utilize Sobol�numerical approach,
whit a computational cost of N � 2n, where N is the sample size used
in the Monte Carlo uncertainty analysis. If GI(xi) is estimated via
Extended FAST, then the number of model runs required is N , but
only S1(xi) and ST (xi) are estimated. The possible high computational
cost can then make the use of Extended FAST or of NP techniques
preferable, in spite of the non-estimation of the interaction terms. Table
2 summarizes these observations.

3 Global Sensitivity Analysis of Valuation Models

This Section discusses the global SA of equity valuation models. We
assume that the analyst represents his/her uncertainty in the problem
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by assigning an epistemic distribution ([1]) to the cash �ows 2. We start
with the global SA of valuation criteria expressed in an NPV form.

3.1 NPV Global SA
For NPV-like models, we write the valuation equations as follows ([7],
[29]):

Y = f(x) =
nX
i=1

aixi (11)

where x is the vector of the cash �ows, and a the appropriate discount
factor.
The application of Sobol�variance decomposition [eq. (6)] to eq. (11)

leads to the following expression of GI(xi):

GI(xi) =
a2i�

2
i

�2Y
= S1[xi] = ST [xi] (12)

Applying the de�nition of PEAR(xi) and SCR(xi) to eq. (11), it is easy
to see that:

PEAR(xi) =
ai�i
�Y

= SRC(xi) (13)

Thus, in the case of eq. (11), SRC(x i), PEAR(x i) and ST (xi) are related
as follows:

ST (xi) = S1[xi] = SRC(xi)
2 = PEAR2(xi) = GI(xi) (14)

Eqs. (12), (13) and (14) suggest that:

� GI(x i) is the fraction of the NPV variance associated with xi

� GI(x i) contains no interaction terms

� SRC(x i), PEAR(x i) and ST (xi) techniques produce the same rank-
ing [eq. (14)]. Thus, they can be equivalently used in identifying
the most in�uential cash �ows with respect to (w.r.t.) the invest-
ment NPV.

� GI(x i) is independent of the particular type of distribution chosen
to characterize xi, but dependent only on the cash �ow variance.

2For the purposes of this work, we assume that cash �ows are uncorrelated.
The analysis of correlations and their e¤ects are discussed in a separate work of the
authors: Borgonovo and Peccati: �The Uncertainty and Global Sensitivity Analysis
of Valuation Equations in the Presence of Cash Flow Correlations,� IMQ, Bocconi
University, Work in progress.
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� eq. (14) provides the expression of GI(x i) in portfolio models,
where xi are the (�oating) stock prices and ai are the (�xed)
weights.

� eq. (14) enables one to study the relationship between cash �ow
importance and timing [GI(x i)<>GI(x i+1)]. For example, in [7]
and [4], ai is written as:

ai = ci=(1 + k)
i (15)

where k is the appropriate discount rate for xi, and ci denotes a co-
e¢ cient related to the probability of receiving the cash �ow, inde-
pendently of its amount ([7], [4]). Then one �nds thatGI(x i)>GI(x i+1)8i;
if the following condition is satis�ed:

1 >
�i+1
�i

ci+1
ci

1

(1 + k)
. (16)

In eq. (16), �i+1
�i

is the ratio of the uncertainty in the value of
xi and xi+1 (�epistemic uncertainty�, [1]),

ci+1
ci
is the ratio of the

probability of receiving the cash �ows, and 1
(1+k)

is the discount
factor for one period. GI(xi) will not necessarily follow the cash
�ow timing, if the e¤ect of the individual cash �ow epistemic un-
certainty and/or probability distorts the discounting e¤ect.

Let us discuss some implications of the above results from the DMr
point of view:

� Once the DMr has assessed His/Her uncertainty in the cash �ows
then no additional model runs or Monte Carlo based approach
are required. It is in fact enough that the DMr assigns/estimates
a standard deviation of the cash �ows and the computation of
GI(xi) is directly performed through eq.(12).

� From eq.(12) the DMr has immediate information on which of the
cash �ow to gather informations in order to reduce uncertainty in
the most e¤ective way.

� Furthermore, from eq.(12) the DMr has immediate information
on how much His/Her uncertainty would be reduced if gathering
additional information reduced uncertainty in one or more of the
cash �ows.

Calculations in Section 4 illustrate these observations.
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3.2 IRR Global SA
In the IRR case, using the notation of eq.(15), eq. (11) becomes ([7]):

nX
i=0

cixi
(1 + IRR)i

= 0 (17)

([7], [4]). As opposite to the NPV case, an analytical expression of the
IRR global importance cannot be obtained, in general. Thus, one has to
resort to a numerical approach for the estimation of the cash �ow global
importance with respect to the project IRR [GIIRR(xi)]. The numerical
approach involves the appropriate generation of random numbers fol-
lowing the xi probability density functions and the computation of the
project IRR corresponding to each sample generation ([27], [24]). Due
to the lack of an analytical expression, comparisons of the estimates of
GIIRR(xi) and the cash �ow ranking obtained using di¤erent global SA
techniques (i.e. ST (xi) vs PEAR(xi) or SRC(xi)) will be possible only
on a case by case basis. With this respect, we remark that the per-
formance of NP techniques is expected to decrease rapidly if non-linear
or interaction e¤ects emerge in the model. In such cases, utilizing the
results of these techniques to rank input parameters can be misleading
([6], [8], [14], [20]). Due to the non-linearity of IRR-like equations as eq.
(17), therefore, V DB will be the most appropriate global SA techniques
to be applied ([24], [21], [28], [12], [10], [11]). The numerical application
in Section 4.3 will demonstrate these observations.

4 Application: Project Under Severe Survival Risk

In this Section, we present the application of the results of Section 3
to the global SA of a valuation model elaborated for the assessment of
projects under serious survival risk and utilized in the energy sector ([4],
[7]). The model was developed in a joint-venture, to be a tool agreed
upon the partners to evaluate investment projects in regions where envi-
ronmental and external risks could pose a threat to the life of the project
at any time [4]. It is known that risks of an idiosyncratic nature cannot
be factored directly into the cost of capital k [4]. Thus, the model utilizes
an alternative approach through the introduction of extinction or sur-
vival probabilities (Qj) [4]. Qj is the probability of the project dying at
year j. Since it is a certain event that the project life stops after period
m, then

Pm
s=1Qs = 1. The investment is subdivided into a cost period

and a cash-generating or operation period, with m = n + k + 1, where
n is the number of cost periods and k the number of cash-generating
periods. We denote the generic cash �ow of period i with xi. With par-
ticular reference to the cost period, the cash �ows are denoted as s; and
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with rs in the income period. The model assumes that the sth cash �ow
is received at the end of period s. The model estimates three valuation
criteria, the project net present value (NPV), the value of the project at
any time t (Vt) and the project internal rate of return (IRR) [7].
The cash �ow discounting equations are generalized though the pres-

ence of extinction probabilities as follows ([4], [7]).

1. The project NPV ([4], [7]):

NPV =

m�1X
j=0

xj
Pm

s=j+1Qs

(1 + k)j
(18)

2. The project value at any time t, Vt ([4], [7]):

Vt =

Pm�1
h=t+1 xh(1 + k)

t�hPm
j=h+1QjPm

s=t+1Qs
(19)

3. The project IRR ([4], [7]):

0 =
m�1X
j=0

xj
Pm

s=j+1Qs

(1 + IRR)j
(20)

Rewriting the model based on the framework of eqs. (11) and (15),
we have:

ci =
mX

s=i+1

Qs (21)

aNPVi =

Pm
s=i+1Qs

(1 + k)i
; i = 0; 1; ::; n+ k (22)

and

aVti =

(Pm
j=i+1Qj=ct

(1+k)i�t if i > t

0 if i � t
; i = 0; 1; ::; n+ k (23)

Table 3 reports the expected value of the cash �ows and the analyst
uncertainty in the cash �ow value (�i). k is set at 8%.
Cash �ows of the cost period are associated with less uncertainty

than in the income period, since more information is available to the
DMr on the former.
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xi Base Case/Expected Value �i
0 0 0
1 �10 2:5
2 �30 2:5
3 �50 5
4 �70 5
r5 600 50
r6 750 25
r7 900 50

Table 3: Cash �ows numerical values

4.1 Global SA of the Project NPV
The NPV variance is given by:

�2NPV =
m�1X
j=0

"Pm
s=j+1Qs

(1 + k)j

#2
�2j (24)

Eq. (24) shows that �2NPV is given by the sum of the cash �ow uncer-
tainties (�2j), discounted by (1+k)

�2j and by the cash �ow probabilities
(
Pm

s=j+1Qs)
2. Using eqs. (24) and (10), the cash �ow global importance

with respect to the project NPV [GINPV(xi)] is:

GINPV(xi) =

hPm
s=j+1Qs

(1+k)j

i2
�2j

�2NPV
(25)

As far as cash �ow timing is concerned, for this model condition (16)
becomes:

�i
�i+1

>

Pm
s=i+2QsPm
s=i+1Qs

1

(1 + k)
8i; j (26)

In eq. (26) the left hand side is always lower than 1, since
P

sQs de-
creases as s increases. Thus, deviations of the cash �ow ranking from
their timing will eventually be caused by �i.
The assumptions in Table 3, lead to the following numerical results

for GI NPV(x i) (Figure 1):

Table 4 below presents the cash �ow ranking:

The most important cash �ow is r5, followed by r6, 3, 1, r7; 2, 4;
0 respectively. We recall that this ranking would be produced by any
of the global SA techniques discussed in this paper, since eq. (14) holds
(Section 3), if one utilized a numerical approach.
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Figure 1: GINPV (xi)

Cash Flow 0 1 2 3 4 r5 r6 r7
Ranking 8 4 6 3 7 1 2 5

Table 4: Cash Flow Ranking with PEAR, SRC and VDB for the global
SA of the project NPV

As far as timing is concerned, table 4 shows that the ranking of the
cash �ows di¤ers from their timing. Recalling eqs. (16) and (26), this
result indicates that the individual cash �ow epistemic uncertainty (�i)
prevails on the discounting and probability e¤ects.
In Section 3, we showed that GI NPV(x i) coincides with the fraction

of the NPV variance associated with xi [eq.(12)]. Thus, the results
of �gure 1 share the following interpretation: around 96% of the model
variance is originated by the cash �ows of the revenue period, with 77%
of the uncertainty associated with r5. Based on the concluding remarks
of Section 3, this result has a direct implication from an uncertainty
management point of view. In fact, suppose that one would be able
to know the value of r5 exactly. At that moment �5 = 0: The NPV
variance would follow from 80 to 17, with a 77% reduction. However, if
one would come to know, say, 3 exactly, the variance would fall from
80 to 76 with only a 4:6% reduction.
Let us now discuss the global SA of the same model, but in the

presence of higher DMr uncertainty. In particular, we consider a uniform
increase in the cash �ow uncertainties of 100%, i.e. �0i = 2�i: The new
standard deviations are displayed in Table 5:
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Cash Flow 0 1 2 3 4 r5 r6 r7
Standard Deviation 0 5 5 10 10 100 50 100

Table 5: The standard deviations in the case of increased uncertainty

The resulting NPV variance is now four times the previous one, in
fact:

�20NPV =

m�1X
j=0

"Pm
s=j+1Qs

(1 + k)j

#2
�20j =

m�1X
j=0

"Pm
s=j+1Qs

(1 + k)j

#2
4�2j = 4

m�1X
j=0

"Pm
s=j+1Qs

(1 + k)j

#2
�2j

(27)
The cash �ows global importance is the same as before, since:

GINPV(xi)
0 =

hPm
s=j+1Qs

(1+k)j

i2
�20j

�20NPV
=
4
hPm

s=j+1Qs

(1+k)j

i2
�2j

4�2NPV
= GINPV(xi) (28)

In this case, the reduction of uncertainty associated with knowing cash
�ow r5 exactly, would be still of 77% of the uncertainty, i:e: �0NPV would
decrease from 318 to 72. We note that with the uncertainty of the
previous case (Table 3) the NPV standard deviation was worth 79. This
means that annulling uncertainty in the most in�uential cash �ow (r5)
would reduce variance more e¤ectively than halving the uncertainty in
all the cash �ows.
As a result of this analysis, global SA results point out how to direct

resources in information collection so as to reduce uncertainty in the
most e¤ective way. Such an information can be particularly useful to
the DMr in the presence of limited time and resources.

4.2 Global SA of Vt
Let us now consider the global SA of the project value at time t, Vt. �2Vt
is given by:

�2Vt =
mX

h=t+1

�2h

"
(1 + k)t�h

Pm
j=h+1QjPm

s=t+1Qs

#2
(29)

�2Vt is plotted in Figure 2 for the input data of Table 3:

Applying Sobol�variance decomposition theorem to eqs. (19), GI Vt(x i)
turns out to be:
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Figure 2: �2Vt as a function of t

t 1 2 3 4 5 6 7
1 4
2 6 5
3 3 3 3
4 7 6 5 4
r5 1 1 1 1 1
r6 2 2 2 2 2 1
r7 5 4 4 3 3 2 1

Table 6: Cash Flow ranking as a function of time

GIVt(xi) =

8>>><>>>:
�2i

"
(1+k)t�i

Pm
j=i+1 QjPm

s=t+1 Qs

#2
Pm
h=t+1 �

2
h

"
(1+k)t�h

Pm
j=h+1

QjPm
s=t+1 Qs

#2 if i > t
0 if i � t

; i = 0; 1; ::; n+ k

(30)
GI Vt(x i) is the fraction of the project value variance associated with xi
at any time t.
Figure 3 shows GI Vt(x i) as a function of t.
The ranking of the cash �ows as a function of time is reported in

Table 6.

Table 6 shows that r5 is the most in�uential parameter till it is re-
ceived (t = 5). r6 ranks second until r5 is received. 4 is always the
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0
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0.6
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x1 0.044 0 0 0 0 0 0
x2 0.023 0.024 0 0 0 0 0
x3 0.046 0.047 0.049 0 0 0 0
x4 0.02 0.021 0.022 0.023 0 0 0
x5 0.77 0.81 0.83 0.87 0.89 0 0
x6 0.056 0.059 0.06 0.063 0.065 0.61 0
x7 0.041 0.039 0.039 0.044 0.045 0.39 1

1 2 3 4 5 6 7

Figure 3: GIVt(xi) as a function of time

least in�uential cash �ow. The ranking in the cash �ows is mainly driven
by uncertainty e¤ects. We note that, in the presence of increased un-
certainty, the same results as in the discussion of Section 4.1 would be
obtained.

4.3 Global SA of the project IRR
For the global SA of the project IRR [eq. (20)], we have utilized a numer-
ical approach, since an analytical expression for �2IRR is not achievable.
A random sample of size N = 5000 has been generated.
The project IRR distributions in the base case (Table 3) and in the

case of increased uncertainty are shown in Figure 4.

Figure 4 shows that increased uncertainty causes the IRR distribution
to become less symmetric. The estimates of E[IRR] and �IRR are 0:53
and 5% respectively, with the data of Table 3.
The subroutine for the calculation of GI IRR(x i) is based on the ex-

tended FAST ([24], [26]). The numerical estimates are shown in Figure
5.
In Figure 5, the top of each bar corresponds to the value of ST (xi).

One notes that r1 is now the most in�uential cash �ow, followed by r5,
2, 3, 4, r6,r7. The shadowed portion of each bar in Figure 5 shows
the portion of the cash �ow importance explained by �rst order terms
(SIRR1 (xi)). Thus, the in�uence of r7, and r6 with respect to the IRR is
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Figure 4: IRR distribution generated by uncertainty in the cash �ows
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Figure 5: GI IRR( xi) in the case of Table 2, on the right, and of increased
uncertainty, on the left

mainly due to interaction e¤ects, while the importance of the cost cash
�ows (i; i = 1:::4) and of r5 is mainly determined by individual terms.
Let us now compare the ranking obtained through ST (xi) to the one

obtained making use of PEAR(xi) and SRC(xi) for the values in Table
3. The estimates of GI(xi) obtained using PEAR(xi), SRC(xi) with a
sample of size N = 5000 are shown in Table 7.
Table 7 shows that SRC and PEAR produce the same ranking.

However, such a raking is di¤erent from the ranking obtained using
ST (xi). In fact, as a consequence of the nonlinearity of the IRR w.r.t.
the cash �ows, PEAR and SRC cannot estimate the importance of
interaction terms.

16



Cash Flow 0 1 2 3 4 r5 r6 r7
Rank using ST (xi) 0 1 4 3 5 2 7 6

Rank using PEAR and SRC 0 1 3 4 5 2 6 7

Table 7: Estimating GI(xi) using PEAR and SRC would lead to mis-
leading conclusions

xi NPV Rank IRR Rank
1 4 1
2 6 4
3 3 3
4 7 5
r5 1 2
r6 5 7
r7 2 6

Table 8: Ranking of the cash �ows with respect to IRR and NPV

4.4 Comparison of NPV and IRR global SA results
Table 8 reports the cash �ow ranking with respect to the investment
NPV and IRR obtained ordering the cash �ows according to GI(xi).

Table 8 shows that, there is little agreement for the relevance of cash
�ows w.r.t. uncertainty in the IRR and in the NPV . Quantitative
information on ranking agreement can be found by making use of the
Savage Score correlation coe¢ cient. We refer the reader to [6] and
[8] for the mathematical de�nition. For the purposes of this work,
we need only to recall that a high Savage Score correlation coe¢ cient
means good agreement on the most and least in�uential model cash
�ows. The Savage Score correlation coe¢ cient of the ranking in Table
8 is 27%. Such value indicates that high in�uence and low relevance
cash �ows tend not to coincide. In Table 8 it is evident the change
in ranking of 1: from almost non in�uential on the NPV, to most
in�uential cash �ow on the IRR. This result shows that, in general,
cash �ow in�uence will depend upon the valuation criterion chosen by
the DMr3. As a practical implication, then, results obtained for the SA
of the NPV cannot be transferred to the SA of IRR and vice-versa. This
means that, if the DMr would collect information on r5, then He/Her
would reduce His/Her uncertainty on the NPV in the most e¤ective way
(see Section 4.1.), but uncertainty on the IRR would not be reduced in

3The authors obtained similar results for the local SA of the same model [7]
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the most e¤ective way. To do so, information on 1 should be gathered.

5 Conclusions

We have discussed the use of global SA techniques in the evaluation of
business decisions. Global SA is a set of techniques that have been re-
cently developed in the literature [18] to complement Uncertainty Analy-
sis (UA), providing information on how uncertainty in the model output
is generated by uncertainty in the input factors. Nowadays, most of the
standard software used in industrial decision-making is equipped with
Monte Carlo subroutines that enable the DMr to perform uncertainty
or scenario analysis. By means of UA, the DMr can quantify His/Her
uncertainty in the project and assess the likelihood of favorable and ad-
verse scenarios. If in addition to UA a global SA is performed, then
the DMr is able to derive quantitative information on what are the as-
sumptions in�uencing uncertainty the most. These parameters are the
ones deserving better attention in the information gathering and data
collection processes, in order to reduce uncertainty in the fastest way.
It has been the purpose of this work to introduce global SA in the

investment project evaluation realm. To do so, we have examined the
global SA of the most used valuation criteria. We have then discussed
the investment NPV� or one of the generalized forms � and IRR global
SA to uncertainty in the cash �ows. For the NPV valuation criterion
we have seen that:

� The global importance of the cash �ows [GI NPV(x i)] can be ob-
tained analytically.

� GI NPV(x i) can be seen as the product of three e¤ects: the cash
�ow uncertainty, the probability of receiving the cash �ow and the
discount factor.

� The ranking of the cash �ows does not necessarily follow their tim-
ing, but uncertainty and probability e¤ects can drive the results.

� GI NPV(x i) is independent of the type of cash �ow epistemic dis-
tribution, but dependent only on �2i .

� GI NPV(x i) can be equivalently estimated using variance decompo-
sition based techniques, and non-parametric techniques (SRC and
PEAR).

These results imply that, once the DMr has estimated His/Her un-
certainty in the investment cash �ows, then their global importance can
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be found directly, without further calculations, since an analytical ex-
pression is available. More in detail, it is enough that the DMr assesses
a standard deviation of the cash �ows, and their global importance is
directly found from eq. (12). From a computational point of view, the
advantage of the above results is that they rule out any problem related
to the numerical computation of cash �ow global importance.
Di¤erent results, however, have been obtained for the IRR valuation

criterion. We have seen that:

� GI IRR(x i) must be computed numerically, since an analytical ex-
pression for GI IRR(x i) is not achievable, in general.

� Due to the non-linearity of the model, PEAR, SRC and VDB tech-
niques produce di¤erent cash �ow ranking

� VDB techniques produce the most reliable estimates since PEAR
and SRC fail in assessing the importance of interaction terms in
the case of non-linear models.

The fact that the global SA of the IRR can be performed only nu-
merically, brings into the picture the limitations connected with the
computational aspects illustrated in Section 2 (Table 2).
We have illustrated the previous results numerically, through the

global SA of a model developed for the evaluation of projects under
serious survival risk proposed by Beccacece, Gallo and Peccati (2000)
and in use in the energy sector [4]. We have discussed the cash �ow
global importance in two cases, a base case and a case of uniform increase
in uncertainty in the cash �ows. The application of the general NPV
results listed above has enabled us to: - derive the cash �ow global
importance analytically. - quantify the reduction in uncertainty in the
NPV associated with the reduction of the uncertainty in cash �ows.
We have discussed how the global SA results can be utilized in the
information collection process in order to manage uncertainty e¤ectively.
More precisely, we have seen that reducing uncertainty in the �rst cash
�ow of the revenue period (r5) would lead to the fastest reduction in the
uncertainty on the NPV. The analytical approach has been utilized for
the global SA of the value of the project as a function of time. Similar
results w.r.t. those of the NPV has been obtained.
We have then performed the global SA of the project IRR. We have

resorted to a numerical approach utilizing the extended FAST method
to obtain quantitative estimates for GIIRR(xi) [ST (xi)] and we have
also compared the results to the estimates of GIIRR(xi) obtained by
utilizing the PEAR and SRC methods. Results con�rmed the foreseen
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poor performance of PEAR and SRC, due to the non-linear dependence
of the IRR on the cash �ows. We have then compared the cash �ow
ranking w.r.t. the NPV with the IRR ranking. Results have shown that
little agreement is obtained. In particular, the parameter in�uencing
uncertainty in the IRR the most (1) is not the one in�uencing the NPV
the most (r5). Thus, if a DMr collects information on 1, then He/Her
would reduce uncertainty only on the IRR and not on the NPV. This
result shows that information obtained from the SA of the NPV cannot
be transferred to the SA of the IRR. Thus, also global SA results state
the non-equivalence of the IRR and NPV valuation criteria.
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